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Abstract

Generalization of a known theorem to generate static, spherically symmetric black-hole solutions

in higher dimensional Lovelock gravity is presented. Particular limits, such as Gauss-Bonnet (GB)

and/or Einstein-Hilbert (EH) in any dimension N yield all the solutions known to date with

an energy-momentum. In our generalization, with special emphasis on the third order Lovelock

gravity, we have found two different class of solutions characterized by the matter field parameter.

Several particular cases are studied and properties related to asymptotic behaviours are discussed.

Our general solution which covers topological black holes as well, splits naturally into distinct

classes such as Chern-Simon (CS) and Born-Infeld (BI) in higher dimensions. The occurence of

naked singularities are studied and it is found that, the spacetime behaves nonsingular in quantum

mechanical sense when it is probed with quantum test particles. The theorem is extended to cover

Bertotti-Robinson (BR) type solutions in the presence of the GB parameter alone. Finally we

prove also that extension of the theorem for a scalar-tensor source of higher dimensions (N > 4)

fails to work.
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I. INTRODUCTION

One of the most interesting features of the string theory is to provide an arena for higher

dimensional space-times. String theory together with higher dimensions supports also the

description of objects known as branes. There is no doubt that, the most intriguing solution

in higher dimensional space-times is the one that is associated with black holes. The pioneer-

ing work in this regard belong to Boulware and Deser [1]. They obtained the most general

static black hole solutions in Einstein - Gauss - Bonnet (EGB) theory. Recent studies show

that there is a growing interest to find black-hole solutions in higher dimensional gravity.

This task is accomplished by the use of the most general action that describes black-hole

solutions in Einstein-Lovelock theory[2]. This is the most general theory that hosts higher

order invariants in particular combinations so that field equations remain second order and

therefore do not contain ghosts. Physical properties of the Einstein - Lovelock theory that

admits black holes is analyzed in detail in the Ref.[3]. Black hole solutions in Lovelock the-

ory is important in the sense that the higher order curvature terms contribute to the inner

structure of black holes. For example, in 4- dimensional general relativity, inner (Cauchy)

and outer (event) horizons arise in the Reissner-Nordström black hole in which the corre-

sponding space-time admits two Killing vectors orthogonal to each other. However, it is

demonstrated in [4] that, double horizons may arise in the Einstein - Lovelock theory in the

absence of the matter fields as well. Another remarkable aspect of the Lovelock theory is to

provide topological black holes in which the curvature scalar is not positive[5, 6, 7].

In general theory of relativity, static, spherically symmetric space-times constitute one

of the simplest and tractable model as far as the analytic, exact solutions are concerned.

Recently, Salgado [8], has developed a theorem, to generate exact black-hole solutions by

imposing some conditions on the energy-momentum tensor. This theorem has been extended

to the higher dimensional spacetimes [9] in which Schwarzschild, Reissner-Nordström and

global monopole solutions in higher dimensions are particular cases. Later on, another

version of the theorem has been introduced to generate exact radiative (dynamic) black-

hole solutions [10]. This can be interpreted as the dynamic extension of the Salgado’s

theorem in which the generalized, spherically symmetric Type II fluid solution is obtained.

Many known solutions are shown to be the particular limits of this generalized solution.

The extension of this non-static radiative solution in the EGB and Born-Infeld nonlinear
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electrodynamic theory is also considered in [11]. More recently, it has been shown that the

N -dimensional extension of radiative, dynamic black-hole solutions are possible as well[12].

In this paper, we wish to extend Salgado’s theorem to the arbitrary dimensional, Lovelock

gravity coupled with matter fields, starting with the third order. In our case, matter fields

couple to the system through an arbitrary constant parameter. It is shown that, our general

solution includes the well-known solutions in particular limits, namely, the GB and Einstein

limits in any lower dimensional solutions. Besides, in N = 7, we present a black hole

solution with interesting properties that, depending on the constant parameters α2 (the

GB parameter), α3(the third order Lovelock parameter) and C (the energy momentum

parameter), one or two horizons may develop. Moreover, we emphasize that depending on

these parameters our solutions are either flat or de Sitter / anti - de Sitter types. We discuss

also the behavior of the naked singularity when it is probed with quantum particles. It is

found quantum mechanically that, the classical timelike curvature singularity at the origin

remains nonsingular .

It is a known fact that all standard black hole solutions in spherically symmetric space-

times possess a central singularity at r = 0. Our analysis has shown for N = 7 that the third

order Lovelock term is effective in removing the black hole property and leaving the central

singularity at r = 0 as a naked singularity. It can be shown that for N > 7, higher order

parameters αs, (s > 3) plays a similar role. Following the analysis of Ref.[13] we can scan

the family of black holes in general Lovelock theory which can be labelled as Chern-Simon

(CS), Born-Infeld (BI) types and those that fit neither scheme. This is related with the

odd/even dimensionality and fine-tuning of the coupling parameter which plays crucial roles

in the thermodynamical properties. We consider the implication of the Salgado’s theorem

within the context of Bertotti-Robinson (BR) type spacetimes. As a final application of

the Salgado’s theorem we investigate whether it is applicable for a scalar field in higher

dimensions: It turns out that the theorem is valid only in N = 4.

The paper is organized as follows: In Sec. II we give a brief summary of the N -

dimensional Einstein - third order Lovelock gravity. We present the static spherically sym-

metric 7 - dimensional solution in third order Lovelock theory with physical properties

in Sec. III. In section IV we present the general solution to the Lovelock gravity that

confirms Salgado’s theorem . In Sec. V, we introduce the general form of the theorem con-

cerning BR type solutions with GB term in any dimension and investigate applicability of
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the theorem to the scalar - tensor theory. The paper ends with a conclusion in Sec. V I.

II. N-DIMENSIONAL THIRD ORDER EINSTEIN - LOVELOCK GRAVITY.

The action describing N -dimensional third order Einstein - Lovelock gravity coupled with

matter fields is given by;

S =

∫
dxN

√−g {LEH + α2LGB + α3LL} + Smatter , (1)

where LEH (the first order, or Einstein-Hilbert term), LGB (the second order, or Gauss-

Bonnet term) and LL ( the third order Lovelock term) are defined as follows

LEH = R,

LGB = RµνγδR
µνγδ − 4RµνR

µν +R2, (2)

LL = 2RµνσκRσκρτR
ρτ
µν + 8Rµν

σρR
σκ
ντR

ρτ
µκ + 24RµνσκRσκνρR

ρ
µ

+ 3RRµνσκRσκµν + 24RµνσκRσµRκν + 16RµνRνσR
σ
µ − 12RRµνRµν +R3.

The constants α2 and α3 stand for arbitrary constants whereas Smatter represents the action

of the matter fields. We recall that for Smatter = 0, LGB and LL terms become meaningful

only for N ≥ 5 and N ≥ 7, respectively. Variation of the action with respect to the metric

tensor gµν yields the field equations in the form

GEH
µν + α2G

GB
µν + α3G

L
µν = Tµν , (3)

where Tµν is the energy-momentum tensor representing the matter fields. GEH
µν is the Einstein

tensor, and GGB
µν and GL

µν are given as:

GGB
µν = 2(−RµσκτR

κτσ
ν − 2RµρνσR

ρσ − 2RµσR
σ
ν +RRµν) −

1

2
LGBgµν , (4)
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GL
µν = −3(4RτρσκRσκλρR

λ
ντµ − 8Rτρ

λσR
σκ
τµR

λ
νρκ + 2R τσκ

ν RσκλρR
λρ
τµ (5)

− RτρσκRσκλρRνµ + 8Rτ
νσρR

σκ
τνR

ρ
κ + 8Rσ

ντκR
τρ
σµR

κ
ρ

+ 4R τσκ
ν RσκµρR

ρ
τ − 4R τσκ

ν RσκτρR
ρ
µ + 4RτρσκRσκτµRνρ + 2RR κτρ

ν Rτρκµ

+ 8Rτ
νµρR

ρ
σR

σ
τ − 8Rσ

ντρR
τ
σR

ρ
µ − 8Rτρ

σµR
σ
τR νρ − 4RRτ

νµρR
ρ
τ

+ 4RτρRρτRνµ − 8Rτ
µR τρR

ρ
µ + 4RR νρR

ρ
µ − R2Rνµ) −

1

2
LLgµν .

III. THE STATIC SOLUTION.

Generalization of the Salgado’s theorem to the third order Lovelock theory together with

arbitrary matter fields is as follows:

Theorem 1 Let (M, gab) be a N-dimensional space-time with sign (gab) = N − 2, N ≥ 3,

such that : (1) it is static and spherically symmetric, (2) it satisfies the Einstein field

equations, (3) the energy momentum tensor T ab satisfies the conditions T rr = T tt and T θi

θi
=

kT rr (1 ≤ i ≤ n− 2, k =constant ǫ R ), (4 ) it possess a regular Killing horizon or a regular

origin. Then, the metric of the space-time is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dσ2
n, (6)

where

dσ2
n =





dθ2
1 + sin2 θ1

∑n
i=2

i−1∏

j=2

sin2 θjdθ
2
i , 0 ≤ θn ≤ 2π, 0 ≤ θi ≤ π, 1 ≤ i ≤ n− 1, for χ = 1,

∑n
i=1 dθ

2
i , 0 ≤ θi ≤ 2π, for χ = 0,

dθ2
1 + sinh2 θ1

∑n
i=2

i−1∏

j=2

sin2 θjdθ
2
i , 0 ≤ θn ≤ 2π, 0 ≤ θi ≤ π, 1 ≤ i ≤ n− 1, for χ = −1,

stands for the line element of the n−dimensional base manifold Σ which is assumed to be

compact, without boundary, and of constant curvature n (n− 1)χ that without loss of the

generality, one may take χ = ±1, 0. This implies that the surface is locally isometric to the

sphere Sn, flat space Rn, or to the hyperbolic manifold Hn for χ = 1; 0; −1, respectively.and

the energy momentum tensor in general is in the following form

T νµ(Diag.) =
C

rn(1−k)
[1, 1, k, ..., k] , (7)
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in which C is an integration constant.

Proof. From the hypothesis (1), the related spacetime can be described by the metric,

ds2 = −N2(r)dt2 + A2(r)dr2 + r2dΩ2
n. (8)

Hypothesis (2), implies that this metric must satisfy the Einstein-Lovelock equations de-

scribed by,

Gµν = GEH
µν + α2G

GB
µν + α3G

L
µν = Tµν . (9)

From the hypothesis (3), T tt−T rr = 0 and hence, one finds Gtt−Grr = 0 whose explicit form

on integration gives | g00g11 |= C0 = constant, and it remains to choose the time scale at

infinity to make this constant equal to unity. This leads to choose the metric functions such

that,

N2(r) = f(r) and A2(r) = f−1(r). (10)

Among others, the rr-component of the Eq. (9) is the simplest one and can be written as,

T rr =
n

2r6
{
[
r5 − 2α̃2r

3g(r) + 3α̃3rg(r)
2
]
g′ (r) + (n− 1) r4g (r) (11)

− (n− 3) α̃2r
2g(r)2 + (n− 5) α̃3g(r)

3}

in which a prime denotes derivative with respect to r, g(r) = f(r) − χ, α̃2 =

(n− 1) (n− 2)α2, α̃3 = (n− 1) (n− 2) (n− 3) (n− 4)α3 and n = N − 2. From the con-

servation laws ∇µT
µ
ν = 0, we have,

∂rT
r
r =

1

2f

(
T tt − T rr

) ∂f
∂r

− n

r

(
T rr − T θ1θ1

)
. (12)

Using hypothesis (3), this equation reduces to,

∂rT
r
r = −n

r

(
T rr − T θ1θ1

)
, (13)

whose integration gives,

T rr =
C

rn(1−k)
. (14)

These results can be combined, so that we have the diagonal T µν as,

T
µ
ν(Diag.) =

C

rn(1−k)
[1, 1, k, ..., k] . (15)

The general solution of the Eq.(9) under (11) in any dimension is obtained for two different

broad classes A and B as follows.
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Class A: The solution in this class is categorized according to the energy-momentum

parameter k 6= − 1
n
, given by;

f(r) = χ+
α̃2

3α̃3
r2 −2G

(
1 − α̃2

2

3α̃3

)
rn−1ξ

−1/3
2 +

1

6α̃3Grn−5
ξ

1/3
2 , for k 6= −1

n
, (16)

in which,

ξ2 = rn−9

[
216Cα̃2

3r
n(1+k) + 8Gα̃2

(
α̃2

2 −
9

2
α̃3

)
r2n + (17)

12α̃3r
4

(√
3ξ1 − 9

mGα̃3

n
rn−5

)]
G2,

ξ1 = 108C2α̃2
3r

2n(1+k)−8 +
G

n

{
rn(3+k)−8

(
8nα̃2

2C

(
α̃2

2 −
9

2
α̃3

)
+ 108mCα̃2

3r
−n−1

)
−

G

n
r2(n−2)

[
4mnα̃2r

n−2

(
α̃2

2 −
9

2
α̃3

)
+ n2

(
α̃2

2 − 4α̃3

)
r2(n−2) − 27α̃2

3m
2r−6

]}
,

G = n (nk + 1) .

Class B: This class represents the solution that belongs to the energy-momentum param-

eter k = − 1
n

and is given by;

f(r) = χ+
α̃2

3α̃3
r2 − 2n

(
1 − α̃2

2

3α̃3

)
rn+5ζ

−1/3
2 +

1

6α̃3nrn+1
ζ

1/3
2 , for k = −1

n
, (18)

where

ζ2 = n2r2(n+3)

[
216α̃2

3r
2
(
C ln r − m

2

)
+ 8α̃2

(
α̃2

2 −
9

2
α̃3

)
rn+3 + 12α̃3

√
3ζ1

]
, (19)

ζ1 = −n2
(
α̃2

2 − 4α̃3

)
r2(n+3) + 27 (m− 2C ln r)×

[
− 4

27
nα̃2r

n+5

(
α̃2

2 −
9

2
α̃3

)
+ r4α̃2

3 (m− 2C ln r)

]
.

In both classes A and B, m is an integration constant that may be related with the mass.

We note that in (n+2)-dimensions for k = −1 and C = −q2, class A overlaps with the

solution in [4] . Also by setting k = n−4
n

and C = −1
2
n (n− 1)Q2 one recovers the Einstein-

Yang-Mills (EYM) black hole solutions [14, 15]. Another case also in class A is to take

k = 1 which leads us to a perfect-fluid type energy momentum tensor with constant energy

density (ρ), tension (τ) and pressure (p), such that C = ρ = τ = p. We wish to remark that
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with the choices of m = C = α̃2 = 0, leaving behind only α̃3 6= 0, leads to the flat space

f(r) = χ. This implies that the presence of α̃3 6= 0, alone amounts to none other than the

trivial contribution except when m 6= 0, and/or C 6= 0.

We observe from the class B which is a new solution that, in any higher dimension it is

possible to have a logarithmic term. We recall that such solutions were encountered in 5-

dimensional EYM [14] theories. As we demonstrate in Eqs.(18-19) similar solutions are also

possible in Einstein-Third Order Lovelock gravity. However, their physical interpretation

for higher than 5- dimensional cases needs further investigation.

A. Properties of the General Solution.

Since the foregoing solutions are complicated enough for physical interpretation, we prefer

to relate the constants α̃2 and α̃3 in such a way that 3α̃3 = α̃2
2 . Let us note that the particular

combination α̃2
2 − 3α̃3 arises naturally in the formalism. Choosing this to vanish seems to

be the easiest simplifying assumption which accounts for both of the parameters. Given the

complexity of the theory this choice doesn’t sacrifice much from the essence of the Lovelock

theory. This choice simplifies the above results to; for class A,

f(r) = χ+
1

2α̃2
2Gr

n−5

(
ξ

1/3
2 + 2Gα̃2r

n−3
)

for k 6= −1

n
(20)

ξ2 = 4α̃2
2

[
6rn(2+k)−9Cα̃2

2 − 3α̃2
2

G

n
mr2(n−5) −Gα̃2r

3(n−3) +
√

3ξ1r
n−5

]
G2

ξ1 = 3

{
4r2(n−4+nk)C2α̃2

2 +

[
4α̃2Cr

n(k+2)

(
nrn−8

3
+ r−9α̃2m

)
+

(
2m

3
nα̃2r

3n−9 + α̃2
2r

2n−10m2 +
n2r4(n−2)

9

)
(nk + 1)

]
(nk + 1)

}
.

and class B:

f(r) = χ+
r2

α̃2
+

1

2nα̃2
2r
n+1

ζ
1/3
2 , for k = −1

n
, (21)

ζ2 = 4n2α̃2
2r

2(n+3)
[
6α̃2

2r
2
(
C ln r − m

2

)
− nα̃2r

n+3 +
√

3ζ1

]
,

ζ1 =
α̃2

2

3

{
n2r2(n+3) + 9 (m− 2C ln r) α̃2

[
2

3
nrn+5 + r4α̃2 (m− 2C ln r)

]}
,
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respectively. The matter fields are coupled to the system through the constant parameters

C and k. The inclusion of the matter fields must satisfy certain energy conditions as far

as the physically acceptable solutions are concerned. These energy conditions are given in

Appendix. According to these conditions our general solution satisfies the Dominant Energy

Condition (DEC) and restricts the constant parameters as C ≤ 0 and −1 ≤ k ≤ 0, while

the causality condition bounds the parameter k further to −1 ≤ k ≤ − 1
n
.

We wish to underline the special case when k = 1
n
. The general solution for this particular

case is, ( from class A, either through a tedious reduction procedure or directly from Eq.

(16))

f(r) = χ +
r2

α̃2

{
1 − 3

√
1 − 3Cα̃2

nrn−1
+

3mα̃2

nrn+1

}
. (22)

This is a black hole solution with horizon rh which can be found from f(rh) = 0. This

implies,

nrn−5
h α̃2

2 + 3nrn−3
h α̃2 + 3nrn−1

h + 3Cr2
h − 3m = 0. (23)

It is important to note that this solution (22) does satisfy only the Weak Energy Condition

(WEC), and therefore the limitations on the constant parameters are given by C ≤ 0 and

k ≤ 1. Although this particular case yields a negative pressure (see Appendix) which may

contribute to the accelerated expansion of the universe, the fact that the Dominant (DEC)

and Strong energy conditions (SEC) and causality are violated limits its applicability.

1. Seven - Dimensional Case.

As it was clarified in Ref.[4], the physically acceptable description of the solution obtained

in the third order Lovelock gravity is to reduce the general solution to a seven - dimensional

spacetime. The seven - dimensional spacetimes represent the most general Lagrangian pro-

ducing second order field equations, as in the four - dimensional gravity the Einstein - Hilbert

action constitutes the most general such Lagrangian. Further, N = 7 belongs at the same

time to the class of the CS family of black holes[13]. Hence the class A solution reduces to;
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f(r) = χ+
r2

α̃2
+

ξ
1/3
2

10 (5k + 1) α̃2
2

for k 6= −1

5
(24)

ξ2 = 100α̃2
2 (5k + 1)2

[√
3ξ1 + 6Cα̃2

2r
5k+1 − (5k + 1)

(
5r6 + 3mα̃2

)]
,

ξ1 = −12α̃2
2

{
(5k + 1)

(
mα̃2 +

5

3
r6

)[
Cα̃2r

5k+1 − 1

4

(
mα̃2 +

5

3
r6

)
(5k + 1)

]

−α̃2
2C

2r2(5k+1)
}
,

This result generalizes the formerly obtained solutions for any choice of matter fields upon

choosing specific values for k and C. For example, if we choose k = −1 and C = −q2,we

recover the solution obtained in [4].

The other solution ( class B ) becomes

f(r) = χ+
r2

α̃2
+

ζ
1/3
2

10α̃2
2r

6
, for k = −1

5
, (25)

ζ2 = 100α̃2
2r

16
[
6α̃2

2r
2
(
C ln r − m

2

)
− 5α̃2r

8 +
√

3ζ1

]
,

ζ1 = α̃2
2r

4{
[
α̃2 (m− 2C ln r) + 5r6

]2 − 50

3
r12}.

It can be checked that depending on the signs of α̃2 and ζ2 we may have both cases of black

hole and non - black hole solutions.

B. Asymptotic Behavior of the General Solutions For N = 7:

For class A, the matter field parameter is bounded by 5k + 1 < 6: The asymptotic

behavior ( as r → ∞) of class A solution is investigated for the following possible conditions.

According to these conditions the solutions are given below.

Case 1 : α̃2 6= 0 and α̃3 6= 0. The general solution for this case is rather complicated so

that we prefer to give only its asymptotic form,

f(r) ≃ χ+ Λeffr
2, (26)

where

Λeff =
3
√

2 (α̃2
2 − 3α̃3)

3α̃3
3
√
δ

+
1

6α̃3

(
2α̃2 +

3
√

4δ
)
,

10



in which δ = 3α̃3

√
3
√

4α̃3 − α̃2
2 −9α̃2α̃3 +2 α̃3

2. This is nothing but a de-Sitter (anti - de

Sitter) like behavior.

Case 2 : α̃2 = 0 and α̃3 6= 0. The general solution now takes the form ( from Eq.s (16)

and (17)),

f(r) = χ− 10 (1 + 5k)
3
√
ξ2

r4 +
3
√
ξ2

30 (1 + 5k) α̃3

, (27)

where

ξ2 = α̃2
3 (5k + 1)2

[
5400r5k+1 + 300

√
3ξ1 − 40500 (5k + 1)m

]
,

ξ1 = −1620 (5k + 1)mCr5k+1 + 108C2r2(5k+1) + 6075 (5k + 1)2

(
m2 +

4

243α̃3

r12

)

This solution asymptotically behaves as,

f(r) ≃ χ. (28)

which implies a flat space. The physical implications of this particular case will be explored

in the next section.

Case 3 : α̃2 6= 0 and α̃3 = 0. The general solution is,

f(r) = χ+
5r3 (5k + 1) ± 10

√
(5k+1)

5

[
15 (5k + 1)

(
r6

12
+M α̃2

)
− 2 α̃2Cr5k+1

]

5α̃2 (5k + 1) r
, (29)

whose asymptotic behavior is

f(r) ≃ χ+
r2

α̃2
(1 ± 1) . (30)

Case 4 : 3α̃3 = α̃2
2. The general solution for this case is,

f(r) = χ+
r2

α̃2
+ (31)

1

5α̃2 (5k + 1)
3

√

(5k + 1)2

[
150α̃2Cr5k+1 − 5625

(
α̃2M +

r6

9

)(
5k + 1

5

)]
,

The asymptotic behavior is,
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f(r) ≃ χ. (32)

i.e. flat.

For class B :

Case 1 : α̃2 6= 0 and α̃3 6= 0. Due to the complexity of the general solution, we prefer to

give only the asymptotic solution,

f(r) ≃ χ+ Λeffr
2, (33)

where

Λeff =
α̃2

3α̃3

+
1

6α̃3

3
√
δ +

2 (α̃2
2 − 3α̃3)

3α̃3
3
√
δ

,

in which δ = 8 α̃3
2 − 36α̃2α̃3 +12

√
3α̃3

√
4α̃3 − α̃2

2.

Case 2 : α̃2 = 0 and α̃3 6= 0. The general solution is,

f(r) = χ +
1

30α̃3

3

√
α̃2

3

[
5400C ln r − 40500m+ 300

√
3ξ
]
− (34)

10r4

3

√
α̃2

3

[
5400C ln r − 40500m+ 300

√
3ξ
] ,

where

ξ =
1

α̃3

[
100r12 + 27α̃3 (2C ln r − 15M)2]

.

This solution asymptotically behaves as

f(r) ≃ χ. (35)

This particular case is important as far as the effect of the third order Lovelock parameter

is concerned. Hence, its physical interpretation will be discussed in the next section.

Case 3 : α̃2 6= 0 and α̃3 = 0. The general solution is,

f(r) = χ+
1

10α̃2r

(
5r3 ±

√
25r6 − 40α̃2C ln r + 300α̃2m

)
, (36)

The asymptotic behavior is

12



f(r) ≃ χ+
1 ± 1

5α̃2

r2. (37)

Case 4 : 3α̃3 = α̃2
2. The general solution for this case is,

f(r) = χ +
r2

α̃2

+
1

α̃2

3

√
6

5
α̃2C ln r − r6 − 9mα̃2, (38)

whose asymptotic behavior is,

f(r) ≃ χ. (39)

C. The case for k = 1
5 .

Another interesting case occurs for k = 1
5

which is a subclass of class A: In order to study

its physical properties we first look for the location of horizons. We have already remarked

before that this particular class satisfies only the WEC ( see Appendix) while it violates the

other energy and causality conditions. For this reason we just wish to mention the existence

of such a class without further investigation. For this particular case, the metric function

given in Eq.(22) becomes,

f(r) = χ+
r2

α̃2

{
1 − 3

√
1 − 3Cα̃2

5r4
+

3mα̃2

5r6

}
, (40)

whose radius of horizon is obtained from Eq.(23) as

rh =

√√√√Q̃±
√
Q̃2 + 20 (m−mc)

10
(41)

where

mc =
5

3
α̃2

2, Q̃ = − (C + 5α̃2) . (42)

We wish to remind that, with this particular choice of k, the resulting solution satisfies

only the WEC. This condition further implies that C ≤ 0. These limitations induce a number

of possible cases for the constant parameters C and α̃2 appearing in the Eq. (41). These

particular cases can be classified in three different classes such as Q̃ > 0, Q̃ = 0 and Q̃ < 0,

which we shall not consider here any further.
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1. Naked Singularities

In this subsection, we wish to emphasize another important property of the Lovelock the-

ory. We stated previously that in some special cases no horizon forms so that the singularity

at r = 0 becomes naked with a timelike character. In classical 4- dimensional general rela-

tivity, this is a curvature singularity, indicating timelike geodesic incompleteness. However,

our main concern here is to analyze this naked singularity when probed with quantum test

particles. In other words, we are aiming to see whether this singular spacetime (in classical

sense) remains nonsingular quantum mechanically. To achieve this we adopt the method

initiated by Wald [16] and developed by Horowitz and Marolf [17], for static spacetimes

having timelike curvature singularities. This method states that a spacetime is quantum

mechanically nonsingular if the time evolution of any wave packet is uniquely determined

by the initial wave function. The method is briefly as follows:

A scalar quantum particle with mass M is described by the Klein-Gordon equation

(∇µ∇µ −M2)ψ = 0. This equation can be written by splitting the temporal and spatial

portion as ∂2ψ
∂t2

= −Aψ, such that the spatial operator A is defined by A = −
√
fDi

(√
fDi

)
+

fM2, where f = −ξµξµ with ξµ the timelike Killing field, while Di is the spatial covariant

derivative defined on the static slice Σ. The method requires essential self-adjointness of

the spatial operator A . That is, a unique extension of the operator AE . Then, the Klein-

Gordon equation for a free relativistic particle satisfies i∂ψ
∂t

=
√
AEψ, with the solution

ψ (t) = exp
(
it
√
AE
)
ψ (0) . The ambiguity occurs in the future time evolution of the wave

function ( ψ (t) = exp
(
it
√
AE
)
ψ (0) ), if AE is not essentially self-adjoint. Consequently, a

sufficient condition for the operator A to be essentially self-adjoint is to analyse the solutions

satisfying,

Aψ ± iψ = 0. (43)

The separable solution to Eq.(43) is assumed in the form of ψ = φ(r)Y (angles). The radial

part becomes,

∂2φ

∂r2
+

1

fr5

∂ (fr5)

∂r

∂φ

∂r
− c

fr2
φ− M2

f
φ± i

φ

f 2
= 0, (44)

in which c ≥ 0 is the eigenvalue of the Laplacian on the 5-sphere. Equation (44) can be solved

with the help of Fuchsian equation [17] by assuming the massless case (i.e. M = 0) and

ignoring the term ±i φ
f2 (since it is negligible near the origin, r = 0). The Fuchsian equation

14



is ∂2φ
∂r2

+ r−1p(r)∂φ
∂r

+ r−2q(r)φ = 0, such that p(r) and q(r) are analytic at the origin. This

equation admits solution in the form of φ(r) = rβ̥(r), where ̥(r) is an analytic function

and β is a complex number that solves the indicial equation β(β − 1) + βp(0) + q(0) = 0.

Substituting Eq.(40) in Eq.(44), we find that p(0) = 5 and q(0) = − c

1−
“

3m
5eα2

”1/3 . For c = 0

(corresponds to S-wave), one of the two solutions to indicial equation, solves the Eq.(44)

and the resulting solution diverges as fast as | φ (r) |2= r−8. This solution always has infinite

norm near r = 0 since

< φ | φ >=

∫ | φ (r) |2 r5

f
dr. (45)

Consequently, φ (r) fails to be square integrable near the origin. This divergence of the norm

creates an infinite repulsive barrier so that any particle remains away, and in the safer region

from the origin. For further detail in this regard we refer to [18]. According to the Horowitz

- Marolf criteria, the timelike curvature singularity at the origin turns out to be quantum

mechanically nonsingular when probed with quantum test particles. Similar analysis is also

shown in Ref. [3] for the 5−dimensional Boulware-Deser metric which also remains regular

when tested by quantum probes. A similar proof of quantum regularity applies for N > 5

as well.

IV. GENERALIZATION TO THE CASE FOR HIGHER ORDER LOVELOCK

THEORY

In this section we give a generalization for the Lovelock gravity in higher order. To do

so, we start with an action in the form of

S =

∫
dxn+2

√
−g
{
−n (n+ 1)

3
Λ + L1 + α2L2 + α3L3 + α4L4 + ... + α[n+1

2 ]L[n+1
2 ]

}
+Smatter,

(46)

where

Ln = 2−nδa1b1...anbn
c1d1...cndn

Rc1d1
a1b1

...Rcndn

anbn
, n ≥ 1, (47)

and the bracket [.] refers to integer part. As before, Einstein equation reads

Gνµ =
n (n+ 1)

6
Λδνµ +Gν(1)

µ + α2G
ν(2)
µ + α3G

ν(3)
µ + ... + α[n+1

2 ]G
ν([n+1

2 ])
µ = T νµ . (48)
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Our static spherically symmetric metric is given by (6) which after we rewrite

f (r) = χ− r2F (r) , (49)

the tt component of (48) becomes

− Λ

3
+ F + α̃2F

2 + α̃3F
3 + ...+ α̃[n+1

2 ]F
[n+1

2 ] =
M

r1+n
− 2

nr1+n

∫
rnT tt dr, (50)

in which M is an integration constant and

α̃s =
2s

Π
i=3

(n+ 2 − i)αs. (51)

T tt is given by (15) which leads to

− Λ

3
+F + α̃2F

2 + α̃3F
3 + ...+ α̃[n+1

2 ]F
[n+1

2 ] =






M
r1+n − 2C

n(nk+1)
rn(k−1) nk + 1 6= 0

M
r1+n − 2C

n
ln r
r1+n nk + 1 = 0

. (52)

Here we would like to set the coefficients as

α̃s =
ᾱs

ᾱ1

, for s ≥ 2 and − Λ

3
=
ᾱ0

ᾱ1

, (53)

which leads to

[n+1
2 ]∑

s=0

ᾱsF
s = ᾱ1 ×





− M
r1+n − 2C

n(nk+1)
rn(k−1) nk + 1 6= 0

− M
r1+n − 2C

n
ln r
r1+n nk + 1 = 0

(54)

and then we choose a specific case

ᾱs = (±1)s+1

([n+1
2

]

s

)
ℓ2s−∆ (55)

where −Λ
3

= ᾱ0

ᾱ1
= ± ℓ−2

[n+1
2 ]
.Following this, Eq. (52) gives

(
1 ± ℓ2F

)[n+1
2 ]

= ±ℓ∆ᾱ1 ×





M
r1+n − 2C

n(nk+1)
rn(k−1) nk + 1 6= 0

M
r1+n − 2C

n
ln r
r1+n nk + 1 = 0

(56)

and consequently

f (r) = χ± r2

ℓ2
∓ r2

ℓ2



±
[
n+ 1

2

]
ℓ2 ×





M
r1+n − 2C

n(nk+1)
rn(k−1) nk + 1 6= 0

M
r1+n − 2C

n
ln r
r1+n nk + 1 = 0




1/[n+1

2 ]

. (57)
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After this general solution we specify the solution for even and odd dimensions separately.

To do so, we put
[
n+1

2

]
= n+1

2
for odd dimensions and

[
n+1

2

]
= n

2
for even dimensions into

(57) to obtain

feven (r) = χ± r2

ℓ2
∓


±n

2

1

ℓn−2





M
r
− 2C

n(nk+1)
rnk nk + 1 6= 0

M
r
− 2C

n
ln r
r

nk + 1 = 0




2/n

(58)

and

fodd (r) = χ± r2

ℓ2
∓



±n + 1

2

1

ℓn−1




M − 2C

n(nk+1)
rnk+1 nk + 1 6= 0

M − 2C
n

ln r nk + 1 = 0




2/(n+1)

. (59)

The latter two solutions are nothing but the BI and CS solutions [13]. It is observed that

fractional powers on the paranthesis put severe restrictions on the parameters. As a final

remark in this section we note with reference to [22] that as long as our source contains

an abelian gauge field such as electromagnetism the static solution obeys the Birkhoff’s

theorem. For a non-abelian gauge field, however, the problem remains open for a general

proof, which will be considered in the future separately.

V. GENERATING BR TYPE SOLUTIONS IN EGB THEORY AND THE THEO-

REM IN SCALAR-TENSOR THEORY

A. BR type solutions

Closely related with the black hole solutions is the class of BR type solutions in GB

gravity. This class arises as a limiting case of extremal black holes so that an analogous

theorem can be stated to cover this class as well. In N = 4, the BR solution is the unique,

conformally flat EM solution. In higher dimensions (N > 4) we found that both, conformal

and asymptotical flatness fail[15]. Being almost as important as black holes, specifically in

supergravity, we wish to present conditions on the energy momentum involved in order to

generate solutions of BR form in the EYMGB theory.

To this end we adopt the metric in the form

ds2 = −fdt2 + f−1dr2 + h2dΩ2
N−2, (60)
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where h is a constant to be specified and f = f(r) is a function to be found. The energy

momentum tensor is assumed in the form

T ab = C [−1,−1, k, k, ...] (61)

where C and k are constants that characterize the matter fields. This energy-momentum

satisfies the WEC, SEC and DEC conditions (see Appendix) provided C ≥ 0 and k ≥ 1
N−2

.

In order to satisfy also the causality condition we must have C ≥ 0 and 1
N−2

≤ k < 2
N−2

.The

Einstein’s tensor in N -dimensions is given by,

Ga
b =

[
−(N − 3) (N − 2)

2h2
,−(N − 3) (N − 2)

2h2
,−(N − 3) (N − 4) + f

′′

h2

2h2
, ...

]
. (62)

in which the higher terms repeat the third one. From the Einstein’s equation Gab = Tab, we

have,

2Ch4 + (N − 3) (N − 2) h2 + α̃ (N − 5) (N − 4) = 0, (63)

where α̃ = α (N − 3) (N − 2) , and

(
h2 + 2α̃2

)
f ′′ − (N − 3) (N − 4) − (N − 5) (N − 6) α̃ = 2kC (64)

Solving this with the help of Eq.(63) we get,

f(r) =
(2Ck + (N − 3) (N − 4) + (N − 5) (N − 6) α̃)

2 (h2 + 2α̃2)
r2 + C1r + C2, (65)

where C1 and C2 are integration constants. This general result includes some of the well-

known solutions for particular choices of C and k. It can be anticipated that for C1 6= 0 6=
C2, f (r) = 0, admits roots resulting in non-asymptotically flat black hole solutions. Beside

this, for C = q2 ( q is the electric charge) and k = 1 it corresponds to N - dimensional BR

like solution in the Einstein-Maxwell theory. Note that we choose the integration constants,

C1 = C2 = 0 for this particular case. Another interesting solution is obtained for the EYM

theory if one takes C = (N−3)(N−2)
2Q2 and k = −N−6

N−2
.
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B. Salgado’s theorem in higher dimensions and Scalar Tensor Theory (STT) of

gravity

We start with an action in n + 2−dimensions[21]

I =
∫
dn+2x

√
−g
{

1

2
F (φ)R − 1

2
(∇φ)2

}
(66)

in which φ is a massless scalar field a function of only radial coordinate r and F (φ) is a

function of φ to be identified later. The field equations by using the usual variation method

are given by

Gµν = Tµν , (67)

Tµν =
1

F (φ)

[
∇µ∇νF (φ) + ∇µφ∇νφ− gµν∇2F (φ) − 1

2
gµν (∇φ)2

]
, (68)

∇2φ = −1

2
F ′ (φ)R. (69)

Now the trace of (68) manifests

R =

(
n
2

+ (n+ 1)F ′′
)
(∇φ)2

n
2
F + (n+1)

2
(F ′)2

, (70)

which, while ∇φ 6= 0, we wish to make it zero i.e.,

n

2
+ (n+ 1)F ′′ = 0, (71)

which yields

F (φ) = − n

4 (n+ 1)
φ2 + C1φ+ C2 (72)

where C1 and C2 are integration constants. In order to follow our goal we set C1 = 0 and

C2 = 1 such that

F (φ) = 1 − n

4 (n+ 1)
φ2. (73)

We put these results into the field equations

∇2φ = 0 (74)

which gives

∂r

(
rn
N

A
φr

)
= 0 (75)
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and

Tµν =
1

F (φ)

[
(1 − 2ζ)∇µφ∇νφ+

(
2ζ − 1

2

)
gµν∇αφ∇αφ− 2ζφ∇µ∇νφ

]
(76)

where ζ = n
4(n+1)

. The later expression directly gives

T rr =
1

FA2

[
1

2
φ2
r + 2ζφφr

Ar

A
− 2ζφφrr

]
, (77)

and

T tt = − φr

FA2

[(
1

2
− 2ζ

)
φr + 2ζφ

Nr

N

]
. (78)

Now we use (75) to get φrr = −φr
[
∂r ln

(
rnN

A

)]
and then

T rr − T tt =
n+ 2

2 (n+ 1)

φr

FA2

1

(rnN2)
n

n+2

∂r

[
φ
(
rnN2

) n
n+2

]
, (79)

which, as the first requirement in our theorem, must be zero i.e.,

∂r

[
φ
(
rnN2

) n
n+2

]
= 0, (80)

or

φ
(
rnN2

) n
n+2 = d, (81)

where d is a constant. Also after knowing A = 1
N

(this was proved before), from (75), one

gets

φr = a
A2

rn
, (82)

which together with (81) admit a solution for scalar field as

φ =

(
− en

r −M

)n
2

, (83)

N2 =
1

A2
=

d1+ 2
n

(−en)1+ n
2

r1−n
2

(
1 − M

r

)1+ n
2

, (84)

where en = n
2
d1+

2
n

a
and M is a constant. These result help us to find the closed form of

T rr = T tt and T θθ as

T rr = T tt =
φr

2 (n+ 1)FA2

n

2

[
φr +

n

r
φ
]
, (85)

T θθ = − φr

2 (n+ 1)FA2

[
φr +

n

r
φ
]

(86)

which after considering k =
T θ

θ

T t
t

(from the theorem) one finds

k =
T θθ
T tt

= −2

n
. (87)
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The last requirement to fulfill the conditions in the theorem, is to adjust the free parameters

such that T rr = T tt ∼ 1
rn(1−k) = 1

rn+2 i.e.,

φr

2 (n+ 1)FA2

n

2

[
φr +

n

r
φ
]

=
C

rn+2
(88)

which after substitution the closed form of all functions on gets

φ
[

1
2en
φ

2
n + 1

r

]

1 − n
4(n+1)

φ2
=

4C (n+ 1)

an2r2
(89)

or simply

r (r − 2M)[
(r −M)1+ n

2 − n
4(n+1)

(−en)n (r −M)1−n
2

] =
8C (n+ 1)

an2 (−en)
n
2

= cons.. (90)

As one may notice, this is a very strong condition and only in 4−dimensions can be satisfied,

i.e., for n = 2 we get
r (r − 2M)[

(r −M)2 − 1
6
e2
] = −6C

d2
(91)

which gives

d2 = −6C and e2 = 6M2. (92)

Nevertheless one finds

T rr = T tt = − d2

6r4
(93)

and

φ =

(
− e

r −M

)
, (94)

N(r)2 = A(r)−2 = χ− 2m

r
− C

r2
=
d2

e2

(
1 − M

r

)2

. (95)

For S2 i.e., χ = 1 one gets d2 = e2 = 6M2, m = M and C = −M2 which reveal

T rr = T tt = −M
2

r4
, N(r)2 = A(r)−2 =

(
1 − M

r

)2

, (96)

φ =

(
±

√
6M

r −M

)
. (97)

For H2 (χ = −1) we find d2

e2
= −1, m = −M and C = M2 which means

T rr = T tt =
M2

r4
, N(r)2 = A(r)−2 = −

(
1 − M

r

)2

, (98)

φ =

(
±

√
6M

r −M

)
. (99)

Finally for χ = 0 this solution is not applicable.

21



VI. CONCLUSION

In this paper, we have extended the Salgado’s theorem to generate static, spherically

symmetric black hole solutions in higher dimensional Lovelock gravity with matter fields.

We have shown explicitly that our general solution recovers formerly obtained solutions in

particular limits. A new class of black hole solutions in 7-dimensions known as Chern-Simon

black holes with specific matter fields is presented in detail. The matter fields couple to the

system through the constant parameters C and k. It is shown that these parameters are

restricted as a result of energy conditions.

Before attempting the most general solution, firstly, we derive the general form of the N -

dimensional black hole solutions in the third order Lovelock gravity. Due to the technical

reasons, we constraint, the parameters α̃2 and α̃3 as in Ref. [4], so that we obtain solutions

that overlap with the known solutions in 7- dimensions.

A new black hole solution in 7-dimensions with k = 1
5

is obtained. It is shown that

depending upon the values of C and α̃2, one or two horizons may develop. Asymptotically,

depending on the parameters, our new solutions are either flat or de Sitter/anti- de Sitter

types. Under some special conditions the naked singularity becomes inevitable. In classical

4- dimensional general relativity, this singularity is a timelike curvature singularity. The

structure of this singularity is further analyzed by quantum test particles according to the

method developed by Horowitz and Marolf [17]. Our analysis has revealed that, although

r = 0 is singular in classical sense, it becomes nonsingular when probed with quantum test

particles. It has also been shown for N = 7 that the third order Lovelock parameter plays

an effective role in removing the black hole property and leaving the singularity at r = 0 as

naked. Higher Lovelock parameters, αs, (s > 3) play the similar role for N > 7. Under the

light of these results, the Lovelock theory of gravity becomes important in the sense that,

it provides an arena to investigate the contribution of higher order curvature terms at short

distances; especially for the solutions that incorporate black holes. Our final remark is to

extend the theorem to cover Bertotti-Robinson type solutions and scalar-tensor theory. It

is found that in the scalar-tensor theory Salgado’s theorem for N > 4 does not work.
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APPENDIX A: Energy Conditions

When a matter field couples to any system, energy conditions must be satisfied for phys-

ically acceptable solutions. We follow the steps as given in [8].

A. Weak Energy Condition (WEC)

The WEC states that,

ρ ≥ 0 and ρ+ pi ≥ 0 ( i = 1, 2, ...n+ 1) (A1)

in which ρ is the energy density and pi are the principal pressures given by

ρ = −T tt = −T rr = − C

rn(1−k)
, pi = T ii (no sum convention) (A2)

The WEC imposes the following conditions on the constant parameters C and k;

C ≤ 0 and k ≤ 1, (A3)

B. Strong Energy Condition (SEC)

This condition states that;

ρ+

n+1∑

i=1

pi ≥ 0 and ρ+ pi ≥ 0. (A4)

This condition together with the WEC constrain the parameters as,

C ≤ 0 and k ≤ 0. (A5)

C. Dominant Energy Condition (DEC)

In accordance with DEC, the effective pressure peff should not be negative i.e. peff ≥ 0

where
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peff =
1

n+ 1

n+1∑

i=1

T ii = −(1 + nk)

1 + n
ρ. (A6)

One can show that DEC, together with SEC and WEC impose the following conditions on

the parameters

C ≤ 0 and − 1 ≤ k ≤ 0. (A7)

It is observed that the simplest case is provided by k = − 1
n

(class B) which yields peff = 0.

D. Causality Condition

In addition to the energy conditions one can impose the causality condition

0 ≤ peff

ρ
< 1, (A8)

which implies

C ≤ 0 and − 1 ≤ k ≤ −1

n
(A9)

Our set of class B solutions automatically satisfy the causality condition. Concerning the

class A solutions some members, such as k = 1
n

violates causality.
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