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Abstract 

Multiuser detection techniques are known to be effective 
strategies to counter the presence of multiuser 
interference in code division multiple access channels. 
Generally, multiuser detectors can provide excellent 
performance only when the signature waveforms1 of all 
users are precisely known. Hence, the estimation of 
signature waveforms is a challenging issue in mobile 
communication systems.  In this paper, we compare the 
performance of two training based estimators of using 
short training sequences. One is maximum likelihood 
type signature waveform estimator that requires the 
knowledge of spreading sequences and training 
sequences. The other estimator is based on subspace 
method and requires the knowledge of training sequences 
only. Through the simulations, we show the signature 
waveform estimation performance of both systems and 
the effect of the estimation error on the performance of a 
multiuser detector. The complexity comparisons of both 
systems are also given. 
 

1. Introduction 
 
Direct Sequence Code Division Multiple Access (DS-
CDMA) has become one of the favorite candidates for 
future mobile radio systems. Recently, there is a growing 
interest in multiuser detectors that provide excellent 
detection performance. A significant performance 
improvement of multiuser detectors is due to the 
capability to suppress Multiple Access Interference 
(MAI). Although, CDMA based systems provide high 
power efficiency and moderate error rates, coherent 
modulation does not provide reliable communication on 

                                                
1 We use the term “signature waveform” to refer to the convolution of the 
channel and the spreading code throughout the paper. 

fading channels if the impulse responses of these 
channels or the signature waveforms are not known. 
Traditionally, channel estimation is achieved by sending 
training sequences or using pilot channel. These 
approaches rely on periodic transmission of long training 
sequences [1], making the identification of signature 
waveforms feasible since both input and output signals 
are known during the transmission of these sequences. 
Generally, for better estimation accuracy, more training 
symbols or higher power for pilot channel shall be 
required. Consequently, one must pay the price of using 
long training sequences with a significant reduction of 
channel efficiency. Subspace based methods were also 
proposed for signature waveform estimation and blind 
multiuser detection [2, 3]. 

Two training methods were recently proposed for 
synchronous CDMA systems [4, 5]. A subspace signature 
waveform estimating method using short training 
sequences is proposed in [5] and in [4] a Maximum 
Likelihood (ML) channel estimation method, which uses 
the known spreading sequences together with short 
training sequences is presented. The signature waveform 
estimation methods considered in this paper uses short 
training sequences for estimation, which will not result 
in significant reduction in net data rate. The ML channel 
estimation method requires the knowledge of spreading 
codes and training sequences where the subspace based 
method requires only the training sequences for signature 
waveform estimation. If the spreading sequences are 
known by the receiver, the use of ML estimation method 
provides significant performance improvement over the 
subspace based method. 

The rest of the paper is organized as follows. In the 
next section, the assumed communication system model 
is presented.  Section 3 describes the signature waveform 
estimation methods with short training sequences and 
compares their complexities. Finally, the simulation  
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Figure 1. Synchronous CDMA System   
 
results, illustrating the performance of the estimation 
methods are presented together with some conclusions. 
 
 

2. System Model 
 
In a CDMA system, several users transmit 
simultaneously over a common channel. Figure 1 shows 
the equivalent baseband system model used in this paper. 
The received baseband signal with a single receiver from 
P users can be represented as the superposition of the 
active users with additive channel noise 
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where subscript i denotes the user index, and n(t) is 
assumed to  be white Gaussian noise with zero mean and 
a two-sided power spectral density of No/2. 

The multipath-fading channel, which can be 
represented by the tapped delay line model as shown in 
Figure 2, can be implemented by a series of Dirac delta 
functions  [6]: 
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Where L is the total number of propogation paths of the 
channel, hi ,l is the complex gain of the l-th propagation 
path, and τl is the delay of the l-th propagation path 
(l/Bw). The channel coefficients, hi,l, are zero-mean 
complex Gaussian variables and are not changing within 
a symbol duration. 

It is assumed that hi(t) has a finite support [0 LTc] 
where Tc is the chip duration. In addition, we may 
assume that the channel order is much less than the code  
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Figure 2. Tapped-delay line model of channel 
(hi(t)) 
 
length (L<<Lc) since the maximum delay spread of 
channel is usually insignificant in relative to the symbol 
period [7]. The received signal ri(t) for each user can be 
represented as:  
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where 
Ai  transmitted amplitude, 
N length of the packet containing Ne preamble bit, 
Ts symbol duration, 
bi(n)   transmitted sequence containing Ne preamble bit,  
ci(t) pre-assigned spreading code waveform, and 
Bw is the bandwidth of spreading code waveform. 
 

The signature waveform of the i-th user can be 
denoted as: 
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It is seen that Intersymbol Interference (ISI) exists 
because the duration of the signature waveform exceeds 
Ts. However, since L<<Lc, this ISI is negligible in 
general [6]. 

The discrete counterpart of the signature waveform 
in (4) for one symbol period is given by: 
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The general problem addressed by the signature 
waveform estimators considered in this paper is the 



estimation of wi=[ wi(1)  wi(2)  …  wi(Lc)]
T, where (⋅)T 

denotes the transpose operation. 
 
 

3. Signature Waveform Estimation 
 
We assume a training sequence of Ne symbols. By 
sampling the received signal y(t) at chip rate (Tc), over 
the training period, the received signal vector Y of length 
NeLc can be obtained as follows: 
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where, ][ 21 PCCCC �= is the spreading sequences 

matrix,  T
P ][ 21 hhhH �= , in which the amplitudes 

Ai are accounted for as ][ ,2,1, Liiiii hhhA �=h . The 

spreading sequence matrix of each user can be 
represented as, 
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3.1 Maximum Likelihood Signature Waveform 
Estimation 

 
The maximum likelihood estimation of the i-th user 
channel vector hi, which amounts to the multiplication of 
Y by iC

~
, is given by [4]: 
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where iC

~
is an L×(LcNe) matrix of the i-th user, which 

contains the corresponding L columns of the 
pseudoinverse [8] of C. 

The signature waveform of the i-th user ( iŵ ) can be 

obtained from the multiplication of the estimated channel 
by the L×Lc Toeplitz matrix Gi having ci=[ci(1)  ci(2)  
… ci(Lc)] as its first column and [ci(1)  0 … 0] as its first 
row. 
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After the estimation of the signature waveforms, we set 
up the Minimum Mean Square Error (MMSE) detector 
as [9]: 
 

))(()(ˆ nsignnb H
ii Yz=  (10) 

 

where, )(ˆ nbi  is the i-th user’s n-th bit detected, Y(n) is 

the discrete vector of the received samples at the n-th 
symbol interval, zi  is the i-th column of 

1)( −+= IWWWZ o
H N  and ]ˆˆˆ[ 21 PwwwW �= . The 

superscript (⋅)H is used to denote the conjugate transpose 
operation. 
  
 

3.2 Subspace Based Signature Waveform 
Estimation 

 
A subspace-training algorithm is proposed in [5] for 
signature waveform estimation in a synchronous DS-
CDMA system. In this algorithm, the received signal 
matrix X having N symbols is constructed as: 
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The eigen decomposition of the matrix XXH yields: 
 

XXH=UΛUH (12) 
 
where U=[Us Un], Λ=diag(Λs, Λn)  and Λs=diag(λ1, λ2, 
…, λP) contains the P largest eigenvalues of XXH in 
descending   order  and   Us=[µ1  µ2 …  µP]  contains   
the corresponding eigenvectors. The signature waveform 
estimate of the i-th user can be estimated as [5]: 
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where bi=[bi(1)  bi(2)  … bi(Ne)]

T is the vector of the 
training symbols of the i-th user and Γ=[Y(1)  Y(2) … 
Y(Ne)] is the matrix of Ne corresponding data vectors. 
The linear MMSE receiver of the i-th user, which 
minimizes the MSE, is then given by [5, 9]: 
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3.3 System Complexities 
 
In the maximum likelihood signature waveform 
estimation method, the spreading sequences matrix C 
associated with preamble sequence of dimension  
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Figure 3. RMSE versus SNR for user 1  
 
LP×(LcNe) should be inverted. Each user requires the 
L×(LcNe) part of the inverted matrix (iC

~
) for signature 

waveform estimation. Since the spreading and preamble 
sequences are same for each packet transmission, the  
necessary matrices are calculated once and stored in 
memory. Hence, for ML channel estimation each user 
should store iC

~
 and the spreading sequence associated 

with that user (ci). 
In the subspace based estimation method, data 

matrix X, which is defined in (11) and having 
dimension Lc×N, should be constructed in each packet 
transmission.  Then, eigen value decomposition should 
be applied to Lc×Lc matrix XXH to obtain Us having the 
dimension of Lc×P. As defined in (13) Γ of dimension 
Lc×Ne and the vector bi containing Ne preamble symbols 
of the corresponding user is necessary for the 
estimation. The only information required for signature 
waveform estimation with subspace method is the 
preamble sequences. Although, it needs less information 
than ML estimation method, because of the necessary 
calculations in each packet transmission, it is more 
complex and slower than the system having ML 
estimation. 

  
 

4. Simulation Results 
 
In this section, the Root Mean Square Error (RMSE) 
and Bit Error Rate (BER) performances of the training 
based estimation methods are illustrated and compared 
by extensive computer simulations. In all of the 
following examples, a synchronous CDMA system with 
P=5 users was simulated. The number of symbols in  
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Figure 4. BER versus SNR for user 1  
 
each packet is N=400 with Ne=15 training symbol. The 
channel length (L) was preselected to be four and the 
channel response of each user was generated Gaussian 
randomly based on (2). The desired and interfering 
users employed Gold sequences  [10] of length Lc=31 as 
spreading codes. The preamble bits and data bits were 
generated randomly for each user as antipodal signaling 
and perfect power control (i.e. all users have equal 
powers, Ai=1) was assumed. 

The RMSE performances of signature waveform 
estimating methods are presented Figure 3 with Signal 
to Noise Ratio  (SNR) varying from 0 to 30. The RMSE 
of the estimation is defined by, 
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where, M is the number of iteration in each Monte Carlo 
trials, and iŵ  is the estimation of the signature 

waveform from the i-th iteration. It is seen that the ML 
estimator has significant performance improvement over 
the subspace based estimator, especially at high SNR. 
The subspace based estimator tends to exhibit error floor 
at high SNR values due to the finite length of the packet 
size N. This phenomenon has also been observed in [2]. 

In the next case, the effect of signature waveform 
estimation by the ML estimator and subspace based 
estimator on bit error probabilities are investigated. The 
performances of MMSE detectors defined in (14) and 
(10) are examined with respect to SNR. To be able to 
demonstrate how close the signature waveform 
estimates to the actual waveforms are, the performance 
of linear MMSE detector with perfect knowledge of 
signature waveforms are also shown. The results are  
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Figure 5. Signal constellation plots for u ser 1  
(Ne=15, P=5, L=4, Lc=31, SNR=8dB)  

 
plotted in Figure 4. It is evident from the figure that the 
MMSE detection with the signature waveform 
information obtained by ML estimator offers substantial 
performance gain over the subspace based method, 
especially at high SNR. The performance obtained by  
using ML estimates is very close to the one obtained 
with perfect signature waveform knowledge. 

The signal constellation obtained by the Match 
Filter (MF) and MMSE detector using the signature 
waveform estimates of ML and subspace based methods 
are presented in Figure 5 and Figure 6 respectively. In 
these simulations, after the signature waveforms were 
obtained by the training based estimators, the rest of the 
symbols were applied to the MF and MMSE detector 
and the signal constellations of two systems are 
compared at 8dB and 12dB. This is another way of 
visualizing the difference between two approaches, as 
can be easily seen the cluster in ML approaches are 
separated much better than those in the subspace 
approached. 
 
 

5. Conclusion 
 
In this paper, two signature waveform estimation 
techniques using short training sequences were 
considered. It is observed that, the maximum likelihood 
signature waveform estimator offers better performance 
gain over the subspace based method especially at high 
SNR values, thanks to the knowledge of spreading 
sequences. The bit error performance of the MMSE 
receiver using ML waveform estimates is very close to  
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Figure 6. Signal constellation plots for u ser 1  
(Ne=15, P=5, L=4, Lc=31, SNR=12dB)  

 
the results obtained with the perfect signature waveform 
knowledge. Although the ML based estimation system is  
computationally simple, there is a need to store some 
matrices for the estimation. But the memory 
requirement to store these matrices is not important if 
the length of preamble sequences is kept moderately 
short. The signature waveforms can be estimated 
without any prior knowledge of the users’ spreading 
sequences by the subspace based estimator. But the 
computational complexity of such estimation is 
prohibitive because of the necessary decompositions and 
required matrices to be constructed in each packet 
transmission. However, if the spreading sequences of 
the users are not known by the receiver, the subspace 
based estimation should be used. 
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