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ABSTRACT 
 

Functional Magnetic Resonance Imaging (FMRI) is a powerful tool to predict the current 

activity in the human brain. With the help of machine learning tools, the cognitive 

function of the human brain can be automatically classified into two or more states by 

analyzing the FMRI images. In this thesis, the main goal is to design an automated system 

to predict whether a given subject is viewing a picture or a sentence. A dataset of six 

subjects is considered for this purpose. Two classification schemes, namely support vector 

machines (SVM) and nearest neighbor classifier (NN) are used. Due to the high 

dimensionality of the FMRI data, feature selection is generally considered. In order to 

reduce the feature dimensionality, four reduction methods, namely region of interest 

(ROI), N-most active voxels, ROI average and N-most active voxels within ROI are 

studied. Both subject dependent and subject independent experiments are conducted 

where the former studies the categorization problem separately for each subject and the 

latter does not use the tested subject during training.  

Experimental results have shown that SVM provides better scores compared to NN 

approach and selecting N-most active voxels within the ROI provided the best scores, 

verifying the importance of applying feature selection in this domain. 

Keywords: Functional Magnetic Resonance Imaging, Cognitive State Decoding, Feature 

Selection, Support Vector Machines, Nearest Neighbor Classifier  
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ÖZ 

Fonksiyonel Manyetik Rezonans Görüntüleme (FMRG) insan beyninde şu andaki 

aktiviteyi tahmin etmek için güçlü bir araçtır. Makineye dayalı öğrenme araçları 

yardımıyla insan beyninin bilişsel fonksiyonu iki veya daha fazla durumdan birine FMRG 

görüntüleri incelenerek otomatik olarak sınıfladırılabilmektedir. Bu tezde, esas amaç bir 

kişinin bir resime veya bir cümleye bakmakta olduğunu ayırt edecek otomatik bir sistem 

tasarlamaktır. Bu amaçla altı kişi içeren bir verikümesi kullanılmıştır. Destek vectör 

makinaları (DVM) ve enyakın komşu (EK) olmak üzere iki sınıflandırıcı kullanılmıştır. 

FMGR verisinin yüksek boyutlu olmasından dolayı genellikle öznitelik seçimi 

uygulanmaktadır. Öznitelik boyunun azaltılması için İlgi Alanı (İA), N-En aktif voxel, İA 

ortalama ve İA içerisindeki N-En aktif voxel olmak üzere dört farklı yöntem denenmiştir. 

Kişiye bağlı ve kişiden bağımsız deneyler yapılmış olup, ilkinde sınıflandırma promlemi 

her kişi için ayrı olarak çalışılmış, ikincisinde ise test edilen kişi eğitme verisi içinde yer 

almamıştır. 

Deneysel sonuçlar DVM yaklaşımının EK'ya göre daha başarılı sonuçlar verdiğini, İA 

içerisindeki N-En aktif voxel seçiminin de eniyi başarımı sağladığını göstermiş ve bu 

alanda öznitelik seçmenin önemini onaylamıştır.  

Anahtar Kelimeler: Fonksiyonel Manyetik Rezonans Görüntüleme, Bilişsel Durum 

Çözümleme, Öznitelik Seçme, Destek Vektör Makinaları, Enyakın Komşu 

Sınıflandırıcısı 
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Chapter 1 

INTRODUCTION 

1.1 FMRI Data Analysis  

The brain is the most fascinating and the least understood organ in the human body. For 

centuries, the brain has been an unknown entity and scientists have pondered how it 

works. Proving that the brain is the main controller of the human body was the first step 

for further studies. In the 17th century, Thomas Willis proposed that each region of the 

brain has a specific function and, in the 19th century, Gall introduced two important facts. 

Firstly, the brain is responsible for moral, intellectual and all physiological activities of 

the human body. Secondly, different regions of brain response to different activities. 

These two facts led scientists to design a brain map which contains each area with its 

responsibilities. The studies in 19th century resulted in a better understanding of the 

mysteries of the brain by using electrical currents to stimulate the cortex of animal and 

human brain’s mapping [1]. These maps were not complete and precise, but they were 

later completed in the 20th century by using new methods such as cortical stimulation by 

employing electrodes [1, 2]. The invention of brain imaging technologies towards the end 

of the century was a milestone in this area. Methods such as Positron Emission 

Tomography (PET) [3] and Magnetic Resonance Imaging (MRI) [4] have opened a new 

window for deeper understanding of the brain. Although MRI was not the first method 
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used in the brain and neuroscience studies, it became the most popular method in recent 

years [4]. 

MRI is a technique which uses a strong nuclear magnetic field to produce a visual 

representation of internal body structures and biological tissues such as bones, organs or 

soft tissues [4, 5]. The MRI scanner can detect properties and distinguish between tissue 

types using different pulse sequence types where a pulse sequence is a series of changes 

in a magnetic field gradient and oscillating electromagnetic fields that allow the MRI 

scanner to create a sensitive images of the human body [4, 3]. For example, MRI can 

reveal differences between the grey level and the white level of the brain matter. MRI 

produces high resolution images which help detecting disorders and problems in the other 

parts of body as well. 

Functional MRI (FMRI) uses MRI technology to measure changes in the blood oxygen 

level and evaluate metabolic changes in the brain over time [5]. FMRI is a series of MRI 

images which are taken over a period of time with lower resolution than normal MRI 

images [4]. These images measure neuron activation changes during a stimuli. FMRI 

plays a major role in human brain studies and brain mapping, which is generally seen as 

a safe, fast and reliable method [4, 5, 6].  

Since the beginning of the FMRI studies, analysis of its massive data is questioned. Using 

methods such as clinical and human experts based analysis are time consuming and not 

reliable. On the other hand, machine learning methods are generally considered as the 

most logical solution to the problem of analyzing this type of data. Therefore, machine 
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learning methods played important roles in recent FMRI data analysis studies and 

researchers focused on developing models and software to carry out this task. 

When FMRI was first discovered, most of the studies are done on individual voxel basis. 

After a while, analysis of multi box activation patterns during particular stimulus has 

become increasingly common. This is known as multi voxels pattern analysis (MVPA) 

[7]. Using this approach, representation of a particular activity within the brain can be 

obtained. For instance, graphs of relative timing of an activation within a particular part 

of the brain or network diagram that shows the functional relation among many different 

regions also can be used in brain disorder studies [4]. Moreover, the task which is 

performed by a subject referred as brain reading can be detected [7]. It also provides 

answers to unlimited number of questions about how the brain works. The FMRI 

technology and its combination with other brain study models also helped the researchers 

in psychological studies [8]. 

 The aforementioned applications of FMRI data analysis need the use of pattern 

classification technology. Pattern classification science corresponds to labeling unseen 

data as one of the previously known classes or groups [9]. A pattern class denotes a group 

of objects or data which they have same or common properties. Each object is 

characterized by a set of features where each feature element represents a distinguishing 

property of the objects. Each object used in classification is known as a sample and 

collection of obtained samples is named as a data set [10, 11]. 
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The solution of a pattern classification problem includes two main stages, training and 

testing [10]. The main goal of training is model estimation where the decision boundaries 

in the feature space are computed. The test phase corresponds to computing the most 

likely class that the unseen data may belongs [9, 11]. 

Both training and testing may include pre-processing which aims to remove noise and 

normalize the data. In practice, the features computed may not be jointly best-fitting. In 

such a case, feature selection where the redundant information is removed is applied in 

order to simplify the computations and obtain more discriminative feature vectors [12].  

In the case of FMRI classification, class stands for the kind of stimuli shown or the task 

asked during the image acquisition phase. Features are the neuron activation levels during 

each stimulus. A sample is the data recorded for each stimulus in the form of FMRI 

images. Different samples that are recorded in FMRI data acquisition process are 

represented as vectors of large number of elements [6, 13, 14].  

1.2 Objectives 

In this study, three important tasks in FMRI data analysis are considered. Evaluation of 

different machine learning algorithm to study their relative performance on FMRI data is 

addressed. Dimensionality reduction to select an informative feature subset to improve 

the classifier accuracy and reduce the computational complexity and, comparing subject 

independent and dependent models to show the freedom of brain activity prediction from 

subjects are also considered.  
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Two well-known classification algorithms are used to predict the stimulus type in the 

brain, namely support vector machine (SVM) [15] and nearest neighbor classifier (NN) 

[16]. Their average performance over different experiments are computed and compared.  

We applied several dimensionality reduction techniques such as region of interest (ROI) 

and N-most active voxels to reduce the dimensionality of feature vectors which is one of 

the principal problems in FMRI data analysis.  

The experiments conducted can be categorized into two broad groups: subject dependent 

where each subject is studied independently and subject independent where different 

subjects are used in training and test phases. For both experiments, feature reduction 

algorithms are applied. 

The rest of this thesis is organized as follows: Chapter 2 presents a literature review 

including information on brain structure and anatomy, introduction to FMRI and BOLD, 

FMRI data classification and feature selection. Chapter 3 presents information on the 

classification of pre-processed data set. Chapter 4 presents experimental results in 

simulation studies. Chapter 5 provides the conclusions drawn and information about 

future studies on this topic. 

  



 
 

6 

 

Chapter 2 

LITERATURE REVIEW 

2.1 The Anatomy and Structure of the Brain 

The human brain is divided into two hemispheres, left and right and into four different 

regions, each of which has its own special functionality. These regions are frontal lobe, 

parietal lobe, temporal lobe and occipital lobe [1] which are shown in Figure 1. Although 

the functional organization of the brain is poorly understood, the primary functions of the 

aforementioned areas are known [17, 18]. For example, the primary visual cortex is 

located in the occipital lobe. It deals with the reception and explanation of visual signals 

which are mapped on the left hemisphere from the right retina. Temporal lobe is 

responsible for auditory action in the human brain. It has the same structure as visual 

cortex where the left side ear mapped on the right side. Basic functions of other lobes of 

the brain are also known today [1, 19]. The location of these functions are shown in Figure 

2. Some basic relations of these parts also have been studied and referred as the functional 

connectivity of brain regions [18]. 
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Figure 1.  Different Lobes of Brain Separated by Colors [20] 

 
Figure 2. Approximate Locations of Primary Sensory Areas in the Human Brain [21] 

Figure 2 illustrates the locations of primary sensory areas in the brain. Despite our 

knowledge about each region’s main duty, it is incorrect to assume that only one part of 

the brain is responsible for each function since different parts may cooperate during even 

a simple work [18].  



 
 

8 

 

2.2 Functional Magnetic Resonance Imaging 

Although functional imaging did not start with FMRI, its advantages made FMRI one of 

the most widely used techniques for observing brain activities [22, 23]. The most 

commonly used method before FMRI was PET. It is based on tracing the radioactivity 

flowing with blood to the brain [1, 3]. As the active parts of the brain need more oxygen, 

the blood flow which contains the radioactive material injected into vessels will be 

increased in those parts. The sensors on the PET machine record the changes in the brain. 

The amount of activation is measured and active parts of the brain are identified. Although 

PET is still in use, its disadvantages such as the side effects, safety issues of radioactive 

injection, price of materials and low speed of image acquisition process make it an 

unfavorable option for brain studies [3, 4]. 

FMRI only uses oxygen level changes in the brain which is a natural process. It is a 

noninvasive method and it has fewer side effects on subjects. It can be repeated as much 

as needed which is impossible in the PET due to safety reasons [4, 24]. Moreover, it 

benefits from changes in blood oxygenation level. These changes are really fast, which 

starts in seconds after the stimuli. Consequently, FMRI can measure the changes in a 

fraction of seconds [5, 25, 26]. 

The FMRI scanner produces time series of MRI data. The data obtained in FMRI sessions 

are normally 2D images of different slices of the brain which form 3D images in 

combination. The slices may be taken in three perpendicular planes named as axial, 

coronal and sagittal [1, 22]. These planes are shown in Figure 3.  
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Figure 3. Different Planes of Sections in the Brain Used In the MRI Imaging Method 

[22] 

 

The smallest addressable part in an FMRI image is a three-dimensional rectangular cuboid 

that is referred as a voxel [26].  MRI scanners take a snapshot in every 2-3 seconds. 

Imaging over a period of time during a particular activity represents neural changes in the 

brain due to the stimuli [1, 4, 5]. Figure 4 illustrates the images recorded during an 

auditory stimuli.  
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Figure 4. FMRI Data Collected While a Person Listened to an Auditory Stimuli. 

Cyan and Yellow Areas Show the Lowest Intensity of Activities where Orange and Red 
Represent the Highest Intensity [27] 

 

2.3 Blood Oxygenation Level Dependent (BOLD) Signals 

The hemoglobin molecule in the blood has magnetic properties which allows detecting 

whether or not it is bound to oxygen [4] and the amount of blood flowing through a 

particular part of the brain depends on the local neural activity. FMRI scanners employ 

the changes in the oxygen levels in the blood to generate blood oxygen level dependent 

(BOLD) response based images [4, 25, 26].  

The increase in blood flow to its peak value takes approximately 4-5 seconds and it does 

not return to the baseline before at least 15-20 seconds [5, 6, 25]. The delay of 

hemodynamic response time in comparison to stimulus time should be considered in 
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experimental designs. Figure 5 shows the BOLD signal responses from four different 

individuals during a particular activity. 

 

 
Figure 5. BOLD Signals for a Particular Activity. Each Line is the Data for a Different 

Individual [6] 

A BOLD signal is generally described in terms of its peak height, time to peak, width, 

initial dip and post stimulus undershoot value as illustrated in Figure 6. Peak height (H) 

is the maximum value of the neuron's hemodynamic response during the stimulus which 

is related to the amount of activity in the neurons. Time to peak (TP) is the time that the 

BOLD signal takes within the stimulus onset to reach its peak value. Finding the suitable 

TP time is important for labeling each signal’s category and defining the fixation period 

signal value. Width (W) is the time calculated for a BOLD signal between reaching to it’s 

the peak value and the falling to the fixation period value. Initial dip (ID) appears before 

the BOLD signal rises in the form of descending signal which may accrue due to early 

oxygen consumption. As it is not a strong signal, in some cases it can be ignored. Post 
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stimulus undershoot (PSU) is the negative reflection of BOLD signal which appears after 

this signal reached to its peak and come back to rest mode. PSU has smaller absolute 

amplitude compared to the amplitude of BOLD at TP [6, 28].   

 
Figure 6. BOLD Signal Characteristics Which can be Described With the Term: Time 

From Stimulus Starts Until the Peak Time (TP), Height of Signal Response (H), Weight 
of Signal (W), Post Stimulus Undershoot (PSU) and Initial Dip (ID) [6] 

 

The main components of FMRI data classification are shown in the block diagram below. 

The data acquisition and preprocessing tasks are presented in the following sections while 

feature selection and classification are explained in the next chapter. 

 

  

Data 
Acquisition  

Pre-processing  
Feature 
selection  

Classification   

Figure 7. Block Diagram of FMRI Classification System 
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2.4 Collection and Processing FMRI Data 

2.4.1 Data Acquisition 

Data acquisition is the process of using magnetic resonance scanners to take a series of 

images over time. These machines use strong magnetic fields to align the magnetization 

on hydrogen or oxygen nuclei which are common elements in the human body. The 

electromagnetic energy absorbed in the nuclei and emitted after a while are different due 

to the differences in the amount of hydrogen or oxygen in the organs [1, 24, 26]. 

Functional MR data in brain activity studies consists of a series of images which shows 

the location and the amount of activation in the brain [19]. The process of data acquisition 

may differ with the use of scanner type, power and imaging methods. 

2.4.2 Data Preprocessing 

FMRI data are highly liable to a number of artifacts from different sources which may 

lead to unreliable information and add unwanted variation [29]. In particular, movement, 

subject distraction, scanner system noise or thermal noise may distort the FMRI data [29]. 

Another source of data variability across subjects is the differences in head shapes and 

sizes which produce data with different amount of voxels and geometric position of voxels 

[6, 22]. This are important problems during subject independent experiments. Data 

variations within a subject may also occur. These variations may be due to several reasons 

such as the head movements, slice timing and voxels activation levels [1, 4, 6]. Because 

of these distortions, the FMRI data should be pre-processed before classification. 

Typically applied operations are in the order given as follows [6]: 
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1. Quality assurance 

2. Distortion correction  

3. Slice timing correction  

4. Motion correction  

5. Spatial smoothing  

6. Spatial normalization  

2.4.2.1 Quality Assurance 

Before starting the preprocessing of the data, it is vital to be sure about the quality of 

acquired data. This process is performed by automatically detecting systematic patterns 

of noise. However, most of the time, it is better to have close eyes on the raw data as some 

problems are easily visible in the images. Extreme scanner artifacts or incompatible 

subject’s data in the FMRI acquisition process should also be checked before applying 

other steps to prevent further analysis on wrong data [6, 14].  

One of the artifacts caused by MRI scanner is spikes which are small changes in the image 

brightness due to electrical instability as illustrated in Figure 8. Spikes normally appear 

as stripes across the images. This kind of artifact does not occur in the new generation 

MRI scanners as they use new methods and technologies to avoid them. However, when 

they occur, they can adversely affect the analysis results [4, 29]. 
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Figure 8. Example of an FMRI Image of a Patient with Tumour Disease  with Spike 

Effect in Images [6] 
 

Another artifact is ghosting which occurs due to periodic movements of subjects such as 

heartbeat or breathing as shown in Figure 9. Ghosting appears as a dim ghost of brain to 

each side of the brain area in the images. The recognition of ghosting artifact is difficult 

and the brightness level should be changed. This artifact may cause to consider the non-

brain voxels as informative voxels and also to miss localization of activities. This kind of 

artifact rarely occurs in new generation scanners. Appearance of this artifact is more 

possible if we have a stimulus which needs periodic movements which should be solved 

during data acquisition [6, 30].  

 
Figure 9. Example of Ghosting Effect in FMRI Images. The Right Panels Shows the 

Same Image when the Intensity is Reduced [6] 
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2.4.2.2 Distortion Correction  

On the MRI images, the region of the brain where air and tissue meet causes a special 

kind of artifact known as distortion [4, 31]. This is because of inhomogeneity of tissue 

and air. The distortion may be in two main forms, namely dropout and geometric 

distortion. 

The dropout effect is seen as a reduced signal in the air-tissue interface areas such as the 

orbitofrontal cortex [4]. The effect of dropout is presented in Figure 10. This kind of effect 

can change the neuronal signals in these areas and should be removed. The dropout effect 

occurs during MRI acquisition and mostly it is impossible to retrieve the original data 

after the image is taken [6, 31]. They should be avoided during MRI image acquisition. 

Otherwise, we have to exclude these areas during processing if they are not responsible 

for a particular task in the study under concern.   

Spatial or geometric distortion appears in the form of spatially distorted voxels in the air-

tissue interface regions. This may cause unwanted changes in the voxels location for 

different snapshots. Geometric distortion results in error during spatial information 

extraction, difficulties to align the images with structural images or destroying voxels 

information [6, 31].  
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Figure 10. Blue Box Shows the Place where Air and Tissue Meet which Has Dropout 

Distortion Effect. Images in Two Sides are Combined to Show this Effect [6] 

 

2.4.2.3 Slice Timing Correction  

FMRI image acquisition methods use different techniques for slicing. Some methods take 

an image slice by slice in sequence and some others use the interleaved acquisition method 

[4, 32]. In this way, every other slice is acquired sequentially and followed by the next 

half of the remained slices. It usually takes odd slices in one sequence and the even slices 

in the next sequence as shown in Figure 11. This may lead to different timing sources for 

different acquisition sequences [32]. This timing difference gives rise to difficulties in 

analysis, as most of the FMRI data analysis assume the data with the same timing source 

[14, 32]. 

 
Figure 11. Axial Slice of Brain Imaging in FMRI Method [2] 
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In order to solve this problem, interpolation is generally applied. Considering one slice as 

a reference image, all other slice’s data are interpolated in the same timing order as 

illustrated in Figure 12. This method works best when the time between slices is higher 

than the changes in the data [6, 32]. 

 
Figure 12. Slice Timing Correction .The Top Diagram Shows Time Difference (Red 

Points) for Different Slices and Bottom Diagram is obtained after Applying Slice 
Timing Correction [32] 

 

2.4.2.4 Motion Correction 

Since the early days of FMRI, head movement has been one of the serious problems. 

Different facilities such as restraints (face mask, vacuum cushion and padding) are used 

to keep the subject’s head steady and fixed during FMRI sessions as shown in Figure 13. 

Subjects are given the structures and trained to keep their head with less possible 

movement. However, even the best subjects have head movements during the image 

acquisition. Because of this, motion detection and correction are absolutely vital in pre-

processing steps [6, 33].  
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Figure 13. Various Methods and Materials Used for Head Movement Control During 

FMRI Scans. (A) face mask, (B) vacuum, (C) cushion  and (D) padding  [4] 

 

Head movement effects can be classified into two classes. Firstly, head movement can 

cause mismatch of the location of voxels in time series images which is referred as bulk-

motion. This effect usually occurs near the edges of the brain, where the informative 

voxels of the brain and empty voxels which are not part of the brain meet [34]. The sudden 

movement of the head leads to sudden changes in the value of voxels which are placed on 

the edge [33, 34]. Figure 14 illustrates the bulk-motion effects.  

 

 
Figure 14. Bulk-Motion Effect on the Edges which Appears as a Ring of Positive or 
Negative Changes. This Effect is shown in Different Planes. Axial (Left), Coronal 

(Middle) and Sagittal (Right) [6] 
 



 
 

20 

 

Bulk-motion correction assumes that the movements are just transformation of the body, 

where the position of the head changed along a particular axis, but the shape of the head 

is the same as reference images [33, 34]. It is based on realigning the FMRI images to a 

reference image. The most common types of image transformation are translation, 

rotation, scaling and shearing [6, 33]. Figure 15 shows the effect of each transformation 

technique on a given image. The effect of rotation at different angles on FMRI image is 

illustrated in Figure 16. 

 
Figure 15. Image Transformation Methods such as Translation, Rotation, Scaling and 

Shearing [6] 
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Figure 16. FMRI Image Rotation with Different Degrees for Bulk-motion Movement 

Correction  
 

The second type of head movement effect on the FMRI images is spin-history effects 

which appears as disruption effect on the FMRI images [6, 35]. This kind of artifact is 

due to the proton movements from different slices near the target voxels, which causes 

receiving an unexpected signal that carries inaccurate information. In the case of 

interleaved acquisition model it can appear in a form of dark and bright stripes [6, 4, 35]. 

The effect of this artifact is shown in Figure 17.  

 
Figure 17. Spin History Effect in the Case of Head Movement [35] 
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This class of artifact cannot be corrected with normal motion correction models and needs 

more complicated algorithms such as a spin-history correction [34, 35]. In practice, the 

data is deleted if the movement is more than 1-2 voxels. Alternatively, a threshold in 

millimeters may be defined to identify the movements which need to be corrected [6]. As 

these movements are normally undeniable, various methods are used to correct the 

movement effects on the images. 

 

2.4.2.5 Spatial Smoothing 

Spatial smoothing corresponds to replacing the intensity of each voxel with the average 

of the neighboring voxels and the voxel under concern. In frequency domain, this 

corresponds to applying low-pass filter to remove high-frequency information [1]. The 

most common method for applying spatial smoothing is the convolution of the image with 

a Gaussian filter [1, 36]. The effect of spatial smoothing can be seen in Figure 18.  

 
Figure 18. The Effect of Spatial Smoothing. Active regions can be Easily Detected when 

Smoothing is increased. The Amount of Smoothing is given in Millimeters [6] 

 

2.4.2.6 Spatial Normalization 

FMRI image classification may be subject dependent or independent. In subject 

dependent classification, the activation of brain for a given subject is explored to study 

various disabilities, planning for surgery or decoding activation areas [4, 6, 36]. On the 

other hand, subject independent experiments are to generalize and extend analysis across 



 
 

23 

 

different subjects. This requires employing an alignment scheme to compensate   data 

variability due to head shape and size in different subjects [7]. Transforming the FMRI 

data into a common space is known as spatial normalization [36]. The first standard space 

designed this purpose is by Talariach as illustrated in Figure 19 [37]. By employing 

different landmarks, Talariach defined a boundary box that specifies the location of the 

brain in each dimension. 

 
Figure 19. Talairach Bounding Boxes with Landmarks Connection [37] 

Talariach also developed a brain atlas which provides a good guidance to the location of 

brain structures in a coordinate space. It can be used to find each activation place and 

interpret the results [42].  
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Chapter 3 

CLASSIFICATION OF PRE-PROCESSED FMRI DATA 

Feature selection is a crucial step in FMRI classification problem. Since they involve high 

dimensional data that is on the order of thousands [38]. Improving the classifier 

performance and decreasing the computational cost are two main aims of feature selection 

[26, 38, 43]. We used the feature selection methods listed below individually and 

combined them with each other to evaluate their relative performance 

 Regions of Interest (ROI). 

 N-most active voxels. 

 Regions of Interest (ROI) averaging. 

 N-most active voxels within ROI. 

 

3.1 Regions of Interest 

ROI is a well-known feature selection method in FMRI image classification. It is well-

known that different stimuli can fire neurons of different regions. For instance, some parts 

are mainly involved in visualization while others are related to hearing [38, 39, 45, 46]. 

Because of this, various ROI are defined based on clinical experiments by experts. The 

ROI which are used in this thesis are named as CALC, LIPL, LT, LTRIA, LOPER, LIPS, 

and LDLPFC [1]. Figure 20 shows the eight different axial slices of whole brain without 
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considering ROI. Figure 21 shows the effect of applying these regions on a same axial 

slices of whole brain image. 

 

Figure 20. Axial Slices of whole brain without Considering ROI 

 
Figure 21 . Axial Slices with Applying ROI 

Since only axial slices of brain are presented in figures above, the effects of applying 

some ROIs cannot be seen clearly. 
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3.2 ROI Average 

In this method, the mean activation value of the voxels within each ROI is calculated. The 

average values are used as the elements of the feature vectors [39, 40]. It is obvious that 

the number of features is the same as the number of ROI that are used. This approach is 

more useful when data is collected from different sources such as various subjects. 

3.3 N-most Active Voxels 

In this approach, the voxels are ranked in terms of the activation level. N-most active 

voxels are then selected to define feature vectors. Voxel selection is based on measuring 

the ability of each voxel to distinguish the class under concern from the fixation period. 

t-test is generally used for this purpose [10]. The voxels achieving the largest t statistic 

are selected.  

3.4 N-most Active Voxels in ROI 

For uniform selection of voxels from different ROI, N-most active voxels are selected 

from each ROI and they are concatenated to form the feature vectors. 

3.5 Classification 

Having constructed the feature vectors, classifiers to separate the given FMRI data into 

two or more classes can be generated. In FMRI studies, both linear and nonlinear 

classifiers are used. SVM due to its robustness to high dimensional features and NN due 

to its success in various domain are explored in this study. 
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3.5.1 Support Vector Machine  

In FMRI classification, SVM is considered as one of the most robust methods for 

classification [43]. Its insensitivity to the high dimensionality of data has made SVM 

appropriate for the FMRI data analysis [15, 43]. 

Basically, SVM is designed for two-class classification, and it can be easily extended to 

C-class data sets. In this case, C(C-1)/2 individual SVM classifiers are trained for each 

pair of classes, to build a multiclass SVM classifier [41]. 

Different optimizations and kernels are developed for SVM [41], however, since most 

FMRI related researches gained better answers with the linear kernel [39, 40, 43], in this 

thesis linear kernel is used for training SVM as illustrated in Figure 22. In the case that 

the samples of different classes are distributed in a way that a linear border cannot classify 

them into different groups, a nonlinear kernel is used. As shown in Figure 23, hyperplanes 

are not in a linear form. 

Assume that there two different classes denoted by -1 and +1 respectively. Let x denote 

the feature vectors and w denote the coefficient vector of the linear boundary. If the data 

is separable with linear hyperplane that is defined as 𝑤. 𝑥 − 𝑏 = 0  , it means that all 

samples that belong to the class -1 are located in the region defined by 𝑤. 𝑥 − 𝑏 <

0. Similarly, the data which belong to class +1 are located in the region which is defined 

by 𝑤. 𝑥 − 𝑏 > 0 . Hence, infinite non-optimal solutions can be obtained for the 

mentioned hyperplane to select the optimal one, SVM employs two hyperplanes such that 



 
 

28 

 

there is no training data between them and the distance between these parallel hyperplanes 

(i.e., 
2

||𝑤||
) is maximized [15, 41]. These two hyperplanes can be written as follows:   

 𝑤. 𝑥 − 𝑏 = 1  

and   

 𝑤. 𝑥 − 𝑏 = −1     

 

Obviously, in order for  
2

||𝑤||
 to get maximized the value of 𝑤 should be minimum. 

 

 

2

||𝑤||
 

x1 

x2 

Figure 22. Hyperplanes in SVM with Linear Kernel 
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3.5.2 Nearest Neighborhood Classifier 

Nearest Neighborhood classifier (NN) is a simple but highly efficient method in the field 

of pattern recognition. It computes the test data point’s distance from all training samples 

and selects the nearest neighbor having the lowest distance. Then it identifies the category 

of test data as the label of the nearest neighbor [9, 16, 42]. 

x1 

x2 

Figure 23. Hyperplanes in SVM with Nonlinear Kernel 
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In Figure 24, assume that m denotes the test data. NN rule computes its distance to the 

training samples and assigns the label of the closest to test data which is ‘    ’. In the case 

of a noisy training set, NN rule can lead to large number of misclassifications. 

  

m 

x1 

x2 

Figure 24. Illustration of the Operation of NN Rule 
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3.6 FMRI Software and Toolboxes 

For the processing and classification of FMRI raw data, various software and toolboxes 

are developed. We listed some of the well-known tool boxes in Table 1. The platform on 

which they run and information about their accessibility are also given. In this thesis, we 

used STARPLUS toolbox. 

Table 1. FMRI Data Analysis and Visualization Software and Toolboxes Available on the 

Internet. 

Package Developer Platform Licenses 

SPM University collage of 

London 

Matlab Open source 

FSL Oxford Unix Open source 

AFNI NIMH Unix Open source 

Brain voyager Brain innovation IOS, 

Windows, 

Linux 

Commercial 

STARPLUS 

toolbox 

Carnegie Mellon university Matlab Open source 

Princeton-

MVPA 

toolbox 

Princeton Institute Matlab Open source 
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Chapter 4 

EXPERIMENTAL RESULTS 

4.1 The STARPLUS Data Set Information 

In this thesis, we used STARPLUS data set [44, 46] to evaluate different feature selection 

and classification schemes. In collecting this dataset, a sequence of sentences and simple 

pictures are shown to the subjects in each trial and they were asked whether the sentence 

describes the picture correctly or not.  

In half of the trials, a picture is shown first and then a sentence. This set of trials is named 

as PS data set. In the rest of the trials, a sentence is shown first, and then a picture which 

is referred as SP data set. The data set contains 54 trials in total where four of them are 

eliminated as the start and end period. The blank screen is used between two stimuli to 

clarify the start and the end point of trials. The total number of rest period is 10 trials. The 

remaining 40 trials are related to the PS/SP data which are used for classification (20 trials 

from each one). 

At first, either picture or sentence is presented for 4 seconds, followed by a blank screen 

for the next 4 seconds. Then, the second stimulus is presented in the following 4 seconds 

and, depending on whether the sentence described a picture correctly or not, the subject 
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must press “yes” or “no”.  Finally, 15 seconds is used as a rest or fixation period. This 

procedure is shown in Figure 25 (A).  

 
Figure 25. (A) Original Time Sequence of Stimuli for PS Trials, (B) Extended Time 

Sequence of Stimuli for PS Trials  
 

The FMRI images are collected in every 500ms. Although the stimulation period of each 

condition is about 4 seconds, 8 seconds intervals of FMRI images are considered as the 

classifier input as illustrated in Figure 24 (B). The time extension is used to cover the 

FMRI BOLD signal extension which is about 9-12s beyond the normal brain activation. 

Because of using 8 seconds for each activity, each trial consists of 16 Images. The 

mapping defined by classifier can be represented as follows: 

𝑓 ∶ 𝐹𝑀𝑅𝐼 − sequence[𝐼𝑝1 , … , 𝐼𝑝16  , 𝐼𝑠1 , … , 𝐼𝑠16  ] ⟶ {Picture, Sentence}  

Where  𝐼𝑝𝑗  is the voxels value vector in the  𝑗𝑡ℎ image for the class picture (P), and 𝐼𝑠𝑗  

shows the 𝑗𝑡ℎ  image for the class of sentence (S). 
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The sequence of images belonging to each class in the trials SP and PS can be represented 

as follows: 

PS: 𝐼𝑝1
𝑃𝑆 , 𝐼𝑝2

𝑃𝑆, …., 𝐼𝑝16
𝑃𝑆 , 𝐼𝑠1

𝑃𝑆 , 𝐼𝑠2
𝑃𝑆 , …., 𝐼𝑠16

𝑃𝑆   

SP: 𝐼𝑠1
𝑆𝑃 , 𝐼𝑠2

𝑆𝑃 , ….,𝐼𝑠16
𝑆𝑃  , 𝐼𝑝1

𝑆𝑃 , 𝐼𝑝2
𝑆𝑃 , …., 𝐼𝑝16

𝑆𝑃   

 

For generating the data for class S, combination of both SP and PS trials is required. This 

combination is done by using the first part of SP and the second part of PS. The same 

approach is used for class P where the first part of PS and the second part of SP trials are 

used. The overall data matrix is shown in Figure 26. 

 

 

The total number samples for each class is equal to 40. Hence, the data matrix has 80 rows 

and 16 columns where each column corresponds to a different snapshot. 

 

Class S 

 

Class p 

𝐼𝑠1
𝑆𝑃 , 𝐼𝑠2

𝑆𝑃 , … , 𝐼𝑠16
𝑆𝑃  

⋮ 

𝐼𝑠1
𝑃𝑆 , 𝐼𝑠2

𝑃𝑆, … , 𝐼𝑠16
𝑃𝑆  

𝐼𝑝1
𝑆𝑃 , 𝐼𝑝2

𝑆𝑃 , … , 𝐼𝑝16
𝑆𝑃  

⋮ 

𝐼𝑝1
𝑃𝑆 , 𝐼𝑝2

𝑃𝑆, … , 𝐼𝑝16
𝑃𝑆  

Trial 1 

⋮ 

Trial 40 

Trial 1 

⋮ 

Trial 40 

Figure 26. The Overall Training Data for a Given Subject 
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Each subject may have different number of voxels as presented in Table 2. The first row 

represents the subject ID and the second row shows the number of voxels of that subject. 

Table 2. The Number of Voxels in each Subject 

Subject 04799 05710 04820 04847 05675 05689 

No. of Voxels 4949 4634 5015 4698 5135 5062 

 

In this thesis, two different series of experiments are conducted. These are namely subject 

dependent and subject independent. Two types of subject dependent experiments are 

considered. In the first type, the images collected from both PS and SP trials are pooled 

(PS+SP). The second type of experiments corresponds to using PS and SP trials separately 

(PS/SP)  

4.2 Subject Dependent Experiments on PS+SP 

In the subject dependent case, 10-fold cross-validation is applied where the data is initially 

partitioned into 10 folds. Then, leaving each fold out one by one for testing and using the 

rest for training, the experiments are repeated ten times and the average accuracies of ten 

folds are recorded. This corresponds to using 72 samples for training and 8 for testing, 

The experiments are conducted using all features and using the feature subsets computed 

by applying four feature selection schemes. Since each feature selection leads to a 

different number of features, the exact number of features considered in each experiment 

is also presented. The total number of samples employed in the experiments is 80 (40 

samples per class).  
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4.2.1 No Feature Selection 

In this experiment, feature selection is not applied and all voxels are used in constructing 

the feature vectors. This system is considered as our reference for evaluating the 

performances of the feature selection schemes employed.  

Table 3. Information about the Number of Samples and Features when Feature Selection 

is Not Applied 

Subject  Number of Samples No. of 

Voxels  

No. of 

Snapshots 

No. of Features  

(Voxels×Snapshots) Class ‘S’ Class ‘P’ 

04799 40 40 4949 16 79184 

05710 40 40 4634 16 74144 

04820 40 40 5015 16 80240 

04847 40 40 4698 16 75168 

05675 40 40 5135 16 82160 

05680 40 40 5062 16 80992 

 

Table 3 summarizes the characteristics of the classification problem corresponding to 

each subject. Due to the differences in brain shapes and sizes, each subject has different 

number of voxels. The average accuracies achieved are presented in Table 4. It can be 

seen in the table that SVM is superior to NN. This is reasonable since SVM is known to 

be more robust to high dimensional feature vectors including redundant or correlated 

information.  
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Table 4. Classification Performance in Percentage when All Voxels are Employed 

Subject SVM  NN 

04799 60 54 

05710 74 65 

04820 69 60 

04847 87 77 

05675 69 66 

05680 74 51 

Average: 72 63 

 

4.2.2 ROI Based Features 

In this experiment, 7 ROIs are employed to reduce the number of features. Information 

about the total number of voxels of each subject in the ROIs under concern are listed in 

Table 5. 

Table 5. Information about the Number of Samples and Features when ROI based Feature 
Selection is Applied 

Subject Number of Samples No. of 

Voxels  

No. of 

snapshots  

No. of features  

(Voxels×Snapshots) Class ‘S’ Class ‘P’ 

04799 40 40 1874 16 29984 

05710 40 40 1883 16 30128 

04820 40 40 1888 16 30208 

04847 40 40 1715 16 27440 

05675 40 40 2239 16 35824 

05680 40 40 2230 16 35680 
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Table 6 presents the average performances achieved when ROI based features are 

considered. It can be seen that ROI based features provide better average accuracies 

compared to the reference system where all voxels are used. 

Table 6. Classification Performance in Percentage after Applying ROI based Feature 

Selection 

Subject SVM  NN 

04799 67 75 

05710 81 61 

04820 71 61 

04847 95 86 

05675 76 74 

05680 81 61 

Average: 78 70 

 

4.2.3 N-most Active Voxels in each ROI 

In this experiment, the N-most active voxels within each ROI is used to reduce the 

dimensionality of the feature vectors. The number of features is reduced to No. of Voxels 

kept × No. of snapshots, leading to 600×16 = 9600 features. 

Table 7 presents the average accuracies achieved when N-most active voxels within each 

ROI based features are considered. It can be seen that, considering N-most active voxels 

based features, further improvements are achieved. 
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Table 7. Classification Performance in Percentage after Applying N-most-Active Voxels 
in each ROI based Feature Selection 

Subject SVM  NN 

04799 90 62 

05710 94 87 

04820 74 54 

04847 97 92 

05675 90 76 

05680 87 81 

Average: 89 76 

 

4.2.4 ROI Average 

In this experiment, since the average in each ROI is used to define novel features, the total 

number of features can be computed as 7×16=112. 

The average performances achieved when ROI average based features are considered is 

presented in Table 8. It can be seen that the performance is severely deteriorated. Hence, 

it can be concluded that averaging based feature selection discards valuable information. 

  



 
 

40 

 

Table 8. Classification Performance in Percentage after Applying ROI Average Based 
Feature Selection 

Subject SVM NN 

04799 52 64 

05710 82 74 

04820 56 59 

04847 80 89 

05675 50 57 

05680 67 60 

Average: 63 66 

 

4.2.5 N-most Active Voxels 

In this experiment, the N-most active voxels selection is applied to the whole brain data 

to select those voxels which are more active. The feature size is 600×16=9600. 

The average performances achieved when N-most active voxels based features are 

considered is presented in Table 9. It can be seen that the performance is further 

deteriorated. Hence, it can be concluded that being active does not mean to convey 

discriminative information. 
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Table 9. Classification Performance in Percentage after Applying N-most Active Voxels 
Based Feature Selection 

Subject SVM NN 

04799 50 51 

05710 60 49 

04820 61 53 

04847 60 55 

05675 50 46 

05680 59 51 

Average: 56 50 

 

4.3 Subject Dependent Experiments on PS/SP 

This groups of experiments are also subject dependent. For each subject, the PS and SP 

data are separated and the experiments are repeated for each set separately. In each set, 

there are 20 samples from class S and 20 from class P. The number of features is the same 

as the original dataset. The organizations of the data used are illustrated in Figures 27 and 

28, respectively for PS and SP datasets. 

In this set of experiments, 5-fold cross-validation is applied. The average accuracies 

achieved for each subject are recorded. 
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4.3.1 No Feature Selection 

In this experiment, feature selection is not applied. This system is considered as our 

reference for evaluating the performances of the feature selection schemes employed. 

 

  

  

 

 

Class S 

Class P 

𝐼𝑠1
𝑃𝑆 , 𝐼𝑠2

𝑃𝑆,…., 𝐼𝑠16
𝑃𝑆  

⋮ 

𝐼𝑠1
𝑃𝑆 , 𝐼𝑠2

𝑃𝑆,…., 𝐼𝑠16
𝑃𝑆  

𝐼𝑝1
𝑃𝑆 , 𝐼𝑝2

𝑃𝑆,…., 𝐼𝑝16
𝑃𝑆  

⋮ 

𝐼𝑠1
𝑃𝑆 , 𝐼𝑠2

𝑃𝑆,…., 𝐼𝑠16
𝑃𝑆  

 

Trial 1 

⋮ 

Trial 20 

Trial 1 

⋮ 

Trial 20 

  

  

  

Class S 

Class P 

𝐼𝑠1
𝑆𝑃 , 𝐼𝑠2

𝑆𝑃 ,…., 𝐼𝑠16
𝑆𝑃  

⋮ 

𝐼𝑠1
𝑆𝑃 , 𝐼𝑠2

𝑆𝑃 ,…., 𝐼𝑠16
𝑆𝑃  

𝐼𝑝1
𝑆𝑃 , 𝐼𝑝2

𝑆𝑃 ,…., 𝐼𝑝16
𝑆𝑃  

⋮ 

𝐼𝑝1
𝑆𝑃 , 𝐼𝑝2

𝑆𝑃 ,…., 𝐼𝑝16
𝑆𝑃  

Trial 1 

⋮ 

Trial 20 

Trial 1 

⋮ 

Trial 20 

 
Figure 27. PS Dataset Used in the Experiments 

Figure 28. SP Dataset Used in the Experiments 
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Table 10. Information about the Number of Samples and Features when Feature Selection 
is Not Applied 

Subject  Number of Samples No. of 

Voxels  

No. of 

snapshot

s 

No. of Features  

(Voxels×Snapshots) Class ‘S’ Class ‘P’ 

04799 20 20 4949 16 79184 

05710 20 20 4634 16 74144 

04820 20 20 5015 16 80240 

04847 20 20 4698 16 75168 

05675 20 20 5135 16 82160 

05680 20 20 5062 16 80992 

 

Table 10 summarizes the characteristics of the classification problem corresponding to 

each subject. The average accuracies achieved are presented in Table 11. It can be seen 

in the table that SVM is superior to NN as before. The accuracies achieved are higher 

compared to PS+SP. This means that the neural activity patterns of each class depends on 

the order they are presented to the subjects. 

Table 11. Classification Performance in Percentage when All Voxels are Employed 

Subject SP experiments PS experiments 

SVM NN SVM NN 

04799 87 67 70 72 

05710 100 87 95 87 

04820 100 82 92 90 

04847 97 97 90 80 

05675 95 85 95 85 

05680 100 80 80 60 

Average: 96 84 88 80 
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4.3.2 ROI Based Features 

In this experiment, 7 ROIs are employed to reduce the number of features. Information 

about the total number of voxels of each subject in the ROIs under concern and the number 

of selected features are the same as given in Table 5.  

Table 12 presents the average performances achieved when ROI based features are 

considered. It can be seen that ROI based features does not provide consistent 

improvements in PS/SP experiments. 

Table 12. Classification Performance in Percentage after Applying ROI based Feature 

Selection 

 

4.3.3 N-most Active Voxels in ROI 

In this experiment, the N-most active voxels within each ROI is used to reduce the 

dimensionality of the feature vectors. As in the PS+SP experiments, 9600 features are 

employed. 

Subject SP experiments PS experiments 

SVM NN SVM NN 

04799 90 65 65 70 

05710 100 95 97 90 

04820 97 87 87 80 

04847 100 100 92 77 

05675 95 80 92 85 

05680 100 80 85 55 

Average: 97 84 87 77 
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Table 13 presents the average accuracies achieved when N-most active voxels within each 

ROI based features are considered. It can be seen that, considering N-most active voxels 

based features, consistent improvements compared to ROI based features are achieved. 

Table 13. Classification Performance in Percentage after Applying N-most-Active Voxels 

in each ROI based Feature Selection 

 

4.3.4 ROI Averaging 

In this experiment, since the average in each ROI is used to define novel features, the total 

number of features can be computed as 7×16=112. 

The average performances achieved when ROI average based features are considered is 

presented in Table 14. It can be seen that the performance is severely deteriorated. Hence, 

it can be concluded that averaging based feature selection discards valuable information 

as in PS+SP experiments. 

Subject SP experiments PS experiments 

SVM NN SVM NN 

04799 92 75 75 80 

05710 100 100 97 92 

04820 97 95 92 80 

04847 100 100 97 95 

05675 95 95 97 87 

05680 97 97 80 77 

Average: 97 94 91 86 
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Table 14. Classification Performance in Percentage after Applying ROI Average Based 
Feature Selection 

 

4.3.5 N-most Active Voxels 

In this experiment, the N-most active voxels selection is applied to the whole brain data 

to select those voxels which are more active. The feature size is 600×16=9600. 

The average performances achieved when N-most active voxels based features are 

considered is presented in Table 15. It can be seen that the performance is further 

deteriorated.  

  

Subject SP experiments PS experiments 

SVM NN SVM NN 

04799 87 70 57 57 

05710 100 100 90 70 

04820 90 95 77 70 

04847 97 100 87 77 

05675 85 82 77 75 

05680 95 95 62 55 

Average: 91 89 76 69 
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Table 15. Classification Performance in Percentage after Applying ROI Average based 
Feature Selection 

 

4.3.6 Summary of the Subject Dependent Results 

Table 16 presents the summary of the results achieved in subject dependent experiments. 

It can be easily seen in the table above that the best accuracies are achieved when N-most 

Active Voxels in each ROI are used. Another observation is that the accuracies on SP data 

is higher than that of PS.  In the SP data set, the sentence came first and hence subjects 

have prior expectation about the upcoming image which is the picture described by the 

sentence. This may cause related areas to be more activated and result in more informative 

voxels in these regions. It can also be seen that, when SP or PS are separately used, better 

accuracies are achieved compared to PS+SP.  

 

  

Subject SP experiments PS experiments 

SVM  NN  SVM  NN  

04799 82 62 60 37 

05710 87 72 82 77 

04820 90 75 82 65 

04847 95 92 75 625 

05675 85 75 87 75 

05680 97 70 75 55 

Average: 89 75 79 64 
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Table 16. Summary of the Average Accuracies in Percentage Achieved for SP and PS 
Datasets and PS+SP 

Experiment 

 

SP+PS SP PS 

SVM NN SVM NN SVM NN 

No feature 

selection 

72 63 96 84 88 80 

ROI Based 

Features 

78 70 97 84 88 77 

N-most Active 

Voxels in each 

ROI 

89 76 97 94 91 86 

ROI Average 63 66 91 89 76 69 

N-most Active 

Voxels 

56 50 89 75 79 64 

 

4.4 Subject Independent Experiments 

In these experiments, we used the data corresponding to all subjects to study subject 

independent classification. Anatomical differences in human subject’s brain is the biggest 

obstacle in analyzing of multiple subject’s data. This causes a problem to register the 

voxels in one brain to the precise corresponding location of the others. One solution to 

this problem is to use geometrical transformation of the different subject’s data into the 

standard anatomical space. However, transformation may lead to noisy and spatially 

modified voxel values. Alternatively, using ROI averages can solve this problem. Despite 

of the difference in the brain size or shape, all subjects will have the same numbers of 

features which is exactly equal to the number of ROIs that is used.  
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Since there are 6 subjects in our dataset and each subject has 80 samples, there are 480 

samples in this classification problem. Subject based cross-validation is employed where 

in each run, one subject is kept out for testing and the remaining 5 subjects are used for 

training. Therefore, for each experiment, 80 samples are used for testing and 400 samples 

are used for the training. Since ROI averages are used, the feature size is 7×16 = 112. 

Information about the dataset is summarized in Table 17. 

Table 17. Characteristics of the Dataset Employed in Subject Independent Experiments 

Subject  No. of Each class 

sample  

No. of 

Voxels  

 

No. of 

snapshots  

No. of Feature  

(Voxels×Snapshots) 

Class ‘S’ Class ‘P’ 

All 240 240 7 16 112 

 

Table 18 presents the average accuracies achieved. It can be seen that the performances 

achieved using subject independence is inferior to subject dependent ones which is as 

expected. Further studies should be conducted to compute better subject independent 

features.  

Table 18. Classification Performance in Percentage on the Subject Independent Dataset 

 

 

Subject Independent Experiment 

SVM  NN 

75 76 
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4.5 Summary 

Designing classifiers with acceptable performance to categorize the data in human brain 

data is a really important goal. The experiments conducted have shown that the goal is a 

realistic one. In cases where the subject is fixed, better scores can be achieved. In general, 

SVM provided better scores compared to NN. Further research should be conducted to 

develop a better representation for subject independent studies. 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

Predicting whether the subject is viewing a picture or a sentence has been the goal behind 

this study. For this purpose, two classification schemes, namely SVM and NN are used. 

In majority of our simulations, SVM provided better performance which is mainly due to 

the robustness of SVM to reasonably high dimensional data. The results achieved clearly 

indicate the possibility of detecting the cognitive state of the brain. 

In order to study the effect of employing smaller number of features, four dimensionality 

reduction methods, ROI, N-most active voxels, ROI average and N-most active voxels 

within ROI are applied. Selecting N-most active voxels within the ROI provided the best 

scores, verifying the importance of applying feature in this domain.  

Subject independent classification is also studied. The best-fitting feature selection 

scheme from the subject independent experiments which helps to avoid data variation 

across subjects is considered. Experimental results have shown that FMRI images from 

an unseen person can be correctly classified with accuracy equal to 75%. 

FMRI, due to its advantages, is the focus of brain and cognitive science research. The 

number of articles published in this area is growing day by day. Using alternative 

approaches of pattern classification are major topics that should be explored in this area. 



 
 

52 

 

In particular, employing other feature selection methods, designing more robust 

classifiers and improving the pre-processing steps should be considered as future works 

of this thesis. 
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