
 

Stability of Systems of Differential Equations and 

Biological Applications 
 

 

 

İpek Savun 

 

 

 

 

 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the Degree of 

 

 

 

 

 

 

 

Master of Science 

in 

Mathematics 

 

 

 

 

 

 

 

 

Eastern Mediterranean University 

August 2010 

Gazimağusa, North Cyprus 



 

Approval of the Institute of Graduate Studies and Research 

 
          
           

           

           Prof. Dr. Elvan Yılmaz 

                  Director (a) 

 

 

I certify that this thesis satisfies the requirements as a thesis for the degree of Master 

of Science in Mathematics. 

 

 

         
 

           

      

                   Prof. Dr. Agamirza Bashirov 

                         Chair, Department of Mathematics 

 

 

 

 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Mathematics. 

 

 

 
 

 

 

 

                 Assoc. Prof. Dr. Svitlana Rogovchenko 

           Supervisor 

          

     

      

 

 

 

 

 

               Examining Committee 

1.  Prof. Dr. Agamirza Bashirov               

       

2.  Assoc. Prof. Mehmetali Özarslan  

3.  Assoc. Prof. Svitlana  Rogovchenko       



ABSTRACT

In this thesis, we deal with systems of ordinary differential equations and discuss the

stability properties of their solutions. We classify equilibrium points of linear systems

with respect to their type and stability and discuss the methods for investigating the sta-

bility properties of nonlinear systems. Existence of periodic solutions which plays an

important role in stability theory is also discussed. In addition, some important eco-

logical applications, such as Lotka-Volterra predator-prey model, competition model and

nutrient-prey-predator model with intratrophic predation, modeled by the systems of dif-

ferential equations are also considered. Recent results obtained for these applications are

also included.

Keywords: Stability, Periodic solution, Predator-prey model, Intratrophic predation.
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ÖZ

Bu tezde, birinci dereceden denklem sistemleri ve sistemlerin çözümlerinin kararlılığı

üzerinde çalıştık. Lineer sistemlerin kritik noktalarını türlerine ve kararlılıklarına göre

sınıflandırdık, lineer olmayan sistemlerin kararlılık özelliklerini inceleyen metodları ele

aldık. Çözümlerin kararlılık analizinde önemli rol oynayan periyodik çözümlerin varlığı

üzerinde çalıştık. Bunlara ek olarak, diferansiyel denklemlerle ifade edilebilen bazı önemli

ekolojik uygulamaları inceledik. Örneğin; Lotka-Volterra av-avcı ilişki modeli, türler

arası rekabet modeli ve intratropik avlanma etkisindeki besin-av-avcı modeli. Bu uygula-

malarla ilgili elde edilen yeni sonuçlara da yer verdik.

Anathar Kelimeler: Kararlılık, Periodik çözüm, Av-avcı ilişkisi, Intratropik avlanma.
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Chapter 1

INTRODUCTION

Theory of differential equations has been of great interest for many years. It plays an

important role in different subjects such as physics, biology, chemistry, etc. It is usually

difficult to find the exact solution of a given system of differential equations. Any infor-

mation about the qualitive properties of solutions of the system is essential. Consequently,

stability is very important for understanding the nature of solutions of the system.

In Chapter 2, for a general system of differential equations, we introduce some defini-

tions and theorems for the stability of the equilibrium points of the system. An alternative

method for studying stability, called Liapunov method, is explained in Section 4 of this

chapter. In the theory of differential equations, existence of periodic solutions of the sys-

tem plays an important role. In our survey, it is discussed in the last section of Chapter 2.

Several examples are included to support the theory.

In Chapter 3, the theory of factorable planar systems and the nature of their equilib-

rium points are discussed with a number of illustrative examples.

Chapter 4 is concerned with the applications of the stability theory. It deals with bio-

logical systems. Lotka-Volterra predator-prey model and competition model are examined

in detail. The last section of this chapter studies the effect of harvesting on the system if

both species are harvested.

In Chapter 5, recent results obtained for the ratio-dependent predator-prey systems

1



are collected. In this chapter, we worked on equilibrium points of these systems and the

conditions needed for the stability of these equilibrium points.

Finally, in the last chapter, Chapter 6, we discuss the equilibrium points of special

model with three trophic levels, a nutrient-prey-predator model with intratrophic preda-

tion. We analyze the effect of intratrophic predation on the system.
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Chapter 2

STABILITY OF DIFFERENTIAL EQUATIONS

First of all, we want to introduce a general system of differential equations and give some

important definitions for stability. We consider the system of differential equations

.−→x =
−→
X (−→x , t),

where

−→x =

⎡
⎢⎣x1

...

xn

⎤
⎥⎦ and

−→
X =

⎡
⎢⎣X1

...

Xn

⎤
⎥⎦ .

Definition 2.0.1 (Solution of a System). The vector

−→x = [x1(t), ..., xn(t)]
T

which satisfies the equations of the system

.−→x =
−→
X (−→x , t)

is called a solution of the system. For a given initial value t0,

−→x (t0) =
−→x0

is called an initial solution of the system.

Theorem 2.0.1 (Existence and Uniqueness). Consider the system

.−→x =
−→
X (−→x , t),

3



with the initial condition

−→x (t0) =
−→x0.

If the functions Xi and ∂Xi

∂xj
(i, j = 1, ..., n) are continuous over a domain R of (n + 1)-

dimensional tx-space and (t0, x0) is a point inside R, then the initial value problem has

a unique solution −→x = −→x (−→x0, t, t0) in a t-interval I containing t0 [1, Page 302, Theorem

6.2.1].

Definition 2.0.2. Consider the system

.−→x =
−→
X (−→x , t).

Suppose that
−→
X is continuous and ∂Xj

∂xi
, i, j = 1, 2, ..., n are continuous for−→x ∈ R, where

R is a domain and I is an open interval. Then if−→x0 ∈ R and t0 ∈ I , there exists a solution

−→x (t), defined uniquely in some neighborhood of (−→x0, t0), which satisfies −→x (t0) = −→x0.

These systems are called regular on R × I . If a system is regular on −∞ < xi < ∞,

i = 1, 2, ..., n, −∞ < t <∞, it is known as a regular system.

The system is called autonomous if t, time variable, does not appear explicitly in the

right-hand side. Thus, the general n-dimensional autonomous system can be written as

.−→x =
−→
X (−→x )

and so has the form

dx1

dt
= X1 (x1(t), ..., xn(t)) ,

dx2

dt
= X2 (x1(t), ..., xn(t)) ,

...

dxn

dt
= Xn(x1(t), ..., xn(t)),

where Xi are the functions of x1, ..., xn.
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If the independent variable t is considered as time, the solution

−→x = −→x (t)

shows a phase path, or trajectory, in the phase plane (x1, ..., xn) and the diagram of these

phase paths is known as a phase diagram.

The solutions of

−→
X (−→x ) =

−→
0

are called critical, singular, fixed or equilibrium points of the system.

Now consider the case n = 2. Two dimensional systems are known as planar systems.

The system can be written as

dx

dt
= P (x, y),

(2.0.1)

dy

dt
= Q(x, y).

The intersection point (
∼
x,
∼
y) of the curves

P (x, y) = 0 and Q(x, y) = 0

is the equilibrium point of the system.

For a given t0, the parametric equations

x = x(t), y = y(t)

satisfying the initial conditions

x(t0) = x0, y(t0) = y0

show the solution curve of the system (2.0.1) in the xy-plane, which is the phase plane for

the system.

5



The constant-valued functions

x(t) =
∼
x, y(t) =

∼
y

are also solutions to the system. Hence the critical point can be considered as constant-

valued solution. This solution is known as an equilibrium solution, which is one single

point (
∼
x,
∼
y).

There may also be periodic solutions to the system. A periodic solution is called a

cycle. If x = x(t), y = y(t) is the periodic solution, then

x(t+ p) = x(t),

y(t+ p) = y(t),

where p is the period of the solution.

Now consider the general autonomous system in n-dimensions

.−→x =
−→
X (−→x ).

Let
−→
x∗(t) be the solution of this system. We will now introduce the stability of the phase

path representing the solution
−→
x∗(t). In this case, we deal with the part of the phase path

starting from a particular point
−→
a∗ . Thus we have a half-path H∗ representing

−→
x∗(t) such

that

−→
x∗(t0) =

−→
a∗ .

Definition 2.0.3 (Poincaré Stability-Stability of Paths). Let H∗ be the half-path for the

solution
−→
x∗(t) of

.−→x =
−→
X (−→x ) starting at

−→
a∗ . Suppose that H is the half-path which starts

at −→a . If for every ε > 0, there exists δ depending on ε such that

|−→a −−→a∗ | < δ(ε) implies that max−→x ∈H
dist(−→x ,H∗) < ε,

then H∗ is called Poincaré stable (or orbitally stable). In other words, all paths starting

with a point sufficiently close to
−→
a∗ remain close to the half-path H∗, i.e., small distur-
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bances of the initial value lead to small changes in the half-path. Otherwise, H∗ is said

to be unstable.

Example 2.0.1. Show that all the paths of

ẋ = x,

(2.0.2)

ẏ = y

are Poincaré unstable.

Solution 2.0.2. In the matrix form, the system reads as

[
ẋ
ẏ

]
=

[
1 0
0 1

] [
x
y

]
,

and x(t) = Aet, y(t) = Bet are the solutions where A and B are constants. Then

dx

dt
= x,

dy

dt
= y,

and

dx

dy
=

x

y
,∫

dx

x
=

∫
dy

y
,

ln |x|+ ln |c| = ln |y| ,

xc = y,

where c is any constant. The paths are given by the family of straight lines

y = cx,

where c is any constant. Consider a half-path H∗ starting at
−→
a∗ = (x0, 0), x0 > 0. Take

ε > 0, the tolerance region of H∗ is sketched in Figure 2.1

7



Figure 2.1: The tolerance region for the half-path H∗ of the system (2.0.2).

Figure 2.2: The paths of the system (2.0.2).

If

dist(−→a ,
−→
a∗) =

√
(x1 − x2)2 + (y1 − y2)2 < δ,

will we have

dist(S, P ) < ε?

dist(S, P ) =

√
(x1 − x2)2 +

(
y1
x1

x− y2
x2

x

)2

=

√
(x1 − x2)2 +

(
y1
x1

− y2
x2

)2

x2 > ε

as x→∞, so the path is unstable, see Figure 2.2.

Definition 2.0.4 (Liapunov Stability-Stability of Equilibrium Points). Let
−→
x∗(t) be the

8



solution of the system
.−→x =

−→
X (−→x , t).

If, for every ε > 0, there exists δ(ε, t0) > 0 such that

∥∥∥−→x (t0)−
−→
x∗(t0)

∥∥∥ < δ implies that
∥∥∥−→x (t)−−→x∗(t)

∥∥∥ < ε, ∀ t > t0,

where −→x is any other solution of the system, then the solution is called Liapunov stable

for t ≥ t0. If the system is autonomous then we simply say that it is Liapunov stable for

all t0. In other words, when the initial point is sufficiently close to the critical point, the

solution curves (trajectories) also remain close to the critical point. Otherwise it is called

Liapunov unstable.

Definition 2.0.5 (Uniform Stability). If the solution is stable for t > t0 and the δ is

independent of t0, then it is uniformly stable.

Definition 2.0.6 (Asymptotic Stability). If the solution is stable for t > t0 and the trajec-

tories approach the critical point as t→∞, then it is called asymptotically stable, i.e., ∃

δ(t0) > 0 such that

∥∥∥−→x (t0)−
−→
x∗(t0)

∥∥∥ < δ implies that lim
t→∞

−→x (t) =
−→
x∗(t),

where −→x0 = (x0, y0),
−→
x∗ = (

∼
x,
∼
y) and −→x (t) = (x(t), y(t)).

2.1 Types of Equilibrium Points

Definition 2.1.1. Let C be a path of the system (2.0.1) and let x = x(t), y = y(t) be

a solution of (2.0.1) which represents C parametrically. Let (
∼
x,
∼
y) be a critical point of

(2.0.1). We shall say that the path C approaches the critical point (
∼
x,
∼
y) as t→ +∞ if

lim
t→+∞

x(t) =
∼
x, lim

t→+∞
y(t) =

∼
y.

9



Figure 2.3: A center.

Definition 2.1.2. Let C be a path of the system (2.0.1) which approaches the critical point

(
∼
x,
∼
y) of (2.0.1) as t → +∞, and let x = x(t), y = y(t) be a solution of (2.0.1) which

represents C parametrically. We say that C enters the critical point (
∼
x,
∼
y) as t→ +∞ if

lim
t→+∞

y(t)

x(t)
(2.1.1)

exists or if the quotient in (2.1.1) becomes either positively or negatively infinite as t →

+∞.

Definition 2.1.3 (Isolated Critical Point). A critical point is called isolated if there exists

no other critical point in any neighborhood of it.

Definition 2.1.4 (Center). The isolated equilibrium point (a, b) is called a center if there

exists a neighborhood of (a, b) which contains a countably infinite number of closed paths

each of which contains (a, b) in its interior and which are such that the diameters of the

paths approach 0 as n → ∞. But (a, b) is not approached by any path either as t → ∞

or as t→ −∞.

Figure 2.3 shows an example of a center at (0, 0).

Definition 2.1.5 (Saddle Point). The isolated critical point (a, b) is called a saddle point

if there exists a neighborhood of (a, b) in which the following two conditions hold:

10



Figure 2.4: A saddle point.

1. There exist two paths which approach and enter (a, b) from a pair of opposite directions

as t→∞ and there exist two paths which approach and enter (a, b) from a different pair

of opposite directions as t→ −∞.

2. In each of the four domains between any two of the four directions in (1), there are in-

finitely many paths which are arbitrarily close to (a, b) but do not approach (a, b) either

as t→∞ or as t→ −∞.

Figure 2.4 shows a saddle point at (0, 0).

Definition 2.1.6 (Spiral). The isolated critical point (a, b) is called a spiral point (or

focus) if there exists a neighborhood of (a, b) such that every path P in this neighborhood

has the following properties:

1. P is defined for all t > t0 (or for all t < t0) for some number t0;

2. P approaches (a, b) as t→∞ (or as t→ −∞); and

3. P approaches (a, b) in a spiral-like manner, winding around (a, b) an infinite number of

times as t→∞ (or as t→ −∞).

An example of a spiral point at the point (0, 0) is demonstrated in Figure 2.5.

11



Figure 2.5: A spiral.

Figure 2.6: A node.

Definition 2.1.7 (Node). The isolated critical point (a, b) is called a node if there exists

a neighborhood of (a, b) such that every path P in this neighborhood has the following

properties:

1. P is defined for all t > t0 (or for all t < t0) for some number t0;

2. P approaches (a, b) as t→∞ (or as t→ −∞); and

3. P enters (a, b) as t→∞ (or as t→ −∞).

Figure 2.6 is an example of a node at the point (1, 1).

12



Example 2.1.1. Solve the system of equations

ẋ = −y(x2 + y2), (2.1.2)

ẏ = x(x2 + y2).

Show that the zero solution is Liapunov stable and that all other solutions are stable.

Solution 2.1.1. Using polar coordinates,

x = r cos θ,

y = r sin θ,

we have

x2 + y2 = r2.

Taking derivative of both sides gives

2x
dx

dt
+ 2y

dy

dt
= 2r

dr

dt
,

xẋ+ yẏ = r
dr

dt
,

where

dx

dt
=

∂x

∂r

dr

dt
+

∂x

∂θ

dθ

dt
= cos θ

dr

dt
+ (−r sin θ)dθ

dt
,

dy

dt
=

∂y

∂r

dr

dt
+

∂y

∂θ

dθ

dt
= sin θ

dr

dt
+ (− cos θ)

dθ

dt
.

Using these, we obtain

xẋ+ yẏ = x[−y(x2 + y2)] + y[x(x2 + y2)]⇒

r
dr

dt
= −xy(x2 + y2) + xy(x2 + y2)⇒

r
dr

dt
= 0⇒

dr

dt
= 0⇒

r = c,

13



Figure 2.7: The trajectories of the system (2.1.2).

where c is any constant. Similary,

yẋ− xẏ = y[−y(x2 + y2)]− x[x(x2 + y2)]⇒

−r2dθ
dt

= −y2(x2 + y2)− x2(x2 + y2)⇒

−r2dθ
dt

= −(x2 + y2)2 ⇒

−r2dθ
dt

= −r2 ⇒
dθ

dt
= 1,

and the direction of motion along the trajectories is anti-clockwise. Therefore, the origin

is a center, stable, see Figure 2.7.

2.2 Classification of Equilibrium Points in Two-Dimensional Space

Consider a two-dimensional linear autonomous system with constant coefficients

dx

dt
= ax+ by,

(2.2.1)

dy

dt
= cx+ dy.

The coefficient matrix is

A =

[
a b
c d

]
.

14



The nature of the only critical point (0, 0) is determined by the roots of the characteristic

equation

det(A− λI) = 0, (2.2.2)

that is,

det(A− λI) =

∣∣∣∣ a− λ b
c d− λ

∣∣∣∣
= (a− λ)(d− λ)− bc

= λ2 − (a+ d)λ+ (ad− bc)

= 0.

Let p = a+ d and q = ad− bc, so we have

λ2 − pλ+ q = 0.

We assume that the critical point (0, 0) of the system (2.2.1) is an isolated critical

point, i.e., ad− bc 	= 0. Otherwise, equations

ax+ by = 0

and

cx+ dy = 0

define the same line and all points on the line are critical points, so (0, 0) is not isolated.

Hence, we do not investigate the case where ad− bc = 0, so λ = 0 is not a root of the

characteristic equation (2.2.2).

The roots of the characteristic equation are

λ1,2 =
p±√�

2
,

where� = p2 − 4q.

Now we will investigate the following cases for the roots:

Case I: (real unequal roots of the same sign)

15



a. If λ1 	= λ2 ∈ R and λ1 > 0, λ2 > 0, the solution

x(t) = c1e
λ1t + c2e

λ2t,

(2.2.3)

y(t) = k1e
λ1t + k2e

λ2t,

where c1, c2, k1, k2 are arbitrary coefficients, is not bounded as t→∞. This kind of

phase diagram is called a node. Since the phase paths are tending outwards from the

origin, the critical point (0, 0) is an unstable node. We can formulate the conditions

for an unstable node as

� > 0, q > 0, p > 0.

b. If λ1 	= λ2 ∈ R and λ1 < 0, λ2 < 0, the solution x, y in (2.2.3) tends to zero as t→∞,

hence the critical point (0, 0) is a stable node which corresponds to the conditions

� > 0, q > 0, p < 0.

It is also asymptotically stable.

Case II: (real unequal roots of the opposite sign)

If λ1 	= λ2 ∈ R and λ1 < 0, λ2 > 0, some of the phase paths aproach the origin while

the others go away from the origin, so the solution (0, 0) is unstable and it is known as a

saddle point. The conditions for coefficients are

� > 0, q < 0.

Case III: (real equal roots)

In this case,� = 0.

a. If λ1 = λ2 = λ ∈ R and λ > 0, the general solution

x(t) = c1e
λt + c2te

λt,

16



(2.2.4)

y(t) = k1e
λt + k2te

λt,

where c1, c2, k1, k2 are arbitrary coefficients, is unbounded as t→∞. Hence, (0, 0)

is an unstable node.

b. If λ1 = λ2 = λ ∈ R and λ < 0, from (2.2.4), x→ 0 and y → 0 as t→∞, so (0, 0) is

a stable node, in fact, asymptotically stable.

Case IV: (complex roots)

When� < 0, the characteristic equation (2.2.2) has complex conjugate roots,

λ1 = α + iβ, λ2 = α− iβ,

where α and β are non-zero constants. The general solution is

x(t) = eαt(c1 cos βt+ c2 sin βt),

(2.2.5)

y(t) = eαt(k1 cos βt+ k2 sin βt),

where c1, c2, k1, k2 are constants.

a. If α > 0, the solution (2.2.5) is unbounded as t → ∞ and the phase paths are spirals

around the origin. So (0, 0) is an unstable spiral (called focus).

b. If α < 0, x(t) and y(t) in (2.2.5) approach the critical point (0, 0). Hence (0, 0) is a

stable spiral, focus. In fact, it is asymptotically stable.

Case V: (pure imaginary roots)

In this case,� < 0 and p = 0. The roots of (2.2.2) are in the form

λ1 = iβ, λ2 = −iβ,
17



where β is non-zero. The general solution is

x(t) = c1 cos βt+ c2 sin βt,

y(t) = k1 cos βt+ k2 sin βt.

The critical point (0, 0) is a center, i.e., stable but not asymptotically stable since the

trajectories are ellipses around (0, 0).

The general homogenous linear system in n−dimensions is

.−→x = A(t)−→x , (2.2.6)

where A(t) is an n×n matrix with entries aij(t), which are continuous functions of time.

It can also be written as

ẋi =
n∑

j=1

aij(t)xj, i = 1, 2, ..., n.

Let
−→
φ1(t),

−→
φ2(t), ...,

−→
φn(t) be linearly independent solutions of the system. Then the matrix

Φ(t) =
[−→
φ1(t),

−→
φ2(t), ...,

−→
φn(t)

]

is called a fundamental matrix of the homogenous system (2.2.6). Every solution can be

written as a linear combination of these solution vectors.

Example 2.2.1. Construct a fundamental matrix for the system

ẋ1 = −x1,

ẋ2 = x1 + x2 + x3,

.
x3 = −x2.

Solution 2.2.1. Write the system in the matrix notation⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣ −1 0 0

1 1 1
0 −1 0

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ .
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Let

A =

⎡
⎣ −1 0 0

1 1 1
0 −1 0

⎤
⎦ .

Then

| A− λI |=
∣∣∣∣∣∣
−1− λ 0 0

1 1− λ 1
0 −1 −λ

∣∣∣∣∣∣
= (−1− λ)(−1)1+1

∣∣∣∣ 1− λ 1
−1 −λ

∣∣∣∣
= (−1− λ)[−λ(1− λ) + 1] = 0,

(−1− λ)(λ2 − λ+ 1) = 0,

λ1 = −1, λ2,3 =
1±√3i

2
.

For λ = −1,

(A+ I)−→u =
−→
0 ,⎡

⎣ 0 0 0
1 2 1
0 −1 1

⎤
⎦
⎡
⎣ u1

u2

u3

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ ,

or

u1 + 2u2 + u3 = 0,

−u2 + u3 = 0.

Using these equations, we find the solution of (A+ I)−→u =
−→
0 ,

−→u =

⎡
⎣ −31

1

⎤
⎦ k, k ∈ R,

and

−→y1(t) = eλt−→u = e−t−→u =

⎡
⎣ −3e−te−t

e−t

⎤
⎦ .

For λ = 1
2
+
√
3
2
i, (

A−
(
1

2
+

√
3

2
i

)
I

)
−→v =

−→
0 ,
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in the matrix notation⎡
⎢⎣ −

3
2
−
√
3
2
i 0 0

1 1
2
−
√
3
2
i 1

0 −1 −1
2
−
√
3
2
i

⎤
⎥⎦
⎡
⎣ v1

v2
v3

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ ,

and componentwise

(
−3

2
−
√
3

2
i

)
v1 = 0,

v1 +

(
1

2
−
√
3

2
i

)
v2 + v3 = 0,

−v2 +
(
−1

2
−
√
3

2
i

)
v3 = 0.

The solution of
(
A−

(
1
2
+
√
3
2
i
)
I
)−→v =

−→
0 is

−→v =

⎡
⎣ 0

−1
2
−
√
3
2
i

1

⎤
⎦ l, l ∈ R,

or

−→v =

⎡
⎣ 0
−1
2

1

⎤
⎦

︸ ︷︷ ︸
−→a

+ i

⎡
⎣ 0
−√3
2

0

⎤
⎦

︸ ︷︷ ︸
−→
b

.
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−→y2(t) = eλt−→v

= e(
1
2
+

√
3

2
i)t(−→a + i

−→
b )

= e
1
2
t

(
cos

√
3

2
t+ i sin

√
3

2
t

)(−→a + i
−→
b
)

= e
1
2
t

[(
cos

√
3

2
t

)
−→a −

(
sin

√
3

2
t

)
−→
b

]
+

i

[(
sin

√
3

2
t

)
−→a +

(
cos

√
3

2
t

)
−→
b

]

=

⎧⎨
⎩e

1
2
t cos

√
3

2
t

⎡
⎣ 0
−1
2

1

⎤
⎦− e

1
2
t sin

√
3

2
t

⎡
⎣ 0
−√3
2

0

⎤
⎦
⎫⎬
⎭+

i

⎧⎨
⎩e

1
2
t sin

√
3

2
t

⎡
⎣ 0
−1
2

1

⎤
⎦+ e

1
2
t cos

√
3

2
t

⎡
⎣ 0
−√3
2

0

⎤
⎦
⎫⎬
⎭

=

⎡
⎢⎣

0

e
1
2
t
(
−1

2
cos

√
3
2
t+

√
3
2
sin

√
3
2
t
)

e
1
2
t cos

√
3
2
t

⎤
⎥⎦+

i

⎡
⎢⎣

0

e
1
2
t
(
−
√
3
2
cos

√
3
2
t− 1

2
sin

√
3
2
t
)

e
1
2
t sin

√
3
2
t

⎤
⎥⎦ .

The fundamental matrix is⎡
⎢⎣
−3e−t 0 0

e−t e
1
2
t
(
−1

2
cos

√
3
2
t+

√
3
2
sin

√
3
2
t
)

e
1
2
t
(
−
√
3
2
cos

√
3
2
t− 1

2
sin

√
3
2
t
)

e−t e
1
2
t cos

√
3
2
t e

1
2
t sin

√
3
2
t

⎤
⎥⎦ .

Finally, let us consider a general non-homogenous linear system

.−→x = A(t)−→x +
−→
f (t), (2.2.7)

where
−→
f (t) is a column vector. Suppose

−→
x∗(t) is a solution of the equation (2.2.7). To be

able to investigate the stability of
−→
x∗(t), define

−→
ξ (t) = −→x (t)−−→x∗(t),

where −→x (t) is any other solution. Then we obtain the following homogenous equation

.−→
ξ = A(t)

−→
ξ . (2.2.8)
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Theorem 2.2.2. All solutions of the linear system (2.2.7) have the same stability proper-

ties with the zero solution of (2.2.8).

Theorem 2.2.3. The zero solution of the system (2.2.6) is stable iff every solution is

bounded as t → ∞. In fact, from Theorem 2.2.2, it is also true for all solutions of

the system. If A is a constant matrix and every solution is bounded, then the solutions are

uniformly stable.

2.3 Stability of Homogenous Systems

Now let’s investigate the stability of different types of homogeneous systems one by

one.

2.3.1 Stability of Linear Systems with Constant Coefficients

Consider the system

.−→x = A−→x ,

where A is an n × n matrix with real elements. As in the two-dimensional case, the

characteristic equation is

det(A− λI) = 0, (2.3.1)

or ∣∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n
a21 a22 − λ

...
. . .

an1 ann − λ

∣∣∣∣∣∣∣∣∣
= 0.

The roots λi of the characteristic equation (2.3.1) are the eigenvalues of A and the vectors

−→vi satisfying

(A− λiI)
−→vi = −→0

are the corresponding eigenvectors of λi.

If A has n distinct eigenvalues λ1, ..., λn, then there exist n linearly independent eigen-
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vectors −→v1 , ...,−→vn and the fundamental matrix is in the form

Φ(t) =
[−→v1eλ1t,−→v2eλ2t, ...,−→vneλnt

]
.

Theorem 2.3.1. Let ẋ = Ax be an n-dimensional linear system with constant coefficients,

i.e., A is an n× n real matrix. Suppose that λi, i = 1, ..., n are the eigenvalues of A.

i. If either Re{λi} < 0, i = 1, 2, ..., n, or if Re{λi} ≤ 0, i = 1, 2, ..., n, and there is no

repeated zero eigenvalue, then all solutions of the system are uniformly stable.

ii. All solutions of the system are asymptotically stable iff Re{λi} < 0, i = 1, 2, ..., n.

iii. If all solutions of the system are stable, then Re{λi} ≤ 0, i = 1, 2, ..., n.

iv. If Re{λi} > 0 for any i, then the solution is unstable.

2.3.2 Stability of Linear Non-Autonomous Systems

The system considered is in the form

.−→x = A(t)−→x

and can be written as

.−→x = {B + C(t)}−→x ,

where B is an n× n constant matrix.

Theorem 2.3.2. Assume that

i. B is an n× n matrix and the eigenvalues of B have negative real parts;

ii. C(t) is continuous for t ≥ t0 and

t∫
t0

‖C(t)‖ dt

is bounded for t > t0.

Then all solutions of the system
.−→x = {B + C(t)}−→x are asymptotically stable.
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Corollary 2.3.1. If the solutions of
.−→x = B−→x are only bounded and C(t) satisfies the

conditions of Theorem 2.3.2, then all solutions of
.−→x = {B+C(t)}−→x are bounded, hence

stable.

2.3.3 Stability of Autonomous Non-Linear Systems

A general non-linear system has the form

.−→x =
−→
X (−→x ).

Linearization at fixed points is used to determine the stability. Suppose that −→x =
−→
x∗ is

the equilibrium point of the system. Let
−→
ξ , small, be the magnitude of the perturbation

about the equilibrium point. As a result of perturbation, we have

−→x =
−→
x∗ +

−→
ξ .

Substituting this into our system gives

.−→x =

.−→
ξ =

−→
X (
−→
x∗ +

−→
ξ ).

Taylor series expansion of
−→
X about the point

−→
x∗ is

.−→
ξ =

−→
X (
−→
x∗ +

−→
ξ )

=
−→
X (
−→
x∗) + J

−→
ξ + o(

∥∥∥−→ξ ∥∥∥)
= J

−→
ξ + o(

∥∥∥−→ξ ∥∥∥),
where J is the Jacobian matrix of

−→
X evaluated at the critical point

−→
x∗, i.e.,

J =

[
∂Xi(

−→x )

∂xj

]
−→x=

−→
x∗
.

As a result, we obtain a homogenous linear system

.−→
ξ = J

−→
ξ (2.3.2)

whose zero solution is the only equilibrium point.
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In this case, Jacobian matrix at −→x =
−→
x∗ is a constant n × n matrix, so now we have

a linear system with constant coefficients. Therefore, Theorem 2.3.1 can be used for the

stability analysis of the zero solution of (2.3.2).

Example 2.3.1. Consider the system

ẋ = −y,

ẏ = x+ λ(1− y2 − z2)y,

ż = −y + μ(1− x2 − y2)z.

Classify the linear approximation of equilibrium point at the origin in terms of parameters

λ and μ. Verify that the system has a periodic solution

x = cos(t− t0),

y = sin(t− t0),

z = cos(t− t0),

for any t0.

Solution 2.3.3. This is a non-linear system with a single equilibrium point (0, 0, 0). We

have

J =

⎡
⎢⎣

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z

⎤
⎥⎦

(0,0,0)

=

⎡
⎣ 0 −1 0

1 λ− 3λy2 − λz2 −λz2
−2μxz −1− 2μyz μ− μx2 − μy2

⎤
⎦

(0,0,0)

=

⎡
⎣ 0 −1 0

1 λ 0
0 −1 μ

⎤
⎦ .

The linear approximation at the origin is⎡
⎣ ẋ

ẏ
ż

⎤
⎦ =

⎡
⎣ 0 −1 0

1 λ 0
0 −1 μ

⎤
⎦
⎡
⎣ x− 0

y − 0
z − 0

⎤
⎦ .
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Let

A =

⎡
⎣ 0 −1 0

1 λ 0
0 −1 μ

⎤
⎦ ,

then

| A− ξI |=
∣∣∣∣∣∣
−ξ −1 0
1 λ− ξ 0
0 −1 μ− ξ

∣∣∣∣∣∣ = (μ− ξ)(−1)3+3

∣∣∣∣ −ξ −1
1 λ− ξ

∣∣∣∣ = 0,

(μ− ξ)(ξ2 − λξ + 1) = 0,

ξ1 = μ, ξ2,3 =
λ±√λ2 − 4

2
.

We have the following cases:

i. If μ < 0 and λ < 0; Re{ξi} < 0, for all i, the origin is uniformly stable.

ii. If both μ > 0, λ > 0; Re{ξi} > 0, for all i, the origin is unstable.

iii. If either μ > 0 or λ > 0; Re{ξi} > 0, for some i, the origin is unstable.

iv. If μ = 0 and λ < 0; Re{ξi} ≤ 0, i = 1, 2, 3, the origin is uniformly stable.

v. If λ = 0 and μ < 0; we have imaginary roots for the linearized system. Thus, the

eigenvalues do not give us an idea about the stability of the zero solution.

For the second part of the question, direct verification

ẋ = − sin(t− t0) = −y,

ẏ = cos(t− t0) = cos(t− t0) + λ[1− sin2(t− t0)− cos2(t− t0)] sin(t− t0)

= x+ λ(1− y2 − z2)y,

ż = − sin(t− t0) = − sin(t− t0) + μ[1− cos2(t− t0)− sin2(t− t0)] cos(t− t0)

= −y + μ(1− x2 − y2)z,

shows that

x = cos(t− t0), y = sin(t− t0), z = cos(t− t0)

is a solution for the given system.
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Furthermore,

x(t+ T ) = cos(t+ T − t0) = cos(t− t0) = x(t),

y(t+ T ) = sin(t+ T − t0) = sin(t− t0) = y(t),

z(t+ T ) = cos(t+ T − t0) = cos(t− t0) = z(t),

where T = 2kπ, k = 1, 2, ... So the solution is periodic with a period T.

Example 2.3.2. Test the stability of the linear system

ẋ1 = t−2x1 + 4x2 − 2x3 + t2,

ẋ2 = −x1 + t−2x2 + x3 + t,

ẋ3 = t−2x1 − 9x2 − 4x3 + 1.

Solution 2.3.4. Write the system in the matrix form as⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎧⎨
⎩
⎡
⎣ 0 4 −2
−1 0 1
0 −9 −4

⎤
⎦+

⎡
⎣ t−2 0 0

0 t−2 0
t−2 0 0

⎤
⎦
⎫⎬
⎭
⎡
⎣ x1

x2

x3

⎤
⎦+

⎡
⎣ t2

t
1

⎤
⎦ .

Let

B =

⎡
⎣ 0 4 −2
−1 0 1
0 −9 −4

⎤
⎦ , C(t) =

⎡
⎣ t−2 0 0

0 t−2 0
t−2 0 0

⎤
⎦ , −→

f (t) =

⎡
⎣ t2

t
1

⎤
⎦ ,

then
.−→x = {B + C(t)}−→x +

−→
f (t).

Let

A(t) = B + C(t).

Then, by Theorem 2.2.2
.−→x = A(t)−→x +

−→
f (t) has the same stability properties as a

homogeneous equation
.−→x = A(t)−→x . We have

| B − λI |=
⎡
⎣ −λ 4 −2
−1 −λ 1
0 −9 −4− λ

⎤
⎦ = λ3 + 4λ2 + 13λ+ 34 = 0. (2.3.3)
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Solving equation (2.3.3), we find eigenvalues as

λ1 = −3.232345867,

λ2 = −0.3838270651− 3.220458527i,

λ3 = −0.3838270651 + 3.220458527i,

so we conclude that all eigenvalues have negative real parts. On the other hand, C(t) is

continuous for t > 0 and

∞∫
t0

‖ C(s) ‖ ds = lim
t→∞

t∫
t0

∣∣2s−2∣∣ ds
= lim

t→∞

∣∣−2s−1∣∣ t

|
t0

= lim
t→∞

∣∣∣∣−2
(
1

t
− 1

t0

)∣∣∣∣
=

2

t0
<∞, t0 > 0,

therefore it is bounded, where

‖ C(s) ‖=| s−2 | + | s−2 | +0 = 2s−2.

According to Theorem 2.3.2, all solutions of
.−→x = {B + C(t)}−→x are asymptotically

stable. Hence, the solutions of
.−→x = {B+C(t)}−→x +

−→
f (t) are also asymptotically stable.

An n-th order differential equation can be converted to an n-dimensional system. Con-

sider the following differential equation

x(n) + a1(t)x
(n−1) + ...+ an(t)x = f(t).

The equivalent system is obtained by introducing new variables

x = x1,

ẋ1 = x2,

ẋ2 = x3,
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...

ẋn−1 = xn,

so that

ẋn = −a1(t)xn − ...− an(t)x1 + f(t).

Now, using this system, we can discuss the stability of the differential equation.

Example 2.3.3. Determine the stability of the solutions of

a. [
ẋ1

ẋ2

]
=

[ −2 1
1 −2

] [
x1

x2

]
+

[
1
−2
]
et;

b.

ẍ+ e−tẋ+ x = et.

Solution 2.3.5. a. A corresponding homogeneous system is

[
ẋ1

ẋ2

]
=

[ −2 1
1 −2

] [
x1

x2

]
.

Let

A =

[ −2 1
1 −2

]
,

then

| A− λI |=
∣∣∣∣ −2− λ 1

1 −2− λ

∣∣∣∣ = (−2− λ)2 − 1 = 0,

λ2 + 4λ+ 3 = 0,

λ1 = −3 < 0, λ2 = −1 < 0.

Therefore, the origin is a stable node for the homogeneous system. Thus, all solutions of

the non-homogeneous system are also stable.
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b. Let

x = x1,

ẋ =
dx1

dt
= x2,

then

ẍ =
dx2

dt
= −e−tx2 − x1 + et,

and [
ẋ1

ẋ2

]
=

[
0 1
−1 −e−t

] [
x1

x2

]
+

[
0
et

]

or [
ẋ1

ẋ2

]
=

{[
0 1
−1 0

]
+

[
0 0
0 −e−t

]}[
x1

x2

]
+

[
0
et

]
.

Let

B =

[
0 1
−1 0

]

and

C(t) =

[
0 0
0 −e−t

]
.

Consider the system

ẋ = Bx,

that is, [
ẋ1

ẋ2

]
=

[
0 1
−1 0

] [
x1

x2

]
.

Then

| B − λI |=
∣∣∣∣ −λ 1
−1 −λ

∣∣∣∣ = λ2 + 1 = 0

and

λ1,2 = ±i.

For λ = i,

(B − iI)−→u =
−→
0 ,
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[−i 1
−1 −i

] [
u1

u2

]
=

[
0
0

]
,

−iu1 + u2 = 0.

The solution of (B − iI)−→u =
−→
0 is

−→u =

[
1
i

]
c, c ∈ R,

−→u =

[
1
0

]
︸︷︷︸
−→a

+ i

[
0
1

]
︸︷︷︸
−→
b

.

Then

−→y (t) = eλt−→u

= eit−→u

= eit(−→a + i
−→
b )

= (cos t+ i sin t)(−→a + i
−→
b )

= {(cos t)−→a − (sin t)
−→
b }+ i{(sin t)−→a + (cos t)

−→
b }

=

{
cos t

[
1
0

]
− sin t

[
0
1

]}
+ i

{
sin t

[
1
0

]
+ cos t

[
0
1

]}
.

The fundamental matrix is [
cos t sin t
− sin t cos t

]
,

and the solution is

x1(t) = c1 cos t+ c2 sin t,

x2(t) = −c1 sin t+ c2 cos t,

where c1, c2 ∈ R.

|x1(t)| = |c1 cos t+ c2 sin t| ≤ |c1|+ |c2| = K,

|x2(t)| = |−c1 sin t+ c2 cos t| ≤ |c1|+ |c2| = K,

where K is a constant.
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Therefore, all solutions of the system ẋ = B−→x are bounded.

Also,
∞∫

t0

‖ C(s) ‖ ds =
∞∫

t0

∣∣−e−s∣∣ ds
= lim

t→∞

t∫
t0

∣∣−e−s∣∣ ds
= lim

t→∞

∣∣e−s∣∣ t

|
t0

= lim
t→∞

∣∣e−t − e−t0
∣∣ = ∣∣−e−t0∣∣ <∞

is bounded. Using Corollary 2.3.1, we conclude that all solutions of
.−→x = {B + C(t)}−→x

are bounded and stable. Since the solutions of the homogenous part are stable, the solu-

tions of the given non-homogeneous system are also stable.

2.4 Stability Analysis by Liapunov Method

For autonomous systems, we can introduce another method to determine the stabil-

ity of the zero solution. It is called Liapunov method. We will investigate a general

autonomous system

ẋ = X(x, y),

(2.4.1)

ẏ = Y (x, y)

with the equilibrium point (0, 0).

Definition 2.4.1 (Topographic System). Define a family of curves

V (x, y) = α, α > 0

with the following properties:

i. V (x, y) is continuous on a connected neighborhood D of the origin and ∂V
∂x
, ∂V

∂y
are

continuous on D except possibly at the origin.
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ii. V (0, 0) = 0 and V (x, y) > 0 for all (x, y) ∈ D.

iii. There exists μ > 0 such that for all α, 0 < α < μ,

V (x, y) = α, (x, y) ∈ D

uniquely determines a simple closed curve τα around the origin.

These curves are known as a topographic system.

2.4.1 Geometrical Meaning of Liapunov Stability

First of all, let’s introduce some important theorems.

Theorem 2.4.1 (Poincarè-Bendixson). Let the system

ẋ = X(x, y),

ẏ = Y (x, y)

be regular on a closed bounded region R. If a positive half-path H lies entirely in R, then

one of the following holds

i. H itself is a closed phase path in R;

ii. H approaches a closed phase path in R;

iii. H approaches an equilibrium point in R.

Theorem 2.4.2. Consider the topographic curve τ defined by

V (x, y) = α, α > 0

in D. Suppose that

V̇ (x, y) ≤ 0

in this domain. If H is a half-path starting at a point P inside τ, then H can never escape

from this closed region determined by τ .
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Here

V̇ (x, y) =
∂V

∂x
ẋ+

∂V

∂y
ẏ = X

∂V

∂x
+ Y

∂V

∂y
.

Hence, Poincaré-Bendixson Theorem guarantees the stability of the zero solution.

Let H be a phase path and τ be the topographic curve passing through the point P .

The sign of the function V̇ (x, y) determines the direction of H .

i. If V̇ > 0 at P, H points outward from τ.

ii. If V̇ < 0 at P, H points inward through τ.

iii. If V̇ = 0 at P, H is tangent to τ.

Theorem 2.4.3 (Liapunov Stability of the Zero Solution). Let the function V (x, y) satisfy

the conditions of the Definition 2.4.1.

i. If V̇ (x, y) ≤ 0 on D with the origin excluded, the zero solution of the system (2.4.1) is

uniformly stable and V (x, y) is called a weak Liapunov function.

ii. If V̇ (x, y) < 0 on D with the origin excluded, the zero solution of the system (2.4.1)

is uniformly stable and asymptotically stable. In this case, V (x, y) is called a strong

Liapunov function.

The domain D, from which all half-paths approach the origin as t → ∞, is known

as the domain of asymptotic stability. If D is the whole xy-plane, the system is globally

asymptotically stable.

Example 2.4.1. Using V (x, y) = x2 + y2, find the domain of asymptotic stability for the

following system,

ẋ = −1

2
x(1− y2),

ẏ = −1

2
y(1− x2).
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Solution 2.4.4. We have

V (x, y) = x2 + y2 ≥ 0,

and

V̇ (x, y) = 2x

[
−1

2
x(1− y2)

]
+ 2y

[
−1

2
y(1− x2)

]
= −x2(1− y2)− y2(1− x2) < 0

holds when −1 < x < 1, −1 < y < 1. Hence, the domain of asymptotic stability is

D = {x, y ∈ R | −1 < x < 1 and− 1 < y < 1}.

2.4.2 Determining Stability by Weak Liapunov Function

It is also possible to show asymptotic stabilty by extending weak Liapunov functions.

Theorem 2.4.5. Let V (x, y) satisfy the conditions for a topographic system for the regular

system (2.4.1). If

i. V̇ (x, y) ≤ 0 on D with the origin excluded,

ii. none of the topographic curves in D is also a phase path,

then there exists no closed phase path in D.

Theorem 2.4.6. Let V (x, y) satisfy the conditions in the Definition 2.4.1 and V (x, y) = α,

α > 0 be a topographic system in D for the regular system (2.4.1), which has (0, 0) as the

only equilibrium point. Assume that

i. V̇ (x, y) ≤ 0 in D with the origin excluded;

ii. no closed curve of topographic system is also a phase path.

Then the zero solution is uniformly and asymptotically stable.
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(The result follows from Theorem 2.4.5 and the Poincaré-Bendixson Theorem).

We can also state Liapunov stability without using Poincaré-Bendixson Theorem. The

following definition is necessary for this approach.

Definition 2.4.2. Let f(x) be a scalar function such that f(0) = 0. If, for x 	= 0,

i. f(x) > 0, then it is called positive definite;

ii. f(x) ≥ 0, then it is called positive semidefinite;

iii. f(x) < 0, then it is called negative definite;

iv. f(x) ≤ 0, then it is called negative semidefinite.

Now consider a general system

.−→x =
−→
X (−→x ). (2.4.2)

Theorem 2.4.7 (Liapunov Stability). If, in a neighborhood D of the origin,

i. the system (2.4.2) is regular and
−→
X (
−→
0 ) =

−→
0 ,

ii. V (x) is continuous and positive definite,

iii. V̇ (x) is continuous and negative semidefinite,

then the zero solution is uniformly stable.

Theorem 2.4.8 (Asymptotic Stability). Suppose that

i. the system (2.4.2) is regular and
−→
X (
−→
0 ) =

−→
0 ,

ii. V (x) is continuous and positive definite,

iii. V̇ (x) is continuous and negative definite

in a neighborhood D of the origin. Then the zero solution is uniformly and asymptot-

ically stable.
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Theorem 2.4.9 (Liapunov Instability). Let −→x (t) =
−→
0 be the zero solution of the regular

autonomous system (2.4.2), where
−→
X (
−→
0 ) =

−→
0 . If there exists a function U(x) such that

in some neighborhood ‖−→x ‖ ≤ k of the origin

i. U(x) and its partial derivatives are continuous,

ii. U(0) = 0,

iii.
.

U(x) is positive definite,

iv. in every neighborhood of the origin, there exists at least one point x at which U(x) >

0,

then the zero solution is unstable.

Example 2.4.2. Find a simple V or U function to establish the stability or instability of

the zero solution of the following system of equations

a.

ẋ = −x3 + y4,

ẏ = −y3 + y4;

b.

ẋ = ex − cos y,

ẏ = x.

Solution 2.4.10. a. Let

V (x, y) = x2 + y2 > 0,
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then

V̇ (x.y) = 2x(−x3 + y4) + 2y(−y3 + y4)

= −2(x4 + y4) + 2y4(x+ y)

≤ −2(x4 + y4) + 2y4 | x+ y |

≤ −2(x4 + y4) + 2y4(| x | + | y |)

< 0

in the neighborhood of the origin, defined by | x | + | y |< 1. Hence, the zero solution is

stable.

b. Let

U(x, y) = x2 + sin2 y > 0,

then

U̇(x, y) = 2x(ex − cos y) + 2x sin y cos y

= 2x[ex + cos y(−1 + sin y)] > 0

in the neighborhood of the origin, defined by 0 ≤ x ≤ π

4
, 0 ≤ y ≤ π

4
. Here we have used

the inequality;

−1 ≤ cos y(−1 + sin y) ≤
√
2

2

(
−1 +

√
2

2

)
. (2.4.3)

For the inequality (2.4.3), consider the function

f(y) = cos y(−1 + sin y),

f ′(y) = − sin y(−1 + sin y) + cos y cos y

= sin y − sin2 y + (1− sin2 y)

= −2 sin2 y + sin y + 1.

Let’s find the minimum and maximum values of the function f

f ′(y) = 0⇔
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−2 sin2 y + sin y + 1 = 0.

Let sin y = t;

−2t2 + t+ 1 = 0⇒

t1 = −1

2
, t2 = 1.

Consider

sin y = −1

2
, sin y = 1;

y1 = −π

6
, y2 =

π

2
;

f ′(t) = −2t2 + t+ 1;

t −1
2

1

f
′
(t) − 0 + 0 −

The function f(t) increases on the interval
[−1

2
, 1
]
. Thus the function f(y) increases on

the interval
[
−π

6
,
π

2

]
, i.e. f increases on

[
0,

π

4

]
.

Note that

f(0) = −1, f
(π
4

)
=

√
2

2

(
−1 +

√
2

2

)
.

On
[
0,

π

4

]
, we have

−1 ≤ f(y) = cos y(−1 + sin y) ≤
√
2

2

(
−1 +

√
2

2

)
.

Thus, using Theorem 2.4.9, we conclude that the zero solution is unstable.

2.4.3 Linear Approximation and Stability

In some cases, it is appropriate to use the linear approximation of the given system to

determine the asymptotic stability and the instability of the zero solution, that is Liapunov

functions for the linearized system are also applicable for the original system.

We will give the theory for two-dimensional autonomous systems in the form

ẋ =
−→
X (−→x ) = A−→x +

−→
f (−→x ),

where A is a constant 2× 2 matrix.
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Theorem 2.4.11. Let (0, 0) be the equilibrium point of the regular system

[
ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
+

[
f1(x, y)
f2(x, y)

]
, (2.4.4)

where

f1(x, y) = O(x2 + y2) and f2(x, y) = O(x2 + y2)

as x2 + y2 → 0. If the linear approximation of the system (2.4.4) is asymptotically stable,

then the zero solution of (2.4.4) is asymptotically stable.

Theorem 2.4.12. Let (0, 0) be the equilibrium point of the system (2.4.4). If the eigen-

values of A are different, nonzero and at least one has positive real part, then the zero

solution is unstable.

Example 2.4.3. Prove that the equation

ẍ− ẋ2sign(ẋ) + x = 0

has an unstable zero solution.

Solution 2.4.13. Write equation as a system:

ẋ = y

ẏ = y2sign(y)− x,

or [
ẋ
ẏ

]
=

[
0 1
−1 0

] [
x
y

]
+

[
0

y2sign(y)

]
.

Let

A =

[
0 1
−1 0

]
.

Consider

|A− λI| =
∣∣∣∣ −λ 1
−1 −λ

∣∣∣∣ = λ2 + 1 = 0,
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then

λ1,2 = ±i.

Therefore, the zero solution of the linear system is a center, i.e. stable. In this case,

Theorem 2.4.11 cannot be applied to determine the stability of the original system. Now

consider the following function,

U(x, y) = x2 + y2 > 0,

then

U̇(x, y) = 2x(y) + 2y(y2sign(y)− x)

= 2y3sign(y) ≥ 0, for every x, y ∈ R.

According to Theorem 2.4.9, the zero solution is unstable.

Example 2.4.4. Show that the origin is a stable spiral for the system

ẋ = −y − x
√

x2 + y2,

ẏ = x− y
√

x2 + y2,

and a centre for the linear approximation. Find a Liapunov function for the zero solution.

Solution 2.4.14. We have

[
ẋ
ẏ

]
=

[
0 −1
1 0

] [
x
y

]
+

[ −x√x2 + y2

−y√x2 + y2

]
.

Let

A =

[
0 −1
1 0

]
,

then

|A− λI| =
∣∣∣∣ −λ −1

1 −λ
∣∣∣∣ = λ2 + 1 = 0,

λ1,2 = ±i.
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Thus, a linear approximation is a center, i.e. stable. For the stability of the non-linear

system consider

V (x, y) = (x2 + y2)
3
2 ≥ 0,

V̇ (x, y) =
3

2
(x2 + y2)

1
22x
(
−y − x

√
x2 + y2

)
+

3

2
(x2 + y2)

1
22y
(
x− y

√
x2 + y2

)
= −3xy(x2 + y2)

1
2 − 3x2(x2 + y2) + 3xy(x2 + y2)

1
2 − 3y2(x2 + y2)

= −3(x2 + y2)2 < 0.

So the zero solution of the original system is asymptotically stable, i.e. stable spiral.

All this theory for two-dimensional systems can be extended to n−dimensions.

2.4.4 Stability for n-dimensional Systems

Let

.−→x = A−→x +
−→
f (−→x ) (2.4.5)

be an n-dimensional regular system, where A is a constant n× n matrix.

Theorem 2.4.15. Assume that

i. the zero solution of the linear approximation

.−→x = A−→x

is asymptotically stable;

ii. f(0) = 0 and

lim
‖x‖→0

‖f(x)‖
‖x‖ = 0.

Then the zero solution of (2.4.5) is asymptotically stable.

Theorem 2.4.16. Suppose that

i. the eigenvalues of A are distinct, nonzero and at least one has a positive real part;
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ii. f(0) = 0 and

lim
‖x‖→0

‖f(x)‖
‖x‖ = 0.

Then the zero solution of (2.4.5) is unstable.

2.5 Periodic Solutions

In this section, we deal with the existence of periodic solutions of the planar systems

in the form

ẋ = X(x, y),

ẏ = Y (x, y).

Definition 2.5.1 (Periodic Solution). A solution of the system such that

x(t+ T ) = x(t),

y(t+ T ) = y(t),

where T is constant, is called periodic. The phase paths of periodic solutions are closed

curves.

Periodic solution can occur as a part of a family of closed curves or as an isolated

closed curve, which is known as a limit cycle. So the limit cycle can be defined as an

isolated periodic solution.

Let’s state some theorems about the existence and non-existence of periodic solutions

of planar systems.

Theorem 2.5.1. If

∂X

∂x
+

∂Y

∂y

is of one sign for a connected domain D, then the system has no periodic solutions in D.

Theorem 2.5.2. Every closed curve representing periodic solution surrounds at least one

critical point.
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2.5.1 Existence of Periodic Solutions

We want to find a closed region that contains a limit cycle. Consider two closed curves

C1 and C2 surrounding the equilibrium point of the system, with C2 inside C1. There must

be no critical points in the closed region R between C1 and C2. If we can also guarantee

that all trajectories crossing C2 head out and all trajectories passing C1 head in, then

according to Poincaré Bendixson Theorem, any path entering R will not be able to get

out of the region. Therefore, R has at least one closed path, i.e., a periodic solution. In

fact, the matter is to find the narrowest region R that contains a periodic solution. In most

cases, it is not that easy to find this closed region.

Example 2.5.1. Show that there exists a limit cycle for the system

ẋ = x+ y − x3 − 6xy2,

ẏ = −1

2
x+ 2y − 8y3 − x2y.

Solution 2.5.3. Consider the function

V (x, y) = x2 + 2y2.

Then the total derivative

V̇ (x, y) = 2x(x+ y − x3 − 6xy2) + 4y(−1

2
x+ 2y − 8y3 − x2y)

= 2x2 + 2xy − 2x4 − 12x2y2 − 2xy + 8y2 − 32y4 − 4x2y2

= 2x2 + 8y2 − 2x4 − 16x2y2 − 32y4

= 2(x2 + 4y2)− 2(x4 + 8x2y2 + 16y4)

= 2(x2 + 4y2)− 2(x2 + 4y2)2.

If x2 + 4y2 < 1, then

x2 + 4y2 > (x2 + 4y2)2,

2(x2 + 4y2) > 2(x2 + 4y2)2,
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2(x2 + 4y2)− 2(x2 + 4y2)2 > 0,

and

V̇ (x, y) > 0.

So all trajectories are directed outwards on the curve

C1 : x
2 + 4y2 = c, for any c such that 0 < c < 1.

If x2 + 4y2 > 2, then

2(x2 + 4y2) < (x2 + 4y2)2 < 2(x2 + 4y2)2,

2(x2 + 4y2)− 2(x2 + 4y2)2 < 0,

and

V̇ (x, y) < 0.

So all trajectories are directed inwards on the curve

C2 : x
2 + 4y2 = c, for any c such that c > 2.

Since all paths enter the annular region R between C1 and C2, it is guaranteed that there

exists a limit cycle in R,

R = {(x, y)| − 1 ≤ x2 + 4y2 ≤ 2}.
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Chapter 3

GEOMETRIC PROPERTIES OF FACTORABLE
PLANAR SYSTEMS OF DIFFERENTIAL EQUATIONS

In this chapter, we deal with factorable planar systems that are defined below.

Definition 3.0.2 (Factorable Planar System). A two dimensional system with separable

phase equations

ẋ = f(x)h(y),

(3.0.1)

ẏ = k(x)g(y),

where f, h, k, g are continuously differentiable on (−∞,∞), is called a factorable planar

system [8].

Consider the phase equation of (3.0.1)

dy

dx
=

k(x)g(y)

f(x)h(y)
,

or

−h(y)

g(y)
dy +

k(x)

f(x)
dx = 0.

Taking integrals of both sides gives

x∫
a

k(u)

f(u)
du−

y∫
b

h(v)

g(v)
dv = C,
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where C is an integration constant and (a, b) ∈ R
2. The first integral of (3.0.1) is obtained

as

H(x, y) = F (x)−G(y) = C,

where

F (x) =

x∫
a

k(u)

f(u)
du and G(x) =

y∫
b

h(v)

g(v)
dv.

If we compare factorable planar system with the Hamiltonian system

ẋ = −h(y)

g(y)
,

(3.0.2)

ẏ = −k(x)

f(x)
,

we can easily conclude that they both have the same phase equation. In this case, the first

integral H(x, y) of (3.0.1) is known as a Hamiltonian function of (3.0.2).

Lemma 3.0.1. Let H be a first integral of a planar C1dynamical system. If H is not

constant on any open set, then there are no limit cycles.

Theorem 3.0.4. Factorable planar systems have no limit cycles.

Proof. Suppose to the contrary that there exists a limit cycle γ, contained in the closure

of an open set U ∈ R
2. By Lemma 3.0.1, H is constant on U, i.e.,

∂H

∂x
= F ′(x) =

k(x)

f(x)
= 0, and

∂H

∂y
= −G′(y) = −h(y)

g(y)
= 0,

for every (x, y) ∈ U. Consequently, k−1(0) × h−1(0) contains the set U and also the

closure of U. That is, the limit cycle γ is contained in k−1(0)×h−1(0). On k−1(0)×h−1(0),

k(x) = 0 and h(y) = 0.

Therefore,

ẋ = 0,

ẏ = 0,
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that is there exists a critical point in k−1(0)×h−1(0). This contradicts Poincarè Bendixson

Theorem since γ is in U. Thus, there are no limit cycles.

Although factorable planar systems do not have limit cycles, they can have periodic

solutions. This is guaranteed by the following theorem.

Lemma 3.0.2. A critical point (a, b) of a Hamiltonian system (3.0.2) is a center if it is a

strict local minimum or maximum of the Hamiltonian function H(x, y).

Theorem 3.0.5. Assume that k(a) = h(b) = 0. If f(a)g(b)k′(a)h′(b) < 0, then the

equilibrium point (a, b) is a center and nearby solutions of (3.0.1) form closed orbits

around (a, b).

Proof. Jacobian matrix at the point (a, b) is

J(a,b) =

[
f ′(a)h(b) f(a)h′(b)
k′(a)g(b) k(a)g′(b)

]
=

[
0 f(a)h′(b)

k′(a)g(b) 0

]
,

and the linearized system becomes

[
ẋ
ẏ

]
= J(a,b)

[
x
y

]
.

The characteristic equation is

λ2 − f(a)g(b)k′(a)h′(b) = 0,

with the roots

λ1,2 = ±i
√

f(a)g(b)k′(a)h′(b).

Now let us apply the second derivative test to the Hamiltonian function at the point (a, b).

Hxx(a, b)Hyy(a, b)−H2
xy(a, b) =

k′(a)h′(b)
f(a)g(b)

=
−f(a)g(b)k′(a)h′(b)

[f(a)g(b)]2
> 0.

If

Hxx(a, b) =
k′(a)
f(a)

> 0,
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then (a, b) is a strict local minimum of H. If

Hxx(a, b) =
k′(a)
f(a)

< 0,

then (a, b) is a strict local maximum of H. In any case, (a, b) is a center of (3.0.1) by

Lemma 3.0.2.

Consider now a general second order differential equation

ẍ = ϕ(x, ẋ),

which can be represented as a system

ẋ = y,

(3.0.3)

ẏ = ϕ(x, y).

Notice that all equilibrium points, if exist, are on the x-axis since equating right-hand side

of the system (3.0.3) to zero gives y = 0, ϕ(x, 0) = 0.

Suppose that ϕ is factorable,

ϕ(x, y) = k(x)g(y).

Corollary 3.0.1. Let g, k in ϕ be as in (3.0.1) and assume that a is an isolated zero of k

(i.e. k(a) = 0) such that g(0)k′(a) < 0. Then, the second order equation

ẍ− g(ẋ)k(x) = 0

has periodic solutions around a which are not limit cycles, that is, the equilibrium point

(a, 0) is a center.

Proof. Notice that in the system (3.0.3), f(x) = 1 and h(y) = y. Thus, the result follows

directly from Theorem 3.0.4 and Theorem 3.0.5.
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Theorem 3.0.6. Assume that, for all u ∈ (−∞,∞), f ′(u)g′(u) ≥ 0, f ′(u) 	= 0 (or

g′(u) 	= 0) and also h(u)k(u) ≥ 0, h(u) 	= 0 (or respectively k(u) 	= 0). Then (3.0.1) has

no periodic solutions.

Proof. Let f ′(u)h(u) 	= 0, for all u ∈ (−∞,∞), so f ′(u) 	= 0 and h(u) 	= 0. Both

f ′ and h are continuous, thus each is either always positive or always negative for all

u ∈ (−∞,∞). By the hypothesis, k and h have the same sign and similarly f ′ and g′

have the same sign. In any case,

f ′(x)h(y) + k(x)g′(y) 	= 0

does not change sign. According to Theorem 2.5.1, there exist no periodic solutions.

3.1 Properties of Equilibrium Points of Factorable Planar Systems

An equilibrium point (a, b) of the system (3.0.1) makes at least one of the following

pairs (0, 0):

(f(a), k(a)) , (f(a), g(b)) , (h(b), k(a)) , (h(b), g(b)) .

If (f(a), k(a)) = (0, 0), the equilibrium point is (a, y), where y is any real number. If

(h(b), g(b)) = (0, 0), the equilibrium point is (x, b), where x is any real number. Hence,

in both cases above, we have dense set of points. An isolated equilibrium point can only

be obtained if one of the points

(f(a), g(b)) , (h(b), k(a))

coincides with the origin.

Consider now the Jacobian matrix of the system (3.0.1) evaluated at (a, b),

J(a,b) =

[
f ′(a)h(b) f(a)h′(b)
k′(a)g(b) k(a)g′(b)

]
.
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The characteristic equation is

[λ− f ′(a)h(b)] [λ− k(a)g′(b)]− f(a)g(b)k′(a)h′(b) = 0.

If (f(a), k(a)) = (0, 0), we have

λ1 = 0, λ2 = f ′(a)h(b).

If (f(a), g(b)) = (0, 0), the roots are

λ1 = f ′(a)h(b), λ2 = k(a)g′(b).

If (h(b), k(a)) = (0, 0), we have

λ1,2 = ±
√

f(a)g(b)k′(a)h′(b).

If (h(b), g(b)) = (0, 0), we have

λ1 = 0, λ2 = k(a)g′(b).

It is clear that in any case we cannot have a focus. There are only two possibilities for this

point; a saddle point or a node. The following theorem states this result clearly.

Theorem 3.1.1. Every hyperbolic equilibrium (a, b) (i.e., the eigenvalues of J(a, b) both

have nonzero real parts) of (3.0.1) is either a saddle point or a node. Furthermore, (a, b)

is a node if f(a) = g(b) = 0 and f ′(a)h(b) has the same sign as k(a)g′(b), or a saddle

point otherwise.

Proof. We suppose that (a, b) is hyperbolic, so the pairs

(f(a), k(a)) and (h(b), g(b))

are ignored. We have two middle cases remaining.

For (f(a), g(b)) = (0, 0), the eigenvalues are

λ1 = f ′(a)h(b), λ2 = k(a)g′(b).

51



Note that λ1 and λ2 have the same sign by the hypothesis. Hence, (a, b) is a node, stable

if λ1, λ2 < 0 and unstable if λ1, λ2 > 0.

On the other hand, if (h(b), k(a)) = (0, 0), the eigenvalues

λ1,2 = ±
√

f(a)g(b)k′(a)h′(b)

are real and nonzero since (a, b) is hyperbolic. Since λ1 < 0, λ2 > 0, (a, b) is a saddle

point.

Corollary 3.1.1. Every hyperbolic equilibrium (a, 0) of

ẍ− g(ẋ)k(x) = 0

is a saddle point.

Proof. In this system, k(a) = 0. Hence, the only zero pair is

(h(b), k(a)) .

The point (a, 0) is hyperbolic, so the eigenvalues

λ1,2 = ±
√

f(a)g(b)k′(a)h′(b)

are nonzero and real, i.e., g(0)k′(a) > 0. This leads to a saddle point since λ1 < 0 and

λ2 > 0.

From Corollary 3.0.1 and Corollary 3.1.1, we conlude that the equilibrium point (a, 0)

of the system

ẍ− g(ẋ)k(x) = 0

is either a center or a saddle point if all eigenvalues are nonzero.
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3.1.1 Special Cases

More complicated results come up if at least one eigenvalue of J(a, b) is zero, i.e.,

(a, b) is a nonhyperbolic equilibrium point.

Example 3.1.1. Consider the system

ẍ = αxm(ẋ)n, α 	= 0, n,m ≥ 0, m+ n > 1,

which in the plane has the form

ẋ = y,

ẏ = αxmyn.

This system has zero eigenvalues.

Let n = 0. The system

ẋ = y,

ẏ = αxm,

is known as Newtonian, and (0, 0) is the only equilibrium point.

If n = 0 and m = 1,

ẋ = y,

ẏ = αx.

Then the coefficient matrix is [
0 1
α 0

]
.

The eigenvalues are λ1,2 = ±
√
α.

Assume that α < 0. Then we have ellipses around (0, 0) and

dy

dx
=

αx

y
,
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Figure 3.1: A phase diagram of a cusp.

or

ydy = αxdx.

Taking integral of both sides, ∫
ydy =

∫
αxdx,

gives

y2

2
− α

x2

2
= C, (3.1.1)

where C is an integration constant. It is clear from the phase equation (3.1.1) that (0, 0)

is a center.

Assume that α > 0. Then we have λ1 > 0 and λ2 < 0. The phase diagram has

hyperbolas and (0, 0) is a saddle point.

If n = 0 and m = 2, the phase equation is

y2

2
− α

x3

3
= C,

where C is an integration constant. In this case, the origin is a cusp for all α. See Figure

3.1.

Let n ≥ 1, we have a nonisolated set of equilibrium points on the x-axis. The phase
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equation can be derived as

dy

dx
=

αxmyn

y
.

Then ∫
1

yn−1
dy =

∫
αxmdx,

which yields

y2−n

2− n
= α

xm+1

m+ 1
+ C0,

or

(m+ 1)y2−n + (n− 2)αxm+1 = C,

where C0 and C are constants of integration.

If n = 1,

ẋ = y,

ẏ = αxmy.

Then

dy

dx
=

αxmy

y
,∫

dy =

∫
αxmdx,

and

y = α
xm+1

m+ 1
+ C,

where C is an integration constant. The equilibrium point at the origin can not be classi-

fied as a node, saddle point, etc.

For n = 2,

dy

dx
=

αxmy2

y
,∫

1

y
dy =

∫
αxmdx,

ln |y| = α
xm+1

m+ 1
+ C1,
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(m+ 1) ln |y| − αxm+1 = C,

where C1 and C are constants of integration.

If n > 2, the phase equation is

(m+ 1)
1

yn−2
+ (n− 2)αxm+1 = C,

where C is constant of integration. In this case, we cannot have y = 0, i.e., trajectories

do not cross the x-axis, and it is impossible to have periodic solutions.

Example 3.1.2. Consider the system

ẋ =
sin x− x

y2 + 1
,

ẏ =
−y

x2 + 1
.

Clearly, (0, 0) is a nonhyperbolic equilibrium point of the system. Liapunov method can

be used to determine the stability of this equilibrium point.

Take a Liapunov function

V (x, y) = x2 + y2.

Then

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
=
−2x(x− sin x)

y2 + 1
− 2y2

x2 + 1
< 0, for all (x, y) 	= (0, 0).

Hence, all trajectories point towards the origin, that is, (0, 0) is asymptotically stable. By

Theorem 3.0.6, there exist no periodic solutions.

Example 3.1.3. Translations and reflections are transformations which preserve factora-

bility. More general transformations of the plane can affect the factorability of the system.

For instance, factorability is not preserved under polar coordinate transformations. A

factorable system in polar coordinates is usually not factorable when it is transformed to
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rectangular coordinates. The phase plane of a factorable system in polar coordinates can

have foci and limit cycles. This is modelled in the following system

ṙ = r(1− r),

θ̇ = 1.

Note that
dr

dt
> 0 when r < 1, so the trajectories inside the circle r = 1 point outwards

towards the circle and
dr

dt
< 0 when r > 1, so trajectories outside the circle r = 1

approach the circle. Thus, r = 1 is a stable limit cycle, whereas (0, 0) is an unstable

focus. When the system is transformed to rectangular coordinates, it can be noticed that

it is not factorable in rectangular coordinates.

Therefore, we conclude that all theorems in this chapter are applicable only to systems

which are factorable in rectangular coordinates.
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Chapter 4

ECOLOGICAL APPLICATIONS

One of the most important applications of stability theory is in biology. Mathematical

models can be used to discuss interactions between two species in the same environment.

We use autonomous systems with linear first degree polynomials of x and y ignoring the

time variable t. Although the models are defined for all x and y, they are only logical in

the population quadrant x ≥ 0, y ≥ 0, since the number of population members cannot

be negative.

Let’s try to model some important interactions providing corresponding examples.

4.1 Lotka-Volterra Predator-Prey Model

If one species (predators) feed on the other (prey), the model is called predator-prey

model. The population density of each species depends on the population density of the

other species. Interactions between foxes (predators) and rabbits (prey), sharks (predators)

and fish (prey) can be considered as examples of this model.

Let us consider x(t) as the number of prey and y(t) as the number of predators in the

same environment. If there exists no pedators, the number of prey grows with a constant

rate such that

dx

dt
= ax, a > 0.
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If the prey are absent, the number of predators decreases with a constant rate such that

dy

dt
= −cy, c > 0.

Therefore, predator population becomes extinct. On the other hand, if both prey and

predator are present, the encounters between two species, which are directly proportional

to xy, cause a decline in the prey population and a growth in the predator population.

Considering the facts above, a general predator-prey model is obtained as

dx

dt
= ax− bxy = x(a− by),

(4.1.1)

dy

dt
= −cy + dxy = y(−c+ dx),

where a, b, c, d are all positive.

This system has two equilibrium points, (0, 0) and (c/d, a/b). Here the stability of

the equilibrium points gives us an idea about the interaction between two species. The

system is nonlinear so let us linearize it to examine the stability of each critical point. The

Jacobian matrix is

J =

[
∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

]
=

[
a− by −bx
dy −c+ dx

]
,

where f1(x, y) = ax− bxy and f2(x, y) = −cy + dxy.

For the point (0, 0),

J =

[
a− by −bx
dy −c+ dx

]
(0,0)

=

[
a 0
0 −c

]
,

so the linearized system becomes

[
ẋ
ẏ

]
=

[
a 0
0 −c

] [
x
y

]

with the characteristic equation (a − λ)(−c − λ) = 0. The eigenvalues are λ1 = a > 0

and λ2 = −c < 0, i.e., (0, 0) is a saddle point. But this case is not that much important
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since the equilibrium solution x(t) ≡ 0, y(t) ≡ 0 corresponds to the extinction of both

species.

The important case is a coexistence of the species which depends on the stability of

the nonzero equilibrium point (c/d, a/b). So let’s check the stability of (c/d, a/b). We

have

J =

[
a− by −bx
dy −c+ dx

]
(c/d,a/b)

=

[
0 −bc

d
ad
b

0

]
.

Using the following substitution

u = x− c

d
,

v = y − a

b
,

we obtain a corresponding critical point (0, 0) for (c/d, a/b). Hence, the corresponding

linearized system is [ .
u
.
v

]
=

[
0 −bc

d
ad
b

0

] [
u
v

]
.

The characteristic equation is λ2 + ac = 0, i.e., the eigenvalues are λ1 = i
√
ac and

λ2 = −i
√
ac. Since the roots are pure imaginary, we cannot be sure about the stability of

(c/d, a/b). We must find the trajectories in the phase plane. Dividing second equation in

(4.1.1) by the first gives

dy

dx
=

y(−c+ dx)

x(a− by)
.

We can separate variables to obtain

∫
a− by

y
dy =

∫ −c+ dx

x
dx,

so we have

a ln y − by = −c ln x+ dx+ c1,

c ln x− dx+ a ln y − by = c1,

(xce−dx)(yae−by) = ec1 = c0,
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where c1 and c0 are constants. These equations define closed curves around the critical

point (c/d, a/b). This guarantees that the critical point is a stable center. Hence, the

corresponding equilibrium solution x(t) ≡ c
d

and y(t) ≡ a
b

shows that both populations,

the prey and predators, coexist without extinction in the same environment.

4.2 Lotka-Volterra Competition Model

If two species compete for resources such as food, water, light, etc., it is known as

a competitive interaction. If only one species uses the resources, the other species can

hardly survive. So our question here is, how can these two competing species coexist?

Let x(t) and y(t) denote the population densities of each species. Assume that in the

absence of one species, the other population becomes limited and the competition effects

the number in such a way that each population is inversely proportional to the product xy.

Therefore, a model for competitive interaction is

dx

dt
= a1x− b1x

2 − c1xy = x(a1 − b1x− c1y),

dy

dt
= a2y − b2y

2 − c2xy = y(a2 − b2y − c2x),

where a1, b1, c1, a2, b2, c2 are all positive constants.

The system has four critical points; (0, 0), (0, a2/b2), (a1/b1, 0), (x̃, ỹ), where the last

critical point is defined as the intersection of the lines

b1x+ c1y = a1,

(4.2.1)

c2x+ b2y = a2.

From the analysis of the first three equilibrium points, it can be easily concluded that:

i. For (0, 0), the equilibrium solution x(t) ≡ 0, y(t) ≡ 0 shows a decline in both

species.
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Figure 4.1: The graph of lines (4.2.1) if c1c2 < b1b2.

ii. For (0, a2/b2), the equilibrium solution x(t) ≡ 0, y(t) ≡ a2/b2 shows that, the

second species wins the competiton and the first species goes extinct.

iii. For (a1/b1, 0), the equilibrium solution x(t) ≡ a1/b1, y(t) ≡ 0 shows that, the

first species uses all resources and the lack of resources causes the extinction of the

second species.

The coexistence is our primary interest, so the stability of the last critical point (x̃, ỹ)

is more important than the other obvious cases mentioned above. The stability of (x̃, ỹ)

can be discussed by comparing the slopes of two lines in (4.2.1). We have two possibilities

demonstrated in Figures 4.1 and 4.2. Note that the red line in the figures shows the first

line in (4.2.1), while the blue line shows the second line in (4.2.1).

In Figure 4.1,

a2/b2
a2/c2

<
a1/c1
a1/b1

, i.e., c1c2 < b1b2,

and in Figure 4.2,

a2/b2
a2/c2

>
a1/c1
a1/b1

, i.e., c1c2 > b1b2.

We know that b1, b2 restrict the growth rate of each population and c1, c2 are the constants
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Figure 4.2: The graph of lines (4.2.1) if c1c2 > b1b2.

representing competition between two species. Using these, the following interpretations

can be done.

i. If c1c2 < b1b2, that is, if competition effect is smaller that the limitation effect,

then the phase paths approach the critical point (x̃, ỹ) as t → ∞. So (x̃, ỹ) is

asymptotically stable. This guarantees the coexistence of both species.

ii. If c1c2 > b1b2, i.e., if the competition effect is greater than the inhibition effect,

then one of the species goes extinct because either x(t) or y(t) approaches zero as

t→∞, corresponding to the unstable critical point (x̃, ỹ). In this case, coexistence

is impossible.

Example 4.2.1. Discuss the prey-predator system that is modeled by the equations

dx

dt
= 5x− x2 − xy = x(5− x− y), (4.2.2)

dy

dt
= xy − 2y = y(x− 2).

Solution 4.2.1. Equating the right-hand sides of the system to zero,

f1(x, y) = x(5− x− y) = 0,

f2(x, y) = y(x− 2) = 0,
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we obtain fixed points (0, 0), (5, 0), and (2, 3). We linearize the system to find the Jacobian

matrix

J =

[
∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

]
=

[
5− 2x− y −x

y x− 2

]
.

For (0, 0), the linearized system is

[
ẋ
ẏ

]
= J(0,0)

[
x
y

]
,

that is, [
ẋ
ẏ

]
=

[
5 0
0 −2

] [
x
y

]
.

The characteristic equation is (5− λ)(−2− λ) = 0, i.e., λ1 = 5 > 0 and λ2 = −2 < 0.

Hence, (0, 0) is a saddle point, and it is unstable.

For (5, 0), we use the substitution

u1 = x− 5,

u2 = y,

to obtain a linearized system with the critical point (0, 0),

[
u̇1

u̇2

]
= J(5,0)

[
u1

u2

]
,

so that [
u̇1

u̇2

]
=

[−5 −5
0 3

] [
u1

u2

]
.

The characteristic equation is (−5 − λ)(3 − λ) = 0. The roots are λ1 = −5 < 0 and

λ2 = 3 > 0, i.e., (5, 0) is an unstable saddle point.

For (2, 3), the suitable substitution is

v1 = x− 2,

v2 = y − 3.
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Figure 4.3: The trajectories of the system (4.2.2).

Then (0, 0) is the corresponding critical point for (2, 3), and the corresponding system is

[
v̇1
v̇2

]
= J(2,3)

[
v1
v2

]
,

that is, [
v̇1
v̇2

]
=

[−2 −2
3 0

] [
v1
v2

]
.

The characteristic equation is λ2 + 2λ + 6 = 0 with the complex roots λ1 = −1 + i
√
5

and λ2 = −1− i
√
5. Since Re(λ) < 0, the critical point (2, 3) is an asymptotically stable

spiral.

We can conclude that, for any pair of initial values x0, y0, both species coexist with

the population densities approaching the constant values x(t) ≡ 2 and y(t) ≡ 3. The

result is shown graphically in Figure 4.3.

Example 4.2.2. Discuss the prey-predator system

dx

dt
= x2 − 2x− xy = x(x− y − 2), (4.2.3)

dy

dt
= y2 − 4y + xy = y(x+ y − 4).
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Solution 4.2.2. The equilibrium points are found from the system of equations

x(x− y − 2) = 0,

y(x+ y − 4) = 0.

We obtain four equilibrium points: (0, 0), (0, 4), (2, 0), (3, 1). The Jacobian matrix is

J =

[
∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

]
=

[
2x− 2− y −x

y 2y − 4 + x

]
.

For (0, 0), the linearized system is

[
ẋ
ẏ

]
= J(0,0)

[
x
y

]
,

or [
ẋ
ẏ

]
=

[−2 0
0 −4

] [
x
y

]
.

The characteristic equation is (−2 − λ)(−4 − λ) = 0 and the roots are λ1 = −2 < 0,

λ2 = −4 < 0. Hence, (0, 0) is an asymptotically stable node.

For (0, 4), we can use the substitution

u1 = x,

u2 = y − 4.

The corresponding linearized system with the critical point shifted to the origin is

[
u̇1

u̇2

]
= J(0,4)

[
u1

u2

]
,

or [
u̇1

u̇2

]
=

[−6 0
4 4

] [
u1

u2

]
.

The eigenvalues of the characteristic equation (−6 − λ)(4 − λ) = 0 are λ1 = −6 < 0,

λ2 = 4 > 0. Therefore, the critical point (0, 4) is an unstable saddle point.
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For (2, 0), the suitable substitution reducing to the corresponding system with the

critical point (0, 0) is

v1 = x− 2,

v2 = y.

The linearized system is [
v̇1
v̇2

]
= J(2,0)

[
v1
v2

]
,

so that, [
v̇1
v̇2

]
=

[
2 −2
0 −2

] [
v1
v2

]
.

The characteristic equation is (2 − λ)(−2 − λ) = 0. The roots are λ1 = 2 > 0, λ2 =

−2 < 0. Hence (2, 0) is the unstable saddle point.

Finally, let us investigate the most important critical point (3, 1). The substitution is

w1 = x− 3,

w2 = y − 1.

The linearized system with the critical point (0, 0) is

[
ẇ1

ẇ2

]
= J(3,1)

[
w1

w2

]
,

[
ẇ1

ẇ2

]
=

[
3 −3
1 1

] [
w1

w2

]
.

The characteristic equation is λ2 − 4λ + 9 = 0, and the roots are λ1 = 2 + i
√
5 and

λ2 = 2 − i
√
5. Re(λ) > 0 so (3, 1) is an unstable spiral. Figure 4.4 demonstrates the

result.

Therefore, we can conclude that the phase plane is divided into two regions. If the

initial point is in the first region which is close to (0, 0), both species go extinct, but if it is

in the second region, both populations increase without any limitations.
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Figure 4.4: The trajectories of the system (4.2.3).

4.3 Harvesting

One or two species may be harvested. How does this affect the populations of the

species? The easiest model is a constant-effort harvesting. Suppose that both prey and

predator are harvested at a constant rate. In this model, the amount harvested is propor-

tional to the population density, which leads to the system

dx

dt
= ax− bxy −H1x,

dy

dt
= −cy + dxy −H2y,

where H1 ≥ 0 and H2 ≥ 0 are harvesting coefficients. The equilibrium point is

(
c+H2

d
,
a−H1

b

)
.

Here it is assumed that a > H1, since otherwise the equilibrium point is not in the popu-

lation quadrant. Notice that without harvesting, the equilibrium point is

( c
d
,
a

b

)
.

In the presence of harvesting, this equilibrium point moves to the right and towards the

x-axis. We know that x and y coordinates of the equilibrium point show the populations

of the prey and predator respectively. Therefore, we conclude that, the density of the
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prey population increases, while the density of the predator population decreases, that is,

harvesting helps the prey and harms the predator [1, Page 326].
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Chapter 5

RECENT RESULTS ON THE QUALITATIVE
BEHAVIOR OF A RATIO-DEPENDENT

PREDATOR-PREY SYSTEM

Consider the system

ẋ = xα(x)− yV (x),

ẏ = yK(x),

where x denotes the density of the prey population and y denotes the density of the preda-

tor population. It is assumed that

i. α is smooth with α′(x) < 0, x ≥ 0 and α(0) > 0 > lim
x→+∞

α(x);

ii. K and V are nonnegative and increasing, K(0) = 0 = V (0).

Consider now the model

ẋ = f1(x, y),

(5.0.1)

ẏ = f2(x, y),

where

f1(x, y) = αx
(
1− x

K

)
− βxy

εy + x
, x2 + y2 > 0,

f2(x, y) = −y(γ + δy)

1 + y
+

βxy

εy + x
, x2 + y2 > 0,

70



α > 0, ε > 0 are the growth rates of prey population in the absence of predators and

environmental limitations (i.e. in the absence of predators, prey population grows). On

the other hand, in the absence of prey population, predator population decreases. The

mortality (death rate) of predator population depends on y and can be expressed by the

formula

E(y) =
γ + δy

1 + y
.

Here it is assumed that γ < δ.

This model differs from other predator-prey systems by the predator mortality rate

since mortality is not a constant or unbounded function. It increases with the predator

population.

The system (5.0.1) can be written in polar coordinates using transformations

x = r(θ) cos θ and y = r(θ) sin θ.

Then we notice that fi ∈ C1(R+
0 ,R) for i = 1, 2. Hence, the Existence and Uniqueness

Theorem guarantees that the solution of (5.0.1) exists and is unique. If we consider f1 and

f2 in the form

f1(x, y) = xM1(x, y) = x

[
α
(
1− x

K

)
− βy

εy + x

]
,

f2(x, y) = yM2(x, y) = y

[
−(γ + δy)

1 + y
+

βx

εy + x

]
,

the following can be derived easily [6].

i. M1 and M2 are smooth functions so the positive quadrant is an invariant region.

ii. ∂M1

∂y
= − βx

(εy+x)2
< 0 and ∂M2

∂x
= βεy

(εy+x)2
> 0, where x, y > 0. That is, it is a

predator-prey system with the prey x and the predator y.

Theorem 5.0.1. All solutions of the system (5.0.1) are bounded.
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Proof. We have

ẋ ≤ αx
(
1− x

K

)
.

Therefore,

lim
t→+∞

sup x(t) ≤ K, i.e., x(t) < K + c, for some 0 < c < 1.

Adding two equations in (5.0.1) gives

ẋ+ ẏ = αx
(
1− x

K

)
− y(γ + δy)

1 + y
.

Hence, there exists a constant C > 0 such that all trajectories starting at the initial point

(x0, y0) ∈ R
2
+, enter the region

R = {(x, y) ∈ R
2
+ : x+ y ≤ C + ε, ε > 0}.

The system (5.0.1) can be rewritten using the following transformations

x = Ku, y =
K

ε
v, t =

s

α
.

A new system with the new variables u and v is

u̇ = f(u, v) = u(1− u)− auv

v + u
,

(5.0.2)

v̇ = g(u, v) = −v(b+ cv)

1 + ev
+

duv

v + u
,

where a = β
αε
, b = γ

α
, k = δ

α
, d = β

α
, e = K

ε
, c = ke, and the derivatives are with respect

to the variable s.

Criterion 5.0.2 (Dulac’s Negative Criterion). For the system

ẋ = X(x, y),

ẏ = Y (x, y),
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there are no closed paths in a simply-connected region in which

∂(ρX)

∂x
+

∂(ρY )

∂y

is of one sign, where ρ(x, y) is any function having continuous first partial derivatives.

Theorem 5.0.3. Suppose that d > a. Then the system (5.0.2) has no limit cycles in R
2
+.

Proof. Let

F =

[
f(u, v)
g(u, v)

]
.

Define a function h such that

h(u, v) =
1

uv
, for u > 0 and v > 0.

From the assumption d > a (i.e. ε > 1) and from the natural assumption γ < δ (i.e.

be > c), we have

(div(hF ))(u, v) =

(
∂

∂u
(hf)

)
(u, v) +

(
∂

∂v
(hg)

)
(u, v)

= −1

v
− d− a

(v + u)2
− c− be

u(1 + ev)2
< 0, (u > 0, v > 0).

Hence, by Dulac’s negative criterion, there exist no limit cycles in R
2
+.

5.1 Equilibrium Points and Their Stability

The equilibrium points of the system (5.0.2) are (0, 0) and (1, 0) for all parameter val-

ues. Besides this, there may exists another equilibrium point (u∗, v∗) for some parameter

values.

For the point (1, 0), the Jacobian matrix is

J(1,0) =

[−1 −a
0 −b+ d

]
.

The characteristic equation is obtained as

(−1− λ)(−b+ d− λ) = 0,
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and the eigenvalues are

λ1 = −1 and λ2 = −b+ d.

If b < d (i.e. γ < β), then we have λ1 < 0, λ2 > 0. Hence (1, 0) is a saddle point.

If b > d (i.e. γ > β), then λ1 < 0, and λ2 < 0. So (1, 0) is a stable node.

For the point (0, 0), the Jacobian matrix cannot be calculated directly since u
v

is not

defined. We can use the transformation w = u
v

to rewrite the system (5.0.2) as follows:

ẇ = w

[
1− wv +

b+ cv

1 + ev
− a+ dw

1 + w

]
,

v̇ = v

[
dw

1 + w
− b+ cv

1 + ev

]
.

A new system has no singularities. Therefore, we can evaluate the Jacobian matrix at

(0, 0) :

J(0,0) =

[
1− a+ b 0

0 −b
]
.

The roots of the characteristic equation are λ1 = 1− a+ b and λ2 = −b.

If a < 1 + b, then λ1 > 0 and λ2 < 0. Thus, (0, 0) is a saddle point.

If a > 1 + b, then λ1 < 0 and λ2 < 0, leading to a stable node at the point (0, 0).

For the point (u∗, v∗), assume that

b < d < k i.e, γ < β < δ. (5.1.1)

The prey nullcline is found as follows:

u(1− u)− auv

v + u
= 0⇒

u(1− u)(v + u)− auv = 0⇒

u2(1− u) + u(1− u)v − auv = 0⇒

(u(1− u)− au) v = −u2(1− u).

v =
−u2(1− u)

u(1− u)− au
,
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v = h1(u) :=
u(1− u)

u+ a− 1
,

and similarly the predator nullcline is

−v(b+ cv)

1 + ev
+

duv

v + u
= 0⇒

−v(b+ cv)(v + u) + duv(1 + ev) = 0⇒

(−bv − cv2)(v + u) + duv + deuv2 = 0⇒

−bv2 − cv3 − buv − cuv2 + duv + deuv2 = 0⇒

−cv2 + (−b− cu+ deu)v + (−bu+ du) = 0.

The roots of this equation are

v1,2 =
(b+ cu− deu)±√(−b− cu+ deu)2 + 4c(−bu+ du)

−2c .

We take the positive one as the predator nullcline

v = h2(u) :=
(de− c)u− b+

√
(b+ (c− de)u)2 − 4c(b− d)u

2c
.

The equilibrium point (u∗, v∗) occurs at the intersection of prey and predator nullclines,

if it exists.

There are three cases for prey nullcline depending on the sign of a− 1.

Case I: (a < 1)

i. For u ∈ [0, 1− a),

h1(u) < 0.
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ii.

h′1(u) =
(1− 2u)(u+ a− 1)− u(1− u)

(u+ a− 1)2

=
u+ a− 1− 2u2 − 2au+ 2u− u+ u2

(u+ a− 1)2

=
−u2 − 2au+ 2u+ a− 1 + a2 − a2 + a− a

(u+ a− 1)2

=
a2 − a− (u2 + 2au− 2u+ a2 − 2a+ 1)

(u+ a− 1)2

=
a2 − a− (u+ a− 1)2

(u+ a− 1)2

=
a(a− 1)

(u+ a− 1)2
− 1 < 0 on (1− a,+∞).

iii.

h′′1(u) =
−2a(a− 1)

(u+ a− 1)3

=
2a(a− 1)

(1− a− u)3
> 0 on (1− a,+∞).

iv. lim
u→(1−a)+

h1(u) = lim
u→(1−a)+

u(u−1)
u+a−1 = +∞ and h1(1) = 0.

So the prey nullcline is monotone decreasing for the interval (1− a, 1].

Case II: (a = 1)

In this case,

h1(u) = 1− u.

The graph of h1(u) cuts the axes at u = 1 and v = 1 so it is monotone decreasing.

Case III: (a > 1)

i.

h1(0) = 0.

ii.

h′1(0) =
1

a− 1
> 0.

76



iii.

h′1(u) =
a(a− 1)

(u+ a− 1)2
− 1 = 0⇒

a(a− 1) = (u+ a− 1)2 ⇒

a2 − a = u2 + 2au− 2u+ a2 − 2a+ 1⇒

u2 + (2a− 2)u+ (−a+ 1) = 0.

u1,2 =
−2a+ 2±√(2a− 2)2 − 4(−a+ 1)

2

=
−2a+ 2± 2

√
a(a− 1)

2

= ±
√

a(a− 1) + 1− a.

The positive one is

u =
√

a(a− 1) + 1− a ∈ (0, 1).

iv.

h′′1(u) =
−2a(a− 1)

(u+ a− 1)3
< 0 when u ≥ 0.

We conclude that the prey nullcline starts from the origin and increases. It is concave

down with maximum at
√
a(a− 1) + 1− a.

On the other hand, the predator nullcline is independent from the sign of a−1. It starts

from the origin and is concave down since

i.

h2(0) = 0.

ii.

h′2(u) =
1

2c

⎡
⎣(de− c) +

2 (b+ (c− de)u) (c− de)− 4c(b− d)

2
√
(b+ (c− de)u)2 − 4c(b− d)u

⎤
⎦

=
1

2c

⎡
⎣(de− c) +

(b+ (c− de)u) (c− de)− 2c(b− d)√
(b+ (c− de)u)2 − 4c(b− d)u

⎤
⎦ .
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Consider the following limit:

lim
u→+∞

h′2(u) =
de− c

2c
+

1

2c
.
(c− de)2√
(c− de)2

=
de− c+

√
(c− de)2

2c

=
de− c+ |c− de|

2c

=
de− c+ c− de

2c

= 0

since

c− de =
δK

αε
− β

α
.
K

ε
=

K

εα
(δ − β) > 0 (5.1.2)

by virtue of (5.1.1). Similarly, it follows from (5.1.1) that

lim
u→0+

h′2(u) =
de− c

2c
+

b(c− de)

2c |b| +
(c− de)2u√

(b+ (c− de)u)2 − 4c(b− d)u
− 2c(b− d)

2c |b|

=
1

2c

[
de− c+

b(c− de)− 2c(b− d)

b

]
=

d− b

b
> 0.

Hence,

h′2(u)→
{

0+, as u→ +∞,
constant > 0, as u→ 0+,

that is,

h′2(u) > 0 for all u > 0.

Thus, h2(u) is an increasing function.

Now, let us check the concavity of h2(u).

h′′2(u) =
2de(d− b)(b− k)√(

4c(d− b)u+ (b+ (c− de)u)2
)3 < 0 for u > 0,

i.e., it is concave down. The limit of the function which defines the predator nullcline is
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Figure 5.1: The prey and predator nullclines of the system (5.0.2) with a < 1.

evaluated as follows:

lim
u→+∞

h2(u) = lim
u→+∞

(de− c)u− b+
√

(b+ (c− de)u)2 − 4c(b− d)u

2c

= lim
u→+∞

√
(b+ (c− de)u)2 − 4c(b− d)u− (b− (de− c)u)

2c
.

Multiplying the expression in the numerator by the conjugate gives

lim
u→+∞

h2(u) = lim
u→+∞

(b+ (c− de)u)2 − 4c(b− d)u− (b− (de− c)u)2

2c
[√

(b+ (c− de)u)2 − 4c(b− d)u+ (b− (de− c)u)
]

= lim
u→+∞

−4c(b− d)u

2c
[√

(b+ (c− de)u)2 − 4c(b− d)u+ (b− (de− c)u)
]

=
−2(b− d)√

(c− de)2 − (de− c)
=

−2(b− d)

|c− de| − (de− c)

=
−2(b− d)

c− de− de+ c
=
−2(b− d)

2c− 2de
=

d− b

c− de
,

by virtue of (5.1.2).

Summarizing the above discussion, we conclude the following.

i. If a < 1 as in Case I, the system (5.0.2) has a unique equilibrium point (u∗, v∗) in the

population quadrant with u∗ ∈ (1 − a, 1), as shown in Figure 5.1, where the blue

curve represents the prey nullcline and the red one is the predator nullcline.

ii. When a = 1, as in Case II stated above, the system (5.0.2) has a unique equilibrium

point with positive coordinates (u∗, v∗) such that

u∗ =
c+ d(e+ 1)−√(c+ d(e+ 1))2 − 4de(b+ c)

2de
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Figure 5.2: The prey and predator nullclines of the system (5.0.2) with a = 1.

and

v∗ = 1− u∗.

The result is illustrated in Figure 5.2. The blue curve is the prey nullcline and the

red curve is the predator nullcline.

iii. In the Case III, where a > 1, the system (5.0.2) has either no equilibrium points with

positive coordinates or two equilibrium points in the first quadrant. This depends

on whether the maximum point of h1 is smaller or larger than the value of h2 at the

stationary point of h1. If the maximum point of h1 is greater than the limit value of

h2 at infinity, we have

maxh1 = h1

(√
a(a− 1) + 1− a

)

=

(√
a(a− 1) + 1− a

)(
a−√a(a− 1)

)
√

a(a− 1) + 1− a+ a− 1

=
a
√
a(a− 1)− a(a− 1) + a−√a(a− 1)− a2 + a

√
a(a− 1)√

a(a− 1)

= 2a− 1− 2
√
a(a− 1) >

d− e

c− de
= lim

u→+∞
h2(u).

In this case, there exist two equilibrium points with positive coordinates illustrated

in Figure 5.3. In the figure, the blue curve is h1, the prey nullcline and the red curve

is h2, the predator nullcline. On the other hand, if

maxh1 < lim
u→+∞

h2(u),
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Figure 5.3: The prey and predator nullclines of the system (5.0.2) with a > 1.

the system has no equilibrium points with positive coordinates.

Consider now the Jacobian of the system (5.0.2) at the equilibrium point E∗ =

(u∗, v∗),

J(u∗, v∗) =
[
θ3 − aθ22 −aθ21

dθ22 −θ4 + dθ21

]
,

where

θ1 =
u∗

v∗ + u∗
, θ2 =

v∗
v∗ + u∗

,

θ3 = 1− 2u∗, θ4 =
b+ cv∗(2 + ev∗)

(1 + ev∗)2
.

The characteristic equation of J(u∗, v∗) is

λ2 − (tr(J(u∗, v∗)))λ+ det(J(u∗, v∗)) = 0.

Thus, E∗ is asymptotically stable if

tr(J(u∗, v∗)) = θ3 − aθ22 − θ4 + dθ21 < 0, (5.1.3)

and

det(J(u∗, v∗)) = (θ3 − aθ22)(−θ4 + dθ21) + adθ21θ
2
2 > 0. (5.1.4)

Theorem 5.1.1. If d > a, b < d < k and a ≤ 1, then the system (5.0.2) has a unique pos-

itive equilibrium point that is asymptotically stable when (5.1.3) and (5.1.4) are satisfied

[6].
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Chapter 6

A NUTRIENT-PREY-PREDATOR MODEL WITH
INTRATROPIC PREDATION

Intratrophic predation is a kind of predation where predator feeds on both prey and preda-

tor. In this chapter, we investigate the influence of intratrophic predation on a three trophic

leveled nutrient-prey-predator model.

Let x(t) denote the nutrient concentration at time t. It is assumed that, in the absence

of prey, the nutrient has a logistic growth, rx
(
1− x

K

)
, where r is the growth rate of x and

K is the carrying capacity. Let y(t) and z(t) denote the prey and predator populations at

time t, respectively. The system is modelled as follows:

ẋ = rx
(
1− x

K

)
− m1xy

a1 + x
, (6.0.1)

ẏ =
αm1xy

a1 + x
− m2yz

a2 + y + bz
− γy,

ż =
βm2(y + bz)z

a2 + y + bz
− m2bz

2

a2 + y + bz
− δz,

x(0), y(0), z(0) ≥ 0,

where r, K, m1, a1, m2, a2, γ, δ > 0, 0 < α, β ≤ 1, 0 ≤ b ≤ 1. Here a1 is the

half-saturation constant, m1 is the maximal nutrient uptake rate of prey, and α is the net

nutrient conversion rate. Similarly, let a2 denote the half-saturation constant, where m2 is

the maximal uptake rate of predator. Let γ and δ be the death rates of prey and predator,

respectively. The measure of intensity of intratrophic predation is denoted as b. The food
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for the predator is considered by the equation y + bz, where 0 ≤ b ≤ 1. Clearly, if b = 0,

there is no intratrophic predation so the predator preys on only the prey population. If

b = 1, the predator preys on both prey and predator populations equivalently [4].

Theorem 6.0.2. All solutions are non-negative and bounded.

Proof. Since

ẋ|x=0 = 0, ẏ|y=0 = 0, ż|z=0 = 0,

all solutions are non-negative for t ≥ 0. Besides this, it is obvious that

ẋ ≤ rx
(
1− x

K

)
.

Therefore,

lim
t→∞

sup x(t) ≤ K,

and so,

ẋ+ ẏ + ż ≤ rx
(
1− x

K

)
− γy − δz ≤ rK

(
1− x

K

)
− γy − δz ≤ rK − k̂(x+ y + z),

where

k̂ = min{r, γ, δ}.

Therefore,

lim
t→∞

sup x(t) + y(t) + z(t) ≤ rK

k̂
,

i.e., all solutions are bounded.

This theorem guarantees that the system (6.0.1) is biologically meaningful.

6.1 Equilibrium Points and Their Stability

The equilibrium points of the system (6.0.1) can be listed as follows;

E0 = (0, 0, 0), E1 = (K, 0, 0), E2 = (x2, y2, 0), E3 = (0, y3, z3),
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E4 = (0, 0, z4), E5 = (K, 0, z5), E6 = (x̄, ȳ, z̄),

where

x2 =
a1γ

αm1 − γ
, y2 =

r
(
1− x1

K

)
(a1 + x1)

m1

=
ra1 (α(αm1 − γ)K − γa1)

K(αm1 − γ)2
,

y3 =
(β − 1)a2γb+ a2δ

βm2 + bγ − δ
, z3 =

βa2γ

δ − βm2 − bγ
, z4 = z5 =

a2δ

b (m2(β − 1)− δ)
,

and

x̄ > 0, ȳ > 0, z̄ > 0.

The equilibrium points E0 and E1 always exist, but the positive equilibrium point E2

exists if

αm1 > γ and x1 < K.

For the positive E3, we must have

δ − βm2 − bγ > 0⇒ δ − bγ > βm2, (6.1.1)

and

(β − 1)a2γb+ a2δ < 0⇒ δ − bγ < −βγb. (6.1.2)

Combining inequalities (6.1.1) and (6.1.2) gives

βm2 < −βγb

which is not possible. Therefore, E3 is not a positive equilibrium point. Similarly, E4 and

E5 are not positive either since

β − 1 < 0.

In biological systems, negative equilibrium points are not of interest since they are not

biologically meaningful. Thus, only the stability of E0, E1, E2 and E6 is important for us.

To be able to discuss the stability of these equilibrium points, we need Jacobian matrix of
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the system (6.0.1) which is evaluated as follows:

J =

⎡
⎢⎣
r
(
1− 2

K
x
)− m1a1y

(a1+x)2
− m1x

a1+x
0

αm1a1y

(a1+x)2
αm1x
a1+x

− m2z(a2+bz)
(a2+y+bz)2

− γ − m2y(a2+y)
(a2+y+bz)2

0 βm2a2z+m2bz2

(a2+y+bz)2
c

⎤
⎥⎦ ,

where

c = βm2
(y + 2bz)(a2 + y + bz)− bz(y + bz)

(a2 + y + bz)2
− 2m2bz(a2 + y + bz)−m2b

2z2

(a2 + y + bz)2
− δ.

The Jacobian matrix at the point E0 = (0, 0, 0) is

J(E0) =

⎡
⎣r 0 0
0 −γ 0
0 0 −δ

⎤
⎦ .

The eigenvalues are

λ1 = r > 0, λ2 = −γ < 0, λ3 = −δ < 0.

Therefore, E0 is unstable.

Define

R0 =
αm1K

γ(a1 +K)
, R1 =

βm2y2
δ(a2 + y2)

, R2 =
r
(
1− 2

K
x2

)
(a1 + x2)

2

m1a1y2
.

The Jacobian matrix at E1 = (K, 0, 0) is

J(E1) =

⎡
⎣−r − m1k

a1+k
0

0 αm1K
a1+K

− γ 0

0 0 −δ

⎤
⎦

Assume that R0 < 1. The eigenvalues are

λ1 = −r < 0, λ2 =
αm1K

a1 +K
− γ < 0, λ3 = −δ < 0.

Thus E1 is stable if R0 < 1.

The Jacobian matrix at the equilibrium point E2 = (x2, y2, 0) is

J(E2) =

⎡
⎢⎣r
(
1− 2

K
x2

)− m1a1y2
(a1+x2)

2 − m1x2

a1+x2
0

αm1a1y2
(a1+x2)

2 0 − m2y2
a2+y2

0 0 βm2y2
a2+y2

− δ

⎤
⎥⎦ .
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Assume that R0 > 1, R1 < 1 and R2 < 1. The eigenvalues are

λ1 =
βm2y2
a2 + y2

− δ < 0 since R1 < 1,

λ2,3 =
−p±√p2 − 4q

2
,

where

q > 0 and p > 0

since R2 < 1. If p2−4q ≥ 0, then both λ2 and λ3 are negative. If p2−4q < 0, then Re(λ2)

and Re(λ3) are negative. That is, in any case E2 is stable under the given assumptions.

Therefore, we conclude that the stability of E0, E1 and E2 are independent of b, i.e.,

intratrophic predation has no effect on the stability of the equilibrium points E0, E1 and

E2.

The stability of the positive steady state E6 is not discussed here, but we note that

intratrophic predation plays an important role in this case.
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