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ABSTRACT

In this thesis, we mainly focus on q- analogs of matrix methods such as Cesáro, Hölder,

Euler and Hausdorff methods. A summability method which is generated by an infinite

matrix is called a matrix method. As it is well known the first order Cesáro summability

method (C, 1), which is generated by the Cesáro matrix of order one, plays an important

role in the theory of matrix summability methods. For this reason we first introduce a

method to find q-analog of the Cesáro matrix of order one. By using the same method we

also obtain q-analogs of Cesáro matrices of order α . Summability properties of C1(q
k),

a natural q-analog of the first order Cesáro method are studied. Using C1(q
k), we define

a q-density function and evaluate q-density of some subsets of N. As an application of q-

density function, q-statistical convergence which is stronger than statistical convergence

is defined. In the last part, we use the relation between Cesáro and Hausdorff matrices

to obtain the general form of q- Hausdorff methods. Also, we show that q- Cesáro

and q-Hölder matrices can be obtained from the general form of q-Hausdorff matrices.

Moreover, by using a q-analog of the generating sequence of Euler method, we can

obtain a q-Euler method. Finally, we prove the general summability properties of q-

Hausdorff methods.

Keywords: Matrix Summability Methods, Statistical Convergence, q-Integers, Cesáro

Matrix, Hausdorff Methods, Density Functions.
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ÖZ

Bu tezde esas olarak Cesáro, Hölder, Euler ve Hausdorff gibi matris metodlarının q-

genelleştirmeleri üzerine yoğunlaşılmıştır. Bir sonsuz matris tarafından tanımlanan toplan-

abilirlik metoduna matris toplanabilirlik metodu denir. Birinci dereceden Cesáro ma-

trisi tarafından üretilen, matris toplanabilirlik metodu (C, 1), matris metodlar teorisinde

önemli bir rol oynamaktadır. Bu sebepten dolayı öncelikle birinci dereceden q- Cesáro

matrislerini bulmak için bir metod verilmiştir. Bu methodu kullanarak α ∈ N olmak

üzere α. dereceden q- Cesáro matrislerinin genel formu elde edilmiştir. Birinci derece-

den Cesáro matrisinin en doğal q-analoğu olarak görülen C1(q
k) ’nın bazı toplanabilir-

lik özellikleri verilmiştir. C1(q
k)’yı kullanarak q-yoğunluk fonksiyonu tanımlandı ve bu

yoğunluk fonksiyonu yardımı ile N’nin bazı alt kümelerinin q-yoğunlukları hesaplandı.

Ayrıca bu q-yoğunluk fonksiyonunun bir uygulaması olarak q-istatistiksel yakınsaklık

kavramı verilmiştir. Burada tanımlanan q-istatistiksel yakınsaklığın istatistiksel yakınsaklıktan

daha güçlü olduğu ispatlanmıştır. Son kısımda Cesáro ve Hausdorff matris metodları

arasındaki ilişki kullanılarak q-Hausdorff matris metodlarının genel formu verilmiştir.

Ayrıca bu genel formu kullanarak q- Cesáro ve q-Hölder metodlarının elde edilebildiği

gösterilmiştir. Buna ek olarak Euler methodu üreten dizinin bir q-analoğu kullanılarak,

bir q-Euler matrisi elde edilmiştir. Son olarak q- Hausdorff metodlarının bazı toplan-

abilirlik özellikleri ispatlanmıştır.

Anathar Kelimeler: Matris Toplanabilirlik Metodu, İstatistiksel Yakınsaklık, q-tamsayıları,
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sor Asst. Prof. Dr. Hüseyin Aktuğlu for his guadiance, support and encouragement

throughout my Phd. period. I will be forever grateful.

I wish to extend my thanks to all staff, especially to Prof. Dr. Agamirza Bashirov,

Chairman of the Department of Mathematics.

My family has been absolutely wonderful throughout my entire life and I wish to

thank them for everything they have given me. Finally, I would like to give my special
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Chapter 1

INTRODUCTION

If we try to make the definition easier, summability theory is the theory of assignment

of limits, which is fundamental in analysis, function theory, topology and functional

analysis. The essential evolution of summability started in the end of the nineteenth

century. Then, in the first half of the twentieth century summability methods were

heavily researched. G. H. Hardy’s classical book ”Divergent Series [19]” is an important

reference for the summability theory. Also historical overviews of the development of

summability can be found in Kangro’s survey paper [22], which covers the period 1969-

1976. Another important reference of summability theory is the book of Johann Boss

[6], which includes both Classical and Modern Methods of summability.

In the last thirty years, the study involving q−integers and their applications (for

example, q−analogs of positive linear operators and their approximation properties)

have become an active research area. During the same period a large number of research

papers on q−analogs of existing theories, involving interesting results are published (see

for example [4], [5], [20], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [39]

and [44]).

The main motivation of the present study was the following question ” What kind of

results can be achieved by using the idea of q− integers in summability theory?”

In this thesis we deal with summability in a focused manner, that is with assignment
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of limit to a real or complex sequences which is generated by an infinite matrix. We

mainly focus on q− analogs of some well known matrix methods. Since the Cesáro ma-

trix plays and important role in the theory of matrix summability methods we start with

q−analogs of Cesáro matrices. We obtain a method to find q−analogs of Cesáro matri-

ces of order α ∈ N. We also discuss some summability properties of these q−matrix

methods. Using the idea, parallel to the ordinary case, the q−analog of statistical con-

vergence which is stronger than statistical convergence is defined. Finally using the

relation between Cesáro matrices and Hausdorff matrices , we introduce the concept of

q− Hausdorff methods.

This thesis is organized as follows. In Chapter 1, which is introduction, we give the

brief description of the whole work. In Chapter 2, we deal mainly with matrix summa-

bility methods such as Cesáro, Hölder, more generally Riesz and Hausdorff methods.

We also introduce some of their basic summability properties.

One of the famous mathematicians Ernesto Cesáro introduced the Cesáro mean

(tn) of real or complex sequence x = (xj) as tn = x0+x1+···+xn
n+1

, n = 0, 1, ..... In

the case of limn→∞ tn = t, x is said to be Cesáro summable (or (C, 1) summable) to

t. The Cesáro methods have played a central role in connection with applications of

summability theory to different branches of mathematics, especially in analysis. Most

famous application of Cesáro summability is the following classic result due to Fejer

which states that:

Let {Sn(x; f)} be the sequence of partial sums of the Fourier series for the continu-

ous function f and let {tn(x; f)} be the sequence of Cesáro means that is

tn(x; f) =
1

n+ 1

n∑
k=0

Sk(x; f).

Then tn(x; f) converges uniformly to f.

2



Briefly in this chapter,

• the general definition of summability and some basic definitions, related to summa-

bility method are given,

• the basic inclusion, comparison and consistency theorems of matrix summability

methods are presented,

• some of basic properties of special matrix methods such as Cesáro (Cα), Hölder

(Hα), more generally Riesz and Hausdorff are given.

Our contribution starts from Chapter 3. In this Chapter, we introduce a method to

find q−analogs of Cesáro matrix of order α ∈ N, for all q ∈ R+. It is obvious that

q−analogs of matrix methods is not unique. Let A be a matrix method then any matrix

method A(q), involving a real parameter q, is called a q−analog of A if A(1) = A. In

[7], Bustoz and Gordillo suggested a method to define q−analog of Cesáro matrix of

order one and they obtained the following q−analog C1(q) = (ank(q)) where

ank(q) =

{ 1−q
1−qn+1 q

n−k if k ≤ n

0 if k > n.
(1.0.1)

It should be mentioned that, the q−analog C1(q), obtained by Bustoz and Gordillo is

valid only for 0 < q < 1. In their approach they obtain a unique q−analog of Cesáro

matrix of order one which contradicts with the idea of q−analogs given above. In this

chapter we introduce a method which can be used to find different q− analogs of the

Cesáro matrices of order α ∈ N. In our approach all q− analogs are valid for all

q ∈ R+. Also, the q− Cesáro method given in (1.0.1) can be obtained by using our

method with an appropriate choice.

On the other hand statistical convergence which is a regular summability method is
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based on C1, the Cesáro matrix of order one (see [13]). In the last decades statistical

convergence played an important role in the literature and was investigated by several

authors (see for example [8], [9], [10], [15], [16], [17], [23] and [38]). At the end of this

chapter in a way parallel to [13], we define q− statistical convergence.

The concept of statistical convergence can be extended to A−statistical convergence

by using nonnegative regular summability matrix A. The concept of A-statistical con-

vergence is examined in [3], [14], [16], [17], [36] and [37]. The q− statistical conver-

gence defined here is a type of A− statistical convergence.

The content of this chapter can be summarize as follows,

• a method to find q−analogs of Cesáro matrices of order α ∈ N is introduced,

• a q−analog of summation matrix is defined,

• some summability properties of our suggested q−analog of Cesáro matrix of order

one are investigated,

• the density function δq, corresponding to the q−analog of Cesáro matrix of order

one is defined,

• q−density of some sets are calculated,

• q−statistical convergence is defined.

In Chapter 4, we introduce q− analogs of Hausdorff matrices. As it is well known

the class of matrices permutable with C1 are called Hausdorff matrices [18] and they

play an essential role in application of summability methods.

In this chapter, we discuss the following items,

• definition of the q−analog of difference matrix ∆q,

4



• general form of q−Hausdorff matrices,

• q-Hölder and q−Euler matrices,

• some properties of q−Hausdorff matrices.

5



Chapter 2

NOTATION AND BACKGROUND MATERIAL

In this chapter, we will summarize some basic definitions and primary properties of ma-

trix summability methods which we need in this thesis. Detailed information about this

topics can be found in [6]. Throughout this thesis, we will use the following common

notations:

K := The set of all real numbers (R) or complex numbers (C).

N := The set of all natural numbers.

N0 := N ∪ {0},

w := The set of all sequences.

m := The set of all bounded sequences.

c := The set of all convergent sequences.

c0 := The set of all sequences converges to 0.

φ := The set of all finitely nonzero sequences.

l := The set of all absolutely summable sequences.

ᵀ := The set of all thin sequences. ( A sequence x = (xk) is called thin, if there

exist an index sequence (kv) with kv+1 − kv → ∞ (v → ∞) and xk = 1 if k = kv and

xk = 0 otherwise).

2.1 Matrix Methods

The definition of a general summability method can be given in the following way.
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Definition 2.1.1. A triple V = (V,NV , V − lim) is called summability method which

consisting of

• a map V : DV → M , where DV ⊂ w and M is a set such that at least on a suitable

subset N , ∅ 6= N ⊂M, there exist (standard) limit functional f : N → K,

• the domain NV := V −1(N) of V and

• the summability functional V − lim := f ◦ V |NV : NV → K.

Briefly, we can say that a summability method is a function whose domain is a subset

of w and whose range is a subset of K. It is evident that basic and fundamental parts of

summability methods are the domain and the summability map.

Example 2.1.1. Let DV := w and consider the map Z 1
2

defined by

Z 1
2

: w → w,

x = (xk)→ (
xn−1 + xn

2
).

The domain of Z 1
2
is

cZ 1
2

=
{
x ∈ w | Z 1

2
x ∈ c

}
= Z−11

2

(c).

Then for every x ∈ cZ 1
2

, summability functional defined by

Z 1
2
− lim := limZ 1

2

:= lim ◦Z 1
2

: cZ 1
2

→ K,

maps x to limZ 1
2
x. Hence (Z 1

2
, cZ 1

2

, limZ 1
2

) is a summability method.

Example 2.1.2. Take DV := w and consider the map C1, defined by

C1 : w → w,

x = (xk)→ (
1

n+ 1

n∑
k=0

xk)n.

7



The domain of C1 is

cC1 = {x ∈ w | C1x ∈ c} = C−11 (c).

Then for each x ∈ cC1 summability functional defined by

C1 − lim := limC1 := lim ◦C1 : cC1 → K,

maps x to limC1x. Therefore (C1, cC1 , limC1) is also a summability method.

Next, we are going to present the basic definitions about inclusion, comparison and

the consistency of general summability methods.

Definition 2.1.2. The summability method V = (V,NV , V − lim) is called conservative

if c ⊂ NV .

Definition 2.1.3. The summability method V = (V,NV , V − lim) is called regular if

c ⊂ NV and V − limx = limx for all x ∈ c.

Assume that S := (S,NS, S− lim) andR := (R,NR, R− lim) are two summability

methods. Then we have the following definitions;

Definition 2.1.4. S is stronger than R (R is weaker than S) if NR ⊂ NS holds.

Definition 2.1.5. S and R are equivalent if NS = NR.

Definition 2.1.6. S and R are called consistent if S − limx = R − limx for each

x ∈ NS ∩NR.

After the above general definition of summability methods, we are ready to define

matrix summability method which will be the main interest of this thesis.

8



Definition 2.1.7. Given an infinite matrix

A =



a00 a01 a02 . . . a0k . . .

a10 a11 a12 . . . a1k . . .

...
...

...
...

an1 an2 an3 . . . ank . . .

...
...

...
...


then

wA =

{
x = (xk) ∈ w| Ax :=

∑
k

ankxk converges for every n ≥ 0

}

and

cA := {x ∈ w| Ax ∈ c}

are called the application domain and convergence domain ofA respectively. The summa-

bility method A = (A, cA, limA) is called a matrix method where

limA(x) = limAx.

The above definition says that, each infinite matrix A determines a summability

method, by using sequence to sequence transformation in which the sequence x = (xk)

is transformed into the sequence A(x) = (Ax)n where

(Ax)n :=
∞∑
k=1

ankxk

provided that the series converges for each n ∈ N0.

Example 2.1.3. The summability method Z 1
2
, given in Example 2.1.1 can be considered

9



as a matrix method generated by the infinite matrix

Z 1
2

=



1

2
0 0 0 0 0 0 0 0 . . .

1

2

1

2
0 0 0 0 0 0 0 . . .

0
1

2

1

2
0 0 0 0 0 0 . . .

0 0
1

2

1

2
0 0 0 0 0 . . .

...
...

...
...

...
...

...
...

...



.

It is easy to see that Z 1
2

is stronger than and consistent with the summability method

corresponding to the identity matrix I.

Example 2.1.4. The matrix method Z 1
2

and

C1 =



1 0 0 0 . . . . . . . . .

1

2

1

2
0 0 . . . . . . . . .

...
...

...
...

...
...

...

1

n+ 1

1

n+ 1
. . . . . .

1

n+ 1
. . . . . .

...
...

...
...

...
...

...


are not equivalent. Obviously

y = (yk) = (1, 0,−1, 1, 0,−1,... ) ∈ cC1

with

limC1 x = 0

but x /∈ cZ 1
2
.
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Example 2.1.5. Consider the matrix method Z 1
2

and

A =



1 0 0 0 0 . . . . . .

−1 1 0 0 0 . . . . . .

0 −1 1 0 0
...

...

0 0 −1 1 0 . . . . . .

...
...

...
...

...
...

...


.

One can easily see that, x := (−1)k ∈ cZ 1
2

\ cA and y := (k) ∈ cA\ cZ 1
2

therefore this

two matrix methods are not comparable.

Definition 2.1.8. We say that a summability matrixA sums x to L (or x isA−summable

to L) provided limn→∞(Ax)n = L.

Example 2.1.6. Let A be the infinite matrix given by

A =



0 1 0 0 0 0 0 0 0 . . .

0
1

2
0

1

2
0 0 0 0 0 . . .

0
1

3
0

1

3
0

1

3
0 0 0 . . .

0
1

4
0

1

4
0

1

4
0

1

4
0 . . .

...
...

...
...

...
...

...
...

...


and let x = (0, 1, 0, 1, . . .). Then Ax = (1, 1, 1, . . .) and

limn→∞(Ax)n = 1.

Thus x is A− summable to 1.

Before starting to discuss summability properties of matrix methods, we would like

to mention some features of multiplication of infinite matrices. As it is well known,

in general matrix multiplication operation is not associative for infinite matrices. Next

theorems give us sufficient conditions to ensure that associativity of A(Bx) and A(BC)

hold.
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Theorem 2.1.1. ([6])Let A and B be two infinite matrices and x = (xk) ∈ w. If

(i) x ∈ wB and A = (ank) is row finite (that is, (ank)k ∈ ϕ, n ∈ N0) or

(ii) x ∈ m, ‖B‖ := supµ
∑
v

|bµv| <∞ and (ank)k ∈ l, for each n ∈ N0

holds, then A(Bx) and (AB)x exist and A(Bx) = (AB)x.

Theorem 2.1.2. ([6])Let A, B and C be an infinite matrices. If

(i) BC defined and A is row finite or

(ii) ‖B‖ <∞, (cvk)v ∈ m and (anv)v ∈ l

holds, then A(BC) and (AB)C exist and A(BC) = A(BC).

Definition 2.1.9. Let A and B be two infinite matrices. If AB exist and AB = I, then

A is called a left inverse of B, and B is called a right inverse of A. If in addition BA

exist and AB = BA = I holds, then the matrix B is called inverse of A. The inverse of

A, if it exists, is denoted by A−1.

Definition 2.1.10. A matrixA = (ank) is called (lower) triangular if ank = 0 (k, n ∈ N0

with k > n). A triangular matrix A = ank with ann 6= 0 (n ∈ N0) is called triangle.

Theorem 2.1.3. ([6]) If A is triangle, then the following statements hold:

(i) For each y ∈ w, there exist a unique solution of system of equations Ax = y.

(ii) There exist unique right inverse B of A. Moreover, B is also triangle and left in-

verse. So A−1exists.

(iii) The matrix A may have more than one left inverse, but there is exactly one that is

also triangle, namely A−1.

Now, we turn our attention back to the matrix methods and present some inclusion,

comparison and consistency theorems.

12



Definition 2.1.11. The matrix A is said to be conservative if the convergence of the

sequence implies the convergence ofA(x), (or equivalently c ⊂ cA). In addition, ifA(x)

converges to the limit of x, for each convergent sequence x, then it is called regular.

The following theorem states the well known characterization of conservative ma-

trices and can be found in any standard summability books (see for example [6], [42]).

Theorem 2.1.4. (Kojima-Schur)An infinite matrix A = (ank) n, k = 0, 1, 2, . . . is con-

servative if and only if

(i) (Column condition) limn→∞ ank = λk, for each k = 0, 1, . . .

(ii) (Row sum condition) limn→∞
∞∑
k=0

ank = λ, and

(iii) (Row norm condition) supn
∞∑
k=0

|ank| ≤M <∞, for some M > 0.

Here, of course the limits λk and λ are finite. If λk = 0, for all k and λ = 1

then the above theorem reduces to the well known theorem of Silverman and Toeplitz

which provides necessary and sufficient conditions for regularity of the infinite matrix

A = (ank) n, k = 0, 1, 2, . . . .

Theorem 2.1.5. (Silverman-Toeplitz, [42]) The summability matrix A = (ank) n, k =

0, 1, 2, . . .is regular if and only if

(i) limn→∞ ank = 0, for each k = 0, 1, . . .,

(ii) limn→∞
∞∑
k=0

ank = 1,

(iii) supn
∞∑
k=0

|ank| ≤M <∞, for some M > 0

13



Example 2.1.7. Matrix methods

A =



0 1 0 0 · · ·

1

2

1

2
0 0 · · ·

2

3

1

3
0 0 · · ·

...
...

...
...

1− 1

n

1

n
0 0 · · ·

...
...

...
...


and

C1 =



1 0 0 0 . . . . . .

1

2

1

2
0 0 . . . . . .

...
...

...
...

...
...

1

n+ 1

1

n+ 1
. . . . . .

1

n+ 1
. . .

...
...

...
...

...
...


are conservative and regular matrix methods respectively.

Remark 2.1.6. For any infinite matrix with nonnegative entries, the row sum condition

implies the row norm condition.

If A is conservative then for any sequence x = (xk) ∈ c, we can use the following

limit formula

limA x = χ(A) limx+
∑
k

λkxk

where

χ(A) := lim
n

∑
k

ank −
∑
k

lim
n
ank = λ−

∑
k

λk.

The number χ(A) defined above is called the characteristic of A. Furthermore, if A is

regular χ(A) = 1.
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Conservative matrix methods can be classified as coregular or conull as follows:

Definition 2.1.12. Let A be a conservative matrix then A and corresponding matrix

method obtained from A are called coregular if χ(A) 6= 0 and it is called conull if

χ(A) = 0.

Example 2.1.8. If we consider matrices A and C1, given in Example 2.1.7. The conser-

vative matrix A is conull and, the regular matrix C1 is coregular.

Summability of various kinds of sequences investigated by famous names Agnew,

Mazur, Orlicz, Zeller and Willansky. In 1933, Mazur and Orlicz proved the following

celebrated theorem.

Theorem 2.1.7. ([11], ) If a conservative matrixA sums a bounded divergent sequence,

then it also sums an unbounded sequence. That is, cA ⊂ m implies cA = c.

By Theorem 2.1.7 and Definition 2.1.12, we can state the following corollary.

Corollary 2.1.1. A conull matrix A must sum both bounded divergent sequences and

unbounded sequences. That is χ(A) = 0 implies c ( m ∩ cA ( cA

Following theorems are stated useful result on the comparison and consistency of

matrix methods.

Theorem 2.1.8. ([6])Let A, B and C be infinite matrices with B = CA such that

(CA)x and C(Ax) exist and (CA)x = C(Ax) for each x ∈ cA. Then the following

statements hold:

(i) If C is conservative, then B is stronger than A (that is, cA ⊂ cB).

(ii) If C is regular, then B is stronger than and consistent with A (that is, cA ⊂ cB and

limB |CA = limA).
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IfC is row finite then associativity assumptions in Theorem 2.1.8 are satisfied. Thus,

if we assume A is a triangle and B is row finite, automatically this implies that C is

rowfinite. Therefore, Theorem 2.1.8 can be extended to the following stronger theorem.

Theorem 2.1.9. ([6])Let A be a triangle, B row finite and C := BA−1. Then the

following statements hold:

(i) B is stronger than A if and only if C is conservative.

(ii) B is stronger than and consistent with A if and only if C is regular.

Definition 2.1.13. Let A be a matrix with bounded columns. Then A is defined to be of

type M if tA = 0 implies t = 0 for every t ∈ l.

Theorem 2.1.10. ([6])A regular triangle A = (ank) is of type M if A−1 has bounded

columns.

Remark 2.1.11. In particular, any triangle A for which A−1 is column finite (that is for

all k ∈ N0, there exist nk ∈ N0 such that ank = 0 for all n ≥ nk) is of type M.

Corollary 2.1.2. ([6])Let A be a regular triangle of type M and let B be a regular

triangular matrix. If cA ⊂ cB, then A and B are consistent.

Definition 2.1.14. Let A = (ank) be an infinite matrix then we say that A satisfies (or

A enjoys) the mean value property with a constant K > 0 ( or MK(A) for short ) if∣∣∣∣∣
r∑

k=0

ankxk

∣∣∣∣∣ ≤ K sup
0≤v≤r

∣∣∣∣∣
∞∑
k=0

avkxk

∣∣∣∣∣ (2.1.1)

where 0 ≤ r ≤ n ∈ N0 and (xk) ∈ wA.

Condition 2.1.1 is called the mean value condition. The following theorem shows

that the mean value property of matrices is sufficient for regular triangle to be of type

M.
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Theorem 2.1.12. ([6])A regular triangle is of type M if it enjoys the mean value prop-

erty.

After becoming familiar with inclusion, comparison and consistency results, we

can start to discuss the theory of matrix methods by considering some specific ma-

trix summability methods. In the rest of this chapter we shall discuss consevativity,

regularity, mean value and type M properties for some well known matrix methods.

2.2 Cesáro Methods

Definition 2.2.1. Let α be a real number with −α /∈ N then the regular matrices Cα :=

(cαnk) defined by

cαnk =



 n− k + α− 1
n− k


 n+ α

n

 if k ≤ n, n, k = 0, 1..

0 otherwise

and the associated matrix summability methods, are called the Cesáro matrix and Cesáro

summability method of order α respectively.

In particular if we choose α = 1, we get the first order Cesáro matrix C1 with the

following explicit form,

C1 =



1 0 0 0 0 0 · · ·

1

2

1

2
0 0 0 0 · · ·

1

3

1

3

1

3
0 0 0 · · ·

...
...

...
...

...
...

1

n+ 1

1

n+ 1

1

n+ 1
· · · 1

n+ 1
0 · · ·

...
...

...
...

... . . . . . .



. (2.2.1)

Corresponding summability method is called the first order Cesáro summability method
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and denoted by (C, 1). The following theorem is the direct result of the theorem of

Silverman and Toeplitz which provides necessary and sufficient conditions for regular

matrices.

Theorem 2.2.1.

(i) If α ≥ 0, then Cα is regular

(ii) If α < 0, Cα is not conservative or regular.

The following result shows us monotonicity of the Cα methods.(see [18]).

Theorem 2.2.2. For all α, β ∈ R satisfying −1 < α ≤ β, the method Cβ is stronger

than and consistent withCα, that is cCα ⊂ cCβ and limCα x = limCβ x for each x ∈ cCα .

Theorem 2.2.3. For any α ≥ 0, the matrix Cα is of type M.

Theorem 2.2.4. The matrix C1 satisfies the mean value property with K = 1, whereas

for each α > 1, the matrix Cα does not enjoy the mean value property. Moreover, for

any α ∈ (0, 1] , the Cesáro matrix Cα satisfies M1(Cα).

2.3 Hölder Methods

The Hölder matrix , Hα(α ∈ N0) can be obtained from the Cesáro matrix of order

one by iteration. A useful feature of theHα is that, most of the properties can be derived

from the corresponding properties of C1. But we have to use direct handling to get its

matrix coefficients, because of there is no simple formula for Hα matrix coefficients.

Definition 2.3.1. Let C1 be the Cesáro matrix of order one and α ∈ N0. Then

Hα := (C1)
α that is H0 = I and Hα := C1H

α−1 (α ≥ 1)

and the associated matrix summability methods are called Hölder matrix and Hölder

method of order α respectively.
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Remark 2.3.1. In general, the Hölder and Cesáro methods are different from each other.

Moreover the multiplication of two Cesáro matrix is not a Cesáro Matrix.

Using above definition and Theorem 2.1.2, we can state the following properties of

Hα.

• H1 = C1,

• Hα is well defined and a triangle as a product of triangles,

• Hα = Hα−1C1 for each α ∈ N,

• Hα+β = HαHβ for all α, β ∈ N0.

Theorem 2.3.2. ([6])For each α ∈ N0, the method Hα+1 is strictly stronger than and

consistent with Hα, in other words

cHα ( cHα+1 and limHα x = limHα+1 x

for each x ∈ cHα . In particular Hα is a regular summability method.

Theorem 2.3.3. ([6])For any α ∈ N0, the matrix Hα is of type M.

Knopp and Andersen proved the following results which shows us the relation be-

tween Hölder methods and Cesáro methods.

Theorem 2.3.4. For each α ∈ N, the methods Cα and Cα−1C1 are equivalent and

consistent.

Theorem 2.3.5. For each α ∈ N0, the methods Hα and Cα are equivalent and consis-

tent.
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2.4 Riesz Methods (Weighted Means)

One can easily observe that, the sum of each row of C1 is exactly 1. By this point

of view, we can consider the following class of matrix methods which is called Riesz

methods. Obviously this class is a generalization of the first order Cesáro method and

gives us a simple way to define regular matrices and their inverses.

Definition 2.4.1. Let p = (pk) , be a sequence of real numbers with p0 > 0, pk ≥ 0 ,

k ∈ N and Pn =
n∑
k=0

pk, then the matrix method Rp = (rnk) defined by

rnk =

{ pk
Pn

if k ≤ n,

0 otherwise
n, k = 0, 1, ...

is called a Riesz matrix ( or weighted mean) associated with the sequence p .The cor-

responding matrix method is called Riesz Method associated with the sequence p.

Example 2.4.1. C1 is a weighted mean associated with e = (1, 1, . . .).

Theorem 2.4.1. ([6])If pn > 0 for each n ∈ N0, then the inverse R−1p = (r̂nk) of Rp is

given by

r̂nk :=


Pn
pn

if k = n

−Pn−1

pn
if k = n− 1

0 otherwise

(
n, k ∈ N0

)
.

Theorem 2.4.2. ([6]) Riesz matrix (or method)Rp, enjoys the mean value property with

K = 1.

Theorem 2.4.3. ([6])If pn > 0 for each n ∈ N0, then Rp is of type M.

Applying the Silverman-Toeplitz Theorem to Riesz matrices, we get that each Riesz

method is conservative. The following theorem gives us a simple characterization for

Riesz methods to be regular.

Theorem 2.4.4. Let Rp be a Riesz matrix (or Riesz Method) then

(i) Rp is conservative.
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(ii) Rp is regular if and only if Pn →∞ when n→∞.

The following theorem is an important tool to compare, conservative and Riesz ma-

trices.

Theorem 2.4.5. ([6]) Let Rp be a regular Riesz method with pk > 0 for k = 0, 1,. . .

and let A = (ank) be a conservative matrix method. Then A is stronger than Rp if and

only if the following conditions hold:

i) limk→∞

(
ank
pk

)
= 0, n = 0, 1, . . .

ii) supn
∑
k

Pk

∣∣∣ankpk − an,k+1

pk+1

∣∣∣ <∞.
2.5 Hausdorff Methods

The class of Hausdorff methods, includes Hölder, Cesáro, Euler and some other

matrix methods which plays an essential role in summability theory. Before giving the

details of this method, we would like to give the definition of some terms, related with

matrices.

Definition 2.5.1. A matrix D is called a diagonal matrix, provided that each of its

elements is zero except those on the diagonal; that is

D = (pnδmn)

where δmn =

{
1; k = m
0, k 6= m

is Kronecker delta.

We say, further that a matrix A is reduced to diagonal form by the triangular matrix

P provided that

PAP−1 = (pnδmn) = D.

Definition 2.5.2. Let A and B be two matrices, if AB = BA then A and B are said to

be permutable .
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Definition 2.5.3. The self inverse matrix ∆ = (∆nv) where

∆nv :=

 (−1)v
(
n

v

)
if 0 ≤ v ≤ n

0 otherwise

is called the difference matrix.

Remark 2.5.1. ∆ can be obtained by solving the matrix equations

∆C1∆
−1 = (pnδmn)

where pn = 1
n+1

(see [18]), this says us the Cesáro matrix C1 is reduced to diagonal

form by the matrix ∆.

Theorem 2.5.2. (see [18]) A necessary and sufficient condition for a triangular matrix

A to be permutable with C1 is that, it can be reduced to diagonal form by the matrix ∆,

that is,

D = ∆A∆ or A = ∆D∆.

The following definition shows us the class of matrices which are permutable with

C1. This method can also be viewed as generalization of the first order Cesàro method.

Definition 2.5.4. Let p = (pn) ∈ w be any sequence then the matrix defined by;

Hp = (hnk) := (H, pn) := ∆−1D∆

with coefficients

hnk =


(
n

k

)
n−k∑
v=0

(−1)v
(
n− k
v

)
pv+k if 0 ≤ k ≤ n

0 otherwise
(2.5.1)

is called a Hausdorff matrix where D is the diagonal matrix with diagonal elements

pn ∈ w and associated matrix method is called the Hausdorff method generated by the

sequence p.

Example 2.5.1. Taking pn = 1

(n+αn )
in (2.5.1), gives exactly the Cesáro matrix of order

α. Therefore the Cesáro matrix of order α is a Hausdorff matrix.
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Example 2.5.2. By Choosing pn =
(

1
n+1

)α in (2.5.1), gives exactly the Hölder matrix

of order α which means the Hölder matrix of order α is a Hausdorff matrix as well.

Example 2.5.3. Let us use

pn = αn

in (2.5.1), we obtain the Euler-Knopp matrix of order α which is given by:

Eα := (e
(α)
nk ) := (H,αn)

with

e
(α)
nk :=

(
n

k

)
αk(1− α)n−k (k ≤ n). (2.5.2)

The explicit form of Eα is:

Eα =



1 0 0 0 0 0 · · ·

(1− α) α 0 0 0 0 · · ·

(1− α)2 2α(1− α) α2 0 0 0 · · ·

...
...

...
...

...
...

(1− α)n nα(1− α)n−1 n(n−1)
2

α2(1− α)n−2 · · · αn 0 · · ·

...
...

...
...

... . . . . . .



.

Some basic properties of Euler matrix are given below (see [1] and [6])

Proposition 2.5.1. i) Eα is conservative for 0 ≤ α ≤ 1.

ii) Eα is regular for 0 < α ≤ 1

Proof. i) Since
n∑
k=0

(
n

k

)
αk(1− α)n−k = (α + 1− α)n = 1.

Eα satisfies the row sum condition with λ = 1. Moreover using the equation

n∑
k=0

∣∣∣∣(nk
)
αk(1− α)n−k

∣∣∣∣ = (|α|+ |1− α|)n for each n ∈ N0,
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one can see that, Eα satisfies the row norm condition if and only if 0 ≤ α ≤ 1. On

the other hand, if λk denotes the limit of the kth column when n → ∞ , then a simple

calculation shows that for each 0 ≤ α ≤ 1 and k ≥ 0, λk is exist and finite which means

Eα is conservative for 0 ≤ α ≤ 1.

ii) It follows from the fact that λk = 0 for all k ≥ 0 if and only if 0 < α ≤ 1.

Proposition 2.5.2. i) Eα.Eβ := Eαβ.

ii) The inverse of Eα is E 1
α
.

Proof. i) Let s = (sn) be the Eα transformation of Eβx for any sequence x = (xk) then

sn =
n∑
k=0

(
n

k

)
αk(1− α)n−k

k∑
m=0

(
k

m

)
βm(1− β)k−mxk

=
n∑

m=0

(
n

m

)
(αβ)m

n∑
k=m

(
n−m
k −m

)
(α− αβ)k−m(1− α)n−kxk

=
n∑

m=0

(
n

m

)
(αβ)m

n−m∑
k=0

(
n−m
k

)
(α− αβ)k(1− α)n−m−kxk

=
n∑

m=0

(
n

m

)
(αβ)m(1− αβ)n−mxk.

Thus the transformation EαEβ is identical with the transformation Eαβ; that is

Eα.Eβ := Eαβ.

ii) From part i) EαE 1
α

= E 1
α
Eα = E1 = I, the identity matrix.

Proposition 2.5.3. For 0 < β ≤ α, the method Eβ is stronger than and consistent with

Eα.

Corollary 2.5.1. Euler methods are monotone for 0 < α <∞.

The next proposition gives the general properties of all Hausdorff matrices.
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Proposition 2.5.4. Let Hp and Hq be Hausdorff matrices. Then

(a) pn is the coefficient of Hp in the nth position of its diagonal (that is hnn = pn

(n ∈ N0)),

(b) Hp +Hq = Hp+q,

(c) HpHq = (H, pnqn) = HqHp,

(d) (Hp)
−1 exist if and only if pn 6= 0. If it exist, (Hp)

−1 = (H, p−1n ).

(e) Let p = (pn) with pn 6= pk (n 6= k) be given and letA = (ank) be a lower triangular

matrix. Then A is Hausdorff matrix if and only if AHp = HpA.

(f) Regular Hausdorff methods are pairwise consistent,

(g) If Hp and Hq be Hausdorff matrices and Hp is triangle, then the following state-

ments hold:

(i) Hq is stronger than Hp if and only (H, qn
pn

) is conservative.

(ii) Hq is stronger than and consistent with Hp if and only if (H, qn
pn

) is regular.

2.6 Density Functions

A density is a set function satisfying some specific conditions.

Definition 2.6.1. Let A, B be two subsets of N, the symmetric difference of A and B is

denoted by A M B and defined as be

A M B = (A\B) ∪ (B\A).

If the symmetric difference of two sets A and B is finite then we say A and B has

”∼” relation. i.e. A ∼ B if and only if A M B is finite.

Definition 2.6.2. Function δ, defined for all sets of natural numbers and taking values

in the closed interval [0, 1], will be called a lower asymptotic density (or just a density)

if the following four axioms hold:
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(d.1) if A ∼ B then δ (A) = δ (B) ;
(d.2) if A ∩B = ∅, then δ (A) + δ (B) ≤ δ (A ∪B) ;
(d.3) for all A,B; δ (A) + δ (B) ≤ 1 + δ (A ∩B) ;
(d.4) δ (N) = 1.

Definition 2.6.3. For a density δ we define δ, the upper density associated with δ, by

δ (A) = 1− δ (N\A)

for any set of natural numbers A.

Proposition 2.6.1. Let δ be an asymtotic density and δ its associated upper density. For

sets A and B of natutal numbers we have

(i) A ⊆ B =⇒ δ (A) ≤ δ (B) ;

(ii) A ⊆ B =⇒ δ̄ (A) ≤ δ̄ (B) ;

(iii) for all A,B, δ̄ (A) + δ̄ (B) ≥ δ̄ (A ∪B) ;

(iv) δ(∅) = δ (∅) ;

(v) δ̄ (N) = 1;

(vi) A ∼ B =⇒ δ̄ (A) = δ̄ (B) ;

(vii) δ (A) ≤ δ̄ (A) .

Definition 2.6.4. A subset A ⊆ N is said to have natural density with respect to δ, if

δ (A) = δ (A) .

Now consider

ηδ =
{
A : δ (A) = δ (A)

}
and η0δ =

{
A : δ (A) = 0

}
.

Then for A ∈ ηδ, define υδ (A) = δ (A) (the natural density of A). Note that A ∈ ηδ

and υδ (A) = 0 if and only if A ∈ η0δ .

Proposition 2.6.2. (i) If A ∼ N, then A ∈ ηδ and υδ (A) = 1;
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(ii) If A ∼ ∅ (i.e, if A is finite), then A ∈ η0δ .

Proposition 2.6.3. (i) υδ is finitely additive, i.e, if A,B ∈ ηδ and A ∩ B = ∅, then

A ∪B ∈ ηδ and

υδ(A ∪B) = υδ(A) + υδ(B);

(ii) If A1, A2,. . . ,An ∈ η0δ , then n
i=1Ai ∈ η0δ ;

(iii) If A ∈ ηδ, then (N\A) ∈ ηδ and υδ(N\A) = 1− υδ(A);

(iv) If A ∈ ηδ and A ∼ B, then B ∈ ηδ and υδ(A) = υδ(B).

The following simple example shows that υδ is never countably additive;

Example 2.6.1. Taking Ai = {i} , i = 1, 2, ..., we have

Ai ∈ η0δ ⊂ ηδ, i = 1, 2, ... and Ai ∩ Aj = ∅ (i 6= j) ,

but

∪∞i=1Ai = N and υδ (N) = 1 6=
∞∑
i=1

υδ (Ai) = 0.

Definition 2.6.5. (Additive Property (AP)) The density δ is said to have additive prop-

erty if for each family {Ai} ⊂ ηδ, i = 1, 2, ..., with Ai ∩ Aj = ∅ (i 6= j) , there exists a

family {Bi} ⊂ ηδ, i = 1, 2, ..., such that

i) Bi ∼ Ai, i = 1, 2, ...,

ii) ∪∞i=1Bi ∈ ηδ and

iii) υδ (∪∞i=1Bi) =
∑∞

i=1 υδ (Bi) .

Definition 2.6.6. (Additivity Property For Null sets (APO)) The density δ is said to have

additive property for null sets if for each family {Ai} ⊂ η0δ , i = 1, 2, ..., withAi∩Aj = ∅

(i 6= j) , there exists a family {Bi} ⊂ η0δ , i = 1, 2, ..., such that

i) Bi ∼ Ai, i = 1, 2, ...,

ii) ∪∞i=1Bi ∈ η0δ and

27



iii) υδ (∪∞i=1Bi) =
∑∞

i=1 υδ (Bi) = 0.

If the condition that the sets Ai are disjoint is removed form (APO), we get an

apparently stronger property (APO1).

Example 2.6.2. The term ”asymptotic density” is often used for the function

d (A) = lim inf
n→∞

A (n)

n

where A (n) is the number of elements in A∩{1, 2, ..., n} . If κA denotes the character-

istic sequence of A (thus κA is a sequence of 0’s and 1’s), and if C1 = (cnk) denotes

the Cesáro matrix of order one where

cnk =

{
1
n

if 1 ≤ k ≤ n,
0 otherwise

then A (n) /n is the nth term of the sequence C1.κA. Thus

d (A) = lim inf
n→∞

(C1.κA)n .

This function satisfies axioms (d.1)− (d.4) , so it is a density.

The above idea can be extended to a non-negative regular matrix.

Proposition 2.6.4. Let M be a nonnegative regular matrix and let δM be defined by

δM(A) = lim inf
n→∞

(M.χA)n.

Then δM is density (i.e., satisfies (d.1)− (d.4)) and furthermore,

δ̄M(A) = lim inf
n→∞

(M.χA)n.

2.7 Statistical Convergence.

Let K ⊂ N be any subset of natural numbers then consider the asymptotic density

δ, defined by

δ (K) = lim
n→∞

|K (n)|
n
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whereK(n) := {k ≤ n : k ∈ K} and |K(n)| represents the cardinality of the setK(n).

The number δ (K) is called the asymptotic (or shortly density) of K, provided that

limit exists. Densities of some subsets of natural numbers are given in the following

examples.

Example 2.7.1. Let K := {k ∈ N : k = m2} , then we have |K(n)| ≤
√
n. Since

limn

√
n
n

= 0 we conclude that δ (K) = 0.

Example 2.7.2. It is obvious that bothK := {2k : k ∈ N} andM := {2k + 1 : k ∈ N}

has density 1
2
.

Example 2.7.3. Let K := {ak + b : k ∈ N} then δ (K) = 1
a
.

Example 2.7.4. If K is a finite set then obviously δ (K) = 0.

Consider a subset K of N, one can ask the following question ´´ Is δ (K) always

defined´´. The answer is absolutely ´´No´´.

Example 2.7.5. Consider the sequence

xk = (1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...)

and define K = {k ∈ N : xk = 1}, then for large m we have

|K(2m)| =
{
≥ 2m−1 + 2m−3 if m is odd,
≤ 2m−2 + 2m−3 if m is even.

( If m is odd there are at least 2m−1 + 2m−3 ones, among the first 2m terms of the

sequence. Namely from the last block and the block two steps earlier) therefore,

lim
m

|K(2m)|
2m

=

{
≥ 5

8
if m is odd,

≤ 3
8

if m is even.

which means that limit and therefore δ (K) does not exist.
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Definition 2.7.1. The sequence x := (xk) is said to be statistically convergent to a

number L if for every ε > 0,

δ({k : |xk − L| ≥ ε}) = 0.

Statistical convergence of x to L is denoted by st− limn xn = L.

Theorem 2.7.1. Ordinary convergence implies statistical convergence.

Proof. Assume that limk xk = L (i.e. x = xk is convergent in the ordinary sense) then

for each ε > 0, the set {k ∈ N : |xk − L| ≥ ε} is finite. Therefore δ ({k ∈ N : |xk − L| ≥ ε}) =

0 or st− limk xk = L.

Remark 2.7.2. It is easy to see that if x is statistically convergent to a number L, then

at the outside of each ε−neigborhood of L, sequence may have infinitely many terms

but the density of its indices must be 0.

Example 2.7.6. Consider the sequence x := (xk) which is defined by

xk =

{
1 if k = m2,
0 if k 6= m2.

Since δ ({k2 : k ∈ N}) = 0 we have st − limk xk = 0, but x is not convergent in the

ordinary sense.

In the ordinary sense, convergence of a sequence implies boundedness, but in the

sense of statistical convergence we may have statistically convergent but unbounded

sequences.

Example 2.7.7. Consider the sequence x := (xk) where

xk =

{ √
k if k = m2,

0 if k 6= m2.

Then st− limk xk = 0, but x is not bounded.
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Theorem 2.7.3. If st− limxk = L and st− lim yk = η then

(i) st− lim(xk + yk) = L+ η.

(ii) st− lim(xkyk) = Lη.

(iii) st− lim(λxk) = λL for any λ ∈ R.

As we mention in the previous section, natural density function was generalized,

by replacing C1 with an arbitrary nonegative regular matrix A, that is; A−density of

K ⊆ N is defined by

δA(K) := lim
n→∞

∑
k∈K

ank = lim
n→∞

(AχK)n

provided limit exists. The A−density has been used by Kolk [23], to extend statistical

convergence as follows.

Definition 2.7.2. For a nonnegative regular infinite matrix A, a sequence x is said to

be A-statistically convergent to the number L if, for every ε > 0,

δA({k ∈ N : |xk − L| ≥ ε}) = 0.

Remark 2.7.4. It is obvious that takingA = C1, in the above definition,A−convergence

reduces to statistical convergence.

2.8 q−Integers

Definition 2.8.1. The value [r] denotes the q−integer of r, which is given by

[r] = [r]q =

{ 1−qr
1−q , q ∈ R+ − {1}
r, q = 1

.

For a given q > 0 let us define

Nq = {[r] , with r ∈ N} .
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We see from the Definition 2.8.1 that

Nq =
{

0, 1, 1 + q, 1 + q + q2, 1 + q + q2 + q3, . . .
}
. (2.8.1)

Obviously, if we put q = 1 in (2.8.1), the set of all q−integers Nq reduces to the set of

all natural numbers, the set of nonnegative integers N.

Definition 2.8.2. Given a value q > 0, q−shifted factorial is defined as

(a; q)n = (1− a) (1− aq) . . . (1− aqn−1)

for all n ≥ 1 and

(a; q)0 = 1.

The infinite version of this product is defined by

(a; q)∞ = lim
n→∞

(a; q)n.

For a given value q > 0, the q−factorial, [r]!, can also be defined as

[r]! =

{
[r] [r − 1] . . . [1] , r ≥ 1
1, r = 0

.

where r ∈ N.

Definition 2.8.3. For any integer n and k, q−binomial coefficient is defined by[
n
k

]
=

(q; q)n
(q; q)k(q; q)n−k

(2.8.2)

for any n ≥ k ≥ 0.

Another way to write (2.8.2) is[
n
k

]
=

[n]!

[n− k]![k]!

which satisfies the following two pascal rules:[
n
j

]
=

[
n− 1
j − 1

]
+ qj

[
n− 1
j

]
32



and [
n
j

]
= qn−j

[
n− 1
j − 1

]
+

[
n− 1
j

]
where 1 ≤ j ≤ n− 1.

Definition 2.8.4. The q−analog (x− a)n is defined by the polynomial

(x− a)nq =

{
1, if n = 0
(x− a)(x− qa) . . . (x− qn−1a), if n ≥ 1

.

Throughout the thesis we will make frequent use of the finite q−binomial theorem

in the following form ([21])

(x− a)nq =
n∑
j=0

(−1)j q
j(j−1)

2

[
n
j

]
ajxn−j.

Finally, we have some limit results which are useful in our dissertation.

Example 2.8.1. If q < 1,

lim
n→∞

1

[n]
= lim

n→∞

1
1−qn
1−q

= lim
n→∞

1− q
1− qn

= 1− q,

on the other hand if q ≥ 1

lim
n→∞

1

[n]
= 0.

Example 2.8.2. if 0 < q < 1

lim
n→∞

[
n
j

]
= lim

n→∞

(1− qn)(1− qn−1) . . . (1− qn−j+1)

(1− q)(1− q2) . . . (1− qj)

=
1

(1− q)(1− q2) . . . (1− qj)
.
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Chapter 3

q-CESÁRO METHODS

In this chapter, we mainly focus on q−analogs of Cesáro matrices of order α ∈ N and

their properties. Consequently, we determine q−density function using a general way

to produce a density from nonnegative regular summability matrix.

3.1 Construction and Some Properties of q−Cesáro Matrices

In this section, we introduce a method to find q−analogs of Cesáro matrices of order

α ∈ N, for all q ∈ R+. Recall that one can define infinitely many different q−analog

of an infinite matrix (or matrix methods). Let A be an infinite matrix, then any infinite

matrix of the formA(q),where q is a real parameter, andA(1) = A, is called a q−analog

of A. In other words if A(q) is a q−analog of A then A(1) = A. In [7], Bustoz and

Gordillo obtained the following q−analog C1(q) = (ank(q)) of Cesáro matrix of order

one where

ank(q) =

{ 1−q
1−qn+1 q

n−k if k ≤ n

0 if k > n.
(3.1.1)

It should be mentioned that, the q−analog C1(q), obtained by Bustoz and Gordillo, is

valid only for 0 < q < 1. In their approach they obtained unique q−analog of Cesáro

matrix of order one which is contrary, to the idea that q−analog of an infinite matrix is

not unique. In this chapter we introduce a method which can be used to find different
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q−analogs of the Cesáro matrices of order α ∈ N. In our approach all q− analogs are

valid for all q ∈ R+. Also, the q− Cesáro method given in ( 3.1.1 ) can be obtained by

using our method with an appropriate choice.

Let S := (snk) be the summation matrix with

snk =

{
1; k ≤ n
0; otherwise

and I be the identity matrix. For any sequence x = (xk), define

B0
nx = I(x) = xn, (3.1.2)

B1
nx = S(x) =

n∑
ν=0

xυ =
n∑
ν=0

B0
ν(x) (3.1.3)

and

Bα
n (x) = Sα(x) =

n∑
ν=0

Bα−1
ν x. (3.1.4)

α∈ N, α ≥ 2. Recall that the entries sαnk of the matrix Sα can be determined in the

following way. By 3.1.4 we have

n∑
k=0

sαnkxk = Bα
n (x).

But,

(1− z)
∑
n

Bα
n (x)zn =

∑
n

(Bα
n (x)−Bα

n−1(x))zn =
∑
n

Bα−1
n (x)zn

with Bα
−1(x) = 0, therefore,

∑
n

Bα
n (x)zn =

1

(1− z)α
∑
n

B0
n(x)zn

.

and substitute series representation of 1
(1−z)α and using Cauchy product, we get
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=
∑
n

n∑
k=0

(
n− k + α− 1

n− k

)
xkz

n.

By comparing coefficients of zn, we have

Bα
n (x) =

n∑
k=0

(
n− k + α− 1

n− k

)
xk, with n, k = 0, 1, . . . , k ≤ n,

or equivalently,

sαnk =

(
n− k + α− 1

n− k

)
.

On the other hand, the sum of the nth row is;

n∑
k=0

sαnk =
n∑
k=0

(
n− k + α− 1

n− k

)
=

(
n+ α

n

)

and the matrix defined by

cαnk :=
1(

n+α
n

)sαnk (3.1.5)

gives exactly the Cesáro matrix of order α ∈ N. Although the above calculations are not

new and can be found in standard summability books (see [6]), they can be modified to

obtain q− analogs of Cesáro matrices of order α ∈ N. Before giving more details of this

process we need the following definition.

Definition 3.1.1. Let

Sq(ank(q)) =

{
ank(q), if k ≤ n
0, otherwise

be the infinite, lower triangular matrix, satisfying

ank(1) = 1,

then Sq(ank(q)) ( or Sq for short) is called the q−analog of the summation matrix S

associated with ank(q).
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Example 3.1.1. By choosing ank(q) = qk we have

Sq(ank(q)) =

{
qk, if k ≤ n
0, otherwise

which gives

Sq(q
k) =



1 0 0 0 0 0 · · ·

1 q 0 0 0 0 · · ·

1 q q2 0 0 0 · · ·

...
...

...
...

...
...

1 q q2 · · · qn 0 · · ·

...
...

...
...

... . . . . . .



.

Example 3.1.2. If we take ank(q) = q−k we get

Sq(ank(q)) =

{
q−k, if k ≤ n
0, otherwise

where its implicit form is given by

Sq(q
−k) =



1 0 0 0 0 0 · · ·

1
1

q
0 0 0 0 · · ·

1
1

q

1

q2
0 0 0 · · ·

...
...

...
...

...
...

1
1

q

1

q2
· · · 1

qn
0 · · ·

...
...

...
...

... . . . . . .



.

Replacing S by its q−analog in the above process, we will obtain a q−analog of

the Cesáro matrix of order α ∈ N ( or q− Cesáro matrix generated by ank(q)). In

the following theorem, we introduce a general formula for Cesáro matrix of order one

associated with ank(q).
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Theorem 3.1.1. The q−analog of the Cesáro matrix of order one associated with ank(q)

is C1(ank(q)) = (c1nk(ank(q)) where

c1nk(ank(q)) =

 ank(q)

(
n∑
k=0

ank(q)

)−1
, if k ≤ n

0, otherwise

(3.1.6)

n, k = 0, 1, . . . .

Proof. Let Sq be the q−analog of S associated with ank(q). By applying above process

for α = 1, equations (3.1.2) and (3.1.3) become

B0
nx = I(x) = xn,

B1
nx = (Sq(x))n =

n∑
ν=0

anν(q)xν ,

respectively. The matrix multiplication yields that Sq = (s1nk(ank(q))) where

s1nk(ank(q)) =

{
ank(q) if k ≤ n
0 otherwise

, n, k = 0, 1, . . .

Now, the sum of the nth row is an0(q) + an1(q) + · · · + ann(q) =
n∑
k=0

ank(q), therefore

in a way parallel to (3.1.5) one can obtain the q−Cesáro matrix of order one which is

given in (3.1.6).

It is obvious that in the case q = 1, C1(ank(q)) reduces to the ordinary Cesáro

matrix C1, given in (2.2.1) for α = 1.

Remark 3.1.2. It should be mentioned that, under the conditions ank(q) = ak(q), for

all n, with a0(q) > 0, and ak(q) ≥ 0, k ∈ N, C1(ank(q)) is a Riesz method associated

with ak(q).

Remark 3.1.3. The q−Cesáro matrix associated with ank(q) = q−k for 0 < q < 1 is

the q−analog of the Cesáro matrix suggested by Bustoz and Gordillo given in (3.1.1).

Of course, there are many ways to define q− analogs of Cesáro matrices. In the

following theorem, we suggest a suitable q−analog of the Cesáro matrix of order one,

order two and order α ∈ N.
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Theorem 3.1.4. If ank(q) = qk, then C1(q
k) = (c1nk(q

k)) with

c1nk(q
k) =

{
qk

[n+1]q
if k ≤ n

0 otherwise
, (3.1.7)

n, k = 0, 1, . . .. and C2(q
k) = (c2nk(q

k)) with

c2nk(q
k) =

 [n− k + 1]q q
2k

(
n∑
k=0

q2k [n− k + 1]q

)−1
if k ≤ n

0 otherwise

, (3.1.8)

n, k = 0, 1, . . .., more generally Cα(qk) =
(
cαnk(q

k)
)

where

cαnk(q
k) =


qαk

n−k∑
m1=0

qm1

m1∑
m2=0

qm2 ···
mα−1∑
mα−2=0

qmα−2 [mα−2+1]q

n∑
k=0

(
qαk

n−k∑
m1=0

qm1

m1∑
m2=0

qm2 ···
mα−1∑
mα−2=0

qmα−2 [mα−2+1]q

) if k ≤ n

0 otherwise

,

(3.1.9)

n, k = 0, 1, . . .., with α > 2, α ∈ N.

Proof. To find C1(q
k), it is enough to replace ank(q) by qk in Theorem 3.1.1. noindent

For C2(q
k), take ank(q) = qk, then equations (3.1.2),(3.1.3) and (3.1.4) become

B0
nx = I(x) = xn,

B1
nx = (S1

q (x))n =
n∑
ν=0

qvxυ

and

B2
n(x) =

(
S2(x)

)
n

=
n∑
ν=0

B1
νx

respectively. Matrix multiplication yields that, second order q−summation matrix is

S2
q = (s2nk(q

k)) where

s2nk(q
k) =

{
[n− k + 1]q q

2k if k ≤ n

0 otherwise

and the row sum of the nth row of S2
q is

n∑
k=0

[n− k + 1] q2k. Therefore in a way parallel

to (3.1.5), one can obtain the second order q−Cesaro matrix as

c2nk(q
k) =

[n− k + 1]q q
2k

n∑
k=0

q2k [n− k + 1]q

for k ≤ n

Similarly, for Cα(qk) take ank(q) = qk and apply the process described above.
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Recall that in the ordinary case the sum of the nth row of the summation matrix S

was n+ 1, and the most natural q−analog of n+ 1 is [n+ 1]q . To have the sum [n+ 1]q

on the nth row of Sq, the generating sequence can be selected as ank(q) = qk. Therefore,

Cα(qk) is a suitable q−analog of the Cesáro matrix Cα.

The matrix method C1(q
k) and the corresponding summability method are called

q− Cesáro matrix and q−Cesáro summability method of order one respectively.

In the rest of this thesis we shall focus on the matrix C1(q
k) which has the following

explicit form;

C1(q
k) =



1 0 0 0 0 0 · · ·

1

[2]q

q

[2]q
0 0 0 0 · · ·

1

[3]q

q

[3]q

q2

[3]q
0 0 0 · · ·

...
...

...
...

...
...

1

[n+ 1]q

q

[n+ 1]q

q2

[n+ 1]q
· · · qn

[n+ 1]q
0 · · ·

...
...

...
...

... . . . . . .


Definition 3.1.2. A sequence x = (xk) is called q−Cesáro summable to L if

lim
n→∞

n∑
k=0

c1nk(q
k)xk = L.

Example 3.1.3. For any fixed q ≤ 1, the divergent sequence x = (xk) with

xk =

{ 1
q

k = 0, 2, . . .

− 1
q2

k = 1, 3, . . .

is C1(q
k)−summable to 0.

Example 3.1.4. For any fixed q < 1, the divergent sequence x = xk =
(
q−k
)

is not

C1(q
k)−summable. Indeed

(
C1(q

k)x
)
n

=
n∑
k=0

q−k
qk

[n+ 1]q
=

n+ 1

[n+ 1]q
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and

lim
n→∞

n+ 1

[n+ 1]q
=∞.

Theorem 2.1.4 and the Theorem of Silverman -Toeplitz give us the following char-

acterization for C1(q
k):

Lemma 3.1.1. (i) C1(q
k) is conservative for each q ∈ R+,

(ii) C1(q
k) is regular for each q ≥ 1.

Proof. Since the sum of each row is 1 and C1(q
k) satisfies row norm condition, it is

enough to prove column limit condition of Theorem 2.1.4 and the Theorem 2.1.5.

(i) a) For q = 1 we have nothing to do because C1(q
k) reduces to the ordinary Cesáro

matrix which is regular.

b) Assume that 0 < q < 1, then

limn→∞
qk

[n+ 1]q
= lim

n→∞

qk(1− q)
1− qn

= qk(1− q)

therefore C1(q
k) satisfies column limit condition with λk = qk(1− q) for k = 0, 1, . . . .

c) Assume that q > 1 then

limn→∞
qk

[n+ 1]q
= limn→∞

qk(1− q)
1− qn

= limn→∞
1

qn
qk(1− q)(

1
qn
− 1
)

= 0 for k = 0, 1, . . .

Therefore, C1(q
k) satisfies column limit condition with λk = 0 for k = 0, 1, . . . .and

q > 1.

From a) , b) and c) C1(q
k) is conservative for each q ∈ R+.
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(ii) For q = 1, C1(q
k) = C1 and it is regular. Assume that q > 1, then by the discussion

given in section c) C1(q
k) is regular.

Remark 3.1.5. If q1 6= q2 then C1(q
k
1) 6= C1(q

k
2), moreover if q1 > 1 then C1(q

k
1) is

regular but C1(q
k
2) is not regular for q2 = q−11 .

Now it is natural to ask how the strength of C1(q
k) changes with q. The answer is

given in the following Theorem.

Theorem 3.1.6. C1(q
k
1) is equivalent to C1(q

k
2), for 1 < q1 < q2.

Proof. Assume that 1 < q1 < q2 then,

sup
n

n∑
k=0

[k + 1]q2

∣∣∣∣ qk1
[n+1]q1

qk2
− qk+1

1

[n+1]q1
qk+1
2

∣∣∣∣ ≤ sup
n

n∑
k=0

[k+1]q2
qk2

∣∣∣ qk1
[n+1]q1

−
(
q1
q2

)
qk1

[n+1]q1

∣∣∣

≤ sup
n

n∑
k=0

[k+1]q2
qk2

(
qk1

[n+1]q1

)

≤ sup
n

n∑
k=0

[k+1]q2
qk2
≤ sup

n

n∑
k=0

(
1
q2

)k

≤ q2
q2−1 .

Conversely

sup
n

n∑
k=0

[k + 1]q1

∣∣∣∣ qk2
[n+1]q2

qk1
− qk+1

2

[n+1]q2q
k+1
1

∣∣∣∣ ≤ sup
n

n∑
k=0

[k+1]q1
qk1

∣∣∣ qk2
[n+1]q2

− qk+1
2

[n+1]q2
q1

∣∣∣

≤ sup
n

n∑
k=0

[k+1]q1
qk1

∣∣∣∣ qk2
[n+1]q2

− q2
q1

qk2
[n+1]q2

∣∣∣∣
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≤ sup
n

n∑
k=0

[k+1]q1
qk1

(
q2
q1

qk2
[n+1]q2

− qk2
[n+1]q2

)

≤ sup
n

q2
q1

n∑
k=0

[k+1]q1
qk1

(
qk2

[n+1]q2

)

≤ sup
n

q2
q1

n∑
k=0

[k+1]q1
qk1

≤ sup
n

q2
q1

q1
q1 − 1

=
q2

q1 − 1
.

The proof is completed using Theorem 2.4.5 and the fact that C1(q
k
1) and C1(q

k
2) are

both regular, row finite matrices.

Theorem 3.1.7. The summability method C1 is stronger than C1(q
k) for q ≥ 1.

Proof. For q = 1 , C1(q
k) reduces to C1, therefore without loss of generality, we may

assume that q > 1. By using Theorem 2.4.5 and the fact that C1 is a row finite regular

method, it is enough to show that

sup
n

1

n+ 1

(
q − 1

q

) n∑
k=0

[k + 1]q
qk

<∞. (3.1.10)

Using

[k + 1]q
qk

=
k∑
i=0

1

qi
≤ q

q − 1

in (3.1.10), completes the proof.

Theorem 3.1.8. For q ≤ 1, c ( cC1(qk).

Proof. For any fixed q ≤ 1, the divergent sequence x = (xk) with

xk =

{ 1
q

k = 0, 2, . . .

− 1
q2

k = 1, 3, . . .

is C1(q
k)−summable to 0.
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As a direct consequence of previous theorem and Theorem 2.1.7, we can state the

following lemma:

Lemma 3.1.2. C1(q
k) sums at least one unbounded sequence for q ≤ 1.

Proof. For any fixed q ≤ 1, choosing an index sequence as rj = jj+1(j ∈ N) and

r0 = 0, unbounded sequence x = (xk) with

xk =


j∑
i=0

1
q(i+1)

k = 0, 2, . . . and rj ≤ k < rj+1

j∑
i=0

−1
q2(i+1)

k = 1, 3, . . . and rj ≤ k < rj+1

,

is C1(q
k)−summable to 0.

Using the fact that C1(q
k) is a Riesz method, the inverse of C1(q

k) is

C−11 (qk) =



1 0 0 0 0 0 · · ·

−1
q

[2]
q

0 0 0 0 · · ·

0 −[2]
q2

[3]
q2

0 0 0 · · ·

...
...

... . . . . . . . . .

0 0 0 · · · −[n]
qn

[n+1]
qn

· · ·

...
...

...
...

... . . . . . .



.

Theorem 3.1.9. C1(q
k) is of type M for q ∈ R+.

Proof. Let’s choose t ∈ l with tC1(q
k) = 0. Since C−11 (qk) is column finite, according

to Theorem 2.1.2 (tC1(q
k))C−11 (qk) and t(C1(q

k)C−11 (qk)) exist and t(C1(q
k)C−11 (qk)) =

(tC1(q
k))C−11 (qk). Thus

t = t(C1(q
k)C−11 (qk)) = (tC1(q

k))C−11 (qk) = 0.

which proves the theorem.

As an immediate consequence of Corollary 2.1.2 and Theorem 3.1.7, we can state

the following corollary.
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Corollary 3.1.1. C1(q
k) and C1 are consistent for q ≥ 1.

Remark 3.1.10. C1(q
k) and C1 are not equivalent for q ≥ 1.

Theorem 3.1.11. C1(q
k) satisfies the mean value property with K = 1

Proof. By a direct calculation we have the following;∣∣∣∣∣
r∑

k=0

qk

[n+ 1]q
xk

∣∣∣∣∣ =
1

[n+ 1]q

∣∣∣∣∣
r∑

k=0

qkxk

∣∣∣∣∣

=
[r + 1]q
[n+ 1]q

∣∣∣∣∣
r∑

k=0

qk

[r + 1]q
xk

∣∣∣∣∣

≤

∣∣∣∣∣
r∑

k=0

qk

[r + 1]q
xk

∣∣∣∣∣
since [r+1]

[n+1]
≤ 1 for r ≤ n. This means that C1(q

k) satisfies the mean value property with

K = 1.

3.2 q−Density function and q−Statistical Convergence

As we mentioned in Section 2.5, Freedman and Sember [14] showed that each non-

negative regular matrix A can be associated by a density function

δA (K) = lim
n→∞

inf(AχK)n, (3.2.1)

where χK denotes the characteristic function of K ⊂ N. Replacing A by C1 and lim inf

by ordinary limit in 3.2.1, we obtain the well-known natural density function

δ (K) = δC1(K) := lim
n→∞

1

n

∞∑
k=1

χK(k)

provided that limit exists. Using regularity of C1(q
k) ( for short Cq

1) for q ≥ 1, and

replacing A by Cq
1 in (3.2.1) we can define the following density functions δCq1 , between
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the subsets of natural numbers and the interval [0, 1];

δq(K) = δCq1 (K) = lim
n→∞

inf (Cq
1χK)n , (3.2.2)

= lim
n→∞

inf
∑
k∈K

qk−1

[n]
, q ≥ 1. (3.2.3)

Remark 3.2.1. If K is finite subset of N , then obviously δq(K) = 0.

Before giving the q−density of some infinite sets we need the following lemma.

Lemma 3.2.1. For q > 1, there exist M such that

1 + q + . . .+ qn ≤Mqn+1

Proof. For q > 1,

1 + q + . . .+ qn

qn+1
=

1

qn+1
+

1

qn
+ . . .+

1

q

=
n+1∑
k=1

(
1

q

)k

≤
∞∑
k=1

(
1

q

)k
=

1
q

1− 1
q

=
1

q − 1
= M

Recall that in the ordinary case, δ(N2) = 0, δ(2N) = δ(2N + 1) = 1
2

and more

generally δ(aN + b) = 1
a

where a and b are positive integers. In the following lemma

we obtain parallel results for δq.

Lemma 3.2.2. (i) δq(2N) = δq(2N + 1) = 1
[2]

(ii) δq(aN + b) = 1
[a]

where a and b are positive integers.

(iii) δq(N2) = 0
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Proof. i) By the definition

δq(2N) = lim
n→∞

inf
∑
k∈2N

qk−1

[n]

where

∑
k∈2N

qk−1

[n]
=


n
2∑

k=1

q2k−1

[n]
. if n is even

n−1
2∑

k=1

q2k−1

[n]
if n is odd

If n is even then nth partial sum is

sn =
q

[n]
+
q3

[n]
+ · · ·+ qn−1

[n]
(3.2.4)

and

q2sn =
q3

[n]
+
q5

[n]
+ · · ·+ qn+1

[n]
(3.2.5)

combining (3.2.4) and (3.2.5) we have

sn =
q(1− qn)

(1− q2) [n]

and

lim
n→∞

sn = lim
n→∞

q(1− qn)

(1− q2) [n]
=

q

1 + q
.

If n is odd then nth partial sum is

sn =
q

[n]
+
q3

[n]
+ · · ·+ qn−2

[n]
(3.2.6)

and

q2sn =
q3

[n]
+
q5

[n]
+ · · ·+ qn

[n]
(3.2.7)

similarly combining (3.2.6) and (3.2.7) yields

lim
n→∞

sn = lim
n→∞

q − qn

(1− q2) [n]
=

1

1 + q
=

1

[2]q

.Since q ≥ 1, we have 1
1+q
≤ q

1+q
or equivalently,

δq(2N) = lim inf
n→∞

∑
k∈2N
k≤n

qk−1

[n]
=

1

[2]q
.
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By using the above technique one can prove that δq(2N + 1) = 1
[2]

ii) Since {aN+ j : j = 0, 1, . . . , a− 1} is a partition for N and using the method of

(i), we have

lim
n→∞

( ∑
k∈aN+J

qk−1

[n]q

)
=
qa−1−j

[a]q

for fixed j ∈ {0, 1, . . . , a− 1} , and

δq(aN + b) = inf

{
qa−1−j

[a]
: j = 0, 1, . . . , a− 1.

}
=

1

[a]q
.

iii) By the definition

δq(N2) = lim
n→∞

inf
∑
k∈N2

qk−1

[n]
.

Consider the subsequence

t(m2−1) =
m−1∑
k=1

qk
2−1

[m2−1] of tm =
∑
k∈N2

k≤m

qk−1

[m]

then

lim
m→∞

t(m2−1) = lim
m→∞

q0 + q3 + . . .+ q(m−1)
2−1

[m2 − 1]

≤ lim
m→∞

Mq(m−1)
2

[m2 − 1]
= 0.

thus

δq(N2) = lim
n→∞

inf
∑
k∈N2

qk−1

[n]
= 0.

Finally, we shall define a new type convergence, q−statistical convergence which is

different from statistical convergence.
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Definition 3.2.1. A number sequence x = (xk) is called q−statistical convergent to L,

written stq-lim x = L, if for every ε > 0, δq(Kε) = 0, where Kε = {k : |xk − L| ≥ ε} .

Example 3.2.1. Consider the sequence xk =

 1︸︷︷︸
20

, 0, 0︸︷︷︸
21

, 1, 1, 1, 1︸ ︷︷ ︸
22

, 0, 0, 0, ...0︸ ︷︷ ︸
23

, 1, . . . ,


and define the set K = {k ∈ N : xk = 1} then δ(K) does not exists (see [15]) there-

fore xk is not statistically convergent. On the other hand since [Cq
1χK ]22n−1 → 0,

stq − limxk = 0

Theorem 3.2.2. If δ(K) = 0 for an infinite set K then δq(K) = 0.

Proof. Assume that K := {k1 < k2 < · · · < kn < · · · } . Since δ(K) = 0, we have

sup
n∈N
{kn − kn−1 : n = 2, 3, · · · } = +∞. (3.2.8)

Using (3.2.8), we can find a monoton increasing sequence (kν(n) − kν(n−1))n∈N with

kν(n) − kν(n−1) →∞, when n→∞. Define

sn =

∑
k∈K
k≤n

qk−1

[n]


then by the definition of δq we have,

δq(K) = lim inf
n
sn.

Now consider the subsequence

skν(n)−1 :=

 ∑
k∈K

k≤kν(n)−1

qk−1[
kν(n) − 1

]


of sn, we have  ∑
k∈K

k≤kν(n)−1

qk−1[
kν(n) − 1

]
 ≤

 kν(n−1)∑
k=1

k≤kν(n)−1

qk−1[
kν(n) − 1

]

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≤

(
1 + q + q2 + · · ·+ qkν(n−1)−1[

kν(n) − 1
] )

≤

(
Mqkν(n−1)[
kν(n) − 1

])

now take limit from both sides as n→∞, we have

lim
n→∞

s(kν(n)−1) ≤ lim
n→∞

 ∑
k∈K

k≤kν(n)−1

qk−1[
kν(n) − 1

]


≤ lim
n→∞

(
Mqkν(n−1)[
kν(n) − 1

])

≤ lim
n→∞

M(1− q)qkν(n−1)

1− qkν(n)−1

≤ lim
n→∞

qkν(n−1)M(1− q)
qkν(n−1)

(
1− qkν(n)−kν(n−1)−1

)

≤ lim
n→∞

M(1− q)(
1− qkν(n)−kν(n−1)−1

) = 0

since kν(n) − kν(n−1) →∞ when n→∞. Therefore δq(K) = 0.

Remark 3.2.3. If a sequence x is statistically convergent to L then by Theorem 3.2.2 x

is q−statistically convergent to L.
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Chapter 4

q-HAUSDORFF METHODS

In the ordinary case it is well known that Cα belongs to an important class of summa-

bility method called Hausdorff Methods. The main idea of the present chapter is to

introduce and discuss the class of q− Hausdorff matrices. But before starting to discuss

Hausdorff matrices in q generalized sense, we would like to repeat a very brief outline

of Hausdorff methods and the relation between Hausdorff matrices and C1. Assume that

A and B are two regular matrices with AB = BA, since permutable regular matrices

define consistent methods, summability methods corresponding to A and B are consis-

tent to each other. In other words if x is any sequence in cA ∩ cB then A and B assing

the same limit value to x.

Recall that a matrix A is called diagonal if A = (δmnam) where am 6= 0 for all m

and δmn is the Kronecker delta. Moreover we say that the matrix A is reduced to the

diagonal form by the triangular matrix P if and only if

PAP−1 = (pnδmn).

As we stated in Section 2.5, C1 is reduced to diagonal form with diagonal elements

1
n+1

by the triangular matrix, ∆ = (dnk) where

dmk = (−1)k
(
n

k

)
.

It should also be mentioned that ∆ is self inverse that is ∆ = ∆−1 and A triangular
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matrix A is permutable with C1 if and only if ∆A∆ = D or equivalently A =∆D∆.

4.1 Construction of q-Hausdorff Matrices

First of all we will apply a method parallel to the ordinary case to obtain the invert-

ible matrix ∆q, the q−analog of the difference matrix ∆.

Theorem 4.1.1. If D is a diagonal matrix then the matrix equation

∆qC1

(
qk
)

= D∆q (4.1.1)

has the solution ∆q = (λnv) with

λnv = (−1)v
[
n
v

]
q(

n−v)(n−v−1)
2 , v = 0, 1, . . . n.

The diagonal matrix D is given by D = (pnδnv) with

pn =
qn

[n+ 1]q
=
qn(1− q)
1− qn+1

.

Proof. Consider the matrix equation ∆qC1(q
k) = D∆q, or equivalently

n∑
k=v

λnkckv(q) =
∑
k

δnkpkλkv. (4.1.2)

substituting ckν(q) in (4.1.2) we have,

n∑
k=v

λnk
qv(1− q)
(1− qk+1)

= pnλnv. (4.1.3)

Taking ν = n then

λnn
qn(1− q)
(1− qn+1)

= pnλnn

and since λnn 6= 0, we get that

pn =
qn(1− q)
(1− qn+1)

. (4.1.4)

Now substitute (4.1.4) in (4.1.3), we obtain that

λnv =
n∑
k=v

qv(1− qn+1)

qn(1− qk+1))
λnk
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and

λnv − λn(v+1) =
n∑
k=v

qv(1− qn+1)

qn(1− qk+1))
λnk −

n∑
k=v+1

qv+1(1− qn+1)

qn(1− qk+1))
λnk.

Rewriting the terms we have

λnv − λn(v+1) =
n∑
k=v

qv(1− qn+1)

qn(1− qk+1))
λnk − q

n∑
k=v

qv(1− qn+1)

qn(1− qk+1))
λnk +

qv+1(1− qn+1)

qn(1− qv+1)
λnv

or

λnv − λn(v+1) = λnv − qλnv +
qv+1(1− qn+1)

qn(1− qv+1)
λnv.

Finally we get

λn(v+1) =
qn+1 − qv+1

qn(1− qv+1)
λnv

or equivalently the recursion formula

λnv =
qn(1− qv+1)

qn+1 − qv+1
λn(v+1) =

qn−1(1− qv+1)

qn − qv
λn(v+1). (4.1.5)

Consequently, by repeating application of the recursion formula 4.1.5, we have

λnv =
qn−1(1− qv+1)

qn − qv
qn−1(1− qv+2)

qn − qv+1
· · · q

n−1(1− qn)

qn − qn−1
λnn

=
qn−1(1− qv+1)qn−1(1− qv+2) . . . qn−1(1− qn)

qn(1− qv−n)qn(1− qv−n+1) . . . qn(1− q−1)
λnn

=
qn−1(1− qv+1)qn−1(1− qv+2) . . . qn−1(1− qn)

qn(1− qv−n)qn(1− qv−n+1) . . . qn(1− q−1)
λnn

=
q(n−1)(n−v)(1− qv+1)(1− qv+2) . . . (1− qn)

qn( q
n−v−1
qn−v

)qn( q
n−v−1−1
qn−v−1 ) . . . qn( q−1

q
)

λnn

=
q(n−1)(n−v)(1− qv+1)(1− qv+2) . . . (1− qn)

(−1)qv(1− qn−v)(−1)qv+1(1− qn−v−1) . . . (−1)qn−1(1− q)
λnn

=
q(n−1)(n−v)(−1)n−v

q n(n−1)−v(v−1)
2

.
(1− qv+1)(1− qv+2) . . . (1− qn)

(1− qn−v)(1− qn−v−1) . . . (1− q)
λnn (4.1.6)
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hence we can rewrite (4.1.6) as

q
(n−v)(n−v−1)

2 (−1)n−v(q; q)n
(q; q)n−v(q; q)v

λnn

and finally

λnv = (−1)n−vq
(n−v)(n−v−1)

2

[
n
v

]
q(

n−v)(n−v−1)
2 λnn. (4.1.7)

Now any nonzero choice of λnn will give us a matrix in the desired form. Therefore

taking λnn = (−1)n in (4.1.7) we have

λnv = (−1)vq
(n−v)(n−v−1)

2

[
n
v

]

and this completes the proof.

Explicit form of q−difference matrix is;

∆q = (λnv) =



1 0 0 0 · · ·

1 −1 0 0 · · ·

q −[2] 1 0 · · ·

q3 −q [3] [3] −1 · · ·

...
...

... . . .

q
n(n−1)

2 −q
(n−1)(n−2)

2 [n] q
(n−2)(n−3)

2
[n][n−1]

2
· · · (−1)n 0

...
...

... . . .



.

Different from the ordinary case, the invertible matrix ∆q is not self-inverse. But it is

easy to see that the inverse of ∆q is given by ∆−1q = (µnv) where

µnν =

 (−1)v
[
n
v

]
, ν ≤ n

0, otherwise.
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The explicit form of ∆−1q is

∆−1q = (µnv) =



1 0 0 0 · · ·

1 −1 0 0 · · ·

1 −[2] 1 0 · · ·

1 − [3] [3] −1 · · ·

...
...

... . . .

1 −[n]
[n] [n− 1]

[2]
− [n] [n− 1][n− 2]

[3]
· · · (−1)n 0

...
...

...
... . . .



.

Definition 4.1.1. A lower triangular matrix of the form Hq,p = ∆−1q D∆q where D is

the diagonal matrix with diagonal elements p = (pn) ∈ w and corresponding matrix

method are called q−Hausdorff matrix and q−Hausdorff method respectively associ-

ated (or generated) by p = (pn).

Theorem 4.1.2. Given a sequence pn, let D be the diagonal matrix with diagonal ele-

ments pn. Then Hq,p = (Hq, pn) = (hqnk) where

hqnk =


[
n
v

]
n−k∑
v=0

(−1)v
[
n− k
v

]
q
v(v−1)

2 pv+k if 0 ≤ k ≤ n

0 if k > n
. (4.1.8)

In particular hqnn = pn.

Proof. Using Hq,p = ∆−1q D∆q, we immediately get the following equalities for all

k ≤ n,

hqnk =
∑
v

µnvpvλvk

=
n∑
v=k

(−1)v
[
n
v

]
pv(−1)k

[
v
k

]
q

(v−k)(v−k−1)
2

=
n−k∑
v=0

(−1)v
[

n
v + k

] [
v + k
k

]
q
v(v−1)

2 pv+k
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=

[
n
k

] n−k∑
v=0

(−1)v
[
n− k
v

]
q
v(v−1)

2 pv+k.

Remark 4.1.3. One can easily see that, in the case q = 1, ∆−1q D∆q reduces to ∆D∆.

Therefore in the case of q = 1, each q−Hausdorff matrix reduces to an ordinary Haus-

dorff matrix.

Next examples show that q−analogs of Cesáro methods of order α can be obtain

from (4.1.8).

Example 4.1.1. Take pn = qn

[n+1]q
(the main diagonal of C1(q

k)) in (4.1.8), we have

hqnk =

[
n
k

] n−k∑
v=0

(−1)v
[
n− k
v

]
q
v(v−1)

2
qν+k

[v + k + 1]q

=

[
n
k

]
qk

n−k∑
v=0

(−1)v
[
n− k
v

]
q
v2+v

2

[v + k + 1]q

which gives exactly C1

(
qk
)
.

Example 4.1.2. Similarly take pn = qαn/

[
n+ α
n

]
in (4.1.8), then corresponding

q−Hausdorff matrix is the q−analog of the Cesáro matrix of order α, given in (3.1.9).

Example 4.1.3. Recall that Hα
q = (C1(q

k))α for each α ∈ N. Therefore the diagonal

of Hα will be the α−th power of the diagonal of C1

(
qk
)
. In other words if we take

pn = qnα

[n+1]αq
then we have

hqnk =

[
n
k

] n−k∑
v=0

(−1)v
[
n− k
v

]
q
v(v−1)

2
q(ν+k)α

[v + k + 1]α

=

[
n
k

]
qαk

n−k∑
v=0

(−1)v
[
n− k
v

]
q
ν2−ν+2αν

2

[v + k + 1]α

56



which gives the q−analog of the Hölder Method of order α. More precisely for α = 2,

H2
q =



1 0 · · ·

1
[2]q

+ q

[2]2q

q2

[2]2q
0 · · ·

1
[3]q

+ q
[2]q [3]q

+ q2

[3]2q

q2

[2]q [3]q
+ q3

[3]2q

q4

[3]2q
0 · · ·

· · · · · · · · · · · ·

1
[n+1]q

+ q
[2]q [n+1]q

+ · · ·+ qn

[n+1]2q

q2

[2]q [n+1]q
+ · · ·+ qn+1

[n+1]2q
· · · q2n

[n+1]2q
0 · · ·

...
...

...


Finally we will give an example of q−analog of the Euler Matrix.

Example 4.1.4. Choose pn = αn in (4.1.8) then we have

hqnk =

[
n
k

] n−k∑
v=0

(−1)v
[
n− k
v

]
q
v(v−1)

2 αν+k

=

[
n
k

]
αk

n−k∑
v=0

(−1)v
[
n− k
v

]
q
v(v−1)

2 αν

=

[
n
k

]
αk (1− α)n−kq .

which gives a q−analog of Eq
α the Euler matrix with Explicit form,

Eq
α =



1 0 0 0 0 · · ·

(1− α)1q α 0 0 0 · · ·

(1− α)2q [2]α (1− α)1q [α]2 0 0 · · ·

· · · · · · · · · · · · · · ·

(1− α)nq [n]α (1− α)n−1q
[n][n−1]

[2]
α2 (1− α)n−2q · · · αn 0 · · ·

...
...

...
... . . . . . .


.
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4.2 Some Summability Properties of q−Hausdorff Matrices

Now we are going to show that, some basic properties of Hausdorff matrices can

be given for q−Hausdorff matrices. Next theorem states that each q−Hausdorff matrix

satisfies the row sum condition.

Theorem 4.2.1. If Hq,p = (hqnk) is any q−Hausdorff matrix, then
∑

k h
q
nk = p0 (n ∈

N0). In other words Hq,p satisfies row sum condition with limit p0.

Proof. For every n ∈ N0, we have(∑
k

hqnk

)
n

= (∆−1q D∆qe)n = (∆−1q De0)n = p0

where e = (1, 1, .....) and e0 = (1, 0, .....).

Theorem 4.2.2. q−Hausdorff matrices are commutative and product of two q−Hausdorff

matrices is also q−Hausdorff matrix. That is;

Hq,p.Hq,r = (Hq, pnrn) = Hq,r.Hq,p.

Proof. Let Hq,p and Hq,r be q−Hausdorff matrices. Since q−Hausdorff matrices are

row finite, we get

Hq,p.Hq,r =
(
∆−1q D1∆q

) (
∆−1q D2∆q

)
= ∆−1q D1

(
∆q∆

−1
q

)
D2∆q

= ∆−1q D1D2∆q = ∆−1q D2D1∆q =
(
∆−1q D2∆q

) (
∆−1q D1∆q

)
= Hq,r.Hq,p

where D1 and D2 are the diagonal matrices with diagonal elements p = (pn) and r =

(rn) respectively.

On the other hand, consider the diagonal matrix D3 = D1D2 , then

∆−1q D3∆q = (Hq, pnqn)

which means that Hq,p.Hq,r = (Hq, pnqn) is Hausdorff.
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Proposition 4.2.1. (Hq,p)
−1 exists if and only if pn 6= 0 for all n ∈ N0. If it exists,

(Hq,p)
−1 = (Hq, p

−1
n ).

Proof. Assume that (Hq,p)
−1 exists. Since (Hq,p) is an invertible, triangular matrix,

pn 6= 0, for each n.

Conversely assume that pn 6= 0, for each n.IfHq,p−1 = (Hq, p
−1
n ) is the q−Hausdorff

matrix generated by p−1n , we get

Hq,pHq,p−1 = (Hq, pnp
−1
n ) = (Hq, e) = I

Hq,p−1Hq,p = (Hq, p
−1
n pn) = (Hq, e) = I

which proves Hq,p−1 is the inverse of Hq,p.

Theorem 4.2.3. Assume that Hq,p is a q−Hausdorff matrix generated by p = (pn) with

pn 6= pk (n 6= k). Then a lower triangular matrix A is q−Hausdorff if and only if

AHq,p = Hq,pA.

Proof. If A is q−Hausdorff matrix then from Theorem 4.2.2 AHq,p = Hq,pA. To prove

sufficiency, let us assume that AHq,p = Hq,pA, according to the definition of Hq,p, we

get

A∆−1q D∆q = ∆−1q D∆qA (4.2.1)

where D is diagonal matrix with diagonal elements p = (pn). Multiply both sides of

(4.2.1) from left by ∆q and from right with ∆−1q , we obtain

∆qA∆−1q D∆q∆
−1
q = ∆q∆

−1
q D∆qA∆−1q (4.2.2)

∆qA∆−1q D = D∆qA∆−1q . (4.2.3)

Therefore if we choose B = (bnk) = ∆qA∆−1q , (4.2.2) reduced to

BD = DB
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or

bnkpk = pnbnk.

Since pn 6= pk for k 6= n , we have bnk = 0, when n 6= k. Hence B = ∆qA∆−1q is the

diagonal matrix with diagonal elements bnn.Thus A = ∆−1q B∆q which completes the

proof.

Theorem 4.2.4. Regular q−Hausdorff methods are pairwise consistent.

Proof. Let Hq,p and Hq,r be two regular q−Hausdorff matrices and x ∈ cHq,p ∩ cHq,r be

given, that is Hq,px ∈ c and Hq,rx ∈ c. Then

limHq,p x = limHq,px = limHq,r Hq,px = lim(Hq,rHq,p)x

= lim(Hq,pHq,r)x = limHq,p Hq,rx = limHq,rx = limHq,r x.

Next, we give a theorem to compare two Hausdorff matrices.

Theorem 4.2.5. If Hq,p and Hq,r are q−Hausdorff matrices and Hq,p is triangle then

(i) Hq,r is stronger than Hq,p if and only if (Hq,
rn
pn

) is conservative.

(ii) Hq,r is stronger than and consistent with Hq,p if and only if (Hq,
rn
pn

) is regular.

Proof. Since Hq,p is triangle, Hq,r is row finite and (Hq,p)
−1 = (Hq,

1
pn

). Therefore, (i)

and (ii) satisfied by the help of Theorem 2.1.9.
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