
Some Schurer Type q-Bernstein Operators 

 

 

 

Tuba Vedi 

 

 

 

 

Submitted to the 
Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the Degree of 
 
 
 
 
 
 
 

Master of Science 
in 

Applied Mathematics and Computer Science 
 
 
 
 
 
 

Eastern Mediterranean University 
September 2011 

Gazimağusa, North Cyprus 
 

 



Approval of the Institute of Graduate Studies and Research 

 
 
          
            
            
                                        Prof. Dr. Elvan Yılmaz 
                            Director 
 
 
 
I certify that this thesis satisfies the requirements as a thesis for the degree of Master of 
Science in Mathematics. 
 
 
         
 

            
     
                        Prof. Dr. Agamirza Bashirov 
                             Chair, Department of Mathematics 
 
 
 
We certify that we have read this thesis and that in our opinion it is fully adequate in scope 
and quality as a thesis for the degree of Master of Science in Applied Mathematics and 
Computer Science. 
 
 
 

                                   
 
                  Assoc. Prof. Dr. Mehmet Ali Özarslan 
                                                                       Supervisor 
          
      
     
 

                   Examining Committee 

1.  Prof. Dr. Nazım I. Mahmudov                  
      
2.  Assoc. Prof. Dr. Hüseyin Aktuğlu  

3.  Assoc. Prof.  Dr. Mehmet Ali Özarslan       



iii 
 

ABSTRACT 

In this thesis consist of six chapters. The introduction is given in the first chapter. In the 

second chapter, some necessary definitions, preliminaries and theorems are given. In this 

chapter, we also give the important theorems; by Korovkin and Volkov, Bernstein 

polynomials in one two variables, q-Bernstein, Bernstein-Chlodowsky and q-Bernstein 

Chlodowsky polynomials. 

In the third chapter, q-Bernstein Schurer operators are defined. Many properties and results of 

these polynomials, such as Korovkin type approximation and the rate of convergence of these 

operators in terms of  Lipschitz class functional are given. 

In the fourth chapter q-Bernstein-Schurer-Chlodowsky operators are introduced. Korovkin 

type approximation theorem is given and the rate of convergence of this approximation is 

obtained by means of modulus of continuity of the function is obtained. 

In the fifth chapter, Schurer-type q-Bernstein Kantorovich operators are defined. Moreover 

the order of convergence of the operators in terms of modulus of continuity of the derivative 

of the function, and elements of Lipschitz classes are discussed. 

In the last chapter, Kantorovich type q-Bernstein operators are defined. Furthermore, 

Korovkin type approximation theorem is proved and the rate of convergence of this 

approximation are given. 

Keywords: q-Bernstein Schurer operators, Korovkin theorem, Schurer Type q-Bernstein 

Polynomials, Kantorovich type q-Bernstein-Schurer-Chlodovsky operators. 
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ÖZ 

Bu tez altı bölümden oluşmaktadır. Birinci bölüm giriş kısmı olarak verilmiştir. İkinci 

bölümde, tez boyunca ihtiyaç duyulacak bazı tanımlar, tanımlarla ilgili bazı temel özellikler 

ve teoremler verilmiştir. Ayrıca Korovkin and Volkov Teoremleri, bir ve iki değişkenli 

Bernstein Polinomları, q-Bernstein Polinomları ve Bernstein Chlodowsky and q-Bernstein 

Chlodowsky Polinomları incelenmiştir. 

Üçüncü bölümde q-Bernstein Schurer Operatörleri tanımlanmıştır. q-Bernstein Schurer 

Operatörlerinin yakınsaklığı Korovkin Teoremi yardımıyla ve Liptsitz sınıfındaki yakınsaklığı 

incelenmiştir.  

Dördüncü bölümde q-Bernstein Schurer-Chlodowsky Operatörü tanımlanmıştır. Korovkin 

tipli yakınsaklık teoremi, fonksiyonun ve fonksiyonunun türevinin  süreklilik modülü 

yardımıyla yakınsama hızları hesaplanmıştır. 

Beşinci bölümde Schurer tipli q-Bernstein Kantorovich Operatörleri tanımlanmıştır. Bu 

operatörlerin modüllerinin ve türevlerinin yakınsaklıkları hesaplanmıştır. 

Altıncı bölümde Kantorovich tipli q-Bernstein-Schurer-Chlodowsky Operatörleri 

tanımlanmıştır. Bununla birlikte Korovkin tipli teorem yaklaşımı ispatlanmış ve bu 

yakınsamanın  yakınsaklık derecesi hesaplanmıştır.   

 

Anahtar Kelimeler: q-Bernstein Schurer Operatörleri, Korovkin Teoremi, Schurer  Type q-

Bernstein Operatörleri, Kantorovich Type q-Bernstein-Schurer-Chlodovsky operatörleri. 
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Chapter 1

INTRODUCTION

It was S.N. Bernstein, who proposed the operators [15]

Bn(f ; x) =
n

∑

k=0

f(
k

n
)

(

n

k

)

xk(1− x)n−k,

called the Bernstein operators and gave simple proof of the Weierstrass famous the-

orem in 1912: “each continuous real valued function f on [a, b] is uniformly approx-

imable by algebraic polynomials”.

Korovkin (1957) has shown that for a sequence (Ln) of positive linear operators, con-

vergence Ln (f) → f in the uniform norm follows for all f ∈ C(A), if it holds for

finitely many “test functions” f1, f2, . . . fn from C(A), where C(A) is the space of

continuous functions defined on the compact domain A.

After the work by Bernstein, Chlodowsky extended the Bernstein polynomials by

defining the operators, which are known as Chlodowsky polynomials, [4]

Cn(f ; x) =
n

∑

k=0

f

(

kbn
n

)(

n

k

)(

x

bn

)k (

1−
x

bn

)n−k

, (0 ≤ x ≤ bn)

where (bn) is an increasing sequence of positive numbers satisfying the properties,

lim
n→∞

bn = 0 and lim
n→∞

bn
n

= 0.We refer the paper by Harun Karslı [13], who overviewed

the results and historical developments on the Chlodowsky operators.

Among all the linear positive operators, the followings are deserved to be listed:

Laguerre type operators: For x ∈ [0,∞) the Laguerre type operators are defined in [3],

by

Pn(f ; x) = (1− x)n+1 exp

(

xt

1− x

) ∞
∑

k=0

f

(

k

k + n

)

L
(n)
k (t)xk.
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Letting t = 0 in the above operators one gets the modified form of the Meyer-König

and Zeller (MKZ) operators where the MKZ operators are defined by [20]

Mn(f ; x) = (1− x)n+1

∞
∑

k=0

f

(

k

n+ k + 1

)(

n+ k

k

)

xk, (0 ≤ x < 1).

Szasz-Mirakjan operators: For x ∈ [0, 1], the Szasz-Mirakjan operators are defined by

[24]

Sn(f ; x) = exp (−nx)
∞
∑

k=0

f

(

k

n

)

(nx)k

k!
.

It was A.Lupaş [16], who first proposed q-based Bernstein operators. For

x ∈ [0, 1] and q > 0, he introduced the operators

Rn,q(f ; x) =
n

∑

k=0

f

(

[k]

[n]

)[

n

k

]

q k(k−1)
2

xk (1− x)n−k

(1− x+ qx) ... (1− xqn−1x)
,

where for n ∈ N0 = {0, 1, 2, . . .}, the q-integer [n] = [n]q is defined by

[n] := 1 + q + . . .+ qn−1; [0] := 0,

the q-factorial [n]! = [n]q! is defined by

[n]! = [1][2] . . . [n]; [0]! := 1

and for 0 ≤ k ≤ n, the q-binomial is defined by

[

n

k

]

=
[n]!

[k]![n− k]!
.

Another q-based Bernstein operator was introduced in 1996 by Phillips [23]. He con-

sidered the operators

Bn,q(f ; x) =
n

∑

k=0

f

(

[k]

[n]

)[

n

k

]

xk
n−k−1
∏

s=0

(1− qsx)

where x ∈ [0, 1] and q > 0.

In 2008, Harun Karslı and Vijay Gupta [14] proposed the q-Chlodowsky Bernstein

operators. For 0 ≤ x ≤ bn, they considered the operators

Cn,q(f ; x) =
n

∑

k=0

f

(

[k]

[n]
bn

)[

n

k

](

x

bn

)k n−k−1
∏

s=0

(1− qs
x

bn
)
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where (bn) is a positive increasing sequence satisfying lim
n→∞

bn = ∞.

On the other hand, in 2011 Carmen-Violeta Muraru [21] introduced and investigated

the q-Bernstein-Schurer operators. These operators are defined for fixed p ∈ N0 and

for all x ∈ [0, 1], by

Bn,p(f ; q; x) =

n+p
∑

k=0

f

(

[k]

[n]

)[

n+ p

k

]

(x)k
n+p−k−1

∏

s=0

(1− qsx).

Note that the case q = 1 reduces to the operators considered by Schurer [25].

The q-Laguerre type linear positive operators were defined in 2007 by M. A. Özarslan.

For x ∈ [0, 1], t ∈ (−∞, 0] and q ∈ (0, 1), he considered the operators [18]

Pn,q(f ; x) =
1

Fn (x, t)

∞
∑

k=0

f

(

[k]

[k + n]

)

L
(n)
k (t, q)xk

where L
(n)
k (t, q) are the q-Laguerre polynomials,

Fn (x, t) =
(xqn+1; q)∞
(x; q)∞

∞
∑

m=0

qm
2+nm [− (1− q) xt]m

(q, q)m (xqn+1; q)m
,

(a; q)∞ =
∞
∏

j=0

(1− aqj), (a ∈ C)

and

(a; q)n =











1 , n = 0

(1− a) (1− aq) ... (1− aqn−1) , (n ∈ N, a ∈ C).

The case t = 0 reduces to the q-Meyer-König and Zeller operators [26]

Mn,q(f : x) =
∞
∏

j=0

(1− qjx)
∞
∑

k=0

f

(

[k]

[k + n]

)[

n+ k

k

]

xk, 0 ≤ x < 1.

In the literature, there are two kinds of q-Szasz Mirakjan operators.

The Chlodowsky type q-Szasz Mirakjan operators:

These operators were defined by Aral and Gupta [2]

Sn,q(f : x) = Eq

(

−[n]
x

bn

) ∞
∑

k=0

[n]k xk

bkn [k]!
f

(

[k]

[n]
bn

)

where

3



Eq(x) =
∞
∑

k=0

q
n(n−1)

2

[n]!
xn = (−(1− q)x; q)∞; x ∈ R, |q| < 1,

and (bn) is an increasing sequence of positive real numbers such that lim
n→∞

bn = ∞.

q-Szasz Mirakjan operators: Let x ∈ [0,∞), 0 < q < 1. The q-Szasz Mirakjan

operators were defined in [17] by N.I. Mahmudov as follows:

S∗
n,q(f : x) =

1

Eq([n] x)

∞
∑

k=0

f

(

[k]

qk−2 [n]

)

q
k(k−1)

2
[n]k xk

[k]!
.

Note that very recently, the q-Szasz Schurer operators were introduced and investi-

gated by M.A. Özarslan in [19].

Finally, we should note that several linear positive operators are investigated in [1], [5],

[6], [7],[10],[13].

This thesis organized the as follows:

In chapter 2, we present some preliminaries and auxiliary results, which are needed

throughout the thesis.

In chapter 3, we consider the q-Bernstein Schurer operators. We investigate the shape

properties of these operators. Furthermore, we calculate the rate of convergence of

these operators in terms of Lipschitz class functions.

In chapter 4, we define q-Bernstein-Schurer-Chlodowsky operators. We give a Ko-

rovkin type approximation theorem and calculate the rate of convergence of this ap-

proximation by means of modulus of continuity of the function and the derivative of

the function. Moreover, we compute the rate of convergence for Lipschitz class func-

tionals.

In chapter 5, we introduce Schurer type q-Bernstein Kantorovich operators. We calcu-

late the order of convergence of the operators in terms of modulus of continuity of the

derivative of the function and elements of Lipschitz classes.

In chapter 6, we define Kantorovich type q-Bernstein-Schurer-Chlodowsky operators.

We prove a Korovkin type approximation theorem and calculate the rate of conver-

gence of this approximation.

4



Chapter 2

PRELIMINARIES AND AUXILIARY RESULTS

2.1 Linear Positive Operators

In this section we give some basic properties, definitions and elementary properties of

the positive linear operators.

Definition 1. Let X and Y be real linear spaces of functions. The mapping

L : X → Y is said to be linear operator if

L (αf + βg) = αL (f) + βL (g)

∀f, g ∈ X and ∀α, β ∈ R.

If f ≥ 0 implies that Lf ≥ 0 then L is a positive operator.

If

X+ = {f ∈ X : f(x) ≥ 0} and Y + = {g ∈ Y : g(x) ≥ 0} ,

L : X+ → L (X+) ⊂ Y + and L is linear, then we call the operator L is linear positive

operator.

Remark 2. The linear positive operators are monotone.

Proof. Let f (x) ≤ g (x) then it implies that g (x) − f (x) ≥ 0 and if L is linear

positive operator then L (g − f ; x) ≥ 0. Hence L (g; x) ≥ L (f ; x). In other words, if

5



f, g ∈ X with f ≤ g then Lf ≤ Lg.

Example 3. Assume that pk(x) is a positive real valued polynomials,

k = 0, 1, 2, · · ·, n and x ∈ I ⊂ R, then the sequence of operators

An (f ; x) =
n

∑

k=0

f (αk) pk(x)

are linear and positive, where αk ∈ I for all k = 0, 1, · · ·, n. To prove this,

An (af + bg; x) =
n

∑

k=0

(af (αk) + bg (αk))pk(x)

= a

n
∑

k=0

f (αk) pk(x) + b

n
∑

k=0

g (αk) pk(x)

= aAn (f ; x) + bAn (g; x) .

In addition, if f (αk) ≥ 0 for all αk ∈ I (k = 0, 1, · · ·, n) then

An(f ; x) =
n

∑

k=0

f (αk) pk(x) ≥ 0.

Example 4. The following operator

L(f ; x) =

b
∫

a

f(t)K(t, x)dt

is linear and positive iff K(t, x) ≥ 0 for all t, x ∈ [a, b], where the continuous function

K(t, x) is the kernel of the operator. We show that the condition K(t, x) ≥ 0 for all

t, x ∈ [a, b] is necessary. If K(t, x0) < 0 at the point t = x0, then there exists an

interval [α, β] ⊂ [a, b] such that K(t0, x) is negative on [α, β]. Then for function

f (t) =











0, t ∈ [a, b] / [α, β]

1, t ∈ [α, β]

we have

L(f ; x) =

β
∫

α

K(t, x0)dt < 0.

Therefore, the condition K(t, x) ≥ 0 for all t, x ∈ [a, b] is necessary.

The norm of the operator L is defined by

6



||L|| = ||L||(X→Y ) = sup
||f ||X 6=0

‖L(f ; x)‖Y
||f ||X

.

The equivalent definition as:

||L|| = sup
||f ||X=1

‖L(f ; x)‖Y .

Definition 5. Assume that L : X → Y be linear operator. L(f ; x) is called bounded

if there exists a positive number C such that

||L(f ; x)||Y ≤ C||f ||X .

From the monotonicity of the linear positive operator L,

f(x) ≤ |f(x)|

implies

|L(f ; x)| < L(|f |; x).

Each point of space C [a, b] is a continuous real-valued function on [a, b] and ||L|| is

norm of a linear bounded operator.

Lemma 6. If X = Y = C [a, b], then

||L||C[a,b]→C[a,b] = ||L(1; x)||C[a,b].

Proof. By the definition (2.1.4), it is straight forward to show that:

||L||C[a,b]→C[a,b] = sup
||f ||C[a,b]=1

= ||L(f ; x)||C[a,b] ≤ ||L(1; x)||C[a,b]. (2.1.1)

On the other hand

||L||C[a,b]→C[a,b] = sup
||f ||C[a,b]=1

= ||L(f ; x)||C[a,b] ≤ ||L(1; x)||C[a,b]. (2.1.2)

The proof is (2.1.1) and (2.1.2).

7



2.2 Korovkin’s Theorem and Volkov’s Theorem

In this section we give the Korovkin’s Theorem for one and two variables.

Theorem 7. (Korovkin’s Theorem) Let Ln : C [a, b] → C [a, b]

for n ∈ N = {1, 2, . . .}. If the sequence of operators Ln satisfy

Ln(1; x) ⇉ 1 (2.2.1)

Ln(t; x) ⇉ x (2.2.2)

Ln(t
2; x) ⇉ x2 (2.2.3)

then for all f ∈ C [a, b], we have

Ln(f ; x) ⇉ f(x) as n→ ∞.

Proof. Since f ∈ C [a, b], then it is bounded, ∃M ∈ R such that |f(x)| ≤M . Because

of the fact that f ∈ C [a, b] then for all ε > 0 there exist a real number δ > 0 such that

for all x, t ∈ [a, b], |t− x| < δ implies

|f(t)− f(x)| < ε.

Therefore, for x, t ∈ [a, b], we have

|f(t)− f(x)| < ε+
2M

δ2
(t− x)2. (2.2.4)

On the other hand,

‖Ln(f ; x)− f(x)‖C[a,b]

= ‖Ln(f(t); x)− f(x)‖
C[a,b]

= ‖Ln(f(t)− f(x); x) + f(x) (Ln(1; x)− 1) ‖
C[a,b]

≤ ‖Ln(|f(t)− f(x)|; x)‖+ ‖Ln(1; x)− 1‖ ‖f‖ . (2.2.5)

8



From (2.2.4)

Ln (|f(t)− f(x)|; x) ≤ Ln(ε+
2M

δ2
((t− x)2; x)

= εLn(1; x) +
2M

δ2
Ln((t− x)2; x)

= ε(Ln(1; x)− 1) + ε

+
2M

δ2
[Ln(t

2; x)− 2xLn(t; x) + x2Ln(1; x)]

= ε(Ln(1; x)− 1) + ε+
2M

δ2
[(Ln(t

2; x)− x2)

− 2x(Ln(t, x)− x) + x2(Ln(1; x)− 1)].

Therefore

Ln(|f(t)− f(x)|; x) ≤ ε+ C1‖Ln(1; x)− 1‖
C[a,b]

(2.2.6)

+ C2‖Ln(t; x)− x‖
C[a,b]

+ C3‖Ln(t
2; x)− x2‖

C[a,b]
,

where C1, C2 and C3 are positive constants. From (2.2.5) and (2.2.6), we have

‖Ln(f ; x)− f(x)‖ ≤ ε+ C∗
1‖Ln(1; x)− 1‖

C[a,b]

+ C∗
2‖Ln(t; x)− x‖

C[a,b]
+ C∗

3‖Ln(t
2; x)− x2‖

C[a,b]
,

where C∗
1 , C

∗
2 and C∗

3 are positive constants. Thus for n → ∞ we have ‖Ln(f ; x) −

f(x)‖
C[a,b]

→ 0.

Corollary 8. If the sequence of operators {Ln} satisfy Ln(1; x) ⇉ 1 and

Ln((t− x)2; x) ⇉ 0 then for all f ∈ C [a, b] we have Ln(f ; x) ⇉ f(x).

The Korovkin’s theorem in two variables is known as Volkov’s theorem in the literature

which is stated as follows:

Theorem 9. (Volkov’s Theorem) Let Ln,m : C ([a, b]× [c, d]) → C ([a, b]× [c, d]) for

n,m ∈ N. If the double sequence of linear positive operators Ln,m satisfy

Ln,m(1; x, y) ⇉ 1

Ln,m(t; x, y) ⇉ x

9



Ln,m(s; x, y) ⇉ y

Ln,m(t
2 + s2; x, y) ⇉ x2 + y2

then for all f ∈ C ([a, b]× [c, d]) → C ([a, b]× [c, d]), we have

Ln,m(f ; x, y) ⇉ f(x, y) as n,m→ ∞ .

Proof. Since f ∈ C ([a, b]× [c, d]) then ∃M ∈ R
+ such that |f (x, y)| ≤ M. Further-

more, for all ε > 0 there exists a real number δ > 0 such that for all x, t ∈ [a, b] and

y, s ∈ [c, d],
√

(t− x)2 + (y − s)2 < δ

then

|f(t, s)− f(x, y)| < ε.

Accordingly, for all x, t ∈ [a, b] and y, s ∈ [c, d], we have

|f(t, s)− f(x, y)| < ε+
2M

δ2
[(t− x)2 + (y − s)2]. (2.2.7)

On the other hand

||Ln,m(f ; x, y)− f(x, y)||C([a,b]×[c,d])

= ||Ln,m(f(t, s); x, y)− f(x, y)||C([a,b]×[c,d])

= ||Ln,m(f(t, s)− f(x, y); x, y) + f(x, y)(Ln,m(1; x, y)− 1)||C([a,b]×[c,d])

≤ ||Ln,m(|f(t, s)− f(x, y)|; x, y)||C([a,b]×[c,d]) + ||f ||(Ln,m(1; x)− 1)||C([a,b]×[c,d]).

(2.2.8)

Using (2.2.7), we get that

Ln,m(|f(t, s)− f(x, y)|; x, y)

≤ Ln,m(ε+
2M

δ2
[(t− x)2 + (y − s)2]; x, y)

≤ εLn,m(1; x, y) +
2M

δ2
Ln,m

(

(t− x)2 + (y − s)2; x, y
)

10



= ε(Ln,m(1; x, y)− 1) + ε+
2M

δ2
Ln,m

(

(t2 + s2)

−2xt− 2ys+ (x2 + y2); x, y
)

= ε(Ln,m(1; x, y)− 1) + ε+
2M

δ2
[{

Ln,m

((

t2 + s2
)

; x, y
)}

− 2x {Ln,m (t; x, y)− x}

−2y{Ln,m(s; x, y)− y}+ (x2 + y2){Ln,m(1; x, y)− 1}
]

thus

||Ln,m(|f(t, s)− f(x, y)|; x, y)||C([a,b]×[c,d]) (2.2.9)

≤ ε+ C1||Ln,m(1; x, y)− 1||+ C2||Ln,m(t; x, y)− x||C([a,b]×[c,d])

+ C3||Ln,m(s; x, y)− y||C([a,b]×[c,d]) + C4||Ln,m(t
2 + s2; x, y)− x2 + y2)||C([a,b]×[c,d]),

where C1, C2, C3 and C4 are positive constants. Combining (2.2.8) and (2.2.9), we

have

||Ln,m(f ; x, y)− f(x, y)||C([a,b]×[c,d])

≤ ε+ C∗
1 ||Ln,m(1, x, y)− 1||C([a,b]×[c,d])

+ C2||Ln,m(t; x, y)− x||C([a,b]×[c,d])

+ C3||Ln,m(s; x, y)− y||C([a,b]×[c,d])

+ C4||Ln,m(t
2 + s2); x, y − (x2 + y2)||C([a,b]×[c,d]),

where C∗
1 , C2, C3 and C4. Therefore

||Ln,m(f ; x, y)− f(x, y)||C([a,b]×[c,d]) → 0.

11



2.3 Bernstein Polynomials in One and Two Variables

Definition 10. Let x ∈ [0, 1], the Bernstein polynomials (operators) Bn(f ; x) are de-

fined as follows:

Bn(f ; x) =
n

∑

k=0

f(
k

n
)

(

n

k

)

xk(1− x)n−k.

They are positive linear operators, since

(
n

k
)xk(1− x)n−k =

n!

k!(n− k)!
xk(1− x)n−k ≥ 0.

First few Bernstein polynomials of degree one, two and three are given as follows:

B1(f ; x) =
1

∑

k=0

f(
k

1
)

(

1

k

)

xk(1− x)1−k

= f(0)

(

1

0

)

(1− x) + f(1)

(

1

1

)

x

= f(0)(1− x) + f(1)x.

B2(f ; x) =
2

∑

k=0

f(
k

2
)

(

2

k

)

xk(1− x)2−k

= f(0)

(

2

0

)

(1− x)2 + f(
1

2
)

(

2

1

)

x(1− x)

+ f(1)

(

2

2

)

x2

= f(0)(1− x)2 + 2f(
1

2
)x(1− x) + f(1)x2.

B3(f ; x) =
3

∑

k=0

f(
k

3
)

(

3

k

)

xk(1− x)3−k

= f(0)

(

3

0

)

(1− x)3 + f(
1

3
)

(

3

1

)

x(1− x)2

+ f(
2

3
)

(

3

2

)

x2(1− x) + f(
3

3
)

(

3

3

)

x3

= f(0)(1− x)3 + 3f(
1

3
)x(1− x)2 + 3f(

2

3
)x2(1− x)

+ f(1)x3.
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The Bernstein operator is clearly linear, since

Bn (λf + µg) = λBnf + µBng, (2.3.1)

for all functions f and g on [0, 1] and all real numbers λ and µ.

It is known that ([15]) the Bernstein polynomials satisfy,

Bn(1; x) = 1, Bn(t; x) = x

Bn(t
2; x) = x2 +

x (1− x)

n

and

Bn((t− x)2) =
x (1− x)

n
.

Since, the conditions of Korovkin’s theorem are satified, then

‖Bn(f ; x)− f(x)‖C[0,1] → 0

for all f ∈ C [0, 1] .

Definition 11. ([22]) A function f is convex on [a, b] if for any x1, x2 ∈ [a, b],

λf(x1) + (1− λ) f(x2) ≥ f (λx1 + (1− λ) x2) (2.3.2)

for any λ ∈ [0, 1]. Geometrically, we can say that a chord connecting of any two points

on the convex curve y = f(x) is never below the curve.

In order to investigate the derivative properties of Bernstein polynomials we need some

definitions and propositions. Let f : [0, 1] → R, the divided difference of function f

is defined as follows:

∆tf(x) = f(x+ t)− f(x)

and

13



∆2
tf(x) = ∆t(∆tf(x)) = ∆t(f(x+ t)− f(x)) = ∆t(f(x+ t))−∆tf(x)

= [f(x+ 2t)− f(x+ t)]− [f(x+ t)− f(x)]

= f(x+ 2t)− 2f(x+ t) + f(x).

.

.

.

∆k
t f(x) = ∆t(∆

k−1
t f)

= f(x+ kt)−

(

k

1

)

f(x+ (k − 1)t) + . . .+ (−1)kf(x).

Note that, if ∆tf(x) ≥ 0 for all x ∈ [0, 1] then f is non-decreasing.

Corollary 12. Let f : [0, 1] → R. Then

Bm
n (f, x) =

n!

(n−m)!

n−m
∑

k=0

∆m
1/nf

(

k

n

)

Pn−m,k (x) , m = 0, 1, ..., n, (2.3.3)

where Pn−m,k (x) =

(

n−m

k

)

xk (1− x)n−m−k .

Remark 13. Corollary 2.3.3 shows that, if f is monotonically increasing, then so is

Bn(f ; x).

Taking x = 0 in (2.3.3), we obtain that

Bm
n (f ; 0) =

n!

(n−m)!
∆m

1/nf(0) = n(n− 1) . . . (n−m+ 1)∆m
1/nf(0). (2.3.4)

On the other hand, since the Maclaurin series of any function is given by

f(x) =
∞
∑

m=0

f (m)(0)
xm

m!
,

then the Maclaurin expansion of the Bernstein polynomials is represented by

Bn(f ; x) =
n

∑

m=0

Bm
n (f ; 0)

xm

m!

=
n

∑

m=0

n(n− 1) · · · (n−m− 1)∆m
1/nf(0)

xm

m!

=
n

∑

m=0

(

n

m

)

∆m
1/nf(0)x

m. (2.3.5)
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Now consider the polynomial f(x) = pk(x) of degree k, then ∆m
1/npk(x) = 0 for

k < m. Therefore; Bn(pk(t); x) is a polynomial of degree ≤ k.

On the other hand, generally Bn(pk(t); x) 6= pk(x).

Theorem 14. If f ∈ Ck [0, 1], for some k ≥ 0, then

m ≤ f (k) (x) ≤M, x ∈ [0, 1] implies ckm ≤ B(k)
n (f ; x) ≤ ckM,

for all n ≥ k. x ∈ [0, 1] where c0 = c1 = 1 and

ck =

(

n

k

)

k!

nk
=

(

1−
1

n

)(

1−
2

n

)

...

(

1−
k − 1

n

)

, 2 ≤ k ≤ n.

Remark 15. The coefficients an,m =

(

n

m

)

∆m
1/nf(0), in the expansion (2.3.3) can be

re-given by

an,m =
n!

m!(n−m)!
∆m

1/nf(0) =
n(n− 1) . . . (n−m+ 1)

m!
∆m

1/n

=
1

m!

(

n

n

)(

n− 1

n

)

. . . (
(n− (m− 1)

n
)∆m

1/nf(0)n
m

=
1

m!
(1−

1

n
) . . . (1−

m− 1

n
)
∆mf(0)

(
1

n
)m

.

Note that an,m converges to
fm(0)

m!
as n→ ∞.

Therefore, the right hand side of (2.3.5) is exactly the sum of the first

n + 1 terms of the Taylor’s expansion of the function f(x), with slightly modified

coefficients.

For any polynomial pk(x), it is known that

Bn(pk(t); x) ⇉ pk(x).

Uniformly on [0, 1]. We choose pk(x) such a way that

|f − pk| < ε.

Then
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|Bn(f ; x)− Bn(pk; x)| = |Bn(f − pk; x)| < |Bn(ε; x)|

= |εBn(1; x)| = ε

and then

|Bn(f ; x)− Bn(pk; x)| < ε.

Thus, for large n,

|f (x)− Bn(f ; x)| ≤ |f (x)− pk (x) |+ |pk (x)− Bn(pk; x)|+ |Bn(pk; x)− Bn(f ; x)|

< ε+ ε+ ε = 3ε,

which shows that

Bn(f ; x) ⇉ f (x)

on [0, 1]. This is another proof of Korovkin’s theorem for the Bernstein operators.

Now consider the operators. ([22])

B̃n−1(f ; x) =
n−1
∑

k=0

f(
k

n
)

(

n− 1

k

)

xk(1− x)n−1−k.

These operators are linear and satisfy

B̃n−1(1; x) = 1

B̃n−1(t; x) = x−
x

n

B̃n−1(t
2; x) =

(n− 1)(n− 2)

n2x2
+
n− 1

n2x
,

for n ≥ 2.

Therefore from Remark 2.3.6 we have that

16



B̃n−1(f
′

; x)− B
′

n(f ; x)

=
n−1
∑

k=0

f ′(
k

n
)

(

n− 1

k

)

xk(1− x)n−1−k

−
n−1
∑

k=0

n∆1/nf(
k

n
)

(

n− 1

k

)

xk(1− x)n−1−k (2.3.6)

=
n−1
∑

k=0

{f
′

(
k

n
)− n∆1/nk(

k

n
)}

(

n− 1

k

)

xk(1− x)n−1−k. (2.3.7)

Now, let’s take into account the curly bracet.

f
′

(
k

n
)− n∆1/nf(

k

n
) = f

′

(
k

n
)− n(f(

k + 1

n
)− f(

k

n
)

= f(k/n)−
f(
k

n
)− f(

k

n
)

1

n

. (2.3.8)

On the other hand, from the mean value theorem, there exists number θ, where 0 ≤

θ < 1, such that

f(
k + 1

n
)− f(

k

n
)

1

n

≃ f
′

(
k + θ

n
).

Then, from (2.3.8), we have that

f
′

(
k

n
)− n∆1/nf(

k

n
) = f

′

(
k

n
)− f

′

(
k + θ

n
).

Thus for large n, the above difference tends to zero. So, for all ε > 0, there exsists

N > 0, such that, ∀n ≥ N .

f
′

(
k

n
)− n∆1/nf(

k

n
) < ε.

Therefore from (2.3.7), we have that

B̃n−1(f
′

; x)− B
′

n(f ; x) < ε
n−1
∑

k=0

(

n− 1

k

)

xk(1− x)n−1−k = ε

The above inequality shows that, given any ε > 0, there exists N = N(ε) such that

||B̃n−1(f
′

; ·)− B̃
′

n(f ; ·)||C[0,1] < ε,
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for all n ≥ N .

Now, for any given ε > 0, there exists N = N(ε) such that

||B
′

n(f ; ·)− f ′||∞ = ||B
′

n(f ; ·)− B̃n−1(f
′

; ·) + B̃n−1(f
′

; ·)− f
′

||C[0,1]

≤ ||B
′

n(f ; ·)− B̃n−1(f
′

; ·)||C[0,1] + ||B̃n−1(f
′

; ·)− f
′

||C[0,1]

< ε+ ε = 2ε

for all n ≥ N(n ∈ N).

This shows that, B
′

n(f ; x) ⇉ f ′(x) for all f
′

∈ C [a, b].

Theorem 16. ([22]) A function f is convex on [a, b] if and only if all second order

divided differences of f are nonnegative.

Theorem 17. ([22]) If f(x) is convex on [0, 1], then

Bn(f ; x) ≥ f(x), 0 ≤ x ≤ 1, (2.3.9)

for all n ≥ 1.

Theorem 18. ([22]) If f(x) is convex on [0, 1],

Bn−1(f ; x) ≥ f(x) 0 ≤ x ≤ 1, (2.3.10)

for all n ≥ 2. The Bernstein polynomials are equal at x = 0 and x = 1, since

they interpolate f at these points. If f ∈ C [0, 1], the inequality in (2.3.9) is strict

for 0 < x < 1, for a given value of n, unless f is linear in each of the intervals
[

r − 1

n− 1
,

r

n− 1

]

, for 1 ≤ r ≤ n− 1, when we have simply Bn−1(f ; x) = Bn(f ; x).

Theorem 19. ([22]) Let f(x) be bounded on [0, 1]. Then for any x ∈ [0, 1] at which

f
′′

(x) exists,

lim
n→∞

n (Bn(f ; x)− f(x)) =
1

2
x (1− x) f

′′

(x) . (2.3.11)

Let x, y ∈ [0, 1], the Bernstein polynomials in two variables are defined by

Bn,m(f ; x, y) =
n

∑

k=0

m
∑

l=0

f(
k

n
,
l

m
)

(

n

k

)(

m

l

)

xk(1− x)n−k(1− y)m−l;n,m ∈ N

18



such that Bn,m : C ([0, 1]× [0, 1]) → C ([0, 1]× [0, 1]). These polynomials are posi-

tive linear operators.

Furthermore, these polynomials satisfy the conditions of Volkov’s theorem ([7]) since

Bn,m (1, x, y) = 1

Bn,m (t, x, y) = x

Bn,m (s, x, y) = t

Bn,m(t
2 + s2; x, y) = x2 + y2 +

x(1− x)

n
+
y(1− y)

m
.

Therefore, from the Volkov’s theorem, we have

||Bn,m(f ; x, y)− f(x, y)||C([o,1]×[0,1]) → 0.

Theorem 20. Let

Bn(f ; x) =
∞
∑

k=0

f(
k

n
, ·)

(

n

k

)

xk(1− x)n−k

Bm(f ; y) =
m
∑

l=0

(·,
l

m
)

(

m

l

)

yl(1− y)m−l

such that Bn : C[0, 1] → C[0, 1] and Bm : C[0, 1] → C[0, 1] for all n,m ∈ N. Then

(i) Bn[Bm(f ; y); x] = Bn,m(f ; x, y)

(ii) Bm[Bn(f ; x); y] = Bn,m(f ; x, y).

Proof. Consider

Bn(Bm(f, y); x) =
n

∑

k=0

Bmf(
k

n
, s); y)

(

n

k

)

xk(1− x)n−k
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=
n

∑

k=0

m
∑

l=0

f(
k

n
,
l

m
)

(

m

l

)

yl(1− y)m−l

(

n

k

)

xk(1− x)n−k

=
n

∑

k=0

m
∑

l=0

f(
k

n
,
l

m
)

(

n

k

)(

m

p

)

xk(1− x)n−kyl(1− y)m−l

= Bn,m(f ; x, y).

The proof (i) is completed. Similarly proof of (ii) can be given in a similar way.

2.4 Modulus of Continuity and Lipschitz Class Functions

Definition 21. For δ > 0, we define the r− th order modulus of continuity of f on the

interval I , by

ω(f ; δ) = max
|h|≤δ
t,x∈I

|∆hf(x)| = max
|h|≤δ
t,x∈I

|∆hf(x+ h)− f(x)|

or equivalently,

ω(f ; δ) = max
|t−x|≤δ
t,x∈I

|f(t)− f(x)|.

Theorem 22. ([8]) Let f, g, h ∈ C[a, b], δ > 0, δ2 ≥ δ1 > 0, λ > 1, n ≥ 1 be an

integer, α ∈ R. Then

(i) ω(f ; δ) is nondecreasing in δ.

(ii) ω(αf + g; δ) ≤ |α|ω(f ; δ) + ω(g; δ)

(iii) ω(f ;nδ) ≤ nω(f ; δ)

(iv) ω(f ;λδ) ≤ (1 + λ)ω(f ; δ)

(v) ω(f ; δ) ≤
2δ2
δ1
ω(f ; δ1)

(vi) lim
δ→0

ω(f ; δ) = 0.
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Proof. (i) Let 0 < δ1 ≤ δ2, then

ω(f ; δ1) = max
|h|≤δ1

|f(x+ h)− f(x)|

≤ max
|h|≤δ2

|f(x+ h)− f(x)| = ω(f ; δ2).

Hence, ω(f ; δ) is nondecreasing in δ.

(ii) Direct computations yield

ω(αf1 + f2; δ) = max
|h|≤δ

|(αf1 + f2)(x+ h)− (αf1 + f2)(x)|

≤ max
|h|≤δ

{|(αf1(x+ h)− αf1(x)|+ |f2(x+ h)− f2(x)|}

= max
|h|≤δ)

|α|(f1(x+ h)− f1(x)|+max
|h|≤δ

|f2(x+ h)− f2(x)|

= |α|ω(f1; δ) + ω(f2; δ).

(iii) Since

n−1
∑

k=0

∆tf(x+ t) = ∆tf(x) + ∆tf(x+ kt) + · · ·+∆tf(x+ (n− 1)t)

= [f(x+ t)− f(x)] + [f(x+ 2t)− f(x+ t)]

+ · · ·+ [f(x+ nt)− f(x+ (n− 1)t)]

= f(x+ nt)− f(x) = ∆ntf(x).

Therefore, taking nt = h then t =
h

n

ω(f ;nδ) = max
|h|≤nδ

|∆hf(x)|

= max
h|≤nδ

|
n−1
∑

k=0

∆h/nf(x+ k
h

n
)|

≤ max
|h|≤nδ)

{

|∆h/nf(x)|+ |∆h/nf(x+
h

n
)|+ · · ·+ |∆h/nf(x+ (n− 1)

h

n
|

}

= max
|h|/n≤δ

{

∣

∣∆h/nf(x)
∣

∣+ max
|h|/n≤δ

∣

∣

∣

∣

∆h/nf

(

x+
h

n

)∣

∣

∣

∣

+ · · ·+ max
|h|/n≤δ

∣

∣

∣

∣

∆h/nf

(

x+
n− 1

n
h

)∣

∣

∣

∣

}

.
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Letting
h

n
= h1, we get

ω(f ;nδ)

≤ max
|h|≤δ

|∆h1f(x)|+max
|h1|

|h1|

≤ δ

∣

∣

∣

∣

∆h1f(x+
h

n

∣

∣

∣

∣

+ · · ·+ max
|h1|≤δ

|∆h1f(x+ (n− 1)h1|

≤ ω(f ; δ) + ω(f ; δ) + · · ·+ ω(f ; δ) = nω(f ; δ).

(iv) Using (i) and (iii), we obtain that

ω(f ;λδ) ≤ ω(f ; (|λ|+ 1)δ)

≤ (|λ+ 1|)ω(f ; δ)

≤ (λ+ 1)ω(f ; δ).

(v) Direct calculations give, since 0 < δ1 ≤ δ2.

ω(f ; δ2) = ω(f ;
δ2
δ1
δ1) ≤ (1 +

δ2
δ1
)ω(f ; δ1)

=
δ1 + δ2
δ1

ω(f ; δ1)

=
δ2
δ1
(1 +

δ1
δ2
)ω(f ; δ1)

< 2
δ2
δ1
ω(f ; δ1).

Corollary 23. ([8]) If f is continuous on [0, 1] and ω(f ; δ) is the modulus of

continuity of f(x), then

|Bn(f ; x)− f(x)| ≤ 2ω

(

f ;

√

x(1− x)

n

)

.

Definition 24. Let’s call that a function f ∈ C[0, 1] belongs to LipM(α)

(0 < α ≤ 1)
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if the inequality

|f(t)− f(x)| ≤M |t− x|α; (t, x ∈ [0, 1])

holds.

Theorem 25. ([8]) Let f ∈ LipM(α), then

|Bn(f ; x)− f(x)| ≤M(
x(1− x)

n
)α/2.

2.5 The q-Integers

This section partially taking by ([12]).

Definition 26. For any real number q > 0 and r > 0, the q-integer of the number r is

defined by

[r] =











(1− qr) / (1− q) , q 6= 1

r , q = 1,

q-factorial is defined by

[r]! =











[r] [r − 1] ... [1] , r = 1, 2, 3, ...,

1 , r = 0

and q-binomial coefficient defined by

[

n

r

]

=
[n]!

[n− r]! [r]!

where n ≥ 0, r ≥ 0.

Definition 27. The following expression

Dqf (x) =
f (qx) f (x)

(q − 1) x

is called the q-derivative of the function f (x).

Definition 28. The q-analogue of the integration is defined as follows

b
∫

0

f (t) dqt = (1− q) b
∞
∑

j=0

f
(

qjb
)

qj 0 < q < 1,

where t ∈ [0, b] and f (x) is continuous on [0, b].
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Theorem 29. (q-binomial theorem) For 0 ≤ r ≤ n,

[

n

k

]

is a coefficient of of q−binomial,

then we have
n
∏

k=1

(

1 + qk−1x
)

=
n

∑

k=0

qk(k−1)/2

[

n

k

]

xk

and for q = 1, the above relation gives

(1 + x)n =
n

∑

k=0

(

n

k

)

xk.

2.6 q-Bernstein Polynomials

In this section we give the generalization of Bernstein polynomials ([22]) based on the

q-integers. Let us

Bq
n (f ; x) =

n
∑

r=0

f

(

[r]

[n]

)[

n

r

]

xr
n−r−1
∏

s=0

(1− qsx) (2.6.1)

for each positive integer n, q is fixed and

[

n

r

]

denotes a q-binomial coefficient. In

particular setting q = 1 in equation (2.6.1), gives Bernstein polynomials. It is clear

that

Bq
n (f ; 0) = f(0) Bq

n (f ; 1) = f(1). (2.6.2)

On the other hand Bq
n, defined by (2.6.1), is a linear positive operator for

0 < q < 1.

Theorem 30. ([22])The generalized Bernstein polynomial can be stated in the form

Bq
n (f ; x) =

n
∑

r=0

[

n

r

]

∆r
qf0x

r, (2.6.3)

where

∆r
qfj = ∆r−1

q fj+1 − qr−1∆r−1fj , r ≥ 1

with ∆0
qfj = fj = f ([j] / [n]).

Note that q-differences of the monomial xk of order greater than k is zero, and we

know that for all n ≥ k, Bn

(

xk; x
)

is a polynomial of degree k.
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Furthermore, q-Bernstein polynomial satisfy

Bq
n (1; x) = 1. (2.6.4)

Bq
n (t; x) = x. (2.6.5)

Bq
n

(

t2; x
)

= x2 +
x (1− x)

[n]
. (2.6.6)

The above expressions for Bn (1; x), Bn (t; x), and Bn (t
2; x) generalize their counter-

parts given earlier for the case q = 1.

Theorem 31. ([22]) If f(x) is convex on [0, 1], then

Bq
n (f ; x) ≥ f(x), 0 ≤ x ≤ 1, (2.6.7)

for all n ≥ 1 and for 0 < q ≤ 1.

Theorem 32. ([22]) If f(x) is convex on [0, 1] ,

Bq
n−1 (f ; x) ≥ Bq

n (f ; x) , 0 ≤ x ≤ 1, (2.6.8)

for all n ≥ 2, where Bq
n−1 (f ; x) and Bq

n (f ; x) are computed using the same value of

the parameter q.

If f ∈ C [0, 1], the inequality in (2.6.8) is strict for 0 < x < 1 unless, for a given

value of n, the function f is linear in each of the intervals

[

[r − 1]

[n− 1]
,

[r]

[n− 1]

]

, for

1 ≤ r ≤ n− 1, and Bq
n−1 (f ; x) = Bq

n (f ; x).

2.7 Bernstein Chlodowsky and q-Bernstein Chlodowsky Polyno-

mials

The classical Bernstein-Chlodowsky polynomials are defined by ([4])

Bc
n (f, x) =

n
∑

r=0

f
( r

n
bn

)

(

n

r

)(

x

bn

)r (

1−
x

bn

)n−r

, (2.7.1)

where 0 ≤ x ≤ bn and bn is the sequence of positive numbers such that

lim
n→∞

bn = ∞, lim
n→∞

bn
n

= 0.

These operators are also studied in ([9]) and ([11]).
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Lemma 33. For the Bernstein-Chlodowsky polynomials, we have

(i) Bc
n (1, x) = 1.

(ii) Bc
n (t, x) = x.

(iii) Bc
n (t

2, x) = x2 +
x (bn − x)

n
.

Proof. (i) Direct calculation yields

Bc
n (1, x) =

n
∑

r=0

(

n

r

)(

x

bn

)r (

1−
x

bn

)n−r

=

(

x

bn
+

(

1−
x

bn

))n

= 1n

= 1.

(ii) We have

Bc
n (t, x) =

n
∑

r=0

f
( r

n
bn

)

(

n

r

)(

x

bn

)r (

1−
x

bn

)n−r

= x

n
∑

r=1

(n− 1)!

(r − 1)! (n− 1− r)!

(

x

bn

)r−1 (

1−
x

bn

)n−r

= x
n−1
∑

r=0

(n− 1)!

r! (n− r)!

(

x

bn

)r (

1−
x

bn

)n−1−r

= x

(

x

bn
+

(

1−
x

bn

))n−1

= x.
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(iii) Finally,

Bc
n

(

t2, x
)

=
n

∑

r=1

f
( r

n
bn

)

(

n

r

)(

x

bn

)r (

1−
x

bn

)n−r

=
n

∑

r=1

( r

n
bn

)2 n!

(n− r)!r!

(

x

bn

)r (

1−
x

bn

)n−r

= xbn

n
∑

r=2

r − 1

n

(n− 1)!

(r − 1)! (n− r)!

(

x

bn

)r−1 (

1−
x

bn

)n−r

+
xbn
n

n
∑

r=1

(n− 1)!

(r − 1)! (n− r)!

(

x

bn

)r−1 (

1−
x

bn

)n−r

= x2
(n− 1)

n

n
∑

r=2

(n− 2)!

(r − 2)! (n− r)!

(

x

bn

)r−2 (

1−
x

bn

)n−r

+
xbn
n

n−1
∑

r=0

(n− 1)!

r! (n− 1− r)!

(

x

bn

)r (

1−
x

bn

)n−1−r

= x2
(n− 1)

n

n−2
∑

r=0

(n− 2)!

(r − 2)! (n− 2− r)!

(

x

bn

)r (

1−
x

bn

)n−2−r

+
xbn
n

= x2 −
x2

n
+
xbn
n

= x2 +
x (bn − x)

n
.

Whence the result.

Remark 34. It is obvious that

Bc
n

(

(t− x)2 ; x
)

= Bc
n(t

2; x)− 2x(Bc
n(t; x)) + x2(Bc

n(1; x))

= x2 +
x (bn − x)

n
− 2x2 + x2

=
x (bn − x)

n
.

H. Karslı and V. Grupta ([14]) introduced the q−Bernstein Chlodowsky polynomials

as follow:

Cn (f ; q; x) =
n

∑

k=0

f

(

[k]

[n]
bn

)[

n

k

](

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

, 0 ≤ x ≤ bn,

(2.7.2)
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where bn is a positive increasing sequence with the property lim
n→∞

bn = ∞. It is easily

verified that Cn (f ; q; x) are linear and positive operators for 0 < q < 1.

Lemma 35. (i) Cn (1; q; x) = 1.

(ii)Cn (t; q; x) = x.

(iii) Cn (t
2; q; x) = x2 +

x (bn − x)

[n]
.

Proof. (i) It is clear that

Cn (1; q; x) =
n

∑

k=0

[

n

k

](

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

= 1.

(ii) We have

Cn (t; q; x) =
n

∑

k=0

[k]q
[n]q

bn

[

n

k

](

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

= bn

n
∑

k=0

[k]q
[n]q

[

n

k

](

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

= bn
x

bn

n
∑

k=1

[

n− 1

k − 1

](

x

bn

)k−1 n−k−1
∏

s=0

(

1− qs
x

bn

)

= x
n−1
∑

k=0

[

n− 1

k

](

x

bn

)k−1 n−k−2
∏

s=0

(

1− qs
x

bn

)

= xCn−1 (1; q; x) = x.
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(iii) Finally we have

Cn

(

t2; q; x
)

=
n

∑

k=0

(

[k]

[n]
bn

)2 [
n

k

](

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

= b2n

n
∑

k=1

[k]

[n]

[

n− 1

k − 1

](

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

= b2n

n
∑

k=1

q [k − 1]

[n]

[

n− 1

k − 1

](

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

+
b2n
[n]

n
∑

k=1

[

n− 1

k − 1

]

q

(

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

=
qb2n [n− 1]

[n]

n
∑

k=2

[

n− 2

k − 2

](

x

bn

)k n−k−1
∏

s=0

(

1− qs
x

bn

)

+
b2n
[n]

n−1
∑

k=0

[

n− 1

k

](

x

bn

)k+1 n−k−2
∏

s=0

(

1− qs
x

bn

)

=
qb2n [n− 1]

[n]

(

x

bn

)2 n−2
∑

k=0

[

n− 2

k − 2

](

x

bn

)k n−k−2
∏

s=0

(

1− qs
x

bn

)

+
b2n
[n]

x

bn

n−1
∑

k=0

[

n− 1

k

](

x

bn

)k (

1−
x

bn

)n−k−1

q

=
q [n− 1]

[n]
x2Cn−2 (1; q; x) +

bn
[n]
xCn−1 (1; q; x)

= x2 +
x (bn − x)

[n]
.

This completes the proof.

Lemma 36. For the q-Bernstein Chlodowsky polynomials, we have

Cn ((t− x) ; q; x) = Cn (t; q; x)− xCn (1; q; x)

= x− x

= 0
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and

Cn

(

(t− x)2 ; q; x
)

= Cn(t
2; q; x)− 2x(Cn(t; q; x) + x2(Cn(1; q; x)

= x2 +
x (bn − x)

[n]
− 2x2 + x2

=
x (bn − x)

[n]
.
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Chapter 3

Q-BERNSTEIN SCHURER OPERATORS

3.1 Construction of the Operators

In this section we discuss the q-Bernstein Schurer operators defined by Muraru C. M.

([21]); and given by

Bp
n (f ; q; x) =

n+p
∑

r=0

f

(

[r]

[n]

)[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) (3.1.1)

for each n ∈ N, f ∈ C ([0, p+ 1]), p is fixed positive integer and 0 < q < 1. It is clear

that this operators are linear and positive.

Note that in the special case p = 0, we have the q-Bernstein operator

B0
n (f ; q; x) = Bn (f ; q; x) .

Lemma 37. Let Bp
n (f ; q; x) be given in (3.1.1). Then

(i) Bp
n (1; q; x) = 1.

(ii) Bp
n (t; q; x) =

[n+ p]

[n]
x.

(iii) Bp
n (t

2; q; x) =
[n+ p− 1] [n+ p]

[n]2
qx2 +

[n+ p]

[n]2
x.

Proof. (i) Using the binomial identity, we have

n
∑

k=0

[

n

k

]

xk (1− x)n−k = 1.

Hence

Bp
n (1; q; x) =

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

= 1.
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(ii) It is easy to show that

Bp
n (t; q; x) =

n+p
∑

r=1

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)
[r]

[n]

[n+ p]

[n+ p]

= x
[n+ p]

[n]

n+p−1
∑

r=0

[n+ p− 1]!

[n+ p− r − 1]! [r]!
xr

n+p−r−2
∏

s=0

(1− qsx)

= x
[n+ p]

[n]

n+p−1
∑

r=0

[

n+ p− 1

r

]

xr
n+p−r−2

∏

s=0

(1− qsx)

=
[n+ p]

[n]
x.

Whence the result.

(iii) Finally we calculate Bp
n (t

2; q; x)

Bp
n

(

t2; q; x
)

=

n+p
∑

r=1

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)
[r]2

[n]2

=

n+p
∑

r=1

[r]

[n]

[r]

[n]

[n+ p]!

[n+ p− r]! [r]!
xr

n+p−r−1
∏

s=0

(1− qsx)

and then, multiplying by
[n+ p]2

[n+ p]2
, we get

Bp
n

(

t2; q; x
)

=
[n+ p]

[n]2

n+p
∑

r=2

q [r − 1] [n+ p− 1]!

[r − 1]! [n+ p− r]!
xr

n+p−r−1
∏

s=0

(1− qsx)

+
[n+ p]

[n]2

n+p
∑

r=1

[n+ p− 1]!

[r − 1]! [n+ p− r]!
xr

n+p−r−1
∏

s=0

(1− qsx)

=
[n+ p− 1] [n+ p]

[n]2
q

n+p−2
∑

r=0

[n+ p− 2]!

[r]! [n+ p− r − 2]!
xr+2

n+p−r−3
∏

s=0

(1− qsx)

+
[n+ p]

[n]

n+p−1
∑

r=0

[n+ p− 1]!

[r]! [n+ p− r − 1]!
xr+1

n+p−r−2
∏

s=0

(1− qsx)

=
[n+ p− 1] [n+ p]

[n]2
qx2 +

[n+ p]

[n]2
x.

This completes the proof.
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3.2 Shape Properties

In this subsection we investigate the shape preserving properties of q-Bernstein Schurer

operators.

Theorem 38. The generalized q-Bernstein Schurer operator can be stated in the form

Bp
n (f ; q; x) =

n+p
∑

r=0

[

n+ p

r

]

∆r
qf0x

r, (3.1.2)

where

∆r
qfj = ∆r−1

q fj+1 − qr−1∆r−1fj , r ≥ 1

with ∆0
qfj = fj = f ([j] / [n+ p]).

Proof. Consider the identity ([22])

n+p−r−1
∏

s=0

(1− qsx) =

n+p−r
∑

s=0

(−1)s qs(s−1)/2

[

n+ p− r

s

]

xs. (3.1.3)

Note that for the case q = 1, it is equivalent to binomial expansion. Considering (3.1.3)

in the definition (3.1.1), we get

Bp
n (f ; q; x) =

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r
∑

s=0

(−1)s qs(s−1)/2

[

n+ p− r

s

]

xs.

Let us set t = r + s. Then, since

[

n+ p

r

][

n+ p− r

s

]

=

[

n+ p

t

][

t

r

]

,

we get

n+p
∑

t=0

[

n+ p

t

]

xt
t

∑

r=0

(−1)t−r q(t−r)(t−r−1)/2

[

t

r

]

fr =
n

∑

t=0

[

n+ p

t

]

∆t
qf0x

t.

This completes the proof.

Theorem 39. If f(x) is convex and nondecreasing on [0, 1], then

Bp
n (f ; q; x) ≥ f(x), 0 ≤ x ≤ 1, (3.1.4)

for all n+ p ≥ 1 and for 0 < q ≤ 1.
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Proof. For each x ∈ [0, 1], let us define

xr =
[r]

[n]
and λr =

[

n+ p

r

]

xr
n+p−r+1

∏

s=0

(1− qsx) , 0 ≤ r ≤ n+ p.

where xr is the quotient of the q-integers [r] and [n], and

[

n+ p

r

]

denotes the q-

binomial coefficients. Also, it is clear that λr ≥ 0.

It is known that

Bp
n (1; q; x) = 1.

So

λ0 + λ1 + · · ·+ λn+p = 1.

Also, it is proved that

Bp
n (t; q; x) =

[n+ p]

[n]
x,

so

λ0x0 + λ1x1 + · · ·+ λn+pxn+p =
[n+ p]

[n]
x.

Therefore, since f(x) is a convex function, we have the following inequlity

Bp
n (f ; q; x) =

n+p
∑

r=0

λrf (xr) ≥ f

(

n+p
∑

r=0

λrxr

)

= f

(

[n+ p]

[n]
x

)

≥ f (x) .

Theorem 40. If f(x) is convex on [0, 1] ,

Bp
n−1 (f ; q; x) ≥ Bn (f ; q; x) , 0 ≤ x ≤ 1, (3.1.5)

for all n ≥ 2, where Bp
n−1 (f ; q; x) and Bp

n (f ; q; x) are estimated using the same value

of the parameter q.

Proof. For 0 < q < 1, let us write

(

Bp
n−1 (f ; q; x)− Bp

n (f ; q; x)
)

n+p−1
∏

s=0

(1− qsx)−1
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=

n+p−1
∑

r=0

f

(

[r]

[n− 1]

)[

n+ p− 1

r

]

xr
n+p−r−2

∏

s=0

(1− qsx)

n+p−1
∏

s=0

(1− qs)−1

−

n+p
∑

r=0

f

(

[r]

[n]

)[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

n+p−1
∏

s=0

(1− qs)−1

=

n+p−1
∑

r=0

f

(

[r]

[n− 1]

)[

n+ p− 1

r

]

xr
n+p−1
∏

s=n+p−r−1

(1− qsx)−1

−

n+p
∑

r=0

f

(

[r]

[n]

)[

n+ p

r

]

xr
n+p−1
∏

s=n−r

(1− qsx)−1

Now, let

xr
n−1
∏

s=n−r−1

(1− qsx)−1 = ψr (x) + qn−r−1ψr+1 (x) ,

where

ψr (x) = xr
n+p−1
∏

s=n−r

(1− qsx)−1 . (3.1.6)

Restating results in terms of ψ0 (x) and ψn (x) yields

(

Bp
n−1 (f ; q; x)− Bp

n (f ; q; x)
)

n+p−1
∏

s=0

(1− qsx)−1 =

n+p−1
∑

r=1

[

n+ p

r

]

arψr (x) , (3.1.7)

where

ar =
[n− r]

[n]
f

(

[r]

[n− 1]

)

+ qn+p−r [r]

[n+ p]
f

(

[r − 1]

[n− 1]

)

− f

(

[r]

[n]

)

. (3.1.8)

It is clear from (3.1.7) that each ψr (x) is nonnegative on [0, 1] for 0 ≤ q ≤ 1, and thus

from (3.1.8), it will suffice to show that ar is nonnegative. Let us state

λ =
[n− r]

[n]
, x1 =

[r]

[n− 1]
, x2 =

[r − 1]

[n− 1]
.

It follows that

1− λ = qn−r [r]

[n]
and λx1 + (1− λ) x2 =

[r]

[n]
,

and we see immediately, on comparing (3.1.7) and (3.1.8), that

ar = λf (x1) + (1− λ) f (x2)− f (λx1 + (1− λ) f (x2)) ≥ 0,

and so Bp
n−1 (f ; q; x) ≥ Bp

n (f ; q; x). The inequality will be strict for 0 < x < 1 unless

every ar is zero; this can happpen only when f is linear in each of the intervals between

consecutive points [r] / [n+ p− 1], 0 < r ≤ n+ p− 1, then we have Bp
n−1 (f ; q; x) =

Bp
n (f ; q; x) for 0 < x < 1. This completes the proof.
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3.3 Rate of Convergence

Theorem 41. ([14]) If f (x) is continuous on [0, 1] and ω (f ; δ) is the modulus of

continuity of f (x), then

|Bp
n (f ; q; x)− f (x)| ≤ 2ω

(

f ;
√

λn (x)
)

where λn (x) = x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
[n+ p]

[n]2
x.

Proof. Using linearity and monotonicity of the operator Bp
n, we get

|Bp
n(f ; q; x)− f(x)|

= |

n+p
∑

r=0

f(
[r]

[n]
)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)− f(x)|

= |

n+p
∑

r=0

(f(
[r]

[n]
)− f(x))|

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

≤

n+p
∑

r=0

|f(
[r]

[n]
)− f(x)|

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

≤

n+p
∑

r=0

ω(f ; |
[r]

[n]
− x|)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

=

n+p
∑

r=0

ω(f ;

∣

∣

∣

[r]
[n]

− x
∣

∣

∣

δ
δ)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

≤

n+p
∑

r=0



(1 +

∣

∣

∣

[r]
[n]

− x
∣

∣

∣

δ
)ω (f ; δ)





[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) .
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Then using Cauchy-Schwarz Bunyakowsky inequality, we have

|Bp
n(f ; q; x)− f(x)|

≤

n+p
∑

r=0



(1 +

∣

∣

∣

[r]
[n]

− x
∣

∣

∣

δ
)ω(f ; δ)





[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

= ω(f ; δ)

[

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

+
1

δ

n+p
∑

r=0

|
[r]

[n]
− x|

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

]

= ω(f ; δ)

[

1 +
1

δ

n+p
∑

r=0

{(
[r]

[n]
− x)2

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)}1/2

{

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)}1/2

]

.

Hence

|Bp
n(f ; q; x)− f(x)|

≤ ω(f ; δ)[1 +
1

δ2
[

n+p
∑

r=0

(
[r]

[n]
− x)2

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)]1/2

× [

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)]1/2

= ω(f ; δ)[1 +
1

δ2

√

Bn(t− x)2; q; x)]. (3.1.9)

On the other hand, since

Bp
n(t− x)2; q; x) = Bp

n(t
2; q; x)− 2xBp

n(t; q; x) + x2Bp
n(1; q; x)

= x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
[n+ p]

[n]2
x.

By (3.1.9), we get

|Bp
n(f ; q; x)− f(x)| ≤ ω(f ; δ)(1 +

1

δ2

√

λn (x)),

where

λn = x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
[n+ p]

[n]2
x. (3.1.10)

Choosing δ =
√

λn (x), we find

|Bp
n(f ; q; x)− f(x)| ≤ 2ω(f ;

√

λn (x)).
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Theorem 42. Let f ∈ LipM(α), then

|Bp
n(f ; q; x)−f(x)| ≤M

[

x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
[n+ p]

[n]2
x

]α/2

where λn (x) is given by (3.1.10).

Proof. Considering the monotonicity and the lineariy of the operators, and taking into

account that f ∈ LipM (α) (0 < α ≤ 1)

|Bp
n(f ; q; x)− f(x)|

= |

n+p
∑

r=p

(f(
[r]

[n]
)− f(x)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) |

≤

n+p
∑

r=0

|f(
[r]

[n]
)− f(x)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) |

≤M

n+p
∑

r=0

|
[r]

[n]
− x|α

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) .

Using Hölder’s inequality, we get

|Bp
n(f ; q; x)− f(x)|

≤M

n+p
∑

r=0

[(
[r]

[n]
− x)2

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)]
α
2 [

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)]
2−α
2

≤M

[

{

n+p
∑

r=0

([(
[r]

[n]
− x)2

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)])
α
2 }

× {

n+p
∑

r=0

[

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)])
2−α
α }

]

=M [Bp
n((t− x)2; q; x)]

α
2

=M [(Bp
n(t

2; q; x)− 2x(Bp
n(t; q; x) + x2(Bp

n(1; q; x)]
α
2

=M(λn (x))
α
2 .
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Chapter 4

Q-BERNSTEIN-SCHURER-CHLODOWSKY

POLYNOMIALS

4.1 Construction of the Operators

We introduce the q-Bernstein-Schurer-Chlodowsky Polynomials by

Cp
n (f ; q; x) =

n+p
∑

r=0

f

(

[r]

[n]
bn

)[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

(4.1.1)

where p ∈ N0, (bn) is a positive increasing sequence and 0 ≤ x ≤ bn. These operators

are linear and positive provided that 0 < q < 1.

This operator satisfy Korovkin’s Theorem conditions as follows:

Lemma 43. For the q-Bernstein-Schurer-Chlodowsky Polynomials we have

(i) Cp
n, (1; q; x) = 1.

(ii) Cp
n(t; q; x) =

[n+ p]

[n]
x.

(iii) Cp
n(t

2; q; x) =
[n+ p− 1] [n+ p]

[n]2
qx2 +

x (bn − x)

[n]
.

Proof. (i) Consider the Binomial identity

(1− x)n+p−r =

n+p−r−1
∏

s=0

(1− qsx) ,

then we have

Cp
n (1; q; x) =

n+p
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

= 1.
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(ii) Direct calculations yield,

Cp
n(t; q; x) =

n+p
∑

r=0

[r]

[n]
bn

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

= bn

n+p
∑

r=0

[r]

[n]

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

=
[n+ p]

[n]
bn
x

bn

n+p
∑

r=1

[

n+ p− 1

r − 1

](

x

bn

)r−1 n+p−r−1
∏

s=0

(

1− qs
x

bn

)

= x
[n+ p]

[n]

n+p−1
∑

r=0

[

n+ p− 1

r

](

x

bn

)r n+p−r−2
∏

s=0

(

1− qs
x

bn

)

= x
[n+ p]

[n]
,

which completes the proof of (ii).

(iii) We have

Cp
n(t

2; q; x) =

n+p
∑

r=0

(

[r]

[n]
bn

)2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

= b2n

n+p
∑

r=1

[r]

[n]

[

n+ p− 1

r − 1

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

= b2n

n+p
∑

r=1

q [r − 1]

[n+ p]

[

n+ p− 1

r − 1

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

+
b2n

[n+ p]

n+p
∑

r=1

[

n+ p− 1

r − 1

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

then we get

=
qb2n [n+ p− 1]

[n+ p]

[

n+ p− 2

r − 2

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

+
b2n

[n+ p]

n+p−1
∑

r=0

[

n+ p− 1

r

](

x

bn

)r+1 n+p−r−1
∏

s=0

(

1− qs
x

bn

)

=
qb2n [n+ p− 1]

[n]

(

x

bn

)2 n+p−2
∑

r=0

[

n+ p− 2

r − 2

](

x

bn

)r n+p−r−2
∏

s=0

(

1− qs
x

bn

)

+
b2n

[n+ p]

x

bn

n+p−1
∑

r=0

[

n+ p− 1

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

=
q [n+ p− 1]

[n+ p]
x2Cp

n−2 (1; q; x) +
bn

[n+ p]q
xCp

n−1 (1; q; x)

=
[n+ p− 1] [n+ p]

[n]2
qx2 +

x (bn − x)

[n]
.
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Thus the proof is completed.

For the first two central moments, we have the following:

Lemma 44. Let p ∈ N0, (bn) is a increasing sequence of positive real numbers. Then

for the q-Bernstein-Schurer-Chlodowsky operators we have

(i) Cp
n ((t− x) ; q; x) = x

(

[n+ p]

[n]
− 1

)

.

(ii) Cp
n

(

(t− x)2 ; q; x
)

= x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
x (bn − x)

[n]
.

Proof. (i) Using the linearity of the operators and taking into account lemma (4.0.11),

we have

Cp
n ((t− x) ; q; x) = Cp

n (t; q; x)− xCp
n (1; q; x)

= x

(

[n+ p]

[n]
− 1

)

.

(ii) Consider

Cp
n

(

(t− x)2 ; q; x
)

= Cp
n

(

t2; q; x
)

− 2xCp
n (t; q; x) + x2Cp

n (1; q; x)

=
[n+ p− 1] [n+ p]

[n]2
qx2 +

x (bn − x)

[n]
− 2x2

[n+ p]

[n]
+ x2,

(4.1.2)

then we have

Cp
n

(

(t− x)2 ; q; x
)

= x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
x (bn − x)

[n]
.

Whence the result.

Lemma 45. For the second central moment we have the following inequality:

sup
0≤x≤bn

Cp
n

(

(t− x)2 ; q; x
)

≤
b2n
[n]2

(

[p]2 +
[n]

4

)

.
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Proof. We can write

Cp
n

(

(t− x)2 ; q; x
)

= x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
x (bn − x)

[n]

≤ x2
(

[n+ p]

[n]
− 1

)2

+
x (bn − x)

[n]

=
x2

[n]2
q2n [p]2 +

x (bn − x)

[n]

≤
x2

[n]2
[p]2 +

x (bn − x)

[n]
. (4.1.3)

Now taking supremum over the inteval x ∈ [0, bn] on both sides of the inequality

(4.1.3), we get

sup
0≤x≤bn

Cp
n

(

(t− x)2 ; q; x
)

≤ sup
0≤x≤bn

{

x2

[n]2
[p]2 +

x (bn − x)

[n]

}

=
b2n
[n]2

(

[p]2 +
[n]

4

)

.

4.2 Korovkin Type Approximation Theorem

In this subsection we prove a Korovkin type approximation theorem for the q-Bernstein-

Schurer-Chlodowsky operators

Lemma 46. Let A be a positive real number independent of n and f be a continuous

function which vanishes on [A,∞). Assume that q := qn with

0 < q ≤ 1 and lim
n→∞

bn
[n]

= 0, then we have

lim
n→∞

sup
0≤x≤bn

∣

∣

∣C̃p
n (f ; q; x)− f (x)

∣

∣

∣
= 0.

Proof. By hypothesis, f is bounded say |f (x)| ≤ M (M > 0) . For arbitrary small

ε > 0, we have

∣

∣

∣

∣

f

(

[k]

[n]
bn

)

− f (x)

∣

∣

∣

∣

< ε+
2M

δ2

(

[k]

[n]
bn − x

)2

,

42



where x ∈ [0, bn] and δ = δ (ε) are independent of n. Thus,

n+p
∑

r=0

(

[r]

[n]
bn − x

)2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

= x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
x (bn − x)

[n]
.

Therefore by Lemma 4.1.3

sup
0≤x≤bn

∣

∣

∣
C̃p

n (f ; q; x)− f (x)
∣

∣

∣
= ε+ 2M

b2n
[n]2

(

[p]2 +
[n]

4

)

.

Since
bn
[n]

→ 0 as n→ ∞, the proof is completed.

Theorem 47. Let f be a continuous function on the semiaxis [0,∞) and

lim
x→∞

f (x) = kf <∞.

Assume that q := qn with 0 < q ≤ 1, lim
n→∞

qn = 1 and lim
n→∞

bn
[n]

= 0. Then

lim
n→∞

sup
0≤x≤bn

∣

∣

∣
C̃p

n (f ; q; x)− f (x)
∣

∣

∣
= 0.

Proof. For any ε > 0 we can find a point x0 such that

|f (x)| < ε, x ≥ x0. (4.1.4)

Define a function g as follows

g (x) =























f(x) , 0 ≤ x ≤ x0

y = 2f (x0) (x− x0) + f (x0) , x0 ≤ x ≤ x0 +
1
2

0 , x ≥ x0 +
1
2
.

Then

sup
0≤x≤bn

|f (x)− g (x)| ≤ sup
x0≤x≤x0+

1
2

|f (x)− g (x)|+ sup
x≥x0+

1
2

|f (x)| .

Since

max
x0≤x≤x0+

1
2

|g (x)| = |f (x0)|
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we have, from (4.1.4) that

sup
0≤x≤bn

|f (x)− g (x)| ≤ 3ε.

Now we can write

sup
0≤x≤bn

∣

∣

∣
C̃p

n (f ; qn; x)− f (x)
∣

∣

∣

≤ sup
0≤x≤bn

C̃p
n (|f − g| ; qn; x) + sup

0≤x≤bn

∣

∣

∣
C̃p

n (g; qn; x)− g (x)
∣

∣

∣
+ sup

0≤x≤bn

|f (x)− g (x)|

≤ 6ε+ sup
0≤x≤bn

∣

∣

∣
C̃p

n (g; qn; x)− g (x)
∣

∣

∣
.

where g (x) = 0 for x0 +
1

2
≤ x ≤ bn. By the lemma 4.2.1, we obtain the result.

4.3 Order of Convergence

In this subsection we obtain the rate of convergence of the approximation, given in the

previous subsection, by means of modulus of continuity of the function, elements of

the Lipschits classes and the modulus of continuity of the derivative of the function.

Theorem 48. Let (qn) be a sequence of real numbers such that q := qn; 0 < qn < 1

and [n] := [n]q. If f ∈ CB[0,∞), we have

|Cp
n (f ; q; x)− f (x)| ≤ 2ω

(

f,
√

δn,q(x)

)

,

where ω (f, .) is modulus of continuity of f and

δn,q(x) = x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
x (bn − x)

[n]
.

Proof. By using the positivity and linearity of the operators, we have

|Cp
n(f ; q; x)− f(x)|

= |

n+p
∑

r=0

f(
[r]

[n]
bn)

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

− f(x)|

≤

n+p
∑

r=0

|f(
[r]

[n]
bn)− f(x)|

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

.
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Now using the properties of the modulus of continuity, we can write

|Cp
n (f ; q; x)− f (x)|

≤

n+p
∑

r=0

∣

∣

∣

∣

∣

f

(

[r]

[n]
bn

)[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

− f (x)

∣

∣

∣

∣

∣

≤

n+p
∑

r=0

∣

∣

∣

∣

f

(

[r]

[n]
bn

)

− f(x)

∣

∣

∣

∣

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

≤

n+p
∑

r=0









∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

δ
+ 1









ω (f, δ)

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

= ω (f, δ)

n+p
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

+
ω (f, δ)

δ

n+p
∑

r=0

∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

= ω (f, δ) +
ω (f, δ)

δ

{

n+p
∑

r=0

(

[r]

[n]
bn − x

)2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

}

= ω (f, δ) +
ω (f, δ)

δ

{

Cp
n

(

(t− x)2 ; q; x
)}1/2

,

where Cp
n

(

(t− x)2 ; q; x
)

= x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
x (bn − x)

[n]
.

Now choosing δn,q (x) = x2
(

[n+ p− 1] [n+ p]

[n]2
q − 2

[n+ p]

[n]
+ 1

)

+
x (bn − x)

[n]
, we

have

|Cp
n (f ; q; x)− f (x)| ≤ 2ω

√

δn,q (x).

Whence the result.

Theorem 49. Let (qn) be a sequence of real numbers such that 0 < qn < 1 and

lim
n→∞

qn = 1. If f ∈ LipM (α) and x ∈ [0, A] > 0,

‖Cp
n (f ; q; x)− f‖C[0,bn]

≤M
{

ACp
n

(

(t− x)2 ; q; x
)}

α
2 .

Proof. Consider

|Cp
n (f ; q; x)− f (x)| ≤

n+p
∑

r=0

∣

∣

∣

∣

f

(

[r]

[n]
bn

)

− f(x)

∣

∣

∣

∣

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

≤M

n+p
∑

r=0

∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

α [

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

.
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Choosing p1 =
2

α
and p2 =

2

2− α
then

1

p1
+

1

p2
= 1. We can write

|Cp
n (f ; q; x)− f (x)| ≤

n+p
∑

r=0

{

∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

}
α
2

×

{

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

}

2−α
2

.

Using Hölder inequlity, we get

|Cp
n (g; q; x)− f (x)| ≤M

{

n+p
∑

r=0

∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

}
α
2

.

From (4.1.2) we can write

|Cp
n (f ; q; x)− f (x)| ≤M

{

Cp
n

(

(t− x)2 ; q; x
)}

α
2 .

This implies that

‖Cp
n (f ; q; x)− f (x)‖C[0,bn]

≤M
{

ACp
n

(

(t− x)2 ; q; x
)}

α
2

where x ∈ [0, A].

Theorem 50. Let (qn) be a sequence of real numbers such that q := qn, 0 < qn <

1 and lim
n→∞

qn = 1. If f (x) have continuous derivative f
′

(x) and ω
(

f
′

, δ
)

is the

modulus of continuity of f
′

(x) in [0, A], then

|f(x)− Cp
n (f ; q; x)|

≤MA
[p]

[n]
+ 2

√

A2

[n]2
[p]2 +

Abn
[n]

ω

(

f
′

,

√

A2

[n]2
[p]2 +

Abn
[n]

)

.

where M is a positive constant such that |f ′(x)| ≤M (0 ≤ x ≤ A).

Proof. Using the mean value theorem we have

f

(

[r]

[n]
bn

)

− f (x) =

(

[r]

[n]
bn − x

)

f
′

(ξ)

=

(

[r]

[n]
bn − x

)

f
′

(x) +

(

[r]

[n]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

,
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where x < ξ <
[r]

[n]
bn. By using last equality we can write the following inequality,

|Cp
n (f ; q; x)− f (x)|

= f
′

(x)

n+p
∑

r=0

(

[r]

[n]
bn − x

)[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

+

n+p
∑

r=0

(

[r]

[n]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

≤
∣

∣

∣f
′

(x)
∣

∣

∣
Cp

n ((t− x) ; q; x)

+

n+p
∑

r=0

(

[r]

[n]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

≤MA

(

[n+ p]

[n]
− 1

)

+

n+p
∑

r=0

(

[r]

[n]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

≤MA
[p]

[n]

+

n+p
∑

r=0

(

[r]

[n]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

≤MA
[p]

[n]
+

n+p
∑

r=0

ω
(

f
′

, δ
)









∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

δ
+ 1









×

(

[r]

[n]
bn − x

)[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

,

since

|ξ − x| ≤

∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

.

Therefore, we can write the following inequality

|Cp
n (f ; q; x)− f (x)|

≤MA
[p]

[n]
+

n+p
∑

r=0

ω
(

f
′

, δ
)









∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

δ
+ 1









×

(

[r]

[n]
bn − x

)[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

.
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Using the Cauchy-Schwarz inequality for the first term we get

|Cp
n (f ; q; x)− f (x)|

≤MA
[p]

[n]
+ ω

(

f
′

, δ
)

n+p
∑

r=0

∣

∣

∣

∣

[r]

[n]
bn − x

∣

∣

∣

∣

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

+
ω
(

f
′

, δ
)

δ

n+p
∑

r=0

(

[r]

[n]
bn − x

)2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

≤MA
[p]

[n]
+ ω

(

f
′

, δ
)

(

n+p
∑

r=0

(

[r]

[n]
bn − x

)2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

)1/2

+
ω
(

f
′

, δ
)

δ

n+p
∑

r=0

(

[r]

[n]
bn − x

)2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

=MA
[p]

[n]
+ ω

(

f
′

, δ
)

√

Cp
n

(

(t− x)2 ; q; x
)

+
ω
(

f
′

, δ
)

δ
Cp

n

(

(t− x)2 ; q; x
)

.

On the other hand, using (4.1.3), we get

sup
0≤x≤A

Cp
n

(

(t− x)2 ; q; x
)

≤ sup
0≤x≤A

(

x2

[n]2
[p]2 +

x (bn − x)

[n]

)

≤
A2

[n]2
[p]2 +

Abn
[n]

.

Consequently

|Cp
n (f ; q; x)− f (x)|

≤MA
[p]

[n]
+ ω

(

f
′

, δ
)

{√

A2

[n]2
[p]2 +

Abn
[n]

+
1

δ

(

A2

[n]2
[p]2 +

Abn
[n]

)

}

.

Putting δ =

√

A2

[n]2
[p]2 +

Abn
[n]

|Cp
n (f ; q; x)− f (x)|

≤MA
[p]

[n]
+ ω

(

f
′

,

√

A2

[n]2
[p]2 +

Abn
[n]

){√

A2

[n]2
[p]2 +

Abn
[n]

+

√

A2

[n]2
[p]2 +

Abn
[n]

}

=MA
[p]

[n]
+ 2

√

A2

[n]2
[p]2 +

Abn
[n]

ω

(

f
′

,

√

A2

[n]2
[p]2 +

Abn
[n]

)

.

Whence the result.
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Chapter 5

SCHURER TYPE Q-BERNSTEIN KANTOROVICH

OPERATORS

5.1 Construction of the Operators

In this chapter we introduce Schurer type q-Bernstein Kantorovich operators by

Kp
n (f ; q; x) =

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

1
∫

0

f

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

dqt

where 0 < q < 1 and p ∈ N0 is fixed.

Lemma 51. For the Schurer type q-Bernstein Kantorovich operators we have

(i) Kp
n (1; q; x) = 1.

(ii) Kp
n (u; q; x) =

1

[n+ 1]

(

1

[2]
+ [n+ p] qx

)

.

(iii)Kp
n (u

2; q; x) =
1

[n+ 1]2

(

1

[3]
+

2 [n+ p]

[2]
qx+ [n+ p− 1] [n+ p] q3x2 + [n+ p] q2x

)

.

Proof. (i) From the definition of the q-integral and

∞
∑

s=0

qj =
1

1− q
we have

1
∫

0

dqt = (1− q)
∞
∑

j=0

qj

= (1− q)
1

(1− q)

= 1.
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As a result

Kp
n (1; q; x) =

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

= 1.

(ii) Again using the definition of the q-integral we can calculate

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

dqt

=
1

[n+ 1]

1
∫

0

tdqt+
q [r]

[n+ 1]

1
∫

0

dqt

=
1

[n+ 1]
(1− q)

∞
∑

j=0

q2j +
q [r]

[n+ 1]

=
1

[n+ 1]
(1− q)

1

1− q2
+

q [r]

[n+ 1]

=
1

[n+ 1]

1

1 + q
+

q [r]

[n+ 1]
.

Hence we have

Kp
n (u; q; x) =

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

(

1

[n+ 1]

1

1 + q
+

q [r]

[n+ 1]

)

=
1

[n+ 1]

1

1 + q

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

+ q

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)
[r]

[n+ 1]

[n]

[n]

=
1

[n+ 1]

1

1 + q
+

q [n]

[n+ 1]
Bq

n (t; q; x)

=
1

[n+ 1]

1

1 + q
+

q [n]

[n+ 1]

[n+ p]

[n]
x =

1

[n+ 1]

(

1

1 + q
+ [n+ p] qx

)

.

(iii) From the definition of the q-integral, we get

1
∫

0

t2dqt = (1− q)
∞
∑

j=0

q2jqj

= (1− q)
1

1− q3

=
1

1 + q + q2

=
1

[3]
.
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We have

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]

)2

dqt

=

1
∫

0

(

t2

[n+ 1]2
+ 2

t

[n+ 1]

q [r]

[n+ 1]
+

q2 [r]2

[n+ 1]2

)

dqt

=
1

[n+ 1]2





1
∫

0

t2dqt+ 2q [r]

1
∫

0

tdqt+ q2 [r]2
1

∫

0

dqt





=
1

[n+ 1]2

(

1

1 + q + q2
+ 2

q [r]

1 + q
+ q2 [r]2

)

.

Thus

Kp
n

(

u2; q; x
)

=
1

[n+ 1]2

{

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)
1

1 + q + q2

+

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) 2
q [r]

1 + q

+

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) q2 [r]2
}

=
1

[n+ 1]2
1

1 + q + q2

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

+
1

[n+ 1]

2

1 + q

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)
[r]

[n+ 1]

[n]

[n]

+

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)
q2 [r]2

[n+ 1]2
[n]2

[n]2

=
1

[n+ 1]2
1

1 + q + q2

+
2q [n]

(1 + q) [n+ 1]2

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)
[r]

[n]

+
q2 [n]2

[n+ 1]2

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)
[r]2

[n]2

=
1

[n+ 1]2
1

1 + q + q2

+
2q [n]

(1 + q) [n+ 1]2
Bp

n (t; q; x) +
q2 [n]2

[n+ 1]2
Bp

n

(

t2; q; x
)

.
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Finally we get

Kp
n

(

u2; q; x
)

=
1

[n+ 1]2

(

1

[3]
+ 2

[n+ p]

[2]
qx+ [n+ p− 1] [n+ p] q3x2 + [n+ p] q2x

)

,

where Bp
n (f ; q; x) is the q-Bernstein Schurer operator.

Remark 52. Taking limits in Lemma 5.1.1, when q → 1−, we get

Kp
n (1; x) = 1,

Kp
n (u; x) =

n+ p

n+ 1
x+

1

2n+ 2
,

Kp
n

(

u2; x
)

=
1

3 (n+ 1)2
+

(n+ p) [(n+ p− 1) x2 + 2x]

(n+ 1)2
.

Lemma 53. For the operator Kp
n (f ; q; x) , we have

Kp
n ((u− x) ; q; x) = x

(

[n+ p]

[n+ 1]
q − 1

)

+
1

[2] [n+ 1]

Kp
n

(

(u− x)2 ; q; x
)

= x2
(

[n+ p− 1] [n+ p]

[n+ 1]2
q3 − 2

[n+ p]

[n+ 1]
q + 1

)

+
x

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2
. (5.1.1)

Proof. It is obvious that

Kp
n ((u− x) ; q; x) = Kp

n (u; q; x)− xKp
n (1; q; x)

= x

(

[n+ p]

[n+ 1]
q − 1

)

+
1

[2] [n+ 1]
.
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Direct calculations yield,

Kp
n

(

(u− x)2 ; q; x
)

= Kp
n

(

u2; q; x
)

− 2xKp
n (u; q; x) + x2Kp

n (1; q; x)

=
1

[n+ 1]2

(

1

[3]
+ 2

[n+ p]

[2]
qx+ [n+ p− 1] [n+ p] q3x2 + [n+ p] q2x

)

− 2x
1

[n+ 1]

(

1

1 + q
+ [n+ p] qx

)

+ x2

= x2
(

[n+ p− 1] [n+ p]

[n+ 1]2
q3 − 2

[n+ p]

[n+ 1]
q + 1

)

+
x

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2
.

By the Korovkin’s theorem, we can state the following theorem:

Theorem 54. For all f ∈ C [0, p+ 1] , we have

lim
n→∞

∥

∥K
p

n (f ; qn, x)− f (x)
∥

∥

C[0,p+1]
= 0

provided that q := qn with lim
n→∞

qn = 1 and that lim
n→∞

1

[n]
= 0.

5.2 Rate of Convergence

Theorem 55. Let (qn) be a sequence of real numbers such that q := qn; 0 < q < 1

and lim
n→∞

qn = 1. If f ∈ C[0, p+ 1), we have

|Kp
n (f ; q; x)− f (x)| ≤ 2ω

(

f,
√

δn,q (x)

)

,

where ω (f, .) is the modulus of continuity of f . Also f is continuos function.
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Proof. Using the linearity and positivity of the operator, the property of the modulus

of continuity and finally the Cauchy-Schwarz Bunyakowsky inequality we can write

that

|Kp
n (f ; q; x)− f (x)|

≤

∣

∣

∣

∣

∣

∣

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

1
∫

0

(

f

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

− f (x)

)

dqt

∣

∣

∣

∣

∣

∣

≤

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

1
∫

0

∣

∣

∣

∣

f

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

− f (x)

∣

∣

∣

∣

dqt

≤

n+p
∑

r=0

1
∫

0









∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

δ
+ 1









ω (f, δ)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

= ω (f, δ)

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

+
ω (f, δ)

δ

n+p
∑

r=0

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

= ω (f, δ)

+
ω (f, δ)

δ







n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2 [
n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)







1/2

dqt

We know that from the Hölder’s inequality
1

p
+

1

q
= 1; q = 2 and p = 2.

1
∫

0

∣

∣

∣

∣

f

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

− f (x)

∣

∣

∣

∣

dqt

≤

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

2

dqt

≤







1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2

dqt







1
2






1
∫

0

1dqt







1
2

=







1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2

dqt







1
2

= {an,r (x)}
1
2 .
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Now we have

|Kp
n (f ; q; x)− f (x)| =

n+p
∑

r=0

{an,r}
1
2 pn,r (q; x)

where pn,r (q; x) =

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx). Again applying the Hölder’s in-

equality with; q = 2 and p = 2, we get

|Kp
n (f ; q; x)− f (x)|

≤

{

n+p
∑

r=0

an,rpn,r (x)

}
1
2
{

n+p
∑

r=0

pn,r (x)

}
1
2

=







n+p
∑

r=0

pn,r (x)

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2

dqt







1
2

= [δn,q (x)]
1
2 .

Now we have,

ω (f, δ) +
ω (f, δ)

δ
{Kp

n (δn,q (x) ; q; x)}
1/2 .

Choosing δn,q (x) = Kp
n

(

(u− x)2 ; q; x
)

, we have

|Kp
n (f ; q; x)− f (x)| ≤ 2ω

(

f,
√

Kp
n

(

(u− x)2 ; q; x
)

)

.

Theorem 56. Let f ∈ LipM (α), then

|Kp
n (f ; q; x)− f (x)| ≤M

(

Kp
n

(

(u− x)2 ; q; x
))

α
2

where Kp
n

(

(u− x)2 ; q; x
)

= x2
(

[n+ p− 1] [n+ p]

[n+ 1]2
q3 − 2

[n+ p]

[n+ 1]
q + 1

)

+
x

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2
.

Proof. By the linearity and positivity, we have

|Kp
n (f ; q; x)− f (x)|

=

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

1
∫

0

∣

∣

∣

∣

f

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

− f (x)

∣

∣

∣

∣

dqt.
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We know that from the Hölder’s inequality
1

p
+

1

q
= 1; q =

2

2− α
and p =

2

α
.

1
∫

0

∣

∣

∣

∣

f

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

− f (x)

∣

∣

∣

∣

dqt

≤

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

α

dqt

≤







1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2

dqt







α
2






1
∫

0

1dqt







2−α
2

=







1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2

dqt







α
2

= {an,r (x)}
α
2 .

Now we have

|Kp
n (f ; q; x)− f (x)| =M

n+p
∑

r=0

{an,r}
α
2 pn,r (q; x)

where pn,r (q; x) =

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx). Again applying the Hölder’s in-

equality with; q =
2

2− α
and p =

2

α
, we get

|Kp
n (f ; q; x)− f (x)|

≤M

{

n+p
∑

r=0

an,rpn,r (x)

}
α
2
{

n+p
∑

r=0

1.pn,r (x)

}
2−α
2

=M







n+p
∑

r=0

pn,r (x)

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2

dqt







α
2

=M
[

Kp
n

(

(u− x)2 ; q; x
)]

α
2 .

Theorem 57. Let (qn) be a sequence of real numbers such that q := qn; 0 < q < 1 and

lim
n→∞

qn = 1. If f (x) have a continuous derivative f
′

(x) and ω
(

f
′

, δ
)

is the modulus
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of continuity of f
′

(x) in [0, 1], then

|f(x)−Kp
n (f ; q; x)|

≤MA
[p]

[n+ 1]
+ 2

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
+ [n+ p]

)

+
1

[3] [n+ 1]2

)1/2

× ω

(

f ′,

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
+ [n+ p]

)

+
1

[3] [n+ 1]2

)1/2
)

,

where M is a positive constant such that |f ′ (x)| ≤M (0 ≤ x ≤ 1) .

Proof. Using the mean value theorem we have

f

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

− f (x)

=

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)

f
′

(ξ)

=

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)

f
′

(x) +

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)

(

f
′

(ξ)− f (x)
)

,

where x < ξ <
t

[n+ 1]
+

q [r]

[n+ 1]
. Hence, we have

|Kp
n (f ; q; x)− f (x)|

= f
′

(x)

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

+

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)

(

f
′

(ξ)− f (x)
)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

≤
∣

∣

∣
f

′

(x)
∣

∣

∣Kp
n ((u− x) ; q; x)

+

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)

(

f
′

(ξ)− f (x)
)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

≤MA

(

[n+ p]

[n+ 1]
− 1

)
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+

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)

(

f
′

(ξ)− f (x)
)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

≤MA
[p]

[n+ 1]

+

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

[r]

[n+ 1]
− x

)

(

f
′

(ξ)− f (x)
)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

≤MA
[p]

[n+ 1]

+

n+p
∑

r=0

1
∫

0

ω (f ′, δ)









∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

δ
+ 1









×

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt,

since

|ξ − x| ≤

∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

.

Therefore we can write the following inequality,

|Kp
n (f ; q; x)− f (x)|

≤MA
[p]

[n+ 1]

+

n+p
∑

r=0

1
∫

0

ω (f ′, δ)









∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

δ
+ 1









×

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt.
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From the Cauchy-Schwarz inequality for the first term we get

|Kp
n (f ; q; x)− f (x)|

≤MA
[p]

[n+ 1]

+ ω (f ′, δ)

n+p
∑

r=0

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

+
ω (f ′, δ)

δ

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2 [
n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

≤MA
[p]

[n+ 1]

+ ω (f ′, δ)





n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2 [
n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt





1//2

+
ω (f ′, δ)

δ

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2 [
n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

=MA
[p]

[n+ 1]
+ ω (f ′, δ)

√

Kp
n

(

(u− x)2 ; q; x
)

+
ω (f ′, δ)

δ
Kp

n

(

(u− x)2 ; q; x
)

.

Therefore using (5.1.1), we see that

sup
0≤x≤1

Kp
n

(

(u− x)2 ; q; x
)

≤ sup
0≤x≤1

x2

[n+ 1]2
[p]2

+
x

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2

≤
1

[n+ 1]2
[p]2

+
1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2
.
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Thus

|Kp
n (f ; q; x)− f(x)|

≤MA
[p]

[n+ 1]

ω (f ′, δ)

{(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2

) 1
2

+
1

δ

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2

)}

.

Choosing δ =

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

we get

+
1

[3] [n+ 1]2

)1/2

|Kp
n (f ; q; x)− f(x)|

≤MA
[p]

[n+ 1]

+ ω

(

f ′,

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2

) 1
2

)

×

{

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

))1/2

+
1

[3] [n+ 1]2

) 1
2

)

+

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2

)1/2
}
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=MA
[p]

[n+ 1]

+ 2

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2

)1/2

× ω

(

f ′,

(

1

[n+ 1]2
[p]2 +

1

[n+ 1]2

(

2
[n+ p]

[2]
q + [n+ p] q2 − 2

[n+ 1]

[2]

)

+
1

[3] [n+ 1]2

)1/2
)

. +
1

[3] [n+ 1]2

) 1
2

)

.
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Chapter 6

KANTOROVICH TYPE

Q-BERNSTEIN-SCHURER-CHLODOWSKY

OPERATORS

6.1 Construction of the Operators

In this chapter we introduce the Kantorovich Type q-Bernstein-Schurer-Chlodowsky

Operators. It is defined as follows

T p
n (f ; q; x) =

n+p
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

×

1
∫

0

f

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)

dqt, (6.1.1)

where q ∈ (0, 1), n ∈ N and f ∈ C ([0, p+ 1]) , here p ∈ N0 is fixed. Also it is clear

that this operator is linear and positive.

Lemma 58. Let T p
n (f ; q; x) be given by (6.1.1) we can write the following properties

(i) T p
n (1; q; x) = 1.

(ii) T p
n (u; q; x) =

1

[n+ 1]

(

bn
[2]

+ [n+ p] qx

)

.

(iii) T p
n (u

2; q; x) =
1

[n+ 1]2

(

b2n
[3]

+ 2
[n+ p] bn

[2]
qx+ [n+ p− 1] [n+ p] q3x2

+(bn − x) q2x) .

Proof. (i) We know that [22]

n
∏

s=1

(

1 + qs−1x
)

=
n

∑

s=0

qs(s−1)/2

[

n

s

]

xs
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and
n+p
∑

r=0

[

n+ p

r

]

xr (1− x)n−r
q = 1.

Therefore
∞
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1−
x

bn
qs
)

= 1.

(ii) First of all we must calculate

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)

dqt =
bn

[n+ 1]

1
∫

0

tdqt+
q [r] bn
[n+ 1]

1
∫

0

dqt

=
bn

[n+ 1]
(1− q)

∞
∑

j=0

qjqj +
q [r] bn
[n+ 1]

=
bn

[n+ 1]
(1− q)

1

1− q2
+
q [r] bn
[n+ 1]

=
bn

[n+ 1]

1

1 + q
+
q [r] bn
[n+ 1]

=
bn

[2] [n+ 1]
+
q [r] bn
[n+ 1]

.

Now we calculate the T p
n (u; q; x) ,

T p
n (u; q; x) =

n+p
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)(

bn
[2] [n+ 1]

+
q [r]

[n+ 1]
bn

)

=
bn

[2] [n+ 1]

n+p
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

+

n+p
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

q [r]

[n+ 1]
bn
[n]

[n]

=
bn

[2] [n+ 1]
+

q [n]

[n+ 1]
Cp

n (t; q; x)

=
bn

[2] [n+ 1]
+

q [n]

[n+ 1]

[n+ p]

[n]
x

=
1

[n+ 1]

(

bn
[2]

+ [n+ p] qx

)

,

where Cp
n (t; q; x) is q-Bernstein-Schurer-Chlodowsky operator defined in Chapter 4.
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(iii) Finally let’s calculate T p
n (u

2; q; x) ,

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)2

dqt

=
b2n

[n+ 1]2

1
∫

0

t2dqt+ 2
q [r]

[n+ 1]2
b2n

1
∫

0

tdqt+
q2 [r]2

[n+ 1]2
b2n

1
∫

0

dqt.

On the other hand,

1
∫

0

t2dqt = (1− q)
∞
∑

j=0

q2jqj

= (1− q)
1

1− q3

= (1− q)
1

(1− q) (1 + q + q2)

=
1

[3]
.

Hence,

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)2

dqt

=
b2n

[3] [n+ 1]2
+ 2

q [r]

[2] [n+ 1]2
b2n +

q2 [r]2

[n+ 1]2
b2n.
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Since

T p
n

(

u2; q; x
)

=

n+p
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

×

(

b2n
[3] [n+ 1]2

+ 2
q [r]

[2] [n+ 1]2
b2n +

q2 [r]2

[n+ 1]2
b2n

)

=
b2n

[3] [n+ 1]2

∞
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

+ 2
qbn

[2] [n+ 1]2

∞
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

[r]
[n]

[n]
bn

+
q2

[n+ 1]2

∞
∑

r=0

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

[r]2
[n]2

[n]2
b2n

=
b2n

[3] [n+ 1]2
+ 2

bn [n] q

[2] [n+ 1]2
Cp

n (t; q; x) +
q2 [n]2

[n+ 1]2
Cp

n

(

t2; q; x
)

=
b2n

[3] [n+ 1]2
+ 2

qbn [n]

[2] [n+ 1]2
[n+ p]

[n]
x

+
q2 [n]2

[n+ 1]2

(

[n+ p− 1] [n+ p]

[n]2
qx2 +

x (bn − x)

[n]2

)

=
1

[n+ 1]2

(

b2n
[3]

+ 2
[n+ p] bn

[2]
qx+ [n+ p− 1] [n+ p] q3x2 + (bn − x) q2x

)

.

This completes the proof.

Remark 59. Taking limits in Lemma (6.1.1) as q → 1−, we have

T p
n (1; x) = 1.

T p
n (u; x) =

1

n+ 1

(

bn
2

+ (n+ p) x

)

.

T p
n

(

u2; x
)

=
1

(n+ 1)2

(

b2n
3

+ (n+ p) xbn + (n+ p− 1) (n+ p) x2 + x (bn − x)

)

.

Lemma 60. For the first two moments we have

T p
n ((u− x) ; q; x) =

1

[n+ 1]

(

bn
[2]

+ [n+ p] qx

)

− x

+

(

[n+ p]

[n+ 1]
q − 1

)

x+
bn

[2] [n+ 1]
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and

T p
n

(

(u− x)2 ; q; x
)

= x2
(

[n+ p− 1] [n+ p] q3

[n+ 1]2
− 2

[n+ p]

[n+ 1]
q + 1

)

+ x

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − x)

[n+ 1]2
q2 − 2

bn
[2] [n+ 1]

)

+
b2n

[3] [n+ 1]2
. (6.1.2)

Proof. It is clear that

T p
n ((u− x) ; q; x) = T p

n (u; q; x)− xT p
n (1; q; x)

=
1

[n+ 1]

(

bn
[2]

+ [n+ p] qx

)

− x

=

(

[n+ p]

[n+ 1]
q − 1

)

x+
bn

[2] [n+ 1]
.

Also,

T p
n

(

(u− x)2 ; q; x
)

= T p
n

(

u2; q; x
)

− 2xT p
n (u; q; x) + x2T p

n (1; q; x)

=
1

[n+ 1]2

(

b2n
[3]

+ 2
[n+ p] bn

[2]
qx+ [n+ p− 1] [n+ p] q3x2 + q2x (bn − x)

)

− 2x
1

[n+ 1]

(

bn
[2]

+ [n+ p] qx

)

+ x2

= x2
(

[n+ p− 1] [n+ p] q3

[n+ 1]2
− 2

[n+ p]

[n+ 1]
q + 1

)

+ x

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − x)

[n+ 1]2
q2 − 2

bn
[2] [n+ 1]

)

+
b2n

[3] [n+ 1]2
.
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Theorem 61. For the second central moment we have the following inequality:

sup
0≤x≤bn

T p
n

(

(u− x)2 ; q; x
)

≤
b2n

[n+ 1]2
[p]2 + bn

(

2
[n+ p] bn

[2] [n+ 1]2
q +

bn

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2
.

Proof. We can write

T p
n

(

(u− x)2 ; q; x
)

= x2
(

[n+ p− 1] [n+ p] q3

[n+ 1]2
− 2

[n+ p]

[n+ 1]
q + 1

)

+ x

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − x)

[n+ 1]2
q2 − 2

bn
[2] [n+ 1]

)

+
b2n

[3] [n+ 1]2

≤ x2
(

[n+ p]

[n+ 1]
− 1

)2

+ x

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − x)

[n+ 1]2
q2 − 2

bn
[2] [n+ 1]

)

+
b2n

[3] [n+ 1]2

=
x2q2n

[n+ 1]2
[p]2 + x

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − x)

[n+ 1]2
q2 − 2

bn
[2] [n+ 1]

)

+
b2n

[3] [n+ 1]2

≤
x2

[n+ 1]2
[p]2 + x

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − x)

[n+ 1]2
q2 − 2

bn
[2] [n+ 1]

)

+
b2n

[3] [n+ 1]2
.

Now taking supremum over the interval x ∈ [0, bn] on both sides of the above inequal-
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ity, we get

sup
0≤x≤bn

T p
n

(

(u− x)2 ; q; x
)

≤ sup
0≤x≤bn

[

x2

[n+ 1]2
[p]2

+ x

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − x)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

]

≤
b2n

[n+ 1]2
[p]2 + bn

(

2
[n+ p] bn

[2] [n+ 1]2
q +

bn

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2
.

6.2 Korovkin Type Approximation Theorem

In this subsection we prove a Korovkin type approximation theorem for the Kan-

torovich type q-Bernstein-Schurer-Chlodowsky Operators.

Lemma 62. Let A be a positive real number independent of n and f be a continuous

function which vanishes on [A,∞). Assume that q := qn

with 0 < q ≤ 1 and lim
n→∞

bn
[n]

= 0, then we have

lim
n→∞

sup
0≤x≤bn

∣

∣

∣T̃ p
n (f ; q; x)− f (x)

∣

∣

∣
= 0.

Proof. By hypothesis since f is bounded we have |f (x)| ≤ M ; (M > 0) . For arbi-

trary small ε > 0, we have

∣

∣

∣

∣

f

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)

− f (x)

∣

∣

∣

∣

< ε+
2M

δ2

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)2

,
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where x ∈ [0, bn] and δ = δ (ε) are independent of n. Thus,

n+p
∑

r=0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)2 [
n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

=
b2n

[n+ 1]2
[p]2 + bn

(

2
[n+ p] bn

[2] [n+ 1]2
q +

bn

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2
.

Therefore by lemma 6.1.4

sup
0≤x≤bn

∣

∣

∣T̃ p
n (f ; q; x)− |f (x)|

∣

∣

∣

= ε+ 2M
b2n

[n+ 1]2
[p]2

+
b2n

[n+ 1]2
[p]2 + bn

(

2
[n+ p] bn

[2] [n+ 1]2
q +

bn

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2
.

Since
bn
[n]

→ 0 as n→ ∞, the proof is completed.

Theorem 63. Let f be a continuous function on the semiaxis [0,∞), for which

lim
x→∞

f (x) = kf <∞.

Then

lim
n→∞

sup
0≤x≤bn

∣

∣

∣
T̃ p
n (f ; q; x)− f (x)

∣

∣

∣
= 0.

Proof. It is enough to prove the case kf = 0. Then, for any ε > 0 we can find a point

x0 such that

|f (x)| < ε, x ≥ x0. (6.1.4)

Define a function g as follows

g (x) =























f(x) , 0 ≤ x ≤ x0

y = 2f (x0) (x− x0) + f (x0) , x0 ≤ x ≤ x0 +
1
2

0 , x ≥ x0 +
1
2
.
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Then

sup
0≤x≤bn

|f (x)− g (x)| ≤ sup
x0≤x≤x0+

1
2

|f (x)− g (x)|+ sup
x≥x0+

1
2

|f (x)| .

Since

max
x0≤x≤x0+

1
2

|g (x)| = |f (x0)|

we have from (6.1.4) that

sup
0≤x≤bn

|f (x)− g (x)| ≤ 3ε.

Now we can write

sup
0≤x≤bn

∣

∣

∣T̃ p
n (f ; q; x)− f (x)

∣

∣

∣

≤ sup
0≤x≤bn

T̃ p
n (|f − g| ; q; x) + sup

0≤x≤bn

∣

∣

∣
T̃ p
n (g; qn; x)− g (x)

∣

∣

∣
+ sup

0≤x≤bn

|f (x)− g (x)|

≤ 6ε+ sup
0≤x≤bn

∣

∣

∣
T̃ p
n (g; q; x)− g (x)

∣

∣

∣

where g (x) = 0 for x0 +
1
2
≤ x ≤ bn. By the lemma 6.2.1, we obtain the result.

6.3 Order of Convergence

In this subsection we obtain the rate of convergenceof the approximation, given in the

previous subsection, by means of modulus of continuity of the function, elements of

Lipschitz classes and the modulus of continuity of the derivetive of the function.

Theorem 64. Let (qn) be a sequence of real numbers such that q := qn; 0 < qn < 1.

If f ∈ CB[0,∞), we have

|T p
n (f ; q; x)− f (x)| ≤ 2ω

(

f,
√

δn,q (x)

)

,

where δn,q (x) = T p
n

(

(t− x)2 ; q; x
)

is defined by equation (6.1.2) ω (f, .) is modulus

of continuity of f . Also f is continuous function.
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Proof. We can write the following inequality from the T p
n (f ; q; x) operator;

|T p
n (f ; q; x)− f (x)|

≤

∣

∣

∣

∣

∣

∣

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

1
∫

0

(

f

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)

− f (x)

)

dqt

∣

∣

∣

∣

∣

∣

≤

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

1
∫

0

∣

∣

∣

∣

f

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)

− f (x)

∣

∣

∣

∣

dqt

≤

n+p
∑

r=0

1
∫

0









∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

δ
+ 1









× ω (f, δ)

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

= ω (f, δ)

n+p
∑

r=0

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx)

+
ω (f, δ)

δ

n+p
∑

r=0

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

[

n+ p

r

]

xr
n+p−r−1

∏

s=0

(1− qsx) dqt

= ω (f, δ)

+
ω (f, δ)

δ







n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)2 [
n+ p

r

]

xr

×

n+p−r−1
∏

s=0

(1− qsx) dqt

}1/2

.

We know that from the Hölder’s inequality
1

p
+

1

q
= 1; q = 2 and p = 2, we get

1
∫

0

∣

∣

∣

∣

f

(

t

[n+ 1]
+

q [r]

[n+ 1]

)

− f (x)

∣

∣

∣

∣

dqt

≤

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
+

q [r]

[n+ 1]
− x

∣

∣

∣

∣

2

dqt

≤







1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2

dqt







1
2






1
∫

0

1dqt







1
2

=







1
∫

0

(

t

[n+ 1]
+

q [r]

[n+ 1]
− x

)2

dqt







1
2

= {an,r (x)}
1
2 .
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Let choosing δn,q (x) = T p
n

(

(u− x)2 ; q; x
)

, we have

|T p
n (f ; q; x)− f (x)| ≤ 2ω

√

T p
n

(

(t− x)2 ; q; x
)

.

Whence the result.

Theorem 65. Let (qn) be a sequence of real numbers such that 0 < qn < 1 and

lim
n→∞

qn = 1. If f ∈ LipM (α) and x ∈ [0, A] > 0,

‖T p
n (f ; q; x)− f‖C[0,bn]

≤M
{

AT p
n

(

(t− x)2 ; q; x
)}

α
2 .

Proof. By the linearity and monotonicity of the operators, we have,

|T p
n (f ; q; x)− f (x)|

≤

n+p
∑

r=0

∣

∣

∣

∣

f

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)

− f (x)

∣

∣

∣

∣

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

≤M

n+p
∑

r=0

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

α [

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt.

Let’s choose p1 =
2

α
and p2 =

2

2− α
then

1

p1
+

1

p2
= 1. We can write

|T p
n (f ; q; x)− f (x)|

≤

n+p
∑

r=0







1
∫

0

∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

2 [
n+ p

r

](

x

bn

)r

×

n+p−r−1
∏

s=0

(

1− qs
x

bn

)

}
α
2

dqt

×

{

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

}

2−α
2

.

Using Hölder’s inequlity, we have

|T p
n (g; q; x)− f (x)|

≤M







n+p
∑

r=0

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

2

×

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

}
α
2

dqt.
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From (6.1.2) we can write

|T p
n (f ; q; x)− f (x)| ≤M

{

T p
n

(

(u− x)2 ; q; x
)}

α
2 .

This implies that

‖T p
n (f ; q; x)− f (x)‖C[0,bn]

≤M
{

AT p
n

(

(u− x)2 ; q; x
)}

α
2 ,

where x ∈ [0, A]

Theorem 66. Let (qn) be a sequence of real numbers such that q := qn,

0 < qn < 1 and lim
n→∞

qn = 1. If f (x) have continuous derivative f
′

(x) and ω
(

f
′

, δ
)

is the modulus of continuity of f
′

(x) in [0, 1]. Then

|f(x)− T p
n (f ; q; x)|

≤MA
[p]

[n+ 1]

+ 2

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
+

(bn − 1)

[n+ 1]2
− 2

bn
[2] [n+ 1]

)

+
b2n

[3] [n+ 1]2

}1/2

× ω

(

f ′,

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
+

(bn − 1)

[n+ 1]2
− 2

bn
[2] [n+ 1]

)

+

+
b2n

[3] [n+ 1]2

}1/2
)

where M is a positive constant such that |f ′ (x)| ≤M (0 ≤ x ≤ 1) .

Proof. From the mean value theorem we have

f

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)

− f (x)

=

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn

)

f
′

(ξ)

=

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)

f
′

(x) +

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

,

where x < ξ <
t

[n+ 1]
bn +

q [r]

[n+ 1]
bn. By using last equality we can write the
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following inequality,

T p
n (f ; q; x)− f (x)

= f
′

(x)

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)[

n+ p

r

](

x

bn

)r

×

n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

+

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

[

n+ p

r

](

x

bn

)r

×

n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

≤
∣

∣

∣
f

′

(x)
∣

∣

∣
T p
n ((u− x) ; q; x)

+

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

[

n+ p

r

](

x

bn

)r

×

n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

≤MA

(

[n+ p]

[n+ 1]
− 1

)

+

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

[

n+ p

r

](

x

bn

)r

×

n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

≤MA
[p]

[n+ 1]

+

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)

(

f
′

(ξ)− f
′

(x)
)

[

n+ p

r

](

x

bn

)r

×

n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt
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≤MA
[p]

[n+ 1]

+

n+p
∑

r=0

ω (f ′)

1
∫

0









∣

∣

∣

∣

t

[n+ 1]
bn +

[r]

[n+ 1]
bn − x

∣

∣

∣

∣

δ
+ 1









(

t

[n+ 1]
bn +

[r]

[n+ 1]
bn − x

)

×

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

≤MA
[p]

[n+ 1]

+

n+p
∑

r=0

ω (f ′)

1
∫

0









∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

δ
+ 1









(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)

×

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

≤MA
[p]

[n+ 1]

+

n+p
∑

r=0

ω (f ′)

1
∫

0









∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

δ
+ 1









(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)

×

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt.

Since

|ξ − x| ≤

∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

Therefore, we can write the following inequality

|T p
n (f ; q; x)− f(x)|

≤MA
[p]

[n+ 1]

+

n+p
∑

r=0

ω
(

f
′

, δ
)

1
∫

0









∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

δ
+ 1









∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

×

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt.
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Using the Cauchy-Schwarz inequality for the first term we get

|T p
n (f ; q; x)− f(x)|

≤MA
[p]

[n+ 1]

+ ω
(

f
′

, δ
)

n+p
∑

r=0

1
∫

0

∣

∣

∣

∣

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

∣

∣

∣

∣

×

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

+
ω
(

f
′

, δ
)

δ

n+p
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)2

×

[

n+ p

r

](

x

bn

)r n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

≤MA
[p]

[n+ 1]

+ ω
(

f
′

, δ
)







n
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)2 [
n+ p

r

](

x

bn

)r

×

n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

}1/2

+
ω
(

f
′

, δ
)

δ

n+1
∑

r=0

1
∫

0

(

t

[n+ 1]
bn +

q [r]

[n+ 1]
bn − x

)2 [
n+ p

r

](

x

bn

)r

×

n+p−r−1
∏

s=0

(

1− qs
x

bn

)

dqt

≤MA
[p]

[n+ 1]
+ ω

(

f
′

, δ
)

√

T p
n

(

(u− x)2 ; q; x
)

+
ω
(

f
′

, δ
)

δ
T p
n

(

(u− x)2 ; q; x
)
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On the other hand Using the (6.1.3) and for the second term we have

sup
0≤x≤A

T p
n

(

(u− x)2 ; q; x
)

≤ sup
0≤x≤A

x2

[n+ 1]2
[p]2

+ x

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − x)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

≤
A2

[n+ 1]2
[p]2

+ A

(

2
[n+ p] bn

[2] [n+ 1]2
q +

bn

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2
.

Consequently

|T p
n (f ; q; x)− f (x)|

≤MA
[p]

[n+ 1]

+ ω
(

f
′

, δ
)

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − 1)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

}1/2

+
1

δ

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − 1)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

}

.

Using δ =

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − 1)

[n+ 1]2
q2
)
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+
b2n

[3] [n+ 1]2

}1/2

|T p
n (f ; q; x)− f (x)|

≤MA
[p]

[n+ 1]

+ ω

(

f ′,

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − 1)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

}1/2
)

×

[

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − 1)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

}1/2

+

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − 1)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

}1/2
]

=MA
[p]

[n+ 1]

+ 2

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − 1)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

}1/2

× ω

(

f ′,

{

1

[n+ 1]2
[p]2 +

(

2
[n+ p] bn

[2] [n+ 1]2
q +

(bn − 1)

[n+ 1]2
q2
)

+
b2n

[3] [n+ 1]2

}1/2
)

.

Whence the result.
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[16] Lupaş A., A q-analogue of the Bernstein operators, university of Cluj-Napoca,

Seminar on numerical and statistical calculus, 9 (1987), 85-92.

[17] Mahmudov N. I., On q-parametric Szasz-Mirakyan operators, Mediter. J. Math.,

7 (3) (2010), 297-311.
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