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The hierarchies of both Lovelock gravity and power-Yang–Mills field are combined through gravity in
a single theory. In static, spherically symmetric ansatz exact particular integrals are obtained in all
higher dimensions. The advantage of such hierarchies is the possibility of choosing coefficients, which
are arbitrary otherwise, to cast solutions into tractable forms. To our knowledge the solutions constitute
the most general spherically symmetric metrics that incorporate complexities both of Lovelock and Yang–
Mills hierarchies within the common context. A large portion of our general class of solutions concerns
and addresses to black holes for which specific examples are given. Thermodynamical behaviors of the
system is briefly discussed in particular dimensions.
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1. Introduction

The hierarchy of Lovelock gravity consists of a sum (
∑

s=0 αs Ls ,
αs = constant, Ls = sth order Lagrangian) of geometrical terms rep-
resenting higher corrections in suitable combinations that do not
give rise to equations higher than second order [1]. The higher
order terms are reminiscent of higher order Feynman diagrams
in field theory but all at a classical level. The zeroth order term
(s = 0) in the hierarchy is simply the cosmological term while the
first order (s = 1) one corresponds to the familiar Einstein–Hilbert
(EH) Lagrangian. The second order (s = 2) term gives the Gauss–
Bonnet (GB) gravity with the quadratic invariants. The third and
higher order Lovelock terms grow rather wildly, giving the impres-
sion that it is impossible to keep the track analytically. Contrary
to the expectations, however, in particular geometries exact solu-
tions are available to all orders of the hierarchy. Not only the ge-
ometric terms but with various sources, including power-Maxwell
and power-Yang–Mills (YM) fields, exact solutions are available in
static, spherical symmetric ansatz [2,3]. By the power-Maxwell/YM,
it is implied that the invariants in the Lagrangian are raised to a
power k. The finely-tuned power has physical implication as far as
energy conditions are concerned [3]. In principle, k can be cho-
sen as an arbitrary (±) rational number, but such a freedom raises
problems when the energy and causality conditions are imposed.
(Based on the energy conditions, k must be at least greater than 1

2 .
Here in our study, since we aimed to consider a discrete hierarchy,
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we restrict ourselves to the integer k although this is not the only
possible choice. In other words one may consider a continuous hi-
erarchy with 1

2 < k ∈ R which may be studied separately.) For this
reason, to be on the safe side we choose k = (+) integer in this
study. The topological implication of such powers, if there is any
at all, remains to be seen.

In this Letter, coupled with the Lovelock hierarchy we consider
the YM hierarchy (a different approach to YM hierarchy was first
introduced by D.H. Tchrakian in 1985 [4] and the concept was ex-
panded later [5]) of the form ∼ ∑

k bk F k where bk are constant

coefficients and F = the YM invariant = F (a)
μν F (a)μν , with the inter-

nal index a.
It is interesting to note that for the YM invariant and dimension

of spacetime d > 5, F ∼ 1
r4 , irrespective of the dimension. In the

Maxwell case we recall that the invariant FM ∼ 1
r2(d−2) , depends

on the dimension as well. (The reason that we excluded d = 5 in
the YM case is that it contains a logarithmic term and violates
the rule as aforesaid [6].) This suggests, as a matter of fact, that
we have a working YM hierarchy whereas for the Maxwell case a
similar hierarchy does not work with equal ease. In obtaining an
exact integral to the problem we make use of a theorem proved
beforehand which is valid for a large class of energy–momenta
[7]. Here, in particular we evaluate the integral for the general
YM field arising from the Wu–Yang ansatz [8]. Let us add that it
is this particular ansatz which makes the YM hierarchy tractable
in a diagonal metric, simply by making the YM invariant men-
tioned above to have a fixed power. It should be supplemented
that the Wu–Yang ansatz in our choice works only for the pure
magnetic YM fields. Any other YM ansatz that can be extended to
higher dimensions analytically, even with a power (and hierarchy),
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remains to be seen. The energy and causality conditions which are
employed in Appendix A determine the acceptable integers as a
function of dimensionality in our solution. These split naturally
into two broad classes labelled by ’even’ and ’odd’. The intricate
structure of our solutions dashes hopes to determine horizons and
thermodynamical functions analytically. In principle, however, we
obtain infinite class of solutions pertaining to all dimensions that
incorporate Lovelock and YM hierarchies in the common metric.
We choose particular parameters and dimensions to present work-
ing examples of black hole solutions which elucidate our general
class. The 5-dimensional black hole solution with an effective mass
defined from cosmological constant and YM charge is one such ex-
ample. Chern–Simons (CS) black hole solution in d = 11 constitutes
another example as an application of our general class. From the
definition of specific heat we show the absence of thermodynami-
cal phase transition for the CS black hole in d = 11.

2. d-dimensional Einstein–Lovelock gravity with YM hierarchy

The d-dimensional action for Einstein–Lovelock–Yang–Mills hi-
erarchies with a cosmological constant Λ is given by (8πG = 1)

I = 1

2

∫
dxd√−g

( [ d−1
2 ]∑

s=0

αs Ls −
q∑
k

bk F k

)
, (1)

in which α0 = − (d−2)(d−1)
3 Λ, α1 = 1, F is the YM invariant

F = γ ab

(
F (a)
μν F (b)μν

)
,

a,b = 1,2, . . . ,
(d − 2)(d − 1)

2
and γ ab = δab. (2)

The parameter q (1 � k � q) is an integer, αs stand for arbitrary
constants, [ d−1

2 ] represents the integer part, and the Lovelock La-
grangian is

Ls = 2−nδ
a1b1...anbn
c1d1...cndn

Rc1d1
a1b1 . . . Rcsds

asbs , s � 1. (3)

Variation with respect to the gauge potentials A(a) yields the YM
equations

∑
k

bk

{
d
(
�F(a)F k−1) + 1

σ
C (a)

(b)(c)F k−1A(b) ∧ �F(c)
}

= 0, (4)

where � means duality, C (a)

(b)(c) stands for the structure constants

of (d−2)(d−1)
2 -parameter Lie group G , σ is a coupling constant and

A(a) are the SO(d − 1) gauge YM potentials. The determination of
the components C (a)

(b)(c) has been described elsewhere [9]. We note
that the internal indices {a,b, c, . . .} do not differ whether in co-
variant or contravariant form. Variation of the action with respect
to the spacetime metric gμν yields the field equations

[ d−1
2 ]∑

s=0

αsGν(s)
μ = T ν

μ, (5)

where

T μ
ν = −1

2

∑
k

bk
(
δμ

ν F k − 4kγ ab

(
F (a)
νλ F (b)μλ

)
F k−1), (6)

is the energy–momentum tensor representing the matter fields,
and
Gν(s)
μ =

s∑
i=0

2−(i+1)αiδ
νa1b1...aibi
μc1d1...cidi

Rc1d1
a1b1 . . . Rcidi

aibi , s � 1,

Gν(0)
μ = (d − 2)(d − 1)

6
Λδν

μ (s = 0). (7)

Our metric ansatz for d-dimensions, is chosen as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2 dΩ2

(d−2), (8)

in which f (r) is our metric function. The choice of these metrics
can be traced back to the form of the stress–energy tensor (6),
which satisfies T 0

0 − T 1
1 = 0 (see Eq. (12) below) and consequently

G0
0 − G1

1 = 0, whose explicit form, on integration, gives |g00 g11| =
C = constant. We need only to choose the time scale at infinity to
make this constant equal to unity.

Recently we have introduced and used the higher dimensional
version of the Wu–Yang [8] ansatz in EYM theory of gravity [8].
In this ansatz we express the Yang–Mills magnetic gauge potential
one-forms in the following manner

A(a) = Q

r2
C (a)

(i)( j)xi dx j, Q = YM magnetic charge, r2 =
d−1∑
i=1

x2
i ,

(9)

2 � j + 1 � i � d − 1, and 1 � a � (d − 2)(d − 1)

2
,

x1 = r cos θd−3 sin θd−4 . . . sin θ1,

x2 = r sin θd−3 sin θd−4 . . . sin θ1,

x3 = r cos θd−4 sin θd−5 . . . sin θ1,

x4 = r sin θd−4 sin θd−5 . . . sin θ1,

...

xd−1 = r cos θ1.

One can easily show that these ansaetze satisfy the YM equations
[6,8]. In consequence, the energy–momentum tensor (6), with

F = (d − 2)(d − 1)Q 2

r4
, (10)

Tr
(

F (a)
θiλ

F (a)θiλ
) = (d − 3)Q 2

r4
= 1

d − 2
F (11)

takes the compact form

T μ
ν = −1

2

∑
k

bk F k diag[1,1, ξ, ξ, . . . , ξ ],

with ξ =
(

1 − 4k

d − 2

)
. (12)

2.1. Energy conditions and the solutions

Upon choosing the energy–momentum tensor, it is necessary
to look at the energy conditions. This is important, because the
upper and lower limits of k will come to light by imposing the
energy and causality conditions all satisfied. In a straightforward
calculation (see Appendix A) one can show that WEC, SEC, DEC
and CC are all satisfied if and only if d−1

4 � k < d−1
2 . Therefore we

should modify our summation symbol accordingly as

∑
k

bk →
−[− d−1

2 ]−1∑
k=−[− d−1 ]

bk. (13)
4
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Here one should notice that in 4 and 5 dimensions only b1 is
available and for 6 and 7 dimensions b2 is nonzero. Of course,
for d-dimensions we have [− d−1

4 ] − [− d−1
2 ] terms included. Our

static, spherically symmetric metric is given by (8), whose metric
function can be re-expressed, for convenience in the form

f (r) = 1 − r2 H(r), (14)

and from the tt component of (5) and (12) we obtain [7]

[ d−1
2 ]∑

s=0

α̃s Hs = 4m

(d − 2)rd−1
− 2

(d − 2)rd−1

∫
rd−2T t

t dr. (15)

Here m is an integration constant related to the ADM mass of the
black hole, α̃0 = −Λ

3 , α̃1 = 1, and

α̃s =
2s∏

i=3

(d − i)αs, s > 1. (16)

Now, we use T t
t given in (12) to get

[ d−1
2 ]∑

s=0

α̃s Hs = 4m

(d − 2)rd−1

+
−[− d−1

2 ]−1∑
k=−[− d−1

4 ]

bk Q̃ 2
k

(d − 2)

⎧⎨
⎩

1
(d−1−4k)r4k , k �= d−1

4

ln r
rd−1 , k = d−1

4

= Ψ ,

(17)

where Q̃ 2
k = ((d − 2)(d − 1)Q 2)k and Ψ abbreviates the indicated

series. Here we comment that at r → ∞, one gets

lim
r→∞Ψ = bk Q̃ 2

k

(d − 2)

{
1

(d−1−4k)r4k , d �= 5,9,13,17, . . .

ln r
rd−1 , d = 5,9,13,17, . . .

∣∣∣∣∣
k=−[− d−1

4 ]
.

(18)

Let’s introduce new parameters as

α̃s = ᾱs

ᾱ1
, for s � 2 and −Λ

3
= ᾱ0

ᾱ1
, (19)

which lead to

[ d−1
2 ]∑

s=0

ᾱs Hs = ᾱ1Ψ (20)

and choose a specific set of [10] ᾱs such that

ᾱs = (±1)s+1
([d−1

2 ]
s

)
�2s−d (21)

where −Λ
3 = ᾱ0

ᾱ1
= ± �−2

[ d−1
2 ] . Following the latter expression, Eq. (20)

gives(
1 ± �2 H

)[ d−1
2 ] = ±�dᾱ1Ψ (22)

and consequently

f (±)(r) = 1 ± r2

�2
∓ r2

�2
σ

(
±

[
d − 1

2

]
�2Ψ

)1/[ d−1
2 ]

, (23)

in which

σ =
{±1,

[d−1
2

] = even,

1,
[d−1 ] = odd.

(24)

2

After this general solution we label the solutions for even and odd
dimensions separately. To do so, we put [ d−1

2 ] = d−1
2 for odd di-

mensions and [ d−1
2 ] = d−2

2 for even dimensions into (23) to obtain
the splitting

f (±)
even(r) = 1 ± r2

�2
∓ σ

[
± d − 2

2�d−4

(
4m

(d − 2)r
+

−[− d−1
2 ]−1∑

k=−[− d−1
4 ]

bk Q̃ 2
k

(d − 2)

×
{ 1

(d−1−4k)r4k−d+2 , k �= d−1
4

ln r
r , k = d−1

4

)] 2
d−2

, (25)

and

f (±)

odd (r) = 1 ± r2

�2
∓ σ

[
± d − 1

2�d−3

(
4m

(d − 2)
+

−[− d−1
2 ]−1∑

k=−[− d−1
4 ]

bk Q̃ 2
k

(d − 2)

×
{ 1

(d−1−4k)r4k−d+1 , k �= d−1
4

ln r, k = d−1
4

)] 2
d−1

. (26)

From f (±)
even(r), for instance the Einstein–de Sitter limit can readily

be seen for d = 4 and Q k = 0. It is remarkable to observe that by
setting bk = 0 we obtain

f (±)
even(r)

∣∣
bk=0 = 1 ± r2

�2
∓ σ

[
± 1

�d−4

2m

r

] 2
d−2

(27)

and

f (±)

odd (r)
∣∣
bk=0 = 1 ± r2

�2
∓ σ

[
± 1

�d−3

(
2(d − 1)m

(d − 2)

)] 2
d−1

(28)

which by choosing the positive branches and redefinition of the
free parameters we get the results reported in [11]. Therefore we
use only the positive branches for our further study. Here we in-
vestigate the possible horizon of the above black hole solutions.

2.1.1. Even dimensions
To find the horizon(s) of the solution given in Eq. (25) we set

f (+)
even(rh) = 0, (29)

which admits the relation between the black hole’s parameters.
Finding horizon(s) in a closed form is not possible, therefore we
choose a specific dimension, namely d = 8 for going further. In this
setting the latter equation reads

1 + r2
h

�2
−

[
1

�4

(
2m

rh
− b2 Q̃ 2

2

2

1

r2
h

− b3 Q̃ 2
3

10

1

r6
h

)] 1
3

= 0. (30)

Fig. 1 displays ρ = rh
�

in terms of μ = b2 Q̃ 2
2

2�6 , ν = b3 Q̃ 2
3

10�10 for m
�5 = 1.

Depending on μ and ν , two horizons or no horizon cases are the
basic information that Fig. 1 reveals. Changing m does not effect
the general schema of the figure. From the metric one observes
that r = 0 is a singularity hidden by horizon(s) and the Ricci scalar,
once r → 0 behaves as

lim
r→0

R → −12ν1/3

�2/3r4
→ ±∞. (31)
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Fig. 1. The 3-dimensional parametric plot for Eq. (30), i.e. f (rh) = 0. Plotting of ρ = rh
�

versus μ and ν referring to even (d = 8) dimensions is given. The occurrence of two
horizons/no horizon is clearly visible. The fact that we abide by μ > 0 and ν > 0, originates from the energy conditions which dictates bk � 0. It can easily be seen that μ
plays little role in comparison with ν .

Fig. 2. Plotting of ρ = rh
�

versus μ and ν from Eq. (33). We have again dominantly two or no horizon cases. For small ν values we have rare formation of single horizon. The
effect of ν dominates over μ also here for odd (d = 9) dimensions.
2.1.2. Odd dimensions
Again, in this part, we set the metric function (26) to zero, i.e.,

f (+)

odd (rh) = 0 (32)

which after we choose a specific odd dimension, namely d = 9 it
reads

1 + r2
h

�2
− σ

[
1

�6

(
16m

7
+ 4b2 Q̃ 2

2

7
ln rh − b3 Q̃ 2

3

7

1

r4
h

)] 1
4

= 0. (33)

Unlike the previous example, here σ = ±1 but for σ = −1 defi-
nitely there is no horizon and our solution collapses to a cosmo-
logical object which is not of interest. For σ = +1 the solution
admits black hole with horizon(s). In Fig. 2 we plot ρ = rh
�

in terms

of μ = 4b2 Q̃ 2
2

7�6 , ν = b3 Q̃ 2
3

7�10 and for 16m
7�6 = μ ln�2

�6 + 1. We observe that
Fig. 2 shares much of the features with Fig. 1. One should notice
that in this case we have the condition

1

�6

(
16m

7
+ 4b2 Q̃ 2

2

7
ln rh − b3 Q̃ 2

3

7

1

r4
h

)
� 0. (34)

Although these two examples are given in specific dimensions,
they show how the procedure goes on and definitely in higher di-
mensions having more terms in the hierarchy makes the analysis
much more complicated. Let us add that the Ricci scalar in this
case diverges as r−3 which shows that r = 0 is a singular point
hidden behind the horizon(s).
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2.2. A very specific case

Now let us relax the energy conditions except the WEC which
allows us to choose k = 0,1, . . . , [ d−1

2 ]. For the case of k �= d−1
4 one

finds from (17) that

[ d−1
2 ]∑

s=0

ᾱs Hs = ᾱ1

(
4m

(d − 2)rd−1
+

[ d−1
2 ]∑

k=0

bk
Q̃ 2

k

(d − 2)(d − 1 − 4k)r4k

)

(35)

which after setting m = 0 and
bk Q̃ 2

k
(d−2)(d−1−4k)

= βk = (±1)k+1 ×([ d−1
2 ]
k

)
λ2k−d this admits

[ d−1
2 ]∑

s=0

ᾱs Hs = ᾱ1

[ d−1
2 ]∑

k=0

βk

(
1

r4

)k

. (36)

This yields

[ d−1
2 ]∑

s=0

(±1)s
([d−1

2 ]
s

)
�2s−d Hs =

[ d−1
2 ]∑

k=0

(±1)k
([d−1

2 ]
k

)
λ2k−d

(
1

r4

)k

(37)

or

�−d(1 ± �2 H
)[ d−1

2 ] = ᾱ1λ
−d

(
1 ± λ2

r4

)[ d−1
2 ]

(38)

which, after adjusting ᾱ1λ
−d = �−d one finds

(
1 ± �2 H

)[ d−1
2 ] =

(
1 ± λ2

r4

)[ d−1
2 ]

(39)

and depending on the dimensionality we have

1 ± �2 H = σ

(
1 ± λ2

r4

)
. (40)

This leads to

H = ∓ 1

�2
± σ

�2

(
1 ± λ2

r4

)
, (41)

and consequently

f (r) = 1 ± r2

�2
∓ σ

�2

(
r2 ± λ2

r2

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − λ2

�2
1
r2 ,

d = 7,8,11,12,15,16, . . .

1 − λ2

�2
1
r2 and 1 ± 2

�2 r2 + λ2

�2
1
r2 ,

d = 5,6,9,10,13,14, . . . .

(42)

It is remarkable to observe that the latter solution is nothing but
the Schwarzschild black hole-like solution in 5-dimensions if we
consider λ2

�2 as the effective mass of the black hole. Note that the
mass term of the black hole, m was chosen to be zero. Also, for
the other set of solutions i.e.

f (r) = 1 ± 2

�2
r2 + λ2

�2

1

r2
, (43)

one may call it anti-Schwarzschild black hole with a positive or
negative cosmological constant. To get a better idea about this so-
lution we rewrite it in terms of meff = λ2

2 and Λeff = ± 2
2 , so that
� �
f (r) = 1 + Λeff r2 + meff

r2
.

Let us remind, from the above identifications, that meff depends
on both � and Q k . It is clear that with positive sign there is no
horizon and therefore it is a cosmological object which has a naked
singularity at the origin. The negative branch has a cosmological
horizon at

rh =
(

�2 + √
�2 + 8λ2

4

)1/2

. (44)

2.3. Example of Chern–Simons (CS) gravity in 11-dimensions

As one may notice, setting the [ d−1
2 ] Lovelock parameters ac-

cording to (21), in odd dimensions it becomes isometric with the
CS theory of gravity [10–12]. Therefore Eq. (26) gives a black hole
solution in CS theory, and in this section we shall go through some
of the physical properties of this type BHs in 11-dimensions as an
example.

2.3.1. For k �= d−1
4 with positive branch

The solution, after choosing �−2 = −[ d−1
2 ]Λ

3 = 1 and rewriting
the integration constants, in 11-dimensions, reads

fodd(r) = 1 + r2 −
(

1 + M − μ

r2
− ν

r6

) 1
5

(45)

in which μ = 202 500b3 Q 6, ν = 6 075 000b4 Q 8 and M = 20
9 m. We

remark that although the constants μ and ν are multipole-like
coefficients depending on powers of the YM charge Q and cosmo-
logical constant, which is scaled to unity, their exact interpretation
can be understood upon expansion of the power. From the energy
conditions (see Appendix A) we show that bk � 0; this implies re-
striction on the mass parameter M so that the parenthesis in (45)
is positive. The Hawking temperature and the mass of the black
hole are given by

T H = 1

4π
f ′(rh) = rh

2π
− μ

10πr3
h(1 + r2

h)4
− 3ν

10πr7
h(1 + r2

h)4
,

(46)

and

M = μ

r2
h

+ ν

r6
h

+ (
r2

h + 1
)5 − 1, (47)

respectively. The specific heat [12]

C Q =
(

∂M

∂T H

)
Q

, (48)

reads as

C Q = −20
πrh(1 + r2

h)5[r4
h(μ − 5r4

h(1 + r2
h)4) + 3ν]

r2
h{3μr2

h + 45ν + r4
h[11μ + 5r2

h(1 + r2
h)5]} + 21ν

.

(49)

We observe that absence of root(s) of the denominator implies that
the CSBH does not experience phase changes.

2.3.2. For k �= d−1
4 with negative branch

By a similar setting as in the previous subsection, after choosing
the negative branch of the solution one gets

fodd(r) = 1 − r2 +
(

1 + M + μ
2

+ ν
6

) 1
5

. (50)

r r
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We note that the integration constant M and the parameters μ,
ν have the same values as in Eq. (45). In this branch it is readily
seen that there is no restriction on M , since the expression in the
parenthesis is always positive. In this case also we use the same
definitions to find

T H = 1

4π
f ′(rh) = − rh

2π
− μ

10πr3
h(1 + r2

h)4
− 3ν

10πr7
h(1 + r2

h)4
,

(51)

and

M = μ

r2
h

+ ν

r6
h

+ (
r2

h − 1
)5 − 1, (52)

C Q = 20
πrh(r2

h − 1)5[r4
h(μ − 5r4

h(r2
h − 1)4) + 3ν]

r2
h{−3μr2

h + 45ν + r4
h[11μ + 5r2

h(r2
h − 1)5]} − 21ν

.

(53)

The zeros of the denominator implies possible phase changes in
the CSBH, however, the fact that T H < 0 makes this particular case
questionable.

3. Conclusion

With the exception of highly symmetric cases finding general
integrals to Einstein’s field equations in general relativity remained
ever challenging. Add to that the most general Lovelock gravity
and YM hierarchies, doubtless makes it further challenging. By
resorting to a previously known theorem in generating solutions
and simplicity of power-YM theory/hierarchy aided in obtaining
such particular integrals. The reported static, spherically symmet-
ric metrics are valid in all higher dimensions and occurrence of
polynomials with rational powers in closed form seems to be
their characteristic feature. A particular example refers to the 11-
dimensional Chern–Simons (CS) gravity in which the intricacy of
the metric function is clearly seen. Determination of zeros of such
a function remains a mathematical challenge. For particular dimen-
sions, i.e. d = 8, 9, we plot in Figs. 1 and 2 explicit formation of
horizons. From the thermodynamical analysis we evaluate the rel-
evant quantities and investigate the possibility of phase transitions
in this model. One particular example that yields T H < 0, must be
discarded as non-physical. The causality and energy conditions dis-
cussed in Appendix A guide us to fix the acceptable dimensions for
each particular case.
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Appendix A. Energy conditions

When a matter field couples to any system, energy conditions
must be satisfied for physically acceptable solutions. We follow the
steps as given in [9].

A.1. Weak energy condition (WEC)

T μ
ν = −1

2

q∑
k=1

bk F k diag[1,1, ξ, ξ, . . . , ξ ], and

ξ =
(

1 − 4k

d − 2

)
. (A.1)
The WEC states that,

ρ � 0 and ρ + pi � 0 (i = 1,2, . . . ,d − 1) (A.2)

in which ρ is the energy density and pi are the principal pressures
given by

ρ = −T t
t = −T r

r = 1

2

∑
k

bk F k, pi = T i
i (no sum). (A.3)

The WEC imposes the following conditions on the constant param-
eters bk and k:

0 � bk and 0 � k. (A.4)

A.2. Strong energy condition (SEC)

This condition states that:

ρ +
d−1∑
i=1

pi � 0 and ρ + pi � 0. (A.5)

This condition together with the WEC constrain the parameters as

0 � bk and
d − 2

4
� k. (A.6)

A.3. Dominant energy condition (DEC)

In accordance with DEC, the effective pressure peff should not
be negative i.e. peff � 0 where

peff = 1

d − 1

d−1∑
i=1

T i
i . (A.7)

One can show that DEC, together with SEC and WEC impose the
following conditions on the parameters

0 � bk and
d − 1

4
� k. (A.8)

A.4. Causality condition (CC)

In addition to the energy conditions one can impose the causal-
ity condition (CC)

0 �
peff

ρ
< 1, (A.9)

which implies

0 � bk and
d − 1

4
� k � d − 1

2
. (A.10)
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