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Abstract

We consider Maxwell and Yang-Mills (YM) fields together, interacting through gravity both

in Einstein and Gauss-Bonnet (GB) theories. For this purpose we choose two different sets of

Maxwell and metric ansaetze. In our first ansatz, asymptotically for r → 0 (and N > 4) the

Maxwell field dominates over the YM field. In the other asymptotic region, r → ∞, however,

the YM field becomes dominates. For N = 3 and N = 4, where the GB term is absent, we

recover the well-known Bañados-Teitelboim-Zanelli (BTZ) and Reissner-Nordström (RN) metrics,

respectively. The second ansatz corresponds to the case of constant radius function for SN−2 part

in the metric. This leads to the maximally symmetrical, everywhere regular Bertotti-Robinson

(BR) type solutions to represent our cosmos both at large and small.
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I. INTRODUCTION

We introduce Maxwell field alongside with Yang-Mills (YM) field in general relativity

and present spherically symmetric black hole solutions in any higher dimensions. These two

gauge fields, one Abelian the other non-Abelian, are coupled through gravity and to our

knowledge they have not been considered together in a common geometry so far. Being

linear, a multitude of Maxwellian fields can be superimposed at equal ease, but for the YM

field there is no such freedom. Our treatment of YM field in this paper like Maxwell field

is completely classical (i.e. non-quantum). From physics standpoint, electromagnetism has

long range effects and dominates outside the nuclei of natural matter. YM field on the other

hand is confined to act inside nuclei, however, the existence of exotic and highly dense matter

in our universe encourages us to use YM field in a broader sense. To obtain exact solutions

the Maxwell field is chosen pure electric while the YM field is pure magnetic. Historically,

starting with the Reissner-Nordström (RN) metric, its higher dimensional extensions known

as the Einstein-Maxwell (EM) black holes are well-known by now. Einstein-Yang-Mills

(EYM) black holes in higher dimensions have also attracted interest in more recent works

[1, 2, 3]. In this paper we combine these two foregoing black holes (i.e. EM and EYM)

under the common title of EMYM black holes. Further, we add to it the Gauss-Bonnet

(GB) term overall which we phrase as the EMYMGB black holes[17](and the references

therein). Such black holes will be characterized by mass (M), Maxwell charge (q), YM

charge (Q), GB parameter α and cosmological constant (Λ) . For a broad class of black

hole solutions we investigate the thermodynamics and other properties as manifestations

of these physical parameters. All these parameters naturally have imprints an planetary

motion, gravitational lensing, ripping apart of stars and ultimately on the accurate picture

of our cosmos. It is remarkable that exact solutions to such a highly non-linear theory

can be found for two different Maxwell and metric ansaetze. Before adding the GB term

we find the EMYM solutions in which the relative contributions from the Maxwell /YM

charges can be compared. It is shown that for r → 0 Maxwell term dominates over the

YM term which is reminiscent of asymptotic freedom from the YM charge. There is no

need to remind that the latter is a quantum effect while our treatment is entirely classical

here. For r → ∞ the YM term becomes dominant. Although this may sound contradictory

to the short rangeness of the YM field we may attribute this to the decisive role played

2



by the higher dimensionality of spacetime. Such behaviors, we speculate, have relevance in

connection with the mini (super-massive) black holes as well as asymptotically (anti)-de

Sitter space times. The solutions for N > 5 turn out to be distinct from the lower (i.e.,

N = 3, 4) dimensional cases. We show that in the latter cases of N = 3 and N = 4 the

role of a YM charge is similar to the Maxwell charge as far as the space time metric is

concerned. Namely, one is still the BTZ, while the other is the RN metric. It is found that

for N = 3 and N = 5 the metric function contains a logaritmic term while in the other cases

we have inverse power low dependence on r. The unprecedented logarithmic potential lead

to entirely different Keplerian orbits. Since black holes are scale invariant objects, i. e., they

occur both at micro/ macro scales as mini/ supermassive black holes, the orbits revealed in

one scale is valid in all scales. To show this we investigate the Newtonian approximation (for

N = 5) as projected into the polar plane which reveals the role of the YM charge in forming

bound states with smaller orbits. Our second ansatz leads, beside the black hole solution,

to a Bertotti-Robinson (BR) type metric within the EMYMGB theory. It is known that

extremal RN, which is supersymmetric soliton solution to extended supergravity, interpolates

between two maximally symmetric spacetime, namely the flat space at infinity and BR at the

horizon (r = 0). In other words the near horizon geometry of an extremal RN black hole is

identified as the BR spacetime. This idea can be extended to higher dimensions as p-branes.

The topology of N-dimensional BR type YM field is, as in the EM theory, adS2 × SN−2

(i.e., anti de Sitter × (N − 2) sphere) with a marked difference in their radii. The maximal

symmetry of the BR spacetime, without singularity makes it a favorable model to represent

our homogenous and isotropic universe in the absence of rotation. For the representative of

the rotating BR universe and its cosmological implications in N = 4 we refer elsewhere [19].

The interesting feature here is that the BR parameter consist of all the parameters of the

theory, namely, M, q, Q, Λ and α. In other words, even the topological GB parameter serves

to construct a finely- tuned cosmological BR model with maximal symmetry. It was shown

by Gibbons and Townsend [1] that extreme self-gravitating Yang-type monopole also yields

an adS2 ×S2N topological vacuum in the (2N + 2) dimensional EYM theory. It is our belief

that our metrics will be useful both in string/ supergravity theories as well as in cosmology.

One immediate conclusion we can draw is that we can generate an ”effective cosmological

constant Λeff ” to play the same role, in the absence of a real Λ. To feel confident, we verify
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also that our physical sources in higher dimensions satisfy all the weak, strong, dominant

and causality conditions.

The paper is organized as follows: In Sec. (II) we introduce our action, metric, Maxwell,

YM ansatz and the field equations. Sec. (III) follows with the solution of the field equations

for different dimensionalities. The geometry outside a 5-dimensional black hole with its

Newtonian approximation is investigated in Sec. (IV ). In Sec. (V ) we add the Gauss-

Bonnet (GB) term and present the most general solution. Sec. (V I) deals with a new set of

ansatz for the Maxwell field and metric function in which we study the black hole properties

and BR classes inherent in them. Energy and causality conditions are discussed in Sec.

(V II). The paper ends with concluding remarks in Sec. (V III).

II. ACTION, FIELD EQUATIONS AND OUR ANSAETZE (RN TYPE)

The action which describes Einstein-Maxwell-Yang-Mills gravity with a cosmological con-

stant in N dimensions reads

IG =
1

2

∫

M
dxN

√−g
(

R− (N − 1) (N − 2)

3
Λ − FµνF

µν −Tr
(

F (a)
µν F

(a)µν
)

)

(1)

where in this context we use the following abbreviation,

Tr (.) =

(N−1)(N−2)/2
∑

a=1

(.) . (2)

Here, R is the Ricci Scalar while the YM and Maxwell fields are defined respectively by

F (a)
µν = ∂µA

(a)
ν − ∂νA

(a)
µ +

1

2σ
C

(a)
(b)(c)A

(b)
µ A

(c)
ν , (3)

Fµν = ∂µAν − ∂νAµ,

in which C
(a)
(b)(c) stands for the structure constants of (N−1)(N−2)

2
parameter Lie group G and

σ is a coupling constant. A
(a)
µ are the SO(N − 1)gauge group YM potentials while Aµ

represents the usual Maxwell potential. We note that the internal indices {a, b, c, ...} do not

differ whether in covariant or contravariant form. Variation of the action with respect to

the space-time metric gµν yields the field equations

Gµν +
(N − 1) (N − 2)

6
Λgµν = Tµν , (4)
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where the stress-energy tensor is the superposition of the Maxwell and YM parts, namely

Tµν =

(

2F λ
µFνλ −

1

2
FλσF

λσgµν

)

+ Tr

[

2F (a)λ
µ F

(a)
νλ − 1

2
F

(a)
λσ F

(a)λσgµν

]

. (5)

Variation with respect to the gauge potentials A
(a)
µ and Aµ yield the respective YM and

Maxwell equations

F (a)µν
;µ +

1

σ
C

(a)
(b)(c)A

(b)
µ F

(c)µν = 0, F µν
;µ = 0, (6)

whose integrability equations in order are

∗F (a)µν
;µ +

1

σ
C

(a)
(b)(c)A

(b)∗
µ F (c)µν = 0, ∗F µν

;µ = 0, (7)

in which ∗ means duality [4]. The N-dimensional spherically symmetric line element is chosen

as

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2d Ω2

N−2, (8)

in which the SN−2 line element will be expressed in the standard spherical form

dΩ2
N−2 = dθ2

1 +
N−2
∑

i=2

i−1
∏

j=1

sin2 θj dθ
2
i , (9)

where

0 ≤ θN−2 ≤ 2π, 0 ≤ θi ≤ π, 1 ≤ i ≤ N − 3.

For the YM field we employ the magnetic Wu-Yang ansatz [3, 5, 6] where the potential

1-forms are expressed by

A(a) =
Q

r2
(xidxj − xjdxi) , Q = charge, r2 =

N−1
∑

i=1

x2
i , (10)

2 ≤ j + 1 ≤ i ≤ N − 1, and 1 ≤ a ≤ (N − 1) (N − 2)/2,

The Maxwell potential 1-form is chosen as

A =

{ q
rN−3dt, N ≥ 4

q ln (r) dt, N = 3
(11)

for the electric charge q .The following sections will be devoted to the EMYM equations (i.e.

Eq. (4)) and their solutions for all dimensionalities N ≥ 3. In the last two sections we add

GB theory (for N ≥ 5) into our formalism and find new combined solutions for different

Maxwell and metric ansaetze. The energy-momentum tensor for the Maxwell and YM fields

for N ≥ 4 (3-dimensional case will be studied separately) are given by [3]

T aMax b = −(N − 3)2 q2

r2(N−2)
diag [1, 1,−1,−1, ..,−1] , (12)
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T aYM b = −(N − 3) (N − 2)Q2

2r4
diag [1, 1, κ, κ, .., κ] , (13)

κ =
N − 6

N − 2
.

III. EMYM SOLUTION FOR N ≥ 6

The basic field equation that incorporates all relevant expressions is given by

r3

N − 3

(

f ′ +
Λ

3
(N − 1) r

)

+ (f − 1) r2 +Q2 +
2q2 (N − 3) r2(4−N)

(N − 2)
= 0, (14)

where f ′ ≡ df
dr

,which admits the integral

f (r) = 1 − 2M

rN−3
− Λ

3
r2 +

(N − 3) 2q2

(N − 2) r2(N−3)
− (N − 3)Q2

(N − 5) r2
, (15)

for the constant of integration M as the mass parameter.

It is observed that this solution is not valid for N = 5 and N = 3, for these particular

cases therefore different solutions will be found. It is valid, however, for N ≥ 6, which

implies that the signs of Maxwell and YM terms are opposite. This may have interesting

consequences pertaining to the confinement of a system that possesses both type of charges.

We express (for Λ = 0)

f (r) = 1 + 2Φ (r) (16)

where Φ (r) stands for the Newtonian-like potential, which we identify as

Φ (r) = − M

rN−3
+

(N − 3) q2

(N − 2) r2(N−3)
− (N − 3)Q2

2 (N − 5) r2
. (17)

We can define the active force through F = −∇Φ, which yields

F (r) = −M (N − 3)

r(N−2)
+

2q2 (N − 3)2

(N − 2) r2N−5
− (N − 3)Q2

(N − 5) r3
. (18)

The signs of the Maxwell and YM terms reveal that while the former is repulsive the latter

becomes attractive. One can easily show that for r → ∞ the YM term dominates (let

Λ = 0), namely

lim
r→∞

f (r) → 1 − (N − 3)Q2

(N − 5) r2
. (19)
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For r → 0+ we have the opposite case,

lim
r→0+

f (r) → 1 +
(N − 3) 2q2

(N − 2) r2(N−3)
, (20)

which may be interpreted as an ”asymptotic independence ” from one type of charge (or

the other )in different limits. For the mini black holes this has the striking effect that the

Hawking temperature depends only on the electric charge.

To find the radius of possible horizon(s), we equate the metric function f (r) to zero,

which leads to the following equation

6 (N − 3) (N − 5) q2 − 6M (N − 2) (N − 5) rN−3 − Λ (N − 2) (N − 5) r2(N−2)+ (21)

3 (N − 2) (N − 5) r2(n−3) − 3 (N − 2) (N − 3) r2(N−4) = 0.

This equation in six dimensional spacetime, without the cosmological constant and zero

mass has an exact real solution

rh =

√

√

√

√

1

6

(

1

2
3
√

∆ +
2Q̃4

3
√

∆
+ Q̃2

)

(22)

where

∆ = 8Q̃6 − 108q̃2 + 12

√

3q̃2
(

27q̃2 − 4Q̃6
)

, (23)

Q̃2 = 6Q2, q̃2 = 12q2, q̃2 ≥ 4Q̃6

27
.

A. The case N=5

For N = 5, the master equation (14) admits the solution

f (r) = 1 − 2M

r2
− Λ

3
r2 +

4q2

3r4
− 2Q2 ln (r)

r2
, (24)

which involves an unusual logarithmic term. This is an asymptotically flat black hole solution

in which finding the exact radius of the horizon of the possible black holes, leads us to the

following non-algebric equation

Λ

3
r6 − r4 + 2Mr2 + 2Q2r2 ln r − 4

3
q2 = 0. (25)
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This equation, even without cosmological constant does not give an analytical solution. By

using numerical method, we plot the root (rh) of the above equation in Fig. (1), to show

the contribution of the Maxwell and YM charges to the construction of such possible black

holes. The Hawking temperature TH can be written as

TH =
κ

2π
=

1

4π
|f ′ (rh)| =

1

4π

∣

∣

∣

∣

1

rh
− 2

3
Λrh −

4

3

q2

r5
h

− Q2

r3
h

∣

∣

∣

∣

(26)

where rh is the radius of the event horizon and κ stands for the surface gravity. The

corresponding Newtonian-like YM force term in this case has the form

force ∼ Q2

r3
(1 − 2 ln r) , (27)

which implies that it is attractive (repulsive) for r >
√
e (r <

√
e).The Maxwell term remains

always repulsive. We notice also that for r → ∞ (for Λ = 0) the YM term dominates over

the Maxwell

lim
r→∞

f (r) → 1 − 2Q2 ln (r)

r2
. (28)

In the limit r → 0+, on the other hand we obtain

lim
r→0+

f (r) → 1 +
4q2

3r4
, (29)

which is in confirm with the behavior (20) for N ≥ 6.

B. The case N=4

In 4-dimensional case the solution for the metric function f (r) is given by

f (r) = 1 − 2M

r
− Λ

3
r2 +

(q2 +Q2)

r2
, (30)

in which both the Maxwell and YM charges have similar feature and the metric is the

well-known RN de-Sitter. Extremal YM black hole for instance, follows in analogy with the

4-dimensional RN black hole. Both charges act repulsively against the attractive property of

mass. The black hole solution for f (r) = 0 given in Eq. (30) without cosmological constant,

has two roots

r± = M ±
√

M2 − (q2 +Q2) (31)
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in which the mass and charges must satisfy the constraint M2 ≥ (q2 +Q2) to have the event

(r+) and Cauchy (r−) horizons. Here the thermodynamic properties of the solution (30) is

exactly same as the four dimensional RN black holes and therefore we just comment that the

roles of the YM and Maxwell charges in the metric are not distinguished from each other.

C. The case N=3

In 3-dimensional space time we adopt the Maxwell potential 1-form [7]

A = q ln (r) dt, (q = electric charge), (32)

and introduce the YM gauge potential 1-forms accordingly as

A(1) = Q cos (φ) ln (r) dt, (33)

A(2) = Q sin (φ) ln (r) dt,

A(3) = −Qdφ, (Q = YM charge),

which satisfy the Maxwell and YM equations, respectively. The corresponding EMYM

equation for f (r) , independent from Eq. (14) becomes

3rf ′ + 2Λr2 + 6
(

Q2 + q2
)

= 0, (34)

which is readily integrated as

f (r) = −M − 1

3
Λr2 − 2

(

q2 +Q2
)

ln (r) , (35)

and the line element is

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2dθ2. (36)

A negative cosmological constant leads to a black hole solution [7]

f (r) = −M +
1

3
|Λ| r2 − 2

(

q2 +Q2
)

ln (r) (37)

in which the possible radii of the horizons are given by

r+ = exp

[

−1

2
LamberW

(

−1,
− |Λ| e

−M

Q2+q2

3 (Q2 + q2)

)

− M

2 (Q2 + q2)

]

(38)

r− = exp

[

−1

2
LamberW

(

0,
− |Λ| e

−M

Q2+q2

3 (Q2 + q2)

)

− M

2 (Q2 + q2)

]

(39)
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in which LambertW (k, x) stands for the Lambert function [8]. The energy density, given

by

ǫ = T tt =
Q2 + q2

r2
(40)

may be used to calculate the total energy of the black hole. This shows that the energy

diverges logarithmically. The surface gravity, κ defined by

κ2 =

(

−1

4
gttgijgtt,igtt,j

)

r=rh

=

(

1

2
f ′ (r)

)2

r=r+

(41)

gives

κ =

∣

∣

∣

∣

|Λ|
3
r+ − Q2 + q2

r+

∣

∣

∣

∣

. (42)

Finally we find the Hawking temperature at event horizon as

TH =
κ

2π
=

1

2π

∣

∣

∣

∣

|Λ|
3
r+ − Q2 + q2

r+

∣

∣

∣

∣

(43)

and a plot of TH is given in Fig. (2) in terms of the mass, Λ and (Q2 + q2) .

In analogy with the N = 4 case the squared charges are simply superposed, and the

metric is still the BTZ metric. It is observed that for q = 0 6= Q the same (BTZ) metric

describes an EYM black hole in 3-dimensions. Addition of rotation to the metric, which is

beyond our scope here, may add new features to differ for the Maxwell and YM fields.

IV. THE GEOMETRY OUTSIDE THE 5-DIMENSIONAL EMYM BLACK HOLE

It is evident from solution (24) that, ξα = (1, 0, 0, 0, 0) and ηα = (0, 0, 0, 0, 1) are two

of the Killing vectors associated with the symmetry under displacements in the direction t,

and rotation angle ψ. Accordingly the conserved quantities may be written as

e = −ξ · u = −gαβξαuβ = f (r) ut (44)

ℓ = η · u =gαβη
αuβ = r2 sin2 (θ) sin2 (φ)uψ (45)

where u =
(

ut, ur, uθ, uφ, uψ
)

is the five-velocity while e and ℓ are the energy density and

angular momentum per unit mass, respectively. We restrict the particle to stay on the plane

θ = π
2
, φ = π

2
with uθ = uφ = 0, such that by applying u · u =− 1 for the timelike geodesics

one obtains

gαβu
αuβ = −f (r)

(

ut
)2

+
1

f (r)
(ur)2 + r2

(

uψ
)2

= −1 (46)
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in which ut = dt
dτ
, ur = dr

dτ
, uθ = dθ

dτ
, uφ = dφ

dτ
, uψ = dψ

dτ
and τ is the proper time measured by

the observer moving with the particle. Putting (44) and (45) into (46), one gets

1

2

(

dr

dτ

)2

+
1

2

[(

ℓ2

r2
+ 1

)

f (r) − 1

]

=
e2 − 1

2
(47)

or equivalently
1

2

(

dr

dτ

)2

+ Veff (r) = E (48)

where E is the density of total energy per unit mass, Veff (r) is the effective potential for

radial motion of the particle and f (r) is given in (24). In Fig. (3) we plot Veff (r) in terms

of r for different values of q, Q and ℓ but zero value for M. Since the particle is restricted to

remain in a plane which only r and ψ would change, we rewrite the equation (48) in terms

of r and ψ as follows:
1

2

(

dψ

dτ

)2(
dr

dψ

)2

+ Veff (r) = E (49)

or equivalently from Eq. (49)

dr

dψ
= ±

√

2r4

ℓ2
(E−Veff (r)), (50)

Veff (r) =
1

2

[(

ℓ2

r2
+ 1

)

f (r) − 1

]

,

in which ± depends to the initial direction of the motion and we set it to be positive. In the

following subsection, instead of studying the exact geodesics equation (50), we shall restrict

ourselves to the relatively simpler Newtonian approximation.

A. Newtonian motion

In the weak field limit, (and setting Λ to be zero) one may use f (r) = 1 + 2Φ (r) which

implies

Φ (r) = −M
r2

+
2q2

3r4
− Q2 ln (r)

r2
, (51)

and consequently the radial force on a unit mass particle is given by

Fr = − d

dr
Φ (r) = −

(

2M

r3
− 8q2

3r5
− Q2

r3
+

2Q2 ln (r)

r3

)

. (52)

The radial equation of motion, therefore, may be written as

d2r

dt2
=
ℓ2

r3
−
(

2M

r3
− 8q2

3r5
− Q2

r3
+

2Q2 ln (r)

r3

)

, (53)
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where ℓ is the angular momentum per unit mass. As usual, one may start with the following

substitution

u =
1

r
(54)

to reduce the last equation into the form

d2u

dψ2
+

(

1 +
Q2 − 2M

ℓ2

)

u+
2Q2

ℓ2
u lnu− 8q2

3ℓ2
u3 = 0. (55)

As a particular case we set 1 + Q2−2M
ℓ2

= 0, Q̃ =
√

2Q
ℓ

and q̃ =
√

8
3
q
ℓ

to get

d2u

dψ2
+ Q̃2u lnu− q̃2u3 = 0, (56)

such that the inverse of the solution of this equation is plotted in the Fig. (4) (i.e., r = 1
u

versus ψ). Obviously, from the figure, one observes that, the roles of Maxwell and YM

charges outside the black hole are in contrast with each other. Next, we consider Eq. (55)

and set the mass of the black hole to be zero. By adjusting charges in terms of the angular

momentum, we express the equation in the form

d2u

dψ2
+

(

1 +
Q̃2

2

)

u+ Q̃2u lnu− q̃2u3 = 0. (57)

One notices that, if Q̃ = 0, this reduces to the Duffing type equation as,

d2u

dψ2
+ u− q̃2u3 = 0 (58)

which can be considered for small q̃, as a perturbed simple harmonic oscillator. In our work,

however, we are interested to consider both terms (i.e., Maxwell and YM terms). From Eq.

(55) we observe that u=1 forms a circular orbit provided the condition (with M 6= 0)

Q2 − 8

3
q2 = 2M − ℓ2 (59)

holds. We investigate the stability of this orbit by choosing

u = 1 + a cosβψ (60)

in which β and a are constants such that a≪ 1. By substitution we obtain

β = ±
√

2

ℓ

√

Q2 − 8

3
q2 (61)
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so that stability of the circular orbits are attained provided Q2 > 8
3
q2. Thus, a dominating

YM charge gives rise to a deeper well and stable orbits. The foregoing argument can easily

be extended to cover elliptical orbits as well, which will not be repeated here. Let us note

that the possibilities involved in a complete analysis of the Eq. (55) may reveal different

behaviors as well.

V. EMYM BLACK HOLES IN GB GRAVITY

In this section we use our previous ansaetze and find solutions with the GB term. The

new action is modified now as

IG =
1

2

∫

M
dxN

√
−g
(

R + αLGB − (N − 1) (N − 2)

3
Λ − FµνF

µν − Tr
(

F (a)
µν F

(a)µν
)

)

,

(62)

where the new term LGB = RµναβR
µναβ − 4RαβR

αβ + R2 is the GB Lagrangian with the

constant GB parameter α. The Maxwell and YM ansatz are chosen as in the previous section.

The EMYMGB equation that helps us to determine f (r) is given by

(

∆ − Λ

3
(N − 1) r4

)

(N − 2) r(2N−6) − 2 (N − 3)2 q2r4 = 0, (63)

∆ =
(

−r3 + 2
∼
αr (f (r) − 1)

)

f ′ (r) +
∼
α (N − 5) (f (r) − 1)2 −

r2 (N − 3) (f (r) − 1) −Q2 (N − 3) .

Solution for f (r) follows as

f± (r) =







1 + r2

4α
± Ψ , N = 5

1 + r2

2
∼

α
(1 ± Υ) , N ≥ 6

(64)

where

Ψ =

√

1 +
M

2α
+

(

Λ

3
+

1

8α

)

r4

2α
+
Q2 ln (r)

α
− 2q2

3αr2
, (65)

Υ =

√

1 +
4
∼
αΛ

3
+

4
∼
αQ2 (N − 3)

(N − 5) r4
+

8M
∼
α

rN−1
− 8 (N − 3) q2

∼
α

(N − 2) r2(N−2)
, (66)

in which
∼
α = (N − 3) (N − 4)α and M is a constant of integration to represent mass. In

the limit α → 0 the expression for f− (r) reduces to the ones in the previous section , as

it should and for positive branch α can not be zero. For Q = 0 our result reduces to the
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one known before for the EMGB theory [9]. Similarly for q = 0 we recover the results

obtained previously [10, 11, 12]. In Fig. (5) we plot the radius of the event horizon of the 5-

dimensional EMYMGB solution in terms of Maxwell and YM charges. The different effects

of these charges we use to emphasize. For N ≥ 6 it can easily be seen that the Maxwell and

YM terms have opposite signs. It is remarkable to observe that the solutions (64), behave

asymptotically dS (AdS) such that the effective cosmological constant may be written as

Λeff=̃











− 3
4α

(

1 ±
√

1 + 8Λ
3
α
)

, N = 5

− 3

2
∼

α

(

1 ±
√

1 + 4Λ
3

∼
α

)

, N ≥ 6
(67)

in which in the limit of
∼
α → 0, the negative branch, admits Λeff → Λ and the positive

branch in the limit of Λ = 0, gives Λeff = − 3
∼

α
.

For the case N = 5, on the other hand, the range of r determines the sign of YM term.

Although the ± signs determine the role of both terms we prefer the choice (−) under which

in the limit α → 0 we recover the EMYM black holes. In conclusion, by studying the Maxwell

and YM fields together we see that these fields compete for dominance in dimensions N ≥ 5

. We observe on the other hand that in lower dimensions (N = 3, 4) their roles remain

indistinguishable. The asymptotic solutions reveal that the physical results are independent

from one charge or the other. It is our belief that this may be helpful in understanding the

problem of confinement (i.e., accretion, collapse) versus the electric and YM charges.

VI. EMYMGB SOLUTION FOR A SPECIFIC ANSATZ FOR N ≥ 4 (BR TYPE)

In this section we choose our metric ansatz as

ds2 = −f (r) dt2 +
dr2

f (r)
+ h2dΩ2

N−2, N ≥ 4, (68)

in which h = constant, is to be expressed in terms of the parameters of the theory. While

the YM field will be chosen as before, our Maxwell field will be different. For the present

purpose let our Maxwell 1-form be given by the choice

A = qrdt, (69)

where the constant q is related to the electric charge. This choice has the feature that the

only non-vanishing electromagnetic field 2-form

F = −qdt ∧ dr, (70)
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yields a uniform electric field. The non-vanishing Maxwell energy-momentum tensor com-

ponents T aMax b are

T aMax b = −q2diag [1, 1,−1,−1, ..,−1] . (71)

The non-zero YM energy-momentum components T aYM b are

T aYM b = −(N − 3) (N − 2)Q2

2h4
diag [1, 1, κ, κ, .., κ] , N ≥ 4, (72)

κ =
N − 6

N − 2
.

The field equations (4) with the GB and Λ terms, on the premise that h = constant, reduces

to

[

h2 + 2α (N − 3) (N − 4)
]

f ′′ − (N − 3) (N − 4) [1 + α (N − 5) (N − 6)]+

1

3
(N − 1) (N − 2)Λh2 +

(N − 3) (N − 6)

h2
Q2 − 2q2h2 = 0, N ≥ 4. (73)

The solution for f (r) can be expressed as

f (r) = C1r
2 + C2r + C3 (74)

where C2 and C3 are integration constants while C1 is a constant depending on the param-

eters of the theory. Explicitly we have

C1 =

{

1

2
(N − 3) (N − 4) [1 + α (N − 5) (N − 6)] − 1

6
(N − 2) (N − 1)Λh2 −

(N − 3) (N − 6)Q2

2h2
+ q2h2

}

/
[

h2 + 2α (N − 3) (N − 4)
]

, N ≥ 4. (75)

The constant h2 is also expressible by

2

3
h2 =

(N − 3) (N − 2) ±
√

(N − 3) (N − 2) [K (N − 2) + 8q2L]

6q2 + (N − 1) (N − 2)Λ
, (76)

in which we have abbreviated

K =
4

3
(N − 1)

[

(N − 5) (N − 4)α−Q2
]

Λ + (N − 3) , (77)

L = (N − 5) (N − 4)α−Q2, N ≥ 4,

and (+) and (−) signs are chosen in the Maxwell and YM limits, respectively. From these

expressions we obtain the EMYM limit by setting α = 0. Similarly the EMGB and EYMGB

limits can be obtained by setting Q = 0 and q = 0,respectively. For C2 6= 0 6= C3 we can
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have the roots of f (r) = 0, which signals the horizons for black holes. The abundance of

parameters in the EMYMGB theory creates a large class of possibilities admitting various

black hole solutions which we shall not pursue here. By choosing C2 = C3 = 0 and con-

straining h2 = β
C1
, for a suitable constant β (> 0) , followed by a redefinition of time we cast

the line element into

ds2 =
h2

β

(−dt2 + dr2

r2
+ βdΩ2

N−2

)

, (78)

which is of the static BR form. For α = 0 = Λ = q (as a limit ) we arrive at [13, 14]

ds2 =
Q2

N − 3

(−dt2 + dr2

r2
+ (N − 3) dΩ2

N−2

)

. (79)

In general since β 6= 1 conformal flatness is not satisfied. Only for N = 4 we have the

case of exact BR which is conformally flat. However in general we have shown that in the

EMYMGB theory we construct a metric which is of BR type, albeit it fails to satisfy the

conformal flatness. In the pure Maxwell limit, (q 6= 0), Q = Λ = α = 0 and adopting

C2 = C3 = 0, we obtain (after scaling)

ds2 =
1

C1

[−dt2 + dr2

r2
+ (N − 3)2 dΩ2

N−2

]

, (80)

which is also of similar type with the constant C1 = 2q2
(

N−3
N−2

)

. This is in agreement with the

higher dimensional BR metric in the EM theory [13]. We recall that following the method

of Ginsparg and Perry [15] the N-dimensional YM-BR solution can be expressed in the form

ds2 =
Q2

(N − 3)

[

− sinh2 χdT 2 + dχ2 + (N − 3) dΩ2
N−2

]

. (81)

The transformation that takes us to this result in the limit ǫ→ 0 is given by taking

f (r) =
N − 3

Q2
(r + t) (r − t) , t =

Q2

(N − 3) ǫ
T, r = ǫ coshχ, (82)

while the magnetic type YM field remains unchanged.

VII. ENERGY AND CAUSALITY CONDITIONS

A. N ≥ 5−dimensions (RN type)

The energy conditions (EC) of the matters associated with the energy momentum tensor

given by (12) and (13) for N ≥ 5−dimensions, i.e.

T ab = T aMax b + T aY M b (83)
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can be studied by using the definition of the energy-density of the matter ρ[18]

ρ = −T tt = −T rr =
(N − 3)2 q2

r2(N−2)
+

(N − 3) (N − 2)Q2

2r4
, (84)

the principal pressures pi

pi = T ii (no sum convention) (85)

and the effective pressure

peff =
1

N − 1

N−1
∑

i=1

pi. (86)

1. Weak Energy Condition (WEC)

The WEC may be expressed as

ρ ≥ 0 and ρ+ pi ≥ 0, (i = 1, 2...N − 1) (87)

which holds true in any dimensions N ≥ 4, by the energy momentum tensor given by (83).

2. Strong Energy Condition (SEC)

The SEC states that

ρ+

N−1
∑

i=1

pi ≥ 0 and ρ+ pi ≥ 0, (i = 1, 2, ..., N − 1) (88)

which for 4 < N ≤ 6 holds true, but for N ≥ 7 the SEC is satisfied for r ≤ rsec in which

rsec =

(

2 (N − 3) q2

(N − 6)Q2

)
1

2(N−4)

, N ≥ 7. (89)

3. Dominant Energy Condition (DEC)

In accordance with the DEC, which are given by

ρ ≥ |pi| , (i = 1, 2, ..., N − 1) (90)

our energy momentum tensor satisfies these for any dimensions N > 4.

17



4. Causality Condition (CC)

We express the CC after knowing that ρ > 0 as

0 ≤ peff < ρ, (91)

which is satisfied by the energy momentum tensor given by (83) for N = 4, 5. For N ≥ 6

(91) is satisfied if r < rcc where

rcc =

(

2 (N − 3)2 q2

(N − 2) (N − 5)Q2

)
1

2(N−4)

, N ≥ 6. (92)

B. N = 3, 4−Dimensions (RN type)

In 4−dimensions, the energy momentum tensor simply reads

T ab = −q
2 +Q2

r4
diag [1, 1,−1,−1] (93)

in which WEC, SEC, DEC and CC are all verified. In 3−dimensions also the energy mo-

mentum tensor which is given by

T ab = −q
2 +Q2

r2
diag [1, 1,−1] (94)

satisfies all the energy and causality conditions.

C. N ≥ 4−dimensions (BR type)

To investigate the energy conditions of second type solutions (BR type) we rewrite the

energy momentum tensor of the system in the form of

T ab = T aMax b + T aY M b (95)

where

T aMax b = −q2diag [1, 1,−1,−1, ..,−1] , (96)

T aYM b = −Q̃2diag [1, 1, κ, κ, .., κ] , N ≥ 4,

κ =
N − 6

N − 2
, Q̃2 =

(N − 3) (N − 2)Q2

2h4
.
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One can show that the WEC is satisfied for arbitrary N ≥ 4. The SEC is also verified for

N = 4, 5, 6 but for N ≥ 7, only under the condition

q2 ≥ κQ̃2 (97)

the SEC is satisfied. It is also easy to show that, DEC is satisfied for any dimensions.

Finally, the CC is satisfied for N = 4, 5, but for N ≥ 6 it becomes valid with the additional

condition

q2 ≥ N − 5

N − 3
Q̃2. (98)

VIII. CONCLUSION

Our exact solution in the first part of the paper suggests that for N ≥ 5, the Maxwell and

YM fields compete for dominance in the asymptotic regions. That is, for r → 0 (r → ∞)

the Maxwell charge q (the YM charge Q) dominates. This may shed light on the problem of

gravitational confinement (i.e., accretion, collapse) versus the Maxwell and YM charges. As

a drawback of our model the YM field is treated, in analogy with the Maxwell field, entirely

classical. The Newtonian approximation in the polar plane consisting of the coordinates

(r, ψ) reveals that the YM charge deepen the potential well to form bound states. In lower

dimensions (i.e., N = 3, N = 4), however the roles of q and Q remain indistinguishable. The

presence of a logarithmic term for N = 3 and N = 5 is a distinctive property compared to

other dimensions. An effective cosmological constant can be defined from the GB parameters

for r → ∞.In the last part of the paper where we introduced a different ansatz, we present

exact solution to the EMYMGB theory which can represent a variety of black holes. Another

possibility is by the choice of parameters to cast the metric into the static BR form which

lacks conformal flatness but may be important in supergravity/string theory[16], as well

as in cosmology. Finally, validity of the energy/ causality conditions are discussed for all

solutions that are obtained in the paper.
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IX. FIGURE CAPTIONS:

Fig. (1): Radius of the event horizon of the 5-dimensional, EMYM black hole in terms of

the Maxwell and YM charges, and specific values for M and Λ. The non-black hole region

is shown as NBH.

Fig. (2): A plot of TH for 3-dimensional EMYM black hole solution, in terms of Λ and

(Q2 + q2) . We set the mass of the black hole to be unit.

Fig. (3): The effective potential versus r. We aim to compare the roles of Maxwell and

YM charges, versus their effects in the Veff (r) in 5-dimensions. It is seen that it is the YM

charge Q which provides deep potential well apt for the bound states.

Fig. (4): A plot of radius of a particle whose initial values are set as: r(ψ = 0) =

1, dr
dψ

∣

∣

∣

ψ=0
= −0.7. For Q̃ = 3 and q̃ < 1.215953 the orbit of the particle is closed and it

oscillates around r = 1, but for q̃ ≥ 1.215953 the orbits are not closed and the particle falls

toward r=0. We note that the mass m is chosen in accordance with 1 + Q2−2m
ℓ2

= 0.

Fig. (5): Radius of the event horizon of the 5-dimensional, EMYMGB black hole in terms

of Maxwell and YM charges, and specific values for M , α and Λ. The non-black hole region

is shown as NBH. (These plot may be compared with those in Fig. (1)).
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