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Abstract The formation of a naked singularity in a model
of f (R) gravity having as source a linear electromagnetic
field is considered in view of quantum mechanics. Quantum
test fields obeying the Klein–Gordon, Dirac and Maxwell
equations are used to probe the classical timelike naked sin-
gularity developed at r = 0. We prove that the spatial deriva-
tive operator of the fields fails to be essentially self-adjoint.
As a result, the classical timelike naked singularity remains
quantum mechanically singular when it is probed with quan-
tum fields having different spin structures.

1 Introduction

In the last decade, there have been extensive studies in Ex-
tended Theories of Gravity (ETG) such as the Lovelock and
f (R) gravity theories. The main motivation to study the
ETG is to understand the accelerated expansion of the uni-
verse and the issue of dark matter/energy (see [1] and refer-
ences therein for a general review). One of the most attrac-
tive branches of the ETG is the f (R) gravity theory in which
the standard Einstein’s gravity is extended with an arbitrary
function of the Ricci scalar R instead of the linear one [1]. In
this model, the Ricci scalar R in the Einstein–Hilbert action
is replaced with f (R) = R + αg(R), where g(R) is an arbi-
trary function of R so that, in the limit α = 0, one recovers
the Einstein limit. Although the majority of researchers pre-
fer to use this ansatz, in general, finding an exact analytic
solution to the field equations is not an easy task. As far
as analytic exact solutions are concerned, static, spherically
symmetric models in f (R) gravity have been shown to serve
for this purpose [2–6]. In this context of static, spherically
symmetric solutions of f (R) gravity, the solutions admitting
black holes have attracted much attention.

In the context of static, spherically symmetric f (R) grav-
ity, it has recently been shown that [7] an exact analytic so-
lution is also possible if one assumes f (R) to have the form
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of f (R) = ξ(R + R1) + 2α
√

R + R0, in which ξ,α,R0 and
R1 are constants, a priority to secure the Einstein limit by
setting the constants R0 = R1 = α = 0 and ξ = 1. In this
model of f (R) gravity, exact solutions with external elec-
tromagnetic sources (both linear and nonlinear) are found.
It was shown that the solution with a linear electromagnetic
field does not admit a black hole while the solution with a
nonlinear electromagnetic source admits a black hole solu-
tion. The physical properties of the latter solution are inves-
tigated by calculating thermodynamic quantities and it was
shown to satisfy the first law of thermodynamics. The so-
lution having as a source a linear electromagnetic field re-
sulted with a naked curvature singularity at r = 0, which is
a typical central singularity peculiar to spherically symmet-
ric systems. The solution given in [7] is a kind of extension
of a global monopole solution [8] which represents a so-
lution of the Einstein’s equations with spherical symmetry
with matter that extends to infinity. It can also be interpreted
as a cloud of cosmic strings with spherical symmetry [9].
Hence, the spacetime is conical. However, with the inclusion
of a linear or nonlinear electromagnetic field, the spacetime
is no more conical in the context of f (R) gravity.

Within the framework of ETG gravity, black hole solu-
tions have been widely studied in the literature (see [1, 10]
and references therein for a complete review). However, the
solutions that result with naked singularities have not been
studied in detail. In physics, naked singularities are consid-
ered to be a threat to the cosmic censorship hypothesis. Fur-
thermore, as in classical general relativity, compared to the
black hole solutions, naked singularities are not well under-
stood in the context of f (R) gravity. This still remains a
fundamental problem in general relativity as well as in ETG
to be solved. Another important difficulty in resolving this
problem is the scale on which the curvature singularity oc-
curs. On these small scales, it is believed that the classical
methods should be replaced with quantum techniques in re-
solving the singularity problems that necessitate the use of
quantum gravity. Since the quantum theory of gravity is still
“under construction”, an alternative method is proposed by
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Wald [11] which was further developed by Horowitz and
Marolf (HM) [12] in determining the character of classi-
cally singular spacetime and to see if quantum effects have
any chance to heal or regularize the dynamics and restore
the predictability if the singularity is probed with quantum
particles/fields.

In this paper, we investigate the occurrence of naked sin-
gularities in the context of f (R) gravity from the point of
view of quantum mechanics. We believe that this will be the
unique example wherein the formation of a classically naked
curvature singularities in f (R) gravity will be probed with
quantum fields/particles that obey the Klein–Gordon, Dirac
and Maxwell equations. The criterion proposed by HM will
be used in this study to investigate the occurrence of naked
singularities.

This criterion has been used successfully for other space-
times to check whether the classically singular space-
times are quantum mechanically regular or not. As an ex-
ample: negative mass Schwarzschild spacetime, charged
dilatonic black hole spacetime and fundamental string
spacetimes are considered in [12]. An alternative function
space, namely the Sobelov space instead of the Hilbert
space, has been introduced in [13], for analyzing the sin-
gularities within the framework of quantum mechanics.
Helliwell and Konkowski have studied quasiregular [14],
Gal’tsov–Letelier–Tod spacetime [15], Levi-Civita space-
times [16, 17], and, recently, they have also considered con-
formally static spacetimes [18]. Pitelli and Letelier have
studied spherical and cylindrical topological defects [19],
Banados–Teitelboim–Zanelli (BTZ) spacetimes [20], the
global monopole spacetime [21] and cosmological space-
times [22]. Quantum singularities in matter coupled 2 + 1
dimensional black hole spacetimes are considered in [23].
Quantum singularities are also considered in Lovelock the-
ory [24] and linear dilaton black hole spacetimes [25]. Re-
cently, the occurrence of naked singularities in a 2 + 1
dimensional magnetically charged solution in Einstein–
Power-Maxwell theory have also been considered [26].

The main theme in these studies is to understand whether
these classically singular spacetimes turn out to be quantum
mechanically regular if they are probed with quantum fields
rather than classical particles.

The solution to be investigated in this paper is a kind of
f (R) gravity extension of the analysis presented in [21] for
the global monopole spacetime. The inclusion of the lin-
ear Maxwell field within the context of f (R) gravity af-
fects the topology significantly and removes the conical na-
ture at infinity. Furthermore, the true timelike naked cur-
vature singularity is created at r = 0 which is peculiar to
spherically symmetric systems. We investigate this singu-
larity within the framework of quantum mechanics by em-
ploying three different quantum fields/particles obeying the
Klein–Gordon, Dirac and Maxwell fields with different spin
structures.

The paper is organized as follows: In Sect. 2, we review
the solution found recently in [7], and give the structure
of the spacetime. In Sect. 3, first, the definition of quan-
tum singularity for static spacetimes is briefly introduced.
Then, the quantum fields obeying the Klein–Gordon, Dirac
and Maxwell equations are used to probe the singularity. The
paper ends with a conclusion in Sect. 4.

2 The metric for f (R) gravity coupled to Maxwell
fields and spacetime structure

Recently, an exact analytic solution for f (R) gravity cou-
pled with linear and nonlinear Maxwell field in four dimen-
sions has been presented in [7]. The corresponding action
for f (R) gravity coupled with linear Maxwell field in four
dimensions is given by

S =
∫

d4x
√−g

[
f (R)

2κ
− 1

4π
F

]
, (1)

in which f (R) is a real function of the Ricci scalar R, and
F = 1

4FμνF
μν is the Maxwell invariant. The Maxwell two-

form is given by

F = Q

r2
dt ∧ dr + P sin θ dθ ∧ dϕ, (2)

in which Q and P are the electric and magnetic charges,
respectively. The static spherically symmetric metric ansatz
is

ds2 = −B(r)dt2 + dr2

B(r)
+ r2(dθ2 + sin2 θ dϕ2), (3)

where B(r) stands for the only metric function to be found.
The Maxwell equations (i.e. dF = 0 = d∗F) are satisfied,
and the field equations are given by

fRRν
μ +

(
�fR − 1

2
f

)
δν
μ − ∇ν∇μfR = κT ν

μ , (4)

in which

fR = df (R)

dR
, (5)

�fR = 1√−g
∂μ

(√−g∂μ
)
fR, (6)

∇ν∇μfR = gαν
[
(fR),μ,α − Γ m

μα(fR),m
]
, (7)

while the energy momentum tensor is

4πT ν
μ = −Fδν

μ + FμλF
νλ. (8)

Furthermore, the trace of the field equation (4) reads

fRR + (d − 1)�fR − d

2
f = κT , (9)
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with T = T
μ
μ . The non-zero energy momentum tensor com-

ponents are

T ν
μ = P 2 + Q2

8πr4
diag[−1,−1,1,1], (10)

and with zero trace we have

f = 1

2
fRR + 3�fR. (11)

With reference to the paper [7], the form of the function
f (R) is assumed to be

f (R) = ξ

(
R + 1

2
R0

)
+ 2α

√
R + R0, (12)

which leads to

R = α2

η2r2
− R0, (13)

where α, R0, and ξ are constants. Consequently, the metric
function B(r) is obtained for the free parameters α = η as

B(r) = 1

2
− m

r
+ q2

r2
− Λeff

3
r2, (14)

where m = −ξ
3η

, Λeff = −R0
4 and q2 = Q2+P 2

ξ
. As was ex-

plained in [7], due to the constraints on the free parame-
ters, this solution does not admit the Reissner–Nordström
(RN)–de Sitter (dS) limit. However, in the limit ξ = 1 and
P = Q = 0, the solution reduces to the well known global
monopole solution reported in [8], which represents a spher-
ically symmetric, non-asymptotically flat solution with a
matter field that extends to infinity. Furthermore, this so-
lution can also be considered as a spherically symmetric
cloud of cosmic string which gives rise to a deficit angle [9].
Therefore, the solution given in (14) is a kind of Einstein–
Maxwell extension of the global monopole solution in f (R)

gravity. One of the striking effects of the additional fields is
the removal of the conical geometry of the global monopole
spacetime. The Kretschmann scalar which indicates the for-
mation of curvature singularity is given by

K = 1

3

(
8λ2r8 + 4λr6 + 3r4 + 12mr3 + 12r2(3m2 − q2)

− 144mq2r + +168q4)/(r8).
It is obvious that r = 0 is a typical central curvature singular-
ity. This is a timelike naked singularity because the behavior
of the new radial coordinate defined by r∗ = ∫ dr

B(r)
is finite

when r → 0. Hence, the new solution obtained in [7] and
given in (14) is classically a singular spacetime.

Our aim in the next section is to investigate this clas-
sically singular spacetime with regard to the quantum me-
chanical point of view.

3 Quantum singularities

One of the important predictions of the Einstein’s theory of
general relativity is the formation of spacetime singularities.
In classical general relativity, singularities are defined as the
points in which the evolution of timelike or null geodesics
is not defined after a proper time. According to the clas-
sification of the classical singularities devised by Ellis and
Schmidt scalar curvature singularities are the strongest ones
in the sense that the spacetime cannot be extended and all
physical quantities, such as the gravitational field, energy
density and tidal forces, diverge at the singular point. In
black hole spacetimes, the location of the curvature singu-
larity is at r = 0 and is covered by horizon(s). As long as
the singularities are hidden by horizon(s), they do not con-
stitute a threat to the Penrose cosmic censorship hypothesis.
However, there are some cases that the singularity is not hid-
den and hence, it is naked. In the case of naked singularities,
further care is required because they violate the cosmic cen-
sorship hypothesis. The resolution of the naked singularities
stands as one of the most drastic problems in general rela-
tivity to be solved.

Naked singularities that occur at r = 0 are on the very
small scales where classical general relativity is expected to
be replaced by quantum theory of gravity. In this paper, the
occurrence of naked singularities in f (R) gravity will be
analyzed through a quantum mechanical point of view. In
probing the singularity, quantum test particles/fields obeying
the Klein–Gordon, Dirac and Maxwell equations are used.
In other words, the singularity will be probed with spin 0,
spin 1/2 and spin 1 fields. The reason for using three dif-
ferent types of field is to clarify whether or not the classical
singularity is sensitive to the spin of the fields.

Our analysis will be based on the pioneering work of
Wald, which was further developed by HM to probe the clas-
sical singularities with quantum test particles obeying the
Klein–Gordon equation in static spacetimes having timelike
singularities. According to HM, the singular character of the
spacetime is defined as the ambiguity in the evolution of the
wave functions. That is to say, the singular character is de-
termined in terms of the ambiguity when attempting to find
a self-adjoint extension of the operator to the entire Hilbert
space. If the extension is unique, it is said that the space is
quantum mechanically regular. A brief review now follows.

Consider a static spacetime (M,gμν) with a timelike
Killing vector field ξμ. Let t denote the Killing parameter
and Σ denote a static slice. The Klein–Gordon equation in
this space is
(∇μ∇μ − M2)ψ = 0. (15)

This equation can be written in the form

∂2ψ

∂t2
= √

f Di
(√

f Diψ
) − f M2ψ = −Aψ, (16)
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in which f = −ξμξμ and Di is the spatial covariant deriva-
tive on Σ . The Hilbert space H (L2(Σ)) is the space of
square integrable functions on Σ . The domain of an opera-
tor A, D(A), is taken in such a way that it does not enclose
the spacetime singularities. An appropriate set is C∞

0 (Σ),
the set of smooth functions with compact support on Σ .
The operator A is real, positive and symmetric; therefore,
its self-adjoint extensions always exist. If it has a unique ex-
tension AE , then A is called essentially self-adjoint [27–29].
Accordingly, the Klein–Gordon equation for a free particle
satisfies

i
dψ

dt
= √

AEψ, (17)

with the solution

ψ(t) = exp
[−it

√
AE

]
ψ(0). (18)

If A is not essentially self-adjoint, the future time evolution
of the wave function (18) is ambiguous. Then the HM crite-
rion defines the spacetime as quantum mechanically singu-
lar. However, if there is only a single self-adjoint extension,
the operator A is said to be essentially self-adjoint and the
quantum evolution described by (18) is uniquely determined
by the initial conditions. According to the HM criterion, this
spacetime is said to be quantum mechanically non-singular.
In order to determine the number of self-adjoint extensions,
the concept of deficiency indices is used. The deficiency
subspaces N± are defined by (see Ref. [13] for a detailed
mathematical background)

N+ = {
ψ ∈ D

(
A∗), A∗ψ = Z+ψ, ImZ+ > 0

}
with dimension n+,

N− = {
ψ ∈ D

(
A∗), A∗ψ = Z−ψ, ImZ− < 0

}
with dimension n−.

(19)

The dimensions (n+, n−) are the deficiency indices of the
operator A. The indices n+(n−) are completely independent
of the choice of Z+(Z−) depending only on whether or not
Z lies in the upper (lower) half complex plane. Generally
one takes Z+ = iλ and Z− = −iλ, where λ is an arbitrary
positive constant necessary for dimensional reasons. The de-
termination of deficiency indices is then reduced to counting
the number of solutions of A∗ψ = Zψ (for λ = 1),

A∗ψ ± iψ = 0, (20)

that belong to the Hilbert space H. If there are no square
integrable solutions (i.e. n+ = n− = 0), the operator A pos-
sesses a unique self-adjoint extension and is essentially self-
adjoint. Consequently, the way to find a sufficient condition
for the operator A to be essentially self-adjoint is to inves-
tigate the solutions satisfying (20) that do not belong to the
Hilbert space.

3.1 Klein–Gordon fields

The Klein–Gordon equation for a scalar particle with mass
M is given by

�ψ = g−1/2∂μ

[
g1/2gμν∂ν

]
ψ = M2ψ. (21)

For the metric (3), the Klein–Gordon equation becomes

∂2ψ

∂t2
= −B(r)

{
B(r)

∂2ψ

∂r2
+ 1

r2

∂2ψ

∂θ2
+ 1

r2 sin2 θ

∂2ψ

∂ϕ2

+ cot θ

r2

∂ψ

∂θ
+

(
2B(r)

r
+ B

′
(r)

)
∂ψ

∂r

}

+ B(r)M2ψ. (22)

In analogy with (16), the spatial operator A for the massless
case is

A = B(r)

{
B(r)

∂2

∂r2
+ 1

r2

∂2

∂θ2
+ 1

r2 sin2 θ

∂2

∂ϕ2

+ cot θ

r2

∂

∂θ
+

(
2B(r)

r
+ B

′
(r)

)
∂

∂r

}
, (23)

and the equation to be solved is (A∗ ± i)ψ = 0. Using sep-
aration of variables, ψ = R(r)Ym

l (θ,ϕ), we get the radial
portion of (20) as

d2R(r)

dr2
+ (r2B(r))

′

r2B(r)

dR(r)

dr

+
(−l(l + 1)

r2B(r)
± i

B2(r)

)
R(r) = 0, (24)

where a prime denotes the derivative with respect to r .

3.1.1 The case of r → ∞

The case r → ∞ is topologically different compared to the
analysis reported in [21]. In the present problem the geom-
etry is not conical. The approximate metric when r → ∞
is

ds2 
 −
(

R0r
2

12

)
dt2 +

(
12

R0r2

)
dr2

+ r2(dθ2 + sin2 θ dϕ2). (25)

For the above metric, the radial equation (24) becomes

d2R(r)

dr2
+ 4

r

dR(r)

dr
= 0, (26)

whose solution is

R(r) = C1 + C2

r3
,
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where C1 and C2 are arbitrary integration constants. It is
clearly observed that the above solution is square integrable
as r → ∞ if and only if C1 = 0. Hence, the asymptotic be-
havior of R(r) is given by R(r) 
 C2

r3 .

3.1.2 The case of r → 0

Near the origin there is a true timelike curvature singularity
resulting from the existence of charge. Therefore, the ap-
proximate metric near the origin is given by

ds2 
 −
(

q2

r2

)
dt2 +

(
r2

q2

)
dr2

+ r2(dθ2 + sin2 θ dϕ2). (27)

The radial equation (24) for the above metric reduces to

d2R(r)

dr2
− l(l + 1)

q2
R(r) = 0, (28)

whose solution is

R(r) = C3eαr + C4e−αr ,

α =
√

l(l + 1)

q

(29)

where C3 and C4 are arbitrary integration constants. The
square integrability of the above solution is checked by cal-
culating the squared norm of the above solution in which the
function space on each t = constant hypersurface Σ is de-
fined as H = {R‖R‖ < ∞}. The squared norm for the metric
(27) is given by

‖R‖2 =
∫ constant

0

|R(r)|2r4

q2
dr. (30)

Our calculation has revealed that the solution above is al-
ways square integrable near r = 0, even if l = 0, which cor-
responds to the S-wave solutions.

Consequently, the spatial operator A has deficiency in-
dices n+ = n− = 1, and it is not essentially self-adjoint.
Hence, the classical singularity at r = 0 remains quantum
mechanically singular when probed with fields obeying the
Klein–Gordon equation.

3.2 Maxwell fields

The Newman–Penrose formalism will be used to find the
source-free Maxwell fields propagating in the space of f (R)

gravity. Let us note that the signature of the metric (3) is
changed to −2 in order to use the source-free Maxwell equa-
tions in the Newman–Penrose formalism. Thus, the metric
(3) is rewritten as

ds2 = B(r)dt2 − dr2

B(r)
− r2(dθ2 + sin2 θ dϕ2). (31)

The four coupled source-free Maxwell equations for electro-
magnetic fields in the Newman–Penrose formalism is given
by

Dφ1 − δ̄φ0 = (π − 2α)φ0 + 2ρφ1 − κφ2,

δφ2 − �φ1 = −νφ0 + 2μφ1 + (τ − 2β)φ2,

δφ1 − �φ0 = (μ − 2γ )φ0 + 2τφ1 − σφ2,

Dφ2 − δ̄φ1 = −λφ0 + 2πφ1 + (ρ − 2ε)φ2,

(32)

where B(r) is the metric function given in (14), φ0, φ1 and
φ2 are the Maxwell spinors, ε,ρ,π,α,μ,γ,β, and τ are the
spin coefficients to be found and the bar denotes complex
conjugation. The null tetrad vectors for the metric (31) are
defined by

la =
(

1

B(r)
,1,0,0

)
,

na =
(

1

2
,−B(r)

2
,0,0

)
,

ma = 1√
2

(
0,0,

1

r
,

i

r sin θ

)
.

(33)

The directional derivatives in the Maxwell equations are de-
fined by D = la∂a,Δ = na∂a, and δ = ma∂a . We define op-
erators in the following way:

D0 = D,

D†
0 = − 2

B(r)
Δ,

L†
0 = √

2rδ and L†
1 = L†

0 + cot θ

2
,

L0 = √
2rδ̄ and L1 = L0 + cot θ

2
.

(34)

The non-zero spin coefficients are

μ = −1

r

B(r)

2
, ρ = −1

r
, γ = 1

4
B

′
(r),

β = −α = 1

2
√

2

cot θ

r
.

(35)

The Maxwell spinors are defined by [30]

φ0 = F13 = Fμνl
μmν,

φ1 = 1

2
(F12 + F43) = 1

2
Fμν

(
lμnν + mμmν

)
,

φ2 = F42 = Fμνm
μnν,

(36)

where Fij (i, j = 1,2,3,4) and Fμν (μ, ν = 0,1,2,3)

are the components of the Maxwell tensor in the tetrad
and tensor bases, respectively. Substituting (34) into the
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Maxwell equations together with non-zero spin coefficients,
the Maxwell equations become
(

D0 + 2

r

)
φ1 − 1

r
√

2
L1φ0 = 0, (37)

(
D0 + 1

r

)
φ2 − 1

r
√

2
L0φ1 = 0, (38)

B(r)

2

(
D†

0 + B
′
(r)

B(r)
+ 1

r

)
φ0 + 1

r
√

2
L†

0φ1 = 0, (39)

B(r)

2

(
D†

0 + 2

r

)
φ1 + 1

r
√

2
L†

1φ2 = 0. (40)

The equations above will become more tractable if the vari-
ables are changed to

Φ0 = φ0eikt , Φ1 = √
2rφ1eikt , Φ2 = 2r2φ2eikt .

Then we have(
D0 + 1

r

)
Φ1 − L1Φ0 = 0, (41)

(
D0 − 1

r

)
Φ2 − L0Φ1 = 0, (42)

r2B(r)

(
D†

0 + B
′
(r)

B(r)
+ 1

r

)
Φ0 + L†

0Φ1 = 0, (43)

r2B(r)

(
D†

0 + 1

r

)
Φ1 + L†

1Φ2 = 0. (44)

The commutativity of the operators L and D enables us to
eliminate each Φi from the above equations, and hence we
have
[

L†
0L1 + r2B(r)

(
D0 + B

′
(r)

B(r)
+ 3

r

)

×
(

D†
0 + B

′
(r)

B(r)
+ 1

r

)]
Φ0(r, θ) = 0, (45)

[
L0L†

1 + r2B(r)

(
D†

0 + 1

r

)(
D0 − 1

r

)]
Φ2(r, θ) = 0,

(46)
[

L1L†
0 + r2B(r)

(
D†

0 + B
′
(r)

B(r)
+ 1

r

)(
D0 + 1

r

)]

× Φ1(r, θ) = 0. (47)

The variables r and θ can be separated by assuming a sepa-
rable solution in the form of

Φ0(r, θ) = f0(r)Θ0(θ), Φ1(r, θ) = f1(r)Θ1(θ),

Φ2(r, θ) = f2(r)Θ2(θ).

The separation constants for (45) and (46) are the same, be-
cause Ln = −L†

n(π − θ), or, in other words, the operator

L†
0L1 acting on Θ0(θ) is the same as the operator L0L†

1 act-
ing on Θ2(θ) if we replace θ by π −θ . However, for (47) we
will assume another separation constant. Furthermore, by
defining R0(r) = f0(r)

rB(r)
, R1(r) = f1(r)

r
, and R2(r) = f2(r)

r
,

the radial equations can be written as

f
′′
0 (r) + 2

r
f

′
0(r) +

[
−iω

(
2

rB(r)
− B

′
(r)

B2(r)

)

+ ω2

B2(r)
− ε2

r2B(r)

]
f0(r) = 0, (48)

f
′′
2 (r) − 2

r
f

′
2(r) +

[
iω

(
2

rB(r)
− B

′
(r)

B2(r)

)

+ ω2

B2(r)
− ε2

r2B(r)

]
f2(r) = 0, (49)

f
′′
1 (r) + B

′
(r)

B(r)
f

′
1(r) +

[
ω2

B2(r)
− η2

r2B(r)

]
f1(r) = 0,

(50)

where ε and η are the separability constants.

3.2.1 The case r → ∞

For the case r → ∞, the corresponding metric is given in
(25). Hence, the radial parts of the Maxwell equations, (48),
(49), and (50), become

f
′′
j (r) + 2

r
f

′
j (r) = 0, j = 0,1, (51)

f
′′
2 (r) − 2

r
f

′
2(r) = 0. (52)

Thus, the solutions in the asymptotic case are

Rj (r) = C1 + C2

r
, j = 0,1, (53)

R2(r) = C3 + C4

r3
, (54)

in which Ci are integration constants. The solution above is
square integrable if C1 = C3 = 0. Therefore, the asymptotic
form of the solutions behaves as Rj (r) ∼ C2

r
, j = 0,1, and

R2(r) ∼ C4
r3 .

3.2.2 The case r → 0

The metric near r → 0 is given in (27). Hence, the radial
parts of the Maxwell equations, (48), (49), and (50), for this
case are given by

R
′′
j (r) − 2

r
R

′
j (r) − α2

q2
Rj (r) = 0, j = 1,2, (55)

R
′′
0(r) + 2

r
R

′
0(r) − η2

q2
R0(r) = 0, (56)
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whose solutions are obtained as

Rj (r) = C3e
α
q
r
(αr − 1) + C4e− α

q
r
(αr + 1), j = 1,2,

(57)

R0(r) = C5

r
sinh

(
η

q
r

)
+ C6

r
cosh

(
η

q
r

)
, (58)

where Ci are constants. The above solution is checked for
square integrability. Calculations have revealed that

‖Ri‖2 =
∫ constant

0

|Ri(r)|2r4

q2
dr < ∞,

which indicates that the obtained solutions are square in-
tegrable. The definition of the quantum singularity for
Maxwell fields will be the same as for the Klein–Gordon
fields. Here, since we have three equations governing the
dynamics of the photon waves, the unique self-adjoint ex-
tension condition on the spatial part of the Maxwell operator
should be examined for each of the three equations. As a re-
sult, the occurrence of the naked singularity in f (R) gravity
is quantum mechanically singular if it is probed with photon
waves.

3.3 Dirac fields

The Newman–Penrose formalism will also be used here
to find the massless Dirac fields (fermions) propagating in
the space of f (R)-gravity. The Chandrasekhar–Dirac (CD)
equations in the Newman–Penrose formalism are given by

(D + ε − ρ)F1 + (δ̄ + π − α)F2 = 0,

(Δ + μ − γ )F2 + (δ + β − τ)F1 = 0,

(D + ε̄ − ρ̄)G2 − (δ + π̄ − ᾱ)G1 = 0,

(Δ + μ̄ − γ̄ )G1 − (δ̄ + β̄ − τ̄ )G2 = 0,

(59)

where F1,F2,G1, and G2 are the components of the wave
function, ε,ρ,π,α,μ,γ,β, and τ are the spin coefficients
to be found. The non-zero spin coefficients are given in (35).
The directional derivatives in the CD equations are the same
as in the Maxwell equations. Substituting non-zero spin co-
efficients and the definitions of the operators given in (34)
into the CD equations leads to
(

D0 + 1

r

)
F1 + 1

r
√

2
L1F2 = 0,

−B(r)

2

(
D†

0 + B
′
(r)

2B(r)
+ 1

r

)
F2 + 1

r
√

2
L†

1F1 = 0,

(
D0 + 1

r

)
G2 − 1

r
√

2
L†

1G1 = 0,

B(r)

2

(
D†

0 + B
′
(r)

2B(r)
+ 1

r

)
G1 + 1

r
√

2
L1G2 = 0.

(60)

For the solution of the CD equations, we assume a separable
solution in the form of

F1 = f1(r)Y1(θ)ei(kt+mϕ),

F2 = f2(r)Y2(θ)ei(kt+mϕ),

G1 = g1(r)Y3(θ)ei(kt+mϕ),

G2 = g2(r)Y4(θ)ei(kt+mϕ),

(61)

where m is the azimuthal quantum number and k is the fre-
quency of the Dirac fields, which is assumed to be positive
and real. Since {f1, f2, g1, g2} and {Y1, Y2, Y3, Y4} are func-
tions of r and θ , respectively, by substituting (61) into (60)
and applying the assumptions given by

f1(r) = g2(r) and f2(r) = g1(r), (62)

Y1(θ) = Y3(θ) and Y2(θ) = Y4(θ), (63)

the Dirac equations transform into (64). In order to solve
the radial equations, the separation constant λ should be de-
fined. This is achieved by using the angular equations. In
fact, it is already known from the literature that the separa-
tion constant can be expressed in terms of the spin-weighted
spheroidal harmonics. The radial parts of the Dirac equa-
tions become(

D0 + 1

r

)
f1(r) = λ

r
√

2
f2(r),

B(r)

2

(
D†

0 + B
′
(r)

2B(r)
+ 1

r

)
f2(r) = λ

r
√

2
f1(r).

(64)

We further assume that

f1(r) = Ψ1(r)

r
,

f2(r) = Ψ2(r)

r
;

then (64) transforms into

D0Ψ1 = λ

r
√

2
Ψ2,

B(r)

2

(
D†

0 + B
′
(r)

2B(r)

)
Ψ2 = λ

r
√

2
Ψ1.

(65)

Note that
√

B(r)
2 D†

0

√
B(r)

2 = D†
0 + B

′
(r)

2B(r)
+ 1

r
, and using this

together with the new functions

R1(r) = Ψ1(r),

R2(r) =
√

B(r)

2
Ψ2(r),

and defining the tortoise coordinate r∗ as

d

dr∗
= B

d

dr
, (66)
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(65) become

(
d

dr∗
+ ik

)
R1 =

√
Bλ

r
R2,

(
d

dr∗
− ik

)
R2 =

√
Bλ

r
R1.

(67)

In order to write (67) in a more compact form, we combine
the solutions in the following way:

Z+ = R1 + R2,

Z− = R2 − R1.

After doing some calculations we end up with a pair of one-
dimensional Schrödinger-like wave equations with effective
potentials,

(
d2

dr2∗
+ k2

)
Z± = V±Z±, (68)

V± =
[
Bλ2

r2
± λ

d

dr∗

(√
B

r

)]
. (69)

In analogy with (16), the radial operator A for the Dirac
equations can be written as

A = − d2

dr2∗
+ V±.

If we write the above operator in terms of the usual coordi-
nates r by using (66), we have

A = − d2

dr2
− B

′

B

d

dr
+ 1

B2

[
Bλ2

r2
± λB

d

dr

(√
B

r

)]
. (70)

Our aim now is to show whether this radial part of the
Dirac operator is essentially self-adjoint or not. This will
be achieved by considering (20) and counting the number
of solutions that do not belong to Hilbert space. Hence, (20)
becomes

(
d2

dr2
+ B

′

B

d

dr
− 1

B2

[
Bλ2

r2
± λB

d

dr

(√
B

r

)]
∓ i

)
ψ(r)

= 0. (71)

For the asymptotic case, r → ∞, the above equation trans-
forms to

d2ψ

dr2
+ 2

r

dψ

dr
= 0, (72)

whose solution is

ψ(r) = C1 + C2

r
. (73)

Clearly the solution is square integrable if C1 = 0. Hence,
the solution is asymptotically well behaved. Near r → 0,
(71) becomes

d2ψ

dr2
− 2

r

dψ

dr
+ σ

r3
ψ = 0,

σ = ∓2λq,

(74)

whose solution is given by

ψ(r) =
(

4σ

x2

) 3
2 {

C3J3(x) + C4N3(x)
}
, (75)

where J3(x) and N3(x) are Bessel functions of the first and

second kind, and x = 2
√

σ
r

. As r → 0, we have x → ∞. The

behavior of the Bessel functions for real ν ≥ 0 as x → ∞ is
given by

Jν(x) 

√

2

πx
cos

(
x − νπ

2
− π

4

)
,

Nν(x) 

√

2

πx
sin

(
x − νπ

2
− π

4

)
;

(76)

thus the Bessel functions asymptotically behave as J3(x) ∼√
2

πx
cos(x − 7π

4 ) and N3(x) ∼
√

2
πx

sin(x − 7π
4 ). Checking

for the square integrability has revealed that both solutions
are square integrable. Hence, the radial operator of the Dirac
field fails to satisfy a unique self-adjoint extension condi-
tion. As a result, the occurrence of the timelike naked singu-
larity in the context of f (R) gravity remains singular from
the quantum mechanical point of view if it is probed with
fermions.

4 Conclusion

In this paper, the formation of the naked singularity in the
context of a model of f (R) gravity is investigated within
the framework of quantum mechanics, by probing the sin-
gularity with the quantum fields obeying the Klein–Gordon,
Maxwell and Dirac equations. We have investigated the es-
sential self-adjointness of the spatial part of the wave oper-
ator A in the natural Hilbert space of quantum mechanics
which is a linear function space with square integrability.
Our analysis has shown that the timelike naked curvature
singularity remains quantum mechanically singular against
the propagation of the aforementioned quantum fields. An-
other notable outcome of our analysis is that the spin of the
fields is not effective in healing of the naked singularity for
the considered model of the f (R) gravity spacetime.

Another alternative function space for analyzing the sin-
gularity in this context is to use the Sobelov space instead of
the natural Hilbert space [13]. The analysis in Sobelov space
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entails square integrability both of the wave function and its
derivative. Although the details are not given in this study,
the analysis using the Sobelov space has revealed that irre-
spective of the spin structure of the fields used to probe the
singularity, the model considered of f (R) gravity spacetime
remains quantum mechanically singular.

Hence, the generic conclusion that has emerged from our
analysis is that in the model considered of f (R) gravity, the
formation of a timelike naked singularity is quantum me-
chanically singular.

It will be interesting for future research to extend the
quantum singularity analysis in other ETG models. Further-
more, it will be a great achievement if the criterion proposed
by HM is extended to stationary metrics. Although prelimi-
nary work in this direction is considered in [31], the formu-
lation has not been fully completed.
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