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We present another method of generating new solutions from old ones in general relativity. In particulaI we apply the 
method to some weU-known classes of gravitational fields. 

It is well known that the extremals of  the harmonic 
map action between two riemannian manifolds provide 
genuine solutions for the Einstein field equations in 
the theory of general relativity [1 ]. Among particular 
classes of gravitational fields that have been extensive- 
ly handled within the framework of  harmonic maps 
are stationary axially symmetric [2,3] and colliding 
gravitational wave metrics [4,5]. The essential point 
in this approach is to consider two riemannian mani- 
folds M (dimension n) and M' (dimension n')  with a 
map, f :  M ~ M'  in such a way that the energy func- 
tional [6] of this map coincides with the Einstein- 
Hilbert action of  the corresponding physical problem 
under consideration. In local coordinates this action 
reads 

l(f) = f gAe ~fA ofB gablgll/2 dnx (1) 
OX a OX b 

where gab (X) and gAB(f) are the metrics of  M and M' ,  
respectively, and the condition of  the map to be har- 
monic is given by 

~I( f )  = 0 .  (2) 

It is interesting to note that the equations obtained 
from this extremal condition of  the harmonic map 
action suitable for the particular general relativistic 
problem does not produce all the Einstein equations 
obtained by the standard methods of calculation. How- 
ever, this is not a handicap because the Einstein equa- 
tions that are not involved in (2) turn out to be the 
integrability conditions for the equations obtained by 
(2) and therefore any solution to the set of  harmonic 

map extremals provides a solution to the full set of 
equations automatically. 

The method of solution which we want to present 
in this letter can be stated as 

Theorem. Let fA,  for A = 1,2,  ..., n',  be a known 
solution to the field equations obtained by ~[(f)  = 0. 
Then there are new solutions 37K for K = 1,2,  ..., m' ,  
of  the field equations resulting from 6 I ( f )  = 0, where 
?K  is obtained from fA either by isometry (for m'  
= n'),  or imbedding (for n'  < m')  of  the metricgAB. 

Proof. Let f A = f A ( f  K ) be a given transformation 
between the two sets of functions f and 37. Substitut- 
ing this into the action, one obtains 

ICY)= f+ B s J6A afA DfB a37K D37L gab lg[1/2 dnx 
~37K a37L ~X a aX b 

Defining now a new metric (whose dimensionality is 
m' 4: n' in general) 

af  A af  ~ 
gKL =gAB a.~K a37L ' (3) 

we see that the original action remains invariant and 
therefore the extremum condition 61(37) = 0, is satis- 
fied. Thus 37K serves as good as fA does and consti- 
tutes a solution distinct from fA. The proof is thus 
completed. 

The interesting case however is the one for which 
g and ~ have the same functional forms with equal di- 
mensionalities. Such a problem is known as isometry 
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and existence of  such isometrics is guaranteed by the 
existence of  Killing vectors in the manifold M'. The 
imbedding case on the other hand arises whenever we 
want to generate solutions with sources from the 
vacuum ones [see example B(ii) below]. We should 
point out that the relation f = f ( f ) ,  states a finite rela- 
tion which is not the case for B~'cklund transforma- 
tions and the two approaches are distinct. It should 
also be added that in analogy with gauge transform- 
able solutions of  group theoretical approaches there 
are trivial subclasses of  isometrics which do not gen- 
erate new solutions. The first examples where the iso- 
metries of  M '  are employed were given by Matzner and 
Misner [7] and by Naugebeuer and Kramer [8]. In the 
following examples we present certain applications of  
the above-stated theorem. 

(A) Consider the static spherically symmetric gravi- 
tational fields with static electric charge e described 
in the isotropic form by the line element 

ds 2 = B -2  dt 2 - A - 2 ( d r 2  + r 2 d~22) , (4) 

d~22 = d02 + sin20 d~b 2 , 

where A and B are only functions of  r. The solution 
for A and B is well known to represent uniquely the 
Reissner-Nordstr6m (RN) solution. The equivalent 
lagrangian for this problem is 

L = (VR) 2 - R 2 [(V%b) 2 - e4q~(qA0)2] , (5) 

whereA = R  -2  e - 2 ¢ , B  = e 2¢ andA 0 represents the 
only non-vanishing component of  the electromagnetic 
vector potential. This lagrangian is identical with the 
one obtained by harmonic maps for the choices o f  
riemannian manifolds 

M : d s  2 = d r  2 + r  2d r22 ,  
(6) 

M':  ds '2 = dR 2 - R2(d~02 - e 4¢ dA~) .  

The isometry implied in the theorem above is given by 

e2~ = (2A 0 + c) 2 e2* _ e -2¢  , 
(7) 

"~0 = - ( 2 A 0  + c)/[(A 0 + c) 2 - e - 4~  ] ,  

~ ' = g ,  c - c o n s t .  

Under this isometry the resulting solution is def'mitely 
again RN, however, charge and mass have been changed 
in accordance with 

m ~ M  = m(1 + c 2) + 2ec, 
(8) 

e ~ Q = e(1 - c  2) + 2c(m +ec), 

so that the relation 

M 2 _  02 = (c 2 -  1)2(m 2 -  e 2) 

holds. Let us note that in the original RN, as m ~ 0, 
the space-t ime is not flat whereas no particle with 
m = 0, e ~: 0 is known. With the new choices (8), if we 
set e = 0, c ~: 0, we see that the resulting M and Q have 
the property that both vanish in the limit rn -~ 0. Note 
also that the isometry (7) is known as Ehlers transfor- 
mation [9] and corresponds to a subgroup of  SL(2,R) 
transformations on the configuration manifold. 

(B) The space-t ime representing colliding plane 
gravitational waves is characterized by the effective 
lagrangian 

L = e -U[2VM • VU + (VU) 2 

-- (VW) 2 - cosh2W (VV) 2 ] , 

which results via (1) in the riemannian manifolds 

M:ds 2 = 2 d u d o ,  

M': ds '2 = e -  u [2 dUdM + dU 2 - dW 2 - cosh 2 W d V2]. 

(9) 
Any isometry generated solution in this problem is 
valid only within the interaction region of  the collid- 
ing waves and becomes relevant to the cosmological 
models. Out of  many such solutions obtained by iso- 
metry (or imbedding) let us present only two explicit- 
ly. 

(i) The isometry given by 

U' =U, I¢=0, V' =V+aU, 

M'=M+aV+~a2U, a = const . ,  (10) 

is a new solution whenever (U, V, il4) is a known solu- 
tion. 

(ii) We can generate also a solution with a scalar 
field source by imbedding the metric M '  into higher 
dimension (let I¢ = 0). The metric of  the newM' reads 
now 

ds ' 2 = e - U [ 2 d U d M + d U  2 - d V  2 - k d ~ b  2 ] ,  (11) 

where k is the coupling constant and the new dimen- 
sion represents the scalar field. Then, if (U, M, V) is a 
solution to the vacuum equations (U',M', V', d)) re- 
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presents a solution to the Einstein scalar field equa- 
tions where the imbedding relations are given by 

U'=U, M' :M+ [l+(1-(32)l/21(U+V), 

V ' : U + ( 1 - / 3 2 ) l / 2 ( U + V ) ,  kl [2~ = ~ ( U + V ) ,  

3 = const, (12) 

furthermore in order to match at the boundaries in a 
consistent way one must find a global expression for 
which the only candidate seems to be e - U  = 1 -2-- 
uO(u) +- vO(u). But such a choice unfortunately fails 
to satisfy the vacuum equations (13) at the boundaries 
and therefore is not an acceptable solution for the 

problem of colliding plane gravitational waves. 

(C) Using the transitive character of isometry, that 
"isometry of an isometry is still an isometry" gener- 
ates further solutions from any two isometry gener- 

ated ones. 
Finally we want to mention a particular class of 

solutions arising when the harmonic map lagrangian 
vanishes (or equivalently, the metric of M'  becomes 
null). As an example for such a case consider the M'  
metric of example (B) with W = 0. Since ds '2 = 0, we 

have 

2dUdM+dU 2 - d V  2 = 0 .  

Taking V = aU, M = ~-(a 2 - 1)U, with a -- const., then 

the vacuum field equations reduce to 

(e-V).u = ( e - U ) v o  = ( e - V ) u o  = 0 .  ( 1 3 )  

The particular solution e - U  = 1 +- u +- v was reported 
[10] as a non-singular solution to the wave collision 
problem. However, by a coordinate transformation 
this choice is realized as Kasner's cosmology [11 ] and 
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