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Abstract

We find large classes of non-asymptotically flat Einstein-Yang-Mills-Dilaton (EYMD) and

Einstein-Yang-Mills-Born-Infeld-Dilaton (EYMBID) black holes in N-dimensional spherically sym-

metric spacetime expressed in terms of the quasilocal mass. Extension of the dilatonic YM solution

to N-dimensions has been possible by employing the generalized Wu-Yang ansatz. Another metric

ansatz, which aided in finding exact solutions is the functional dependence of the radius function

on the dilaton field. These classes of black holes are stable against linear radial perturbations. In

the limit of vanishing dilaton we obtain Bertotti-Robinson (BR) type metrics with the topology of

AdS2×SN−2. Since connection can be established between dilaton and a scalar field of Brans-Dicke

(BD) type we obtain black hole solutions also in the Brans-Dicke-Yang-Mills (BDYM) theory as

well.
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I. INTRODUCTION

Recently we have found black hole solutions in the Einstein-Yang-Mills (EYM) theory by

extending the Wu-Yang ansatz to higher dimensions [1, 2]. Both the YM charge and the

dimensionality of the space time played crucial roles to determine the features of such black

holes. It was found long ago, within the context of Dirac monopole theory that Wu-Yang

ansatz solves the static, spherically symmetric YM equations for N = 4 dimensional flat

space time[3]. The SO (3) gauge structure was derived from the abelian electromagnetic (em)

potential such that the internal and space time indices were mixed together in the potential.

By a similar analogy we extend this idea to - nowadays fashionable−N dimensional space

times where SO (N − 1) is obtained through a non-abelian gauge transformation from the

em potential within the static, spherically symmetric metric ansatz. The YM gauge potential

is chosen to depend only on the angular variables and therefore they become independent

of time (t) and the radial coordinate (r). Upon this choice the YM potential becomes

magnetic type and by virtue of the metric ansatz the YM equations are easily satisfied.

Such a choice renders the duality principle to be automatically absent in the theory. We

note that by invoking the Birkhoff’s theorem of general relativity t and r can be interchanged

appropriately in the metric, while the YM potential preserves its form. The fact that the

solutions obtained by this procedure pertain to genuine non- abelian character is obvious

from comparison with the other known exact EYM solutions . The EYM solutions obtained

by other ansaetze[4, 5, 6, 7, 8, 9] constructed directly from the non-abelian character and

those obtained by our generalized Wu-Yang ansatz [1, 2] are the same. We admit, however,

that although our method yields exact solutions it is restricted to spherical symmetry alone.

Their solutions, on the other hand [4, 5, 6, 7], apply to less symmetric cases which at best

can be expressed in infinite series, and in certain limit, such as vanishing of a function, they

coincide with ours. Among other types, particle-like [8] and magnetic monopole [9] solutions

are discussed in even dimensions. To make a comparison between EM and EYM solutions

we refer to the different r powers in the solutions found so far. Specifically, the logarithmic

term in the metric for N = 5, EYM theory, for instance, is not encountered in the N = 5,

EM theory [1]. For N = 4 it was verified on physical grounds that although the metric

remained unchanged, the geodesics particles felt the non-abelian charges [10]. We note that

Ref. [10] constitutes the proper reference to be consulted in obtaining a YM solution from
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an EM solution, which is stated as a theorem therein. Our study shows that the distinction

between the abelian and non-abelian contributions becomes more transparent for N > 4.

Let us note that throughout this paper by the non-Abelian field we imply YM field whose

higher dimensional version is obtained by the generalized Wu-Yang ansatz.

It is well-known that in general relativity the field equations admit solutions which,

unlike the localized black holes can have different properties. From this token we cite the

cosmological solutions of de-Sitter (dS)/ Anti de-Sitter (AdS), the conformally flat and

Bertoti-Robinson (BR) type solutions [11, 12], beside others in higher dimensions. In the

EM theory the conformally flat metric in N = 4 is uniquely the BR metric whose topology is

AdS2 ×S2.This extends to higher dimensions as AdS2 ×SN−2 which is no more conformally

flat. The N = 4, BR solution can be obtained from the extremal Reissner-Nordstrom (RN)

black hole solution through a limiting process. The latter represents a supersymmetric

soliton solution to connect different vacua of supergravity. For this reason the BR geometry

can be interpreted as a ”throat” region between two asymptotically flat space times. Also,

since the source is pure homogenous electromagnetic (em) field it is called an ”em universe”,

which is free of singularities. Its high degree of symmetry and singularity free properties

make BR space time attractive from both the string and supergravity theory points of view

. We recall that even for a satisfactory shell model interpretation of an elementary particle,

BR space time is proposed as a core candidate [13]. All these aspects ( and more), we

believe, justifies to make further studies on the BR space times, in particular for N > 4,

which incorporates YM fields instead of the em fields.

In this paper we obtain new non-asymptotically flat dilatonic black hole solutions and

study their stability against linear perturbations[14]. Remarkably, they turn out to be stable

against such perturbations. To obtain such metrics we start with a general ansatz metric in

the Einstein-Yang-Mills-Dilaton (EYMD) theory. Our ansatz is of BR type instead of the

RN type so that in the limit of zero dilaton instead of [1, 2], we obtain BR type metrics.

This leads us to a particular class of dilatonic solutions coupled with the YM field. As

expected, dilaton brings severe restrictions on the space time which possesses singularities

in general. In the limit of zero dilaton we obtain a two parametric (i.e. Q and C) solution

which contains the BR solution as a subclass. The second parameter, which is labeled as C,

in a particular limit can be shown to correspond to the quasilocal mass. Thus, keeping both

Q 6= 0 6= C and a non-zero dilaton gives us an asymptotically non-flat black hole model.
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The case C = 0 (without dilaton), yields a metric which is analogous to the BR metric[15].

Next, we extend our action to include the non-Abelian Born-Infeld (BI) interaction

which we phrase as Einstein-Yang-Mills-Born-Infeld-Dilaton (EYMBID) theory. As it is

well-known string / supergravity motivated non-linear electrodynamics due to Born and

Infeld [16] received much attention in recent years. Originally it was devised to eliminate

divergences due to point charges, which recovers the linear Maxwell’s electrodynamics in a

particular limit (i.e. β → ∞). Now it is believed that BI action will provide significant

contributions for the deep rooted problems of quantum gravity. The BI action contains

invariants in special combinations under a square root term in analogy with the string the-

ory Lagrangian. Since our aim in this paper is to use non-Abelian fields instead of the em

field we shall employ the YM field which by our choice will be magnetic type. Some of the

solutions that we find for the EYMBID theory represent non-asymptotically flat black holes.

Unfortunately for an arbitrary dilatonic parameter the solutions become untractable. One

particular class of solutions on which we shall elaborate will be again the BR type solutions

for a vanishing dilaton. We explore the possibility of finding conformally flat space time by

choosing particular BI parameter β.

After studying black holes in the dilatonic theory we proceed to establish connection

with the Brans-Dicke (BD) scalar field through a conformal transformation and explore

black holes in the latter as well. Coupling of BD scalar field with YM field follows under

the similar line of consideration.

The organization of the paper is as follows. In Sec. II we introduce the EYMD gravity, its

field equations, their solutions and investigate their stability. The Born-Infeld (BI) extension

follows in Sec. III. Sec. IV confines black holes in the Brans-Dicke-YM theory. The paper

is completed with conclusion in Sec. V .

II. FIELD EQUATIONS AND THE METRIC ANSATZ FOR EYMD GRAVITY

The N (= n+ 1)−dimensional action in the EYMD theory is given by (G = 1)

I = − 1

16π

∫

M

dn+1x
√
−g
(

R− 4

n− 1
(∇Φ)2 + L (Φ)

)

− 1

8π

∫

∂M

dnx
√
−hK, (1)

L (Φ) = −e−4αΦ/(n−1)Tr(F
(a)
λσ F

(a)λσ),
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where

Tr(.) =
(n)(n−1)/2
∑

a=1

(.) , (2)

Φ refers to the dilaton scalar potential (we should comment that in this work we are inter-

ested in a spherical symmetric dilatonic potential, i.e. Φ = Φ (r)) and α denotes the dilaton

parameter while the second term is the surface integral with its induced metric hij and trace

K of its extrinsic curvature. Herein R is the usual Ricci scalar and F(a) = F
(a)
µν dxµ ∧ dxν are

the YM field 2−forms (with ∧ indicating the wedge product) which are given by [1, 2]

F(a) = dA(a) +
1

2σ
C

(a)
(b)(c)A

(b) ∧ A(c) (3)

with structure constants C
(a)
(b)(c) (see Appendix A) while σ is a coupling constant and

A(a) = A
(a)
µ dxµ are the potential 1−forms. Our choice of YM potential A(a) follows from the

higher dimensional Wu-Yang ansatz [1, 2] where σ is expressed in terms of the YM charge.

Variations of the action with respect to the gravitational field gµν and the scalar field Φ lead,

respectively to the EYMD field equations

Rµν =
4

n− 1
∂µΦ∂νΦ + 2e−4αΦ/(n−1)

[

Tr
(

F
(a)
µλ F

(a) λ
ν

)

− 1

2 (n− 1)
Tr
(

F
(a)
λσ F

(a)λσ
)

gµν

]

,

(4)

∇2Φ = −1

2
αe−4αΦ/(n−1)Tr(F

(a)
λσ F

(a)λσ), (5)

where Rµν is the Ricci tensor. Variation with respect to the gauge potentials A(a) yields the

YM equations

d
(

e−4αΦ/(n−1)⋆F(a)
)

+
1

σ
C

(a)
(b)(c)e

−4αΦ/(n−1)A(b) ∧⋆ F(c) = 0 (6)

in which the hodge star ⋆ means duality. In the next section we shall present solutions to

the foregoing equations in N-dimension. Wherever it is necessary we shall supplement our

discussion by resorting to the particular case N = 5. Let us remark that for N = 4 case

since the YM field becomes gauge equivalent to the em field the metrics are still of RN/BR,

therefore we shall ignore the case N = 4.

A. N-dimensional solution

In N (= n+ 1)−dimensions, we choose a spherically symmetric metric ansatz

ds2 = −f (r) dt2 +
dr2

f (r)
+ h (r)2 dΩ2

n−1, (7)
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where

dΩ2
n−1 = dθ2

1 +
n−2
∑

i=2

i−1
∏

j=1

sin2 θj dθ
2
i , 0 ≤ θn−1 ≤ 2π, 0 ≤ θk 6=n−1 ≤ π. (8)

while f (r) and h (r) are two functions to be determined. Our gauge potential ansatz is [1, 2]

A(a) =
Q

r2
C

(a)
(i)(j) x

idxj , Q = YM magnetic charge, r2 =

n
∑

i=1

x2
i , (9)

2 ≤ j + 1 ≤ i ≤ n, and 1 ≤ a ≤ n(n− 1)/2,

x1 = r cos θn−1 sin θn−2... sin θ1, x2 = r sin θn−1 sin θn−2... sin θ1,

x3 = r cos θn−2 sin θn−3... sin θ1, x4 = r sin θn−2 sin θn−3... sin θ1,

...

xn = r cos θ1.

We note that the structure constant Ca
ij are found similar to the case N = 5 as described in

Appendix A. The YM equations (6) are satisfied and the field equations become

∇2Φ = −1

2
αe−4αΦ/(n−1)Tr(F

(a)
λσ F

(a)λσ) (10)

Rtt =
e−4αΦ/(n−1)f

(n− 1)
Tr(F

(a)
λσ F

(a)λσ) (11)

Rrr =
4 (Φ′)2

(n− 1)
− e−4αΦ/(n−1)

(n− 1) f
Tr(F

(a)
λσ F

(a)λσ) (12)

Rθiθi
=

2 (n− 2)Q2e−4αΦ/(n−1)

h2
− h2e−4αΦ/(n−1)

(n− 1)
Tr(F

(a)
λσ F

(a)λσ), (13)

in which we note that the remaining angular Ricci parts add no new conditions. A proper

ansatz for h (r) now is

h (r) = Ae−2αΦ/(n−1) (14)

(A = constant)

which, after knowing

Tr(F
(a)
λσ F

(a)λσ) =
(n− 1) (n− 2)Q2

h4
(15)

and eliminating f (r) from Eq.s (11) and (12) one gets

Φ = −(n− 1)

2

α ln r

α2 + 1
. (16)
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Upon substitution of Φ and h (r) into the Eq.s (10)-(13) we get three new equations

(n− 1)
[

r
(

α2 + 1
)

f ′ +
(

(n− 2)α2 − 1
)

f
]

−
(

(n− 1) (n− 2)Q2

A4

)

(

α2 + 1
)2
r

“

2
α2+1

”

= 0

(17)

(n− 1)
[

r
(

α2 + 1
)

f ′′ + (n− 1)α2f ′
]

− 2

(

(n− 1) (n− 2)Q2

A4

)

(

α2 + 1
)

r

“

−α
2
−1

α2+1

”

= 0

(18)

(

α2 + 1
)2

(n− 2)
(

Q2 −A2
)

r2+

A4α2
(

α2 + 1
)

f ′r

“

3α
2+1

α2+1

”

+ α2
(

(n− 2)α2 − 1
)

A4fr

“

2α
2

α2+1

”

= 0. (19)

Eq. (17) yields the integral for f (r)

f (r) = Ξ

(

1 −
(r+
r

)
(n−2)α2+1

α2+1

)

r
2

α2+1 , (20)

Ξ =
(n− 2)

((n− 2)α2 + 1)Q2
(21)

and the equations (18) and (19) imply that A must satisfy the following constraint

A2 = Q2
(

α2 + 1
)

. (22)

One may notice that, with the solution (20), (7) becomes a non-asymptotically flat metric

and therefore the ADM mass can not be defined. Following the quasilocal mass formalism

introduced by Brown and York [17] it is known that, a spherically symmetric N-dimensional

metric solution as

ds2 = −F (R)2 dt2 +
dR2

G (R)2 +R2dΩ2
N−2, (23)

admits a quasilocal mass MQL defined by [18, 19]

MQL =
N − 2

2
RN−3

B F (RB) (Gref (RB) −G (RB)) . (24)

Here Gref (R) is an arbitrary reference function, which guarantees having zero quasilocal

mass once the matter source is turned off and RB is the radius of the spacelike hypersurface

boundary. Applying this formalism to the solution (20), one obtains the horizon r+ in terms

of MQL as

r+ =

(

4 (α2 + 1)MQL

(n− 1)Ξα2An−1

)

. (25)
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Having the radius of horizon, one may use the usual definition of the Hawking temperature

to calculate

TH =
1

4π
|f ′ (r+)| =

Ξ

4π

[(n− 2)α2 + 1]

(α2 + 1)
(r+)γ (26)

where Ξ and r+ are given above and γ = 1−α2

1+α2 .

In order to see the singularity of the spacetime we calculate the scalar invariants, which

are tedious for general N, for this reason we restrict ourselves to the case N = 5 alone. The

scalar invariants for N = 5 are as follows

R =
ω1

r
4α2+1

α2+1

+
σ1

r
2α2

α2+1

, (27)

RµνR
µν =

ω2

r
6α2+1
α2+1

+
ω3

r
2 4α2+1

α2+1

+
σ2

r
4α2

α2+1

, (28)

RµναβR
µναβ =

ω4

r
6α2+1
α2+1

+
ω5

r
2 4α2+1

α2+1

+
σ3

r
4α2

α2+1

(29)

where ωi and σi are some constants and

lim
α→0

ωi = 0, lim
α→0

σ1 =
2

Q2
, (30)

lim
α→0

σ2 =
20

Q4
, lim

α→0
σ3 =

33

Q4
.

These results show that, for non-zero dilaton field (i.e. α 6= 0), the origin is singular whereas

for α = 0 (as a limit), we have a regular spacetime. Although these results have been found

for N = 5, it is our belief that for a general N > 5 these behaviors do not show much

difference.

1. Linear dilaton

Setting α = 1, gives the linear dilaton solution (20) as

f (r) =
(n− 2)

(n− 1)Q2

(

1 −
(r+
r

)
n−1

2

)

r, h (r)2 = 2Q2r (31)

r+ =

(

2
7−n

2 MQL

(n− 2) (|Q|)n−3

)

. (32)

One can use the standard way to find the high frequency limit of Hawking temperature at

the horizon, which means that

TH =
1

4π
|f ′ (r+)| =

(n− 2)

8πQ2
. (33)
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Furthermore, MQL is an integration constant which is identified as quasilocal mass, so one

may set this constant to be zero to get the line element

ds2 = −Ξrdt2 +
dr2

Ξr
+ 2Q2rdΩ2

n−1, (34)

Ξ =
(n− 2)

(n− 1)Q2
. (35)

By a simple transformation r = eΞρ this line element transforms into

ds2 = ΞeΞρ

(

−dt2 + dρ2 +
2 (n− 1)Q4

(n− 2)
dΩ2

n−1

)

(36)

which represents a conformal M2 × Sn−1 space time with the radius of Sn−1 equal to
√

2(n−1)
(n−2)

Q2.

2. BR limit of the solution

In the zero dilaton limit α = 0, we express our metric function in the form of

f (r) = Ξ◦ (r − r+) r, Ξ◦ =
(n− 2)

Q2
, (37)

h2 = A2
◦ = Q2. (38)

In N(= n + 1)−dimensions we also set r+ = 0, r = 1
ρ

and τ = Ξ◦t, to transform the metric

(7) into

ds2 =
Q2

(n− 2)

(−dτ 2 + dρ2

ρ2
+ (n− 2) dΩ2

n−1

)

. (39)

This is in the BR form with the topological structure AdS2 × Sn−1, where the radius of the

Sn−1 sphere is
√
n− 2.

3. AdS2 × SN−2 topology for 0 < α < 1

In this section we shall show that, the general solution given in Eq. (20), for some specific

values for 0 < α < 1, may also represent a conformally flat space time. To this end, we set

r+ = 0, and apply the following transformation

r =

(

Ξ
1 − α2

1 + α2
ρ

)− 1+α
2

1−α2

, (40)

Ξ =
(n− 2)

((n− 2)α2 + 1)Q2
, (41)
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to get

ds2 = (Ξ)
− 1+α

2

1−α2

(

1 − α2

1 + α2

)− 2
1−α2

ρ
− 2α

2

1−α2

(

−dτ 2 + dρ2

ρ2
+ ΞA2

(

1 − α2

1 + α2

)2

dΩ2
n−1

)

. (42)

To have a conformally flat space time, we impose ΞA2
(

1−α2

1+α2

)2

to be one, i.e.

(n− 2) (1 − α2)
2

((n− 2)α2 + 1) (α2 + 1)
= 1 (43)

and therefore yields, α2 = n−3
3n−5

. The line element (42) takes the form of a conformally flat

space time, namely

ds2 = a (ρ)

(−dτ 2 + dρ2

ρ2
+ dΩ2

n−1

)

, (44)

a (ρ) = 2
3n−5
n−1 (n− 2)

(

Q2

3n− 5

)2n−2
n−1

(n− 1)
n−3
n−1 ρ

− 2α
2

1−α2 . (45)

B. Linear Stability of the EYMD black holes

In this chapter we follow a similar method used by Yazadjiev [14] to investigate the

stability of the possible EYMD black hole solutions, introduced previously, in terms of a

linear radial perturbation. Although this method is applicable to any dimensions we confine

ourselves to the five-dimensional black hole case given by Eq. (7). To do so we assume that

our dilatonic scalar field Φ (r) changes into Φ (r) + ψ (t, r) , in which ψ (t, r) is very weak

compared to the original dilaton field and we call it the perturbed term. As a result we

choose our perturbed metric as

ds2 = −f (r) eΓ(t,r)dt2 + eχ(t,r) dr
2

f (r)
+ h (r)2 dΩ2

3. (46)

One should notice that, since our gauge potentials are magnetic, the YM equations (6) are

satisfied. The linearized version of the field equations (10-13) plus one extra term of Rtr are

given by

Rtr :
3

2

χt (t, r)h′ (r)

h (r)
=

4

3
∂rΦ (r) ∂tψ (t, r) (47)

∇2
◦ψ − χ∇2

◦Φ +
1

2
(Γ − χ)r Φ′f =

4α2e
4
3
αΦ

Q2 (α2 + 1)2ψ (48)

Rθθ : (2 − R◦θθ)χ− 1

2
hh′f (Γ − χ)r =

8α

3 (α2 + 1)
ψ (49)

10



in which a lower index ◦ represents the quantity in the unperturbed metric. First equation

in this set implies

χ (t, r) = − 4

3α
ψ (t, r) (50)

which after making substitutions in the two latter equations and eliminating the (Γ − χ)r

one finds

∇2
◦ψ (t, r) − U (r)ψ (t, r) = 0 (51)

where

U (r) =
4e

4
3
αΦ

Q2 (1 + α2)
=

4

Q2 (1 + α2) r
2α2

1+α2

. (52)

To get these results we have implicitly used the constraint (22) on A. Again by imposing

the same constraint , one can show that U (r) is positive. It is not difficult to apply the

separation method on (51) to get

ψ (t, r) = e±ǫtζ (r) , ∇2
◦ζ (r) − Ueff (r) ζ (r) = 0, Ueff (r) =

(

ǫ2

f
+ U (r)

)

, (53)

where ǫ is a constant. Since Ueff (r) is positive one can easily show that, for any real value

for ǫ there exists a solution for ζ (r) which is not bounded. In other words by the linear

perturbation our black hole solution is stable for any value of ǫ. As a limit of this proof, one

may set α = 0, which recovers the BR case.

We remark that with little addition this method can be easily extended to any higher

dimensions. This implies that the N-dimensional EYMD black holes are stable under the

linear perturbation.

III. FIELD EQUATIONS AND THE METRIC ANSATZ FOR EYMBID GRAVITY

The N (= n+ 1)−dimensional action in the EYMBI-D theory is given by (G = 1)

I = − 1

16π

∫

M

dn+1x
√
−g
(

R− 4

n− 1
(∇Φ)2 + L (F,Φ)

)

− 1

8π

∫

∂M

dnx
√
−hK, (54)

L (F,Φ) = 4β2e4αΦ/(n−1)



1 −

√

1 +
Tr(F

(a)
λσ F

(a)λσ)e−8αΦ/(n−1)

2β2



 = (55)

4β2e4αΦ/(n−1)L (X) ,

where

L (X) = 1 −
√

1 +X, X =
Tr(F

(a)
λσ F

(a)λσ)e−8αΦ/(n−1)

2β2
, Tr(.) =

n(n−1)/2
∑

a=1

(.) , (56)
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while the rest of the parameters are defined as before. Variations of the EYMBID action

with respect to the gravitational field gµν and the scalar field Φ lead respectively to the

correspondence EYMBID field equations

Rµν =
4

n− 1
∂µΦ∂νΦ − 4e−4αΦ/(n−1)

(

Tr
(

F
(a)
µλ F

(a) λ
ν

)

∂XL (X)
)

+ (57)

4β2

n− 1
e4αΦ/(n−1)K (X) gµν ,

∇2Φ = 2αβ2e4αΦ/(n−1)K (X) , (58)

where we have abbreviated

K (X) = 2X∂XL (X) − L (X) (59)

(∂XL (X) = − 1√
1 +X

).

Variation with respect to the gauge potentials A(a) yields the new relevant YM equations

d
(

e−4αΦ/(n−1)⋆F(a)∂XL (X)
)

+
1

σ
C

(a)
(b)(c)e

−4αΦ/(n−1)∂XL (X)A(b) ∧⋆ F(c) = 0. (60)

It is remarkable to observe that the field equations (57-59) in the limit of β → ∞, reduce

to the Eq.s (4-6), which are the field equations for the EYMD theory. Also in the limit of

β → 0, Eq.s (57-59) give

Rµν =
4

n− 1
∂µΦ∂νΦ, (61)

∇2Φ = 0 (62)

which refer to the gravity coupled with a massless scalar field.

A. N-dimensional solution

InN (= n+ 1)−dimensions, we again, adopt the metric ansatz (7) and our YM potentials

are given by Eq. (9). N-dimensional YM equations (60) are satisfied while the field equations

12



imply the following set of four equations

∇2Φ = 2αβ2e4αΦ/(n−1)K (X) (63)

Rtt = −4β2e4αΦ/(n−1)f

(n− 1)
K (X) (64)

Rrr =
4 (Φ′)2

(n− 1)
+

4β2e4αΦ/(n−1)

(n− 1) f
K (X) (65)

Rθiθi
=

−4 (n− 2)Q2e−4αΦ/(n−1)

h2
∂XL +

4h2β2e4αΦ/(n−1)

(n− 1)
K (X) . (66)

in which X is defined by (56). We use the same ansatz for h (r) as Eq. (14)which gives

X =
(n− 1) (n− 2)Q2

2β2A4
(67)

and therefore, after eliminating f (r) from Eq.s (64) and (65), leads to (16). Upon substitu-

tion of Φ and h (r) into the Eq.s (63)-(66) we find the following equations

(n− 1)
[

r
(

α2 + 1
)

f ′ +
(

(n− 2)α2 − 1
)

f
]

+ 4β2K (X)
(

α2 + 1
)2
r

“

2
α2+1

”

= 0 (68)

(n− 1)
[

r
(

α2 + 1
)

f ′′ + (n− 1)α2f ′
]

+ 8β2K (X)
(

α2 + 1
)

r

“

−α
2
−1

α2+1

”

= 0 (69)
(

α2 + 1
)2 (

4β2A4K (X) − (4Q2∂XL + A2) (n− 1) (n− 2)
)

r2+ (70)

(n− 1)A4α2
(

α2 + 1
)

f ′r

“

3α
2+1

α2+1

”

+ (n− 1)α2
(

(n− 2)α2 − 1
)

A4fr

“

2α
2

α2+1

”

= 0.

Eq. (68) yields the integral for f (r)

f (r) = Ξ

(

1 −
(r+
r

)
(n−2)α2+1

α2+1

)

r
2

α2+1 , (71)

Ξ = − 4β2 (α2 + 1)
2 K (X)

(n− 1) ((n− 2)α2 + 1)
(72)

in which r+ is an integration constant connected to the quasi local mass i.e.,

r+ =

(

4 (α2 + 1)MQL

(n− 1) Ξα2An−1

)

(73)

and K (X) is abbreviated as in (59). This solution satisfies Eq. (69), but from Eq. (70) A

must satisfy the constraint

4K (X) β2A4
(

α2 − 1
)

+ (n− 1) (n− 2)
(

4Q2∂XL + A2
)

= 0. (74)

13



1. Linear dilaton

In the linear dilaton case i.e., α = 1, Eq. (71) yields

f (r) = Ξ

(

1 −
(r+
r

)
(n−2)+1

2

)

r, h (r) = A
√
r, r+ =

(

8MQL

(n− 1) ΞAn−1

)

(75)

in which

A2 = 2Q2

√

1 − Q2
cri

Q2
, Ξ =

2 (n− 2)

(n− 1)Q2
cri



1 −
√

1 − Q2
cri

Q2



 (76)

where

Q2
cri =

(n− 1) (n− 2)

8β2
(77)

and Q2 ≥ Q2
cri.

In this case one may set Ξ = A = 1 to get

ds2 = −
(

1 −
(r+
r

)
(n−2)+1

2

)

rdt2 +
1

(

1 −
(

r+

r

)
(n−2)+1

2

)

r

dr2 + rdΩ2
n−1. (78)

2. BR limit of the solution

In the zero dilaton limit α = 0, we express our metric functions (71) in the form

f (r) = Ξ◦ (r − r+) r, Ξ◦ =
8β2 (n− 2)

(n− 1) (n− 2) + 8β2Q2
, (79)

h2 = A2
◦ = Q2 − (n− 1) (n− 2)

8β2
. (80)

In N(= n + 1)−dimensions we also set r+ = 0, r = 1
ρ

and τ = Ξ◦t, to transform the metric

(7) into

ds2 =
1

Ξ◦

(−dτ 2 + dρ2

ρ2
+ Ξ◦A

2
◦dΩ

2
n−1

)

. (81)

This is in the BR form with the topological structure AdS2 ×SN−2, where the radius of the

sphere is
√

Ξ◦A◦. It can be shown that

Ξ◦A
2
◦ = (n− 2)

(

8β2Q2 − (n− 1) (n− 2)

(n− 1) (n− 2) + 8β2Q2

)

(82)

which, in the limit of β → ∞, becomes

lim
β→∞

Ξ◦A
2
◦ = (n− 2) (83)

14



such that, the solution (81) becomes the BR type solution of EYMD theory (see Eq. (39)).

We set now Ξ◦A
2
◦ = 1, to obtain a conformally flat metric. This claims that

(n− 2)

(

8β2Q2 − (n− 1) (n− 2)

(n− 1) (n− 2) + 8β2Q2

)

= 1 (84)

and consequently we find

β2 =
(n− 1)2 (n− 2)

8Q2 (n− 3)
, (85)

ds2 =
2Q2

(n− 1)

(−dτ 2 + dρ2

ρ2
+ dΩ2

3

)

. (86)

This particular choice of β casts the EYMBI metric into a conformally flat form with the

topology of AdS2 × S3

3. AdS2 × SN−2 topology for 0 < α < 1

As one may show, for 0 < α < 1 and r+ = 0, a similar transformation as (40), here also

leads to the line element

ds2 = (Ξ)
− 1+α

2

1−α2

(

1 − α2

1 + α2

)− 2
1−α2

ρ
− 2α

2

1−α2

(

−dτ 2 + dρ2

ρ2
+ ΞA2

(

1 − α2

1 + α2

)2

dΩ2
n−1

)

. (87)

Again we set ΞA2
(

1−α2

1+α2

)2

= 1 which gives the conformally flat line element

ds2 = a (ρ)

(−dτ 2 + dρ2

ρ2
+ dΩ2

n−1

)

, (88)

with

a (ρ) = (Ξ)
− 1+α

2

1−α2

(

1 − α2

1 + α2

)− 2
1−α2

ρ
− 2α

2

1−α2 . (89)

B. Linear Stability of the EYMBID black holes

Similar to the proof given in Sec. (II.B), here also we study the stability of the possible

black holes in EYMBID theory which undergoes a linear perturbation. Again we give a

detailed study for the 5-dimensional black holes which is extendible to any higher dimensions.

Our perturbed metric is same as we adapted in Eq. (46). The linearized field equations plus

15



the extra term of Rtr are given now by

Rtr :
(n− 1)

2

χt (t, r) h′ (r)

h (r)
=

4

3
∂rΦ (r) ∂tψ (t, r) (90)

∇2
◦ψ − χ∇2

◦Φ +
1

2
(Γ − χ)r Φ′f = − 8

(n− 1)
α2β2e

4
(n−1)

αΦ (L (X◦) + 4X2
◦∂

2
X◦

L (X◦)
)

ψ (91)

Rθθ : (2 − R◦θθ)χ− 1

2
hh′f (Γ − χ)r =

16

9
αA2β2 (2X◦∂X◦

L (X◦) −L (X◦))ψ (92)

in which our conventions are as before. The first equation in this set implies that

χ (t, r) = − 4

3α
ψ (t, r) (93)

which, after we make substitutions in the two latter equations and eliminating the (Γ − χ)r

we find

∇2
◦ψ (t, r) − U (r)ψ (t, r) = 0 (94)

where

U (r) =
8

3
β2e

4
3
αΦ
[

L (X◦) − 2X◦∂X◦
L (X◦) − α2

(

L (X◦) + 4X2
◦∂

2
X◦

L (X◦)
)]

. (95)

To get these results we have implicitly used the constraint (74) on A. Again by imposing

the same constraint , one can show that U (r) is positive definite. We follow the separation

method to get

ψ (t, r) = e±ǫtζ (r) , ∇2
◦ζ (r) − Ueff (r) ζ (r) = 0, Ueff (r) =

(

ǫ2

f
+ U (r)

)

, (96)

where ǫ is a constant. Here also the fact that Ueff (r) > 0 can be justified which implies in

turn that the system is stable. For β → ∞ this reduces to the case of EYMD black hole

solution whose stability was already verified before.

IV. BLACK HOLES IN THE BDYM THEORY

In N (= n+ 1)−dimensions we write the Brans-Dicke-Yang-Mills (BDYM) action as

I = − 1

16π

∫

M

dn+1x
√−g

(

φR− ω

φ
(∇φ)2 + Lm

)

− 1

8π

∫

∂M

dnx
√
−hK, (97)

Lm = −Tr(F
(a)
λσ F

(a)λσ),
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in which ω is the coupling constant, and φ stands for the BD scalar field with the dimensions

G−1 (G is the N−dimensional Newtonian constant [21]). Variation of the BDYM’s action

with respect to the gµν gives

φGµν =
ω

φ

(

∇µφ∇νφ− 1

2
gµν (∇φ)2

)

+ 2

(

Tr
(

F
(a)
µλ F

(a) λ
ν

)

− 1

4
gµνTr

(

F
(a)
λσ F

(a)λσ
)

)

+

(98)

∇µ∇νφ− gµν∇2φ,

while variation of the action with respect to the scalar field φ and the gauge potentials A(a)

yields

∇2φ = − n− 3

2 [(n− 1)ω + n]
Tr
(

F
(a)
λσ F

(a)λσ
)

, (99)

and

d
(

⋆F(a)
)

+
1

σ
C

(a)
(b)(c)A

(b) ∧⋆ F(c) = 0, (100)

respectively.

We follow now the routine process to transform BDYM action into the EYMD action[21].

For this purpose, one can use a conformal transformation (variables with a caret .̂ denote

those in the Einstein frame)

ĝµν = φ
2

n−1 gµν and Φ̂ =
(n− 3)

4α̂
lnφ. (101)

This transforms (97) into

Î = − 1

16π

∫

M

dn+1x
√

−ĝ
(

R̂− 4

n− 1

(

∇̂Φ̂
)2

− e−4α̂Φ̂/(n−1)Tr
(

F̂
(a)
λσ F̂

(a)λσ
)

)

− 1

8π

∫

∂M

dnx

√

−ĥK̂,
(102)

where

α̂ =
n− 3

2
√

(n− 1)ω + n
. (103)

This transformed action is similar to the EYMD action given by (1). Variation of this action

with respect to the ĝµν , Φ̂ and Â(a) gives

R̂µν =
4

n− 1
∂̂µΦ∂̂νΦ + 2e−4α̂Φ̂/(n−1)

[

Tr
(

F̂
(a)
µλ F̂

(a) λ
ν

)

− 1

2 (n− 1)
Tr
(

F̂
(a)
λσ F̂

(a)λσ
)

ĝµν

]

,

(104)

∇̂2Φ = −1

2
α̂e−4α̂Φ̂/(n−1)Tr(F̂

(a)
λσ F̂

(a)λσ), (105)
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d
(

e−4α̂Φ̂/(n−1)⋆F̂(a)
)

+
1

σ
C

(a)
(b)(c)e

−4α̂Φ̂/(n−1)Â(b) ∧⋆ F̂(c) = 0. (106)

It is not difficult to conclude that, if we find a solution to the latter equations, by an inverse

transformation, we can find the solutions of the related equations of the BDYM theory. In

other words if
(

ĝµν ,Φ, F̂
(a)
)

is a solution of the latter equations, then

(

gµν , φ,F
(a)
)

=

(

exp

(

− 8α̂

(n− 1) (n− 3)
Φ̂

)

ĝµν , exp

(

4α̂

(n− 3)
Φ̂

)

, F̂(a)

)

(107)

is a solution of (98-100) and vice versa.

One may call
(

gµν , φ,F
(a)
)

, the reference solution and
(

ĝµν , Φ̂, F̂
(a)
)

the target solution.

Hence our solution in EYMD would be the target solution i.e.

dŝ2 = −f̂ (r) dt2 +
dr2

f̂ (r)
+ ĥ (r)2 dΩ2

n−1, (108)

where

f̂ (r) = Ξ̂



1 −
(

r̂+
r

)
(n−2)α̂2+1

α̂2+1



 r
2

α̂2+1 , ĥ (r) = Âe−2α̂Φ̂/(n−1), (109)

Ξ̂ =
(n− 2)

((n− 2) α̂2 + 1) Q̂2
, Φ̂ = −(n− 1)

2

α̂ ln r

α̂2 + 1
, Â2 = Q̂2

(

α̂2 + 1
)

,

r̂+ =

(

4 (α̂2 + 1) M̂QL

(n− 1) Ξ̂α̂2Ân−1

)

.

Our reference solution would read now

ds2 = −f (r) dt2 +
dr2

f (r)
+ h (r)2 dΩ2

n−1, (110)

in which

f (r) = Ξ̂



1 −
(

r̂+
r

)
(n−2)α̂2+1

α̂2+1



 r
2(n−3)+4α̂

2

(n−3)(α̂2+1) , h (r) = Âe−
2α̂Φ̂(n+1)

(n−1)(n−3) = Âr
α̂
2(n+1)

(α̂2+1)(n−3) , (111)

φ = r
−2(n−1)α̂2

(n−3)(α̂2+1) , and F(a) = F̂(a) = dÂ
(a)

+
1

2σ
C

(a)
(b)(c)Â

(b) ∧ Â(c) (112)

where the YM potential is same as (9) with the new charge Q̂. Herein one can find the

Hawking temperature of the BDYM-black hole at the event horizon as

TH =
Ξ̂ [(n− 2) α̂2 + 1]

4π (α̂2 + 1)
(r̂+)

 

−
(n−3)(α̂

2
−1)−4α̂

2

(α̂2+1)(n−3)

!

(113)

where r̂+ is the radius of the event horizon.

18



V. CONCLUSION

A simple class of spherically symmetric solutions to the EYMD equations is obtained

in any dimensions. Magnetic type Wu-Yang ansatz played a crucial role in extending the

solution to N-dimension. For the non-zero dilaton the space time possesses singularity,

representing a non-asymptotically flat black hole solution expressed in terms of the quasilocal

mass. Particular case of a linear dilatonic black hole is singled out as a specific case. Hawking

temperature for all cases has been computed which are distinct from the EMD temperatures

[22]. Stability against linear perturbations for these dilatonic metrics is proved. It has been

shown that the extremal limit in the vanishing dilaton, results in the higher dimensional

BR space times for the YM field. With the common topology of AdS2 × SN−2 for both

theories, while the radius of SN−2 for the Maxwell case is (N − 3) , it becomes (N − 3)1/2 in

the YM case. As a final contribution in the paper we apply a conformal transformation to

derive black hole solutions in the Brans-Dicke-YM theory. It is our belief that these YMBR

metrics, beside the dilatonic ones, will be useful in the string/supergravity theory as much

as the EMBR metrics are.
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VI. APPENDIX A

We work on a group of proper rotations in (N − 1)−dimensions, SO(N − 1), which

forms a (N−1)(N−2)
2

(

i.e.,

(

N − 1

2

))

−parameter Lie group whose infinitesimal generators
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are given by:

L1 = x2∂x1 − x1∂x2 (A-1)

L2 = x3∂x1 − x1∂x3

L3 = x3∂x2 − x2∂x3

L4 = x4∂x1 − x1∂x4

L5 = x4∂x2 − x2∂x4

L6 = x4∂x3 − x3∂x4

....

These operators satisfy commutation relations of the form

[Li, Lj ] = C
(k)
(i)(j)Lk, (A-2)

where the C
(k)
(i)(j) are the structure constants. As an example we check

[L1, L2] = C
(3)
(1)(2)L3 = L3, (A-3)

→ C
(3)
(1)(2) = 1.

This can be done for all other combinations and the only 24 non zero terms are:

C
(1)
(2)(3) = C

(1)
(4)(5) = −C(1)

(3)(2) = −C(1)
(5)(4) = 1

C
(2)
(3)(1) = C

(2)
(4)(6) = −C(2)

(1)(3) = −C(2)
(6)(4) = 1

C
(3)
(1)(2) = C

(3)
(5)(6) = −C(3)

(2)(1) = −C(3)
(6)(5) = 1

C
(4)
(5)(1) = C

(4)
(6)(2) = −C(4)

(1)(5) = −C(4)
(2)(6) = 1

C
(5)
(1)(4) = C

(5)
(6)(3) = −C(5)

(4)(1) = −C(5)
(3)(6) = 1

C
(6)
(2)(4) = C

(6)
(3)(5) = −C(6)

(4)(2) = −C(6)
(5)(3) = 1

(A-4)

By a similar, routine procedure we can obtain the coefficients in any higher dimensions.

For N = 6, for example, we have 40 non-zero coefficients, which we shall not elaborate.
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