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Summary .  - -  Using Einstein-Rosen's linearly polarized waves as the seed 
solution, we derive an interesting solution for the Einstein's equations that 
describes the evolution of such waves with the second polarization. 

PACS 04.20 - General relativity. 

1. - I n t r o d u c t i o n .  

Cylindr ical  g rav i t a t i ona l  w a v e s  wi th  cross  polar iza t ion  a re  descr ibed  by  the  
line e l e m e n t  

(1) ds2 = exp  [2(~, - ~')] (dt2 - d~e) - exp  [2 7'1 (dz + o~ dr - z2 exp  [ -  2 ~"] dr 

due or iginal ly  to J o r d a n ,  Eh le r s ,  K u n d t  (1) and K o m p a n e e t z  (~). Met r ic  funct ions  

~ ,  ~, and ~ a re  funct ions  of,z and t alone and the  pa r t i cu la r  case (~o = 0), desc r ib ing  

w a v e s  wi th  single polar izat ion,  was  s tudied  f i r s t  in a his tor ical  p a p e r  by  E ins t e in  

and  R o s e n  (ER)(3). The  v a c u u m  Eins t e in  equat ions  a re  equ iva len t  to the  

(') P.  JORDAN, J. EHLERS and W. K'UNDT: Abh. Akad. Wiss. Mainz Math. Natumviss.- 
Kl., 2 (1960). 
(.2) A. S. KOMPANEETZ: Z.  Eksp. Teor. Fiz., 34, 953 (1958) [Soy. Phys. JETP, 7, 659 
(1958)]. 
(3) A. EINSTEIN and N. ROSEN: J. Franklin Inst., 223, 43 (1937). 

40 - II Nuovo Cimento B. 563 



564 M. HALILSOY 

following set of equations: 

(2) T t t -  1 F. - W.. - exp__[4  ~] (oJ~ - ~2) 
.- .... 2p2 ~ , 

(3) ~tt + 1 - ~ - ~ = 4(~,~  ~ - ~ ~ ) ,  
t: 

(4) r~ = P(W~ + ~F~) + exp [4 u (~t2 + ~ ) ,  
4~ 

exp [4 F] 
(5) ~'t = 2~F:~t + - -  cot~.:. 

2~ 

A constrained Lagrangian describing this system of equations is 

( 6 )  ~ =  (~'.:~ - rt2t)  - ~ ( ~  - T~t) exp [4F] ( 2  _ ~ ) ,  

where A =p is to be imposed as a coordinate condition subsequent to the 
variation. The (F, co) part  of this Lagrangian is equivalent to the one introduced 
by Erns t  (4) in connection with stat ionary fields, namely 

(7) 

where 

(8) 

L o -  
(1 -1~12) 2' 

~= (1 - i~) 2 - ~ e x p  [ -  4 F] 

(1 + ~ exp [ -  2 ~])2 + ~j �9 

Equations (2) and (3) are equivalent, now, to the Erns t  equation 

(9) ( l~l  ~ - 1 )  v 2 ~  = 2 ~ ( v ~ )  2 ,  

where the gradient and the Laplacian are defined on the geometry 

(10) ds02 = dp 2 - dt 2 + ~2dr 

in which r is a cyclic variable. 
In the following section we proceed to derive a solution with a nontrivial 

cross-term in the metric (oJ r 0) and interpret  it to describe the self-interacting 
gravitational waves. 

(4) F. J. ERNST: Phys .  Rev. ,  167, 1175 (1968). 
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2 .  - T h e  s o l u t i o n .  

As the solution of E rns t  equation we adopt 

(11) = y(X) exp [it(X)], 

where  y and r are both functions of a single function X, that  satisfies the 
cylindrical wave equation 

( 1 2 )  Xtt  - 1 X :  - x~ ;  = o .  
? 

Complete integral  of this sys tem is given (2) (without electromagnetism) by 

(13) y2 = cosh a cosh 2X - 1 
cosh a cosh 2X + 1 ' 

(14) tg  ( r  - ro) = - sinh a ctgh 2X,  

in which ro and ~ are both constants of integration. For  our later  convenience we 

shall make the choice rio = 0, since this can be justified by a coordinate 
transformation.  Make now the parametrizat ion (6) 

(15) ~ = 
exp [2 ?~] - 1 + i~ 

exp [2 ~] + 1 + ir  ' 

where  the auxiliary potential  �9 is related to ~ by the pair of equations 

(16) { ~q~t = exp [4 ~] ~:, 

Comparing the foregoing expressions we obtain 

1 - y2 2y  s inr  
(17) exp [2 Y~] = ~ = 

1 + y 2 - 2 y c o s f l  ' 1 + y 2 _ 2 y c o s f l  " 

Since we are in teres ted in the Einstein-Rosen waves, we would like to choose a 

part icular  seed function given by X =  �89 AJo (p:) cos :t, where J0 is Bessel's 
function of order  0, and A arid a are constants. As a result  of integrat ing ~ from 

(16) and the quadra ture  equation for ~,, we obtain the following solution for the 

(5) M. HALILSOY: Lett. Nuovo Cimento, 37, 231 (1983). 
(6) S. CHANDRASEKHAR: Proc. R. Soc. London, Ser. A, 498, 209 (1986). 
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metric functions: 

(18) 
f exp 

c o :  

y =  

[ -  2 ~F] = exp [AJo cos et] sinh 2 2 + exp [ -  AJo cos ~t] cosh 2 2 '  

- (A sinh ~) ~ Jl(P~) sin ~t, 

1 2 2 2 2 ~ n  [~ p ( ~ + ~ ) -  2~pJoJlCOS ~t]  = YER, 

where Ji(p~) is the Bessel's function of order 1. It is observed that the metric 
function ~ remains invariant under the addition of cross polarization. This is 
connected with the fact that ~, represents the energy of the waves, as suggested 
by various authors (6). 

In the limit ~ --- 0, our solution obviously reduces to the solution of Einstein 
and Rosen. We would like to note also that if one adopts the parametrization (8), 
without integrating co from the auxiliary potential ~, then the metric that one 
obtains will be diagonalizable. 

The problem of interacting cylindrical gravitational waves can be cast into a 
suitable characteristic form, where the ingoing and outgoing field strengths are 
denoted by (I§ I• and (O§ 0• respectively. The notations + and • stand for 
the two different polarization states (i.e. linear and cross, respectively). The 
field equations (2)-(3) in these new amplitudes take the following first-order 
forms (7): 

I+ - O+ 
(19) I§ - + I• 0 •  

2~ 

I+ -- O+ 
(20) O+,~ - - -  + I• 0• 

2~ 

I• + O• 
(21) I• - I§ 0• 

2~ 

I• + O• 
(22) O• - 0§215  

2~ 

where the null coordinates are defined by 2u = t - ~  and 2v = t + ,~ and the 
amplitudes are defined by 

(23) 

I+ = 2(~rt + ~ ) ,  O+ = 2(~t - ~r:;), 

I• - explF~[2 (cot + r 0 • - exp [2 7 ~] (cot - coo). 

(7) T. PIRAN and P. N. SAFIER: Nature (London), 318, 271 (1985). 
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In terms of these new amplitudes our solution reads as follows: 

(24) I+ =zA(Mt(Josinzt+ J1 cos at) , 

(25 )  I •  - 
aA sinh 

N 
(Jo sin at + J~ cos at), 

(26) 0 + =  ~A(M)(Josin~t - JlCOS ~t), 

(27) 0 • - aA sinh 
N 

(J0 sin zt - J1 cos zt), 

in which we have abbreviated M = exp [AJo cos at] sinh 2 (a/2) - exp [ -  AJo cos ~t]. 
�9 cosh 2 (a/2) and N = exp [ -  2 ~]. 

We can study further the asymptotic behaviour of these fields by making use of 
the Bessel's functions and the expansion 

(28) exp [AJo cos at] = 1 + AJo cos at. 

The asymptotic values can be expressed in a compact form by 

(29) /2a\ 1/2 . I= I§ + iI• = A l ~  ) sin(4 - 2va)exp[iO], 

(30) 
1/2 ) 

O=O++iO• [~ + 2ua e x p [ -  i0], 

in which u and v are the null coordinates and we have redefined our second 
polarization parameter by tg0 = sinh ~. The expression I - 0  as can readily be 
observed is asymptotically independent of the second polarization. 

Similar to the recently published solutions(6,8), our solution is regular 
everywhere.  This feature is decided after one studies the components of the 
Riemann tensor. For  this purpose we have calculated the only nonzero Wey! 
scalars ~/'~, ~0 and ~/"4 in the null te trad of Szekeres(9). Among these, ~[~ is the 

(8) T. PIRAN, P. N. SAFIER and J. KATZ: Phys. Rev. D, 34, 331 (1986). 
(9) p. SZEKERES: J. Math. Phys. (N.Y.), 13, 286 (1972). 
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most  compact  one and we give it here: 

z2A2(J 2 sin 2 zt - J~ cos 2 ~t) 
(31) ~F~ - 

8 (cosh a cosh 2X - sinh 2X) 2 

�9 [(cosh a sinh 2X - cosh 2X + 2i sinh a)2 + 3 sinh 2 a] + 

-b zAJ1 COS zt 
cosh a sinh 2 X  - cosh 2 X  + 2i  sinh 

4~ (cosh a cosh 2 X  - sinh 2X 

We would like to add tha t  l inear superposi t ion of the waves ,  as sums or 

in tegrals  with suitable ampli tude factors,  can be obtained easily. We mention,  as 

an example,  the form of the  waves  considered by  Bonnor (10), which is obtained 

f rom the E R  waves  in the way described by  Webe r  and Wheeler  (19. The seed 

solution in this part icular  case is to be chosen by  Y =  y/(x~+ y2), where  the  
coordinates are defined by 

(32) = (x 2 + 1)1/2(y 2 - 1) 1/2 , t = x y ,  

where  the ranges  of these  coordinates are - ~ < x < + ~ and 1 ~< y < ~.  In this 
coordinate sy s t em  Laplace equation, V 2 Y =  0 is given by 

(33) [(x 2 + 1) Yx]z - [(y2 _ 1) Yy]y = 0. 

The next  s tep is to employ the solution for ~': 

(34) 
a a 

exp [ -  2 ~F] = exp [ -  2 Y] sinh 2 ~ + exp [2 Y] cosh 2 ~ ,  

where  a is a constant,  and in tegra te  ~o from the pair  of equations 

(35) 

~o~ = 2 sinh a (y2 _ 1)(y2 _ x 2) 
(x 2 + y2)2 

% = 4 sinh a 
x y ( x  2 + 1) 

(x 2 + y2)2 �9 

Af t e r  this, it remains  to in tegra te  for the metr ic  function ~, f rom the 

quadra tu re  equations and, as in the Eins te in-Rosen case, ~, turns  out to be an 

(1o) W. B. BONNOR: J. Math. Mech., 6, 203 (1957). 
(n) j .  WEBER and J. A. WHEELER: Rev. Mod. Phys., 29, 509 (1957)..  
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invariant. In conclusion, the solution is 

(36) 

a [x2~Y21 2 [ ~  exp [ -  2 F] = sinh 2 ~ exp + cosh 2 exp , 

o~ = 2 sinh a 
x(y 2 -  1) 

xZ + y 2 

Y = ) 'B = 

(x 2 + 1)(y 2 - 1) 

4(x 2 + y2)4 

y 2  _ X 2 _ 2 
(6x2y2_x  4_y4) + 8(x ~+y2) " 

In the limit a = 0, we obtain the solution given long ago by Bonnor(~) and 
therefore our solution generalizes Bonnor's nonsingular fields in general 
relativity. 

3. - D i s c u s s i o n  o f  energy .  

Eells and Sampson(~2) define an invariant energy functional from the 
harmonic maps between the two given Riemannian manifolds by 

1 j , 3f f  3f~ gab Vg  d~x = 1 f (Lagrangian)d~ dt, (37) E ( f )  = -~ gAs(f) 3X--- ~ ~X-"-" ~ -~ ~, 

It was shown that Einstein equations admitting two killing vectors can be cast 
into the mathematical formulation of harmonic maps (~3). For the problem of 
cylindrical waves, the two Riemannian manifolds are chosen by 

(38) 

I M:ds  2=gabdxadx b= d~ 2 -  dt 2 + ~2dr 

exp [4 u 

4~ 2 
- -  do9 2 " 

Here f f  = {~, ~, o~, ~,} represents the harmonic maps such that the integrand of 
E(f )  coincides with Lagrangian (6), and the variational principle 3E(f) = 0 yields 
the Einstein equations. 

Let us show first that the Hamiltonian constructed from the Lagrangian 
density (6) turns out to be zero. For this purpose we define the conjugate 
momenta by P~ = ~ jo/~,~, etc., where the dot stands for time derivative. The 
Hamiltonian density ~ 0  is defined then by 

(39) ~ o  = Pr162 + P~d  + Pv~; - J~, 

(1~) j. EELLS jr. and J. H. SAMPSON: Am. J. Math., 86, 109 (1964). 
(13) y. NUTKU: Ann. Inst. H. Poincar~ A, 21, 175 (1974). 
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which leads, after substitutions, to 

(40) ,St(0 = ~ (~b~ + ~) + - -  
exp [4 ~] 

4~ 
+ - 

By virtue of eq. (4) and the fact that ~ =- p, this expression for ~ Q  vanishes. One 
possible way to overcome this difficulty is to consider only the unconstrained 
(~, co) part and neglect the y-term in the Lagrangian. This reduced part of the 
Lagrangian is well known to be identical with the Ernst Lagrangian in which r 
does not appear. Once this choice is made, our reduced Lagrangian density is 

exp [4~] 
(41) 40~ = - )~(~ - ~)  4----7- (o~ - ~t2), 

which yields the positive definite Hamiltonian density 

exp [4~] 
(42) J ( ' =  )' (~ + ~t~) + 4-----7- (co~ + ~t2). 

Comparing this with eq. (4) we observe that 

(43) ~r '=  r~. 

An energy can thus be defined by integrating this density: 

(44) E =  f ,(/['d~= f y:d~-- ~,. 

This energy is called ,,C,-energy and it represents the total gravitational energy 
per unit length between ~ = 0 and ~ at time t. (Note that ,,C- stands for the word 
cylindrical.) It was introduced first by Thorne (14) in 1965 from a different line of 
thought. Our derivation of ,,C,-energy here is due to Chandrasekhar(6). 

We remark that, in order to have a conserved energy, we must have 
�9 ~rC'= r:t = 0. The transcendental cylindrical waves found by Chandrasekhar 
satisfy this criterion. For the ER waves (and also in this paper) on the other 

hand we have 

(45) 
1 rt = ~ A%2, ~ ~ sin 2~t 4: 0, 

which implies that yt:. :/: O. 
The energy per unit length in the z-direction confined in the cylindrical 

(14) K. THORNE: Phys. Rev. B, 138, 251 (1965). 
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annulus  b e t w e e n  t01 and ~z (>~1) is g iven  for  the  E R  w a v e s  b y  

ff  A2 ~]1 ' 
(46) E = 7~d,z = -~- [~2,ze(J2 + J2 ) -2~pJoJ lCOS2~ t ]  

.:1 

which is a pos i t ive  def ini te  quan t i ty .  H o w e v e r ,  due to condit ion (45), the  w a v e s  

r e p r e s e n t e d  b y  the  E R  solut ion are  not  s t a t iona ry .  

I t h a n k  Prof .  H.  H.  Aly  for  va luable  discussions.  

�9 R I A S S U N T 0  (*) 

Usando le onde linearmente polarizzate di Einstein-Rosen come soluzione seme, si deduce 
una soluzione interessante per le equazioni di Einstein che descrive l'evoluzione di tali 
onde con la seconda polarizzazione. 

(*) Traduzione a cura della Redazione. 

Kpocc-Ho~HpH3OBaHHble UH~HH~pHqeCKHe rpaBHTalgHOHHble BOJ1Hbl ~HmTe~tHa H Po3eHa. 

Pe31oMe (*). - -  I/IcnoJIb3yfl JII4HeI~IHO IIOJI~Ipit3OBaHHMe BOJIH/aI ~)I~IHmTeI~IHa I4 Po3eHa, KaK 
3awpaBoqnoe pemesi4e, MbI BI~IBO/InM 14sTepecsoe pemeni, Ie Jla~I ypaBsesnfl ~)fiHmTefiHa, 
KOVOpOe onncbiBaeT 3BOY[IOIII4tO TaKI4X BOaS C BTOpOI~I no~pn3aunefi .  

(*) HepeeeOeuo pec)ax~ueS. 


