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Nonsingular colliding wave solutions in Einstein-Maxwell-dilaton-axion theory

E. Halilsoy* and M. Halilsoy†
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~Received 25 December 2003; published 25 June 2004!

The local isometry between black holes and colliding plane waves is employed to derive new colliding wave
solutions in the Einstein-Maxwell-dilaton-axion theory. The technique is applied to the asymptotically nonflat
linear dilaton black holes. We obtain two new metrics which we label~from the language of black holes! as
Kerr and Newman-Unti-Tamburino~NUT! types. The NUT type turns out to be typeD while the Kerr type
belongs to the general class. Both types share the common feature that, instead of an all encompassing generic
singularity, Cauchy horizons develop in the process of collision.
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I. INTRODUCTION

Chandrasekhar and Xanthopoulos~CX! first observed that
a particular metric of colliding plane waves~CPWs! trans-
forms into the trapped region between horizons of the K
black hole ~BH! @1#. The reason for this local isometry i
simple: in that region the Kerr black hole admits two spa
like Killing vectors, the same as required by the space
CPWs. A coordinate transformation maps the one prob
into the other provided the boundary conditions are satisfi
By this it is meant that continuous matching of the differe
wave regions holds, such that no source currents arise a
boundaries. A special case covers naturally the Schw
schild BH where forr ,2m ~i.e., inside the horizon! it ad-
mits two spacelike Killing vectors and the correspondi
CPW spacetime can easily be derived@2#. Extension of the
Kerr BH to the Kerr-Newman case and the associated C
metric in Einstein-Maxwell~EM! theory was also given by
CX @3#. The same idea of local isometry has also been u
to obtain CPW solutions in Einstein-dilaton-axion~EDA!
theory @4#. More recently, we have given an example of t
CPW metric in the Einstein-Maxwell-dilaton-axion~EMDA!
theory in the limit of zero dilaton field, which also employ
an isometry between the throat region of extremal BHs
CPWs@5#. This example suggests that the local isometry
question has a larger scope than envisaged. In a sep
work we showed the exact equivalence of the near hori
geometry of extremal BHs and CPWs in the EM theory@6#.
All BH solutions alluded to so far share the common feat
that they are asymptotically flat. A new type of BH in th
linear dilaton gravity has been introduced, on the other ha
which fails to satisfy asymptotic flatness@7–11#. Since the
space of CPWs also shares this latter condition, the lo
isometry between such BHs and CPW spacetimes mus
expected in a more natural way. In addition to the line
dilaton, these asymptotically non-flat BHs admit electrom
netic ~em! and axion fields, which enable us in this paper
obtain new CPW metrics in the EMDA theory. From th
physics standpoint our solutions are important since they
free of physical singularities. Singularities, which us
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mostly to doom the interaction region of CPWs, are replac
here by extendable Cauchy horizons. By standard solu
generation techniques, new solutions in the EMDA theo
can be obtained, but singularity-free solutions are not gu
anteed@12,13#. Finally, we wish to comment that we can ad
massless scalar fields to the already existing dilaton, ax
and em fields by using a method which we have develo
recently@14,15#.

The organization of the paper is as follows. In Sec. II w
review the linear dilatonic BH and its extension to stationa
form. Section III covers the derivation of our CPW metri
whose details are tabulated in Appendixes B and C. We c
clude the paper in Section IV with a conclusion and disc
sion.

II. LINEAR DILATON BLACK HOLES

The field equations in the EMDA theory can be genera
from the action

S5
1

16pE d4xugu1/2F2R12~¹f!21
1

2
e4f~¹k!2

2e22fFmnFmn2kFmnF̃mnG ~1!

where f is the dilaton,k is the ~pseudoscalar! axion, and
Fmn stands for the em field tensor. The dual field tensor
defined by F̃mn5 1

2 ugu21/2emnabFab in which we choose
e0123511. In addition to the Einstein equations

Gmn528pTmn ~2!

the remaining EMDA field equations are

]m@ ugu1/2~e22fFmn1kF̃mn!#50, ~3!

2hf5e4f~¹k!21e22fFmnFmn,

ugu21/2]m~ ugu1/2e4fgmnk ,n!52FmaF̃ma,

in which h stands for the covariant Laplacian. In Append
A we give the total energy-momentum tensorTmn in terms of
both the fields and the tetrad scalars. The following diago
metric solves the EMDA equations without the axion@9#:
©2004 The American Physical Society21-1
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ds25S 12
r 1

r Ddt22S 12
r 1

r D 21

dr2

2r 2S 12
r 2

r D ~du21sin2udf2!. ~4!

The dilaton and Maxwell two-form (F5dA) are

e2f5e2f`S 12
r 2

r D ,

F5
Qe2f`

r 2
dr`dt, ~5!

respectively, wheref` is the asymptotic value of the dilato
and the mass~M! and electric charge~Q! of the BH are

M5
1

2
r 1 ,

Q5e2f`Ar 1r 2

2
. ~6!

In the string frame the dilaton is a linear function of distan
and in the near horizon limit this solution of EMD theo
transforms into

ds25
r 2b

r 0
dt22

r 0

r 2b
dr22r 0r ~du21sin2udf2! ~7!

with

e2f5
r

r 0
,

F5
1

A2r 0

dr`dt.

The new constantsb andr 0 that arise in the near horizo
geometry are related to the mass (b52M ) and the electric

charge (Q5r 0 /A2) of the BH. The distinctive feature of thi
BH, as can be observed easily, is that it fails to satisfy
asymptotic flatness.

Stationary generalization of this BH in the EMDA theo
is achieved through the sigma model representation@9–11#.
In this method the metric ansatz is taken as

gmn5S f 2 f wi

2 f wi 2
1

f
hi j 1 f wiwj

D . ~8!

The em vector potentialAm is parametrized by the potentia
v ~electric! andu ~magnetic! in accordance with

Fio5
1

A2
v i ,
12402
,

e

e22fFi j 1kF̃ i j 5
f

A2h
e i jkuk , ~9!

in which a subscript implies a partial derivative. Further
twist potentialx is introduced through the differential rela
tion ~for details we refer to Ref.@9#!

x i1vui2uv i52
f 2

Ah
hi j e

jklwi ,k . ~10!

Thus the six potentials, namely,f, x, u, v, f, andk param-
etrize overall the target space apt for the EMDA theory. T
Kerr Newman-Unti-Tamburino~NUT! extension of the static
metric ~7! is obtained accordingly as

ds25
D̃2a2sin2u

G
~dt2wdf!2

2GS dr2

D̃
1du21

D̃ sin2u

D̃2a2sin2u
df2D ~11!

~we note that we put a tilde overD in order to avoid any
confusion with theD that we shall be using in the next se
tion!. The dilaton, axion, and (u,v) potentials are

e2f5
r 21~N1a cosu!2

G
,

k5
r 0

M

N~r 2M !2aM cosu

r 21~N1a cos!2
,

v5
r 21~N1a cosu!2

G
,

u5
r 0

M

N~r 2M !2aM cosu

G
, ~12!

wherea andN are the Kerr~rotation! and NUT parameters
respectively, while other abbreviations are as follows:

D̃5r 222Mr 1a22N2,

G5
r 0

M
~Mr 1N21aN cosu!,

w52
r 0

M

ND̃ cosu1a~Mr 1N2!sin2u

D̃2a2sin2u
.

~13!

It is observed that the diagonal metric~7! is asymptotic to the
off-diagonal one~11!. This implies that in the limitr→` the
metric ~11! goes to~7! in which the axion no longer exists
1-2
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III. CPW SOLUTIONS FROM LINEAR DILATON BH

The general metric for CPWs is represented by@1#

ds25XS dt2

D
2

ds2

d D2~Ydx21Zdy262Wdxdy! ~14!

where D512t2, d512s2, and the metric functions de
pend only on the variables (t,s). Next, by introducing null
coordinates (u,v) through

t5sin~au1bv !,

s5sin~au2bv !

~a,b5const!, ~15!

we observe that the line element is cast into the stand
form suitable for CPWs. The colliding wave formulation
the problem follows by the substitutionsu→uu(u), v
→vu(v), whereu is the Heaviside unit step function. Th
problem of local isometry requires that the Kerr-NUT met
~11! and ~12! be transformed into the form of CPWs suc
that X.0, Y>0, andZ>0 necessarily. Vanishing of metri
functions signals singularities of the coordinate type or
neric curvature singularities. We observe that the (r ,u) sec-
tor of the BH metric~11! can consistently be mapped into th
(t,s) form provided

G~r !S dr2

N22a212Mr 2r 2
2du2D 5G„r ~t!…S dt2

D
2

ds2

d
D

~16!

is satisfied. Beside identifyings5cosu this tantamounts to

E r dr

AN22a212Mr 2r 2
56sin21t ~17!

or equivalently, by choosing one of the signs,

r 5M1AN21M22a2t. ~18!

We note that an analytic expression oft in terms ofr may
not be available in all problems where we demand iden
cations such as Eq.~16!. In a large class of problems, how
ever, including BHs in higher dimensions, de Sitter cosm
ogy, and quintessence problems, our prescription wo
perfectly, implying that a corresponding CPW metric can
found. The linear dilaton BH solution~11! now transforms
into CPWs by employing the transformation

s5cosu,

r 5M1AN21M22a2t,

x5t,

y5w. ~19!
12402
rd
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By imposing appropriate scaling of the coordinates~adapting
M5r 051) and definingq5a ~or q5N) with a related pa-
rameterp>1 such that

p22q251, ~20!

we obtain the following metrics of CPWs in the EMD
theory. For completeness we consider also separately
third class the case of the EMD metric of CPWs correspo
ing to a505N.

~1! The Kerr-type CPW metric (N50, q5a)

ds25~p1t!Fdt2

D
2

ds2

d
2dS dy2

q

t1p
dxD 2G2

D

t1p
dx2.

~21!

The dilaton, axion, and em potential one-form are

e2f5
~t1p!21q2s2

t1p
,

k5
2qs

~t1p!21q2s2
,

A5
1

A2
F ~t1p!21q2s2

t1p
dx1qddyG . ~22!

Now substitution of Eq.~15! and insertion of the step func
tions with the null coordinates we obtain the interaction~col-
lision! region~region IV! of our metric. The incoming region
~region II! for v,0 becomes

dsII
2 5~p1sinau!F4abdudv2cos2auS dy2

qdx

p1sinauD 2G
2

cos2au

p1sinau
dx2 ~23!

~and a similar metric withdsIII
2 with au↔bv for region III!.

For u,0, v,0, we get the flat metric~region I!

dsI
254abpdudv2

1

p
dx22pS dy2

q

p
dxD 2

~24!

expressed in a scaled coordinate system. The dilaton, ax
and em fields can also be easily obtained in the incom
regions. By inverting the problem, this information cons
tutes our initial data which naturally all vanish, as it shou
in the flat regionu,0, v,0. In Appendix B we give the
nonzero curvature and Ricci components of this spaceti
The interesting property is that it is not singular. All We
scalars are regular and the singularities att51(s51) are
spurious coordinate singularities. Another interesting pr
erty is that in contrast to the Kerr metric our Kerr-type met
~21! is not typeD. This becomes evident after we comput

C0C429C2
25

q2dD

16~t1p!6
Þ0. ~25!
1-3
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In the limit q→0 (p→1), which corresponds to the CPW
generated from the static dilaton metric~7!, it becomes
type D.

~2! The NUT-type CPW metric (a50,q5NÞ0)

ds25~p1t!Fdt2

D
2

ds2

d
2ddy2G2

D

p1t
~dx1qsdy!2.

~26!

The dilaton, axion, and Maxwell potential one-form are
follows:

e2f5
p~11t2!12t

t1p
,

k5
qt

p~11t2!12t
,

A5
1

A2p
Fp~11t2!12t

t1p
dx2

pqsD

t1p
dyG . ~27!

In the incoming region (v,0) ~region II! our metric takes
the form @with u5uu(u)]

dsII
2 5~p1sinau!@4abdudv2cos2audy2#

2
cos2au

p1sinau
~dx1q sinaudy!2 ~28!

and a similar form~by au↔bv) follows for the region III
incoming metric. Foru,0, v,0 we obtain the flat metric

ds25p~4abdudv2dy2!2
1

p
dx2. ~29!

The initial data for our incoming fields can also easily
found from Eq.~27!. We present the details of this metric
Appendix C. The Weyl scalars suggest that, similar to
Kerr-type metric~21!, the NUT-type metric~26! is also regu-
lar. t51 (s51) are coordinate singularities that can be
moved. The significant difference between the NUT and K
types is that the NUT type turns out to be typeD. The Weyl
curvatures~Appendix C! in the interaction region (u.0,v
.0) satisfy

9C2
25C0C4 . ~30!

~3! The general static EMD metric was given in Eq.~4!.
We wish now to obtain the corresponding CPW in this ca
as well. For this purpose we identify

dr2

~r 2r 2!~r 2r 1!
2du25

dt2

D
2

ds2

d
, ~31!

which leads to the relation

2r 5r 11r 21~r 12r 2!t. ~32!
12402
s
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The coordinate transformation toward our CPW metric
accomplished by this condition ands5cosu, x5t, and y
5w. The resulting metric is~up to an overall constan
rescaling!

ds25~11t!~a01b0t!Fdt2

D
2

ds2

d
2ddy2G

2
12t

a01b0t
dx2, ~33!

wherea05r 11r 2 andb05r 12r 2 . This is the CPW met-
ric corresponding to a more general EMD theory without t
axion. In the extremal case we chooseb050 and~after res-
caling thex coordinate! we obtain

ds25~11t!Fdt2

D
2

ds2

d
2ddy2G2~12t!dx2. ~34!

This is precisely the limiting case (p51,q50) of both the
Kerr ~21! and NUT~26! type (a505N) metrics for CPWs.
The metric~33! describes collision of waves in EMD theory
which is both regular and typeD.

IV. CONCLUSION AND DISCUSSION

The local equivalence between the inner horizon region
BHs and the spacetime of CPWs has been fruitful in
generation of physically significant solutions in the collidin
EMDA theory. For sample BHs we have chosen Kerr-NU
type BHs in a linear dilaton background. As expected,
initial data for dilaton, axion, and em fields cannot be ar
trary but are dictated by the original BH solution. The fre
dom to eliminate the axion reduces the metric to diago
and it leads to a regular CPW solution in the EMD theo
The incoming plane waves~i.e., a holographic boundary in
the string language! consisting of a mixture of dilaton, axion
and em waves extend smoothly into the interaction regi
We realize once more~as in Ref.@5#! that the axion survives
within the second polarization context of the collidin
waves. We add, finally, that our technique applies also
higher dimensional BHs and colliding branes. One signal
problem in higher dimensions, however, is that the pla
waves may propagate in lower dimensional backgrounds
remains to be seen whether this feature may lead to the
ation of extra dimensions via colliding waves.

APPENDIX A

The total energy-momentum tensor is given by

4pTmn5fmfn2
1

2
gmn~¹f!2

1
1

4
e4fS kmkn2

1

2
gmn~¹k!2D

1e22fS FmaFn
a1

1

4
gmnFabFabD . ~A1!
1-4
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In terms of the null tetrad formalism of Newman and Pe
rose~NP!, the energy-momentum is expressed as follows

4pTmn5f00nmnn1f22l ml n1f02m̄mm̄n1f20mmmn

2f01nmm̄n2f10nmmn2f12l mm̄n2f21l mmn

1~f1113L!~ l mnn1nml n!

1~f1123L!~mmm̄n1m̄mmn!. ~A2!

APPENDIX B

The null tetrad basis one-forms for the Kerr-type met
~21! are

A2l 5Ap1tS dt

AD
2

ds

Ad
D ,

A2n5Ap1tS dt

AD
1

ds

Ad
D ,

A2m5 iA D

p1t
dx1Ad~p1t!S dy2

qdx

p1t
D .

~B1!

The nonzero NP Ricci and Weyl scalars are

f11523L5
abu~u!u~v !

16~t1p!3
~D2q2d!,MM

f025f205
abu~u!u~v !

4~t1p!
S 11

q2s2

~t1p!2D ,

f225
b2u~v !

8~t1p!2
S t13p1

q2s2

~t1p!
D ,

f005
a2u~u!

8~t1p!2
S t13p1

q2s2

~t1p!
D ,

C212L5
abu~u!u~v !

8~t1p!3
~t1p1 iqs!2,

C25
abu~u!u~v !

12
K,

C45bG1~u!d~v !1
b2u~v !K

4
,

C05aF1~v !d~u!1
a2u~u!K

4
, ~B2!

with
12402
-
K5

1

~t1p!3
@2~11tp!1q2d1~t1p!~t13iqs!#

and G15lv and F152su , where the spin coefficientsl
ands are

l5
1

2A2~t1p!3/2F11pt

AD
1

s

Ad
~p1t!2 iqAdG ,

s5
1

2A2~t1p!3/2F2
11pt

AD
1

s

Ad
~p1t!2 iqAdG .

~B3!

APPENDIX C

The null-tetrad basis one-forms for the NUT-type met
~26! are

A2l 5Ap1tS dt

AD
2

ds

Ad
D ,

A2n5Ap1tS dt

AD
1

ds

Ad
D ,

A2m5Ad~p1t!dy1 iA D

p1t
~dx1qsdy!. ~C1!

The nonzero NP scalars are

f11523L5
abu~u!u~v !

16~t1p!3
p2D,

f025f205
abu~u!u~v !

4~t1p!
S 11

q2s2

~t1p!2D ,

f225
b2u~v !

8~t1p!2
S t13p1

q2s2

~t1p!
D ,

f005
a2u~u!

8~t1p!2
S t13p1

q2s2

~t1p!
D ,
1-5
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C25
abu~u!u~v !

12~t1p!3
@~11pt1 iq !21~pt11!~11 iq !#,

C45bG2~u!d~v !1
b2u~v !

4~p1t!3
@2p2D13~11pt!~11 iq !#,

C05aF2~v !d~u!1
a2u~u!

4~p1t!3
@2p2D13~11pt!~11 iq !#,

~C2!

where the impulsive components are
o

o

s

gh

12402
G25lv and F252su ,

in which the spin coefficients are

l5
1

2A2~t1p!3/2F11pt

AD
1

s

Ad
~p1t!1 iqADG ,

s52
1

2A2~t1p!3/2F11pt

AD
2

s

Ad
~p1t!1 iqADG .

~C3!
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