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Nonlinear time history analysis (NTHA) is an important engineering method in order to evaluate the seismic vulnerability of
buildings under earthquake loads. However, it is time consuming and requires complex calculations and a high memory machine.
In this study, two networks were used for damage classification: multiclass support vector machine (M-SVM) and combination of
multilayer perceptron neural network with M-SVM (MM-SVM). In order to collect data, three frames of R/C slab column frame
buildings with wide beams in slab were considered. For NTHA, twenty different groundmotion records were selected and scaled to
ten different levels of peak ground acceleration (PGA).Thus, 600 obtained data from the numerical simulations were applied toM-
SVM andMM-SVM in order to predict the global damage classification of samples based on park and Ang damage index. Amongst
the four different kernel tricks, the Gaussian function was determined as an efficient kernel trick using themaximum total accuracy
method of test data. By comparing the obtained results fromM-SVM andMM-SVM, the total classification accuracy of MM-SVM
is more than M-SVM and it is accurate and reliable for global damage classification of R/C slab column frames. Furthermore, the
proposed combined model is able to classify the classes with low members.

1. Introduction and Background

Artificial neural networks (ANNs) are one of the popu-
lar computational models applied widely throughout the
sciences. Also they are specially used in many fields of
civil engineering like materials strength prediction, thermo-
graphic inspection of electrical installations within buildings,
traffic management and transportation systems, forecast
water pressure in pipes, and so forth. Generally ANNs are
used to solve complex problems by considering effective
indices and establish a good relationship between the input
and output parameters. Moreover, these networks can be
applied in classification problems. The first classification
algorithm was presented by Fisher [1]. In this algorithm,
minimizing the classification error of train data was eval-
uated as an optimization criterion. This method has been
used in many classification algorithms, yet there are some
problems encountered mainly the generalization properties
of the classifiers, which are not directly involved in the cost

function. Also for doing the training process, determining
the structure of the network was not easy. As an example,
to determine the optimum number of neurons in the hidden
layers of the multilayer perceptron (MLP) neural networks
or the number of Gaussian functions in radial basis function
(RBF) neural networks are difficult and time consuming.
Cortes and Vapnik [2] introduced a new learning statistical
theorywhich leads to presenting the support vectormachines
(SVMs). The significant features of these networks are their
ability to minimize the classification errors, maximize the
geometric margins between classes, design the classifiers
with maximum generalization, and automatically determine
the architecture of network for classifiers and modeling the
nonlinear separator functions using nonlinear cores.

In recent years, several different neural networks such as
SVM have been applied in different branches of civil engi-
neering. In a tunnel construction, an intelligent controlling
system was presented by Jun et al. [3]. This system needed
to recognize the geophysical parameters to find the optimum
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solution of problems. Therefore, a nonlinear optimization
techniquewas employed using the least square support vector
machine (LSSVM). The results showed that this method
is timesaving and easy to use in local optimal problems.
Mingheng et al. [4] employed several different models of
traffic flow using SVM to find the best intelligent traffic
control tool. They obtained that amongst the three proposed
models, the SVM with the historical pattern data for the
target road section model has the best performance. Vafaei
et al. [5] applied MLP neural network to identify the real-
time seismic damage for concrete shear walls. It was observed
that the neural network could detect the amount of imposed
damage with high accuracy. Two different neural networks,
the adaptive neuro-fuzzy inference system (ANFIS) and the
three-layered artificial neural network (TL-ANN) model,
were used to estimate the earthquake load reduction factor
for industrial structures by Ceylan et al. [6]. They showed
that the ANFIS model was more successfully than the TL-
ANN model. Xie et al. [7] investigated the amount of voids
inside the concrete using SVM. The grid-algorithm and the
genetic-algorithmwere used to determine the kernel function
and network parameters. The obtained results presented that
the SVM exhibits a promising performance for identification
of voids inside the reinforced concrete. In addition, ANNs
were used in conjunction with each other. Köroĝlu et al.
[8] applied MLP neural network in two models: single MLP
and combined MLP with itself (CMLP) for estimation of
the flexural capacity of the quadrilateral FRP-confined R/C
columns. They obtained the model of CMLP having lower
prediction error than the single MLP model. In order to
classify the cardiac arrhythmias, Castillo et al. [9] con-
sidered a hybrid intelligent system which consists of the
fuzzy K-nearest neighbors with the MLP and a very high
classification rate was obtained. To predict the short-term
wind power generation, combination of genetic algorithm
(GA) and orthogonal least squares (OLS) algorithm with
RBF neural network was proposed by Chang [10]. The test
results indicated that the proposed model is reliable with the
sufficient performance.

The main aim of this research is to classify the vul-
nerability of R/C frames taken from slab column frame
buildings built in Famagusta, Cyprus, by using ANNs. The
distinguishing characteristics of this building type are the
rectangular columns and the slabs supported on columns
with wide beams in slab. Since the nonlinear time history
analysis (NTHA) is time-consuming and imposes a sig-
nificant computational burden, two networks include M-
SVM and MM-SVM were proposed as good alternatives
and efficient networks. Several common kernel tricks were
tested to determine the best kernel function and applied to
these machines for learning process. Therefore, using the
M-SVM and MM-SVM, the classes of global damage for
the similar frames can be predicted easily and earthquake-
induced damage can be prevented by retrofit plan.

2. Methodology

2.1. Nonlinear Time History Analysis (NTHA). Nonlinear
time history analysis (NTHA) is one of the most common

numerical analysis methods for evaluation of building’s
behavior under seismic loads. It can be applied to a system
with single or multifreedom degrees. In this method, several
ground motion records are selected based on the soil con-
dition of a specific zone, distance from fault line, the time
duration of earthquakes, amplitude and frequency content,
and so forth. Also the dynamic responses in the incremental
state can be determined by scaling the records based on the
different levels of ground motion parameter such as peak
ground acceleration (PGA), peak ground velocity (PGV), or
peak ground displacement (PGD), which is called incremen-
tal nonlinear time history analysis (INTHA).

2.2. Sample Frames and Material Properties. One of the
existing building types in Cyprus is slab-column frame
buildings with wide beams and rectangular columns. In this
study, three R/C slab-column frames with the 4, 6, and 8
levels were selected from this type of buildings which is
representative of the midrise frames in Famagusta, Cyprus.
These buildings were designed according to 1975 version
of the Turkish seismic design code [11]. The compressive
strength of concrete, yield, and ultimate strength of steel were
specified based on the previous researches equal to 15MPa,
220MPa, and 300MPa, respectively [12]. The properties of
soil type IV (D) were considered for this zone. Based on the
detailed information mentioned in the building documents,
the rectangular columns with aspect ratio between 2 and
3 (height/width ratio of cross section area) were used.
Additionally, the beams heights were equal to slab thick-
ness (around 15 cm) and were used as connection elements
between columns. Figure 1 depicts the plan views for the 4-,
6-, and 8-story frames.

2.3. Ground Motions. A significant step for doing the NTHA
is selecting a set of ground motion records. In this study,
due to the lack and uncertainty of ground motion records for
the Famagusta region, twenty records were selected carefully
which their average had the most correlation with Turkish
design code [13]. This set of records was chosen based on
the D-type site properties, the strike-slip fault mechanism,
and the distance less than 100 km from the fault line [14].
The records were taken from the Berkeley database site [15]
and then multiplied by factor of 2.3 in order to fit with
the Turkish design spectrum using root mean square error
reduction technique. The characteristics of these ground
motion records are tabulated in Table 1. Additionally, the
Turkish design spectrum [13], the mean, and the response
spectrums of these scaled records are shown in Figure 2.

2.4. Damage Identification Method. Several different cri-
terions such as ductility ratio [16], interstory drift [17],
flexural damage ratio [18], and maximum permanent drift
[19, 20], were introduced in order to evaluate the damage
level of buildings. These criteria calculated the amount of
structural vulnerability only based on a proper theoretical
background. Later, mathematicalmodels of damage that have
been determined based on vulnerability of buildings under
the earthquakes were defined as the functions of structural
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Table 1: Characteristics of the twenty natural records.

Name Event Year Time effective (s) Dominant
frequency (Hz)

PGA (g) PGA/PGV
(g/cm⋅s−1)

TH1 Park field 1966 27.80 0.708 0.059 0.010
TH2 Park field 1966 06.99 0.781 0.476 0.006
TH3 Imperial Valley-06 1979 12.82 0.269 0.171 0.004
TH4 Imperial Valley-06 1979 23.32 0.220 0.078 0.006
TH5 Victoria-Mexico 1980 10.64 4.297 0.101 0.013
TH6 Victoria-Mexico 1980 15.37 1.489 0.150 0.006
TH7 Westmorland 1981 08.40 3.101 0.171 0.029
TH8 Westmorland 1981 18.50 1.196 0.155 0.006
TH9 Morgan Hill 1984 35.98 0.867 0.032 0.006
TH10 Superstition Hills-B 1987 16.86 0.830 0.211 0.007
TH11 Superstition Hills-B 1987 28.75 0.488 0.207 0.006
TH12 Superstition Hills-B 1987 16.05 1.538 0.358 0.008
TH13 Landers 1992 36.32 1.172 0.136 0.012
TH14 Landers 1992 17.62 0.720 0.245 0.005
TH15 Kobe-Japan 1995 24.52 1.575 0.070 0.016
TH16 Kocaeli-Turkey 1999 15.34 0.269 0.268 0.004
TH17 Kocaeli-Turkey 1999 09.39 1.062 0.242 0.008
TH18 Kocaeli-Turkey 1999 14.99 1.929 0.152 0.007
TH19 Duzce-Turkey 1999 19.22 0.732 0.042 0.005
TH20 Duzce-Turkey 1999 16.09 3.284 0.114 0.010
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Figure 1: Plan view of four-, six-, and eight-story frames.

members’ ductility, strength of materials, distance from the
fault line, effective time duration of the earthquake, and
so forth. Therefore it leads to improved damage function
according to theoretical calculations and practical tests. In
this study, Park et al. damage index was selected among the
improved indices and is defined as the linear combination of

the maximum displacement and the dissipated energy [21].
This index is expressed in the following equation:

DI =
𝛿

𝑚

𝛿

𝑢

+

𝛽

𝛿

𝑢

⋅ 𝑃

𝑦

∫𝑑𝐸

ℎ

, (1)



4 Mathematical Problems in Engineering

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3 3.5 4

Rec 1
Rec 2
Rec 3
Rec 4
Rec 5
Rec 6
Rec 7
Rec 8
Rec 9
Rec 10
Rec 11

Rec 12
Rec 13
Rec 14
Rec 15
Rec 16
Rec 17

Rec 18
Rec 19
Rec 20
Mean
Target

Sa
 (g

)

Time (s)

Figure 2: The response spectrums of individual scaled records,
mean and Turkish design spectrum (Target).

Table 2: The classification of global damage based on the Park and
Ang investigation.

Class number State of structure Amount of damage
Class 1 Repairable (economic) DI ≤ 0.4
Class 2 Beyond repair (not economic) 0.4 < DI < 0.1
Class 3 Loss of building DI ≥ 1

where 𝛿
𝑚

and 𝛿
𝑢

are the maximum deformation and ultimate
deformation of element under monotonic loading, respec-
tively; 𝑃

𝑦

is the yield strength of the structure, which can
be calculated by nonlinear dynamic analysis; ∫𝑑𝐸

ℎ

is the
hysteretic energy absorbed by the structural element during
the response history; and𝛽 is a constant parameter.Therefore,
based on this index, three classes of damages are used which
is shown in Table 2.

3. Support Vector Machine

SVM has been introduced for the classification and pattern
recognition problems by Cortes and Vapnik [2]. It is a rela-
tively new learning algorithm used for binary classification
problems. The main difference between SVM and the other
algorithms is that the SVMminimizes the operational risk as
an objective function instead of minimizing the classification
error. The original pattern classification of this machine is
to classify the linear input data using the perfect hyperplane
into two classes with the largest margin in between classes.
For nonlinear input data, a nonlinear mapping is used to
transfer the input data from the primal space to the higher

dimensional feature space and lead to finding the proper
hyperplane. Furthermore, SVMs have also been extended to
solve multiclass problems.

3.1. Linear SVM. In this section, a simple introduction of the
linear SVM is presented [22]. Consider a train sample data
include {(𝑥

1

, 𝑦

1

), (𝑥

2

, 𝑦

2

), . . . , (𝑥

𝑛

, 𝑦

𝑛

)}, where each sample
has the inputs (𝑥

𝑖

∈ 𝑅

𝑑), and one class label (𝑦
𝑖

∈ {+1, −1})
which is shown in Figure 3.

In the two-dimensional space, the discriminator is a
line in the middle of the margin between the classes. Thus,
for 𝑁-dimension space, the discriminator is a hyperplane.
Suppose the distance between the each separate data and the
discriminator is equal to 1, the two support hyperplanes are
considered parallel to the discriminator, and the classifier
function can be obtained as follows (see Figure 3):

𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏 ≥ 1, if 𝑦
𝑖

= 1 𝑖 = 1, 2, . . . , 𝑛

𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏 ≤ −1, if 𝑦
𝑖

= −1 𝑖 = 1, 2, . . . , 𝑛.

(2)

For a unique separator, the maximum margin between
classes is needed. Thus, if the distance between the support
hyperplanes is equal to 𝑀, using (2), the optimum margin
(𝑀) is given by

𝑀 =

(|𝑏 + 1| − |𝑏 − 1|)

‖𝑤‖

=

2

‖𝑤‖

. (3)

After calculating the maximum margin, the target func-
tion is defined as follows:

Maximize (𝑀) = Maximize 2

‖𝑤‖

= Minimize ‖𝑤‖ = Minimize1
2

‖𝑤‖

2

= Minimize1
2

𝑤

𝑇

⋅ 𝑤.

(4)

Subject to (s.t.) : 𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏 ≥ 1, if 𝑦
𝑖

= 1

𝑖 = 1, 2, . . . , 𝑛

𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏 ≤ −1, if 𝑦
𝑖

= −1

𝑖 = 1, 2, . . . , 𝑛.

(5)

Since the probability of being the separated data in nature
is very low and more datasets are inseparable; therefore,
the discriminator (hyperplane) is also determined based on
minimum number of errors. As a result, those members
belonging to another class are penalized based on the distance
from the boundary of its own class (𝛿) (see Figure 3). This
strategy is represented as a model of soft margin SVM. For
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Figure 3: A sample of linear soft margin SVM.

this reason, nonnegative variables (𝛿
𝑖

) are defined and called
as slack variable s.t. 𝛿

𝑖

≥ 0. Thus, (5) is changed as follows:

Minimize 1

2

𝑤

𝑇

⋅ 𝑤

s.t. : 𝑤

𝑇

⋅ 𝑥

𝑖
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𝑖
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𝑖 = 1, 2, . . . , 𝑛

𝑤
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𝑖
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𝛿
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(6)

By multiplying both sides of first s.t. of (6) by 𝑦, the primal
problem becomes

Minimize 1

2

𝑤

𝑇

⋅ 𝑤

s.t. : 𝑦

𝑖

(𝑤
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𝑖
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𝑖
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(7)

thus

𝐿

𝑝

=

1

2

𝑤
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𝑛
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𝑖
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(8)

The primal problem is a quadratic program but it cannot
be solved easily because it does not just depend on the
parameters which are related to input vectors. Therefore, this
equation changes from the primal form to dual form by using

the Lagrange method. The Lagrange factors (𝛼
𝑖

, 𝜇
𝑖

) must be
nonnegative real coefficients and (8) becomes
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(9)

where 𝐶 is penalty factor. In this case, 𝐿
𝑝

is a saddle point.
Thus, at this point, the minimum value should be taken with
respect to the parameters𝑤, 𝑏, and 𝛿 and themaximum value
should be taken with respect to the Lagrange multipliers (𝛼

𝑖

,
𝜇

𝑖

). This can be done by taking the partial derivative with
respect to 𝑤, 𝑏, and 𝛿 in order to change the primal problem
to a maximum problem as follows:
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By substituting (10) and (11) into (9), the dual problem is
obtained as follows:

𝐿
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Also based on (12), the box constrains are defined as
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In addition, by considering ℎ
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and 𝑓 as the following
definition:
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and substituting ℎ

𝑖𝑗

and 𝑓 into (13), the dual formulation
becomes

𝐿

𝐷

= −

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼

𝑖

⋅ 𝛼

𝑗

⋅ ℎ

𝑖𝑗

+

𝑛

∑

𝑖=1

𝛼

𝑖

, 𝛼

𝑖

≥ 0,

𝐿

𝐷

= −

1

2

𝛼

𝑇

⋅ 𝐻 ⋅ 𝛼 − 𝑓

𝑇

⋅ 𝛼,

(16)



6 Mathematical Problems in Engineering

where𝐻 and 𝛼 are defined as
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Therefore, the target function is expressed as follows:

Minimize 1
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The quadratic programming problem (see (19)) can be solved
easily by using the quadprog function in the Matlab software
and the values of 𝛼

𝑖

are calculated. Then by substituting
𝛼

𝑖

values into (10), the values of 𝑤 are obtained. Also for
calculating the bias term, the Karush-Kuhn-Tucker (KKT)
conditions [23] are necessary and sufficient for the opti-
mization problems. Therefore, these conditions should be
established in optimum point (see (9)). The bias value is
calculated as

K.K.T 󳨀→ 𝛼

𝑖

[𝑦

𝑖

(𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏) − 1 + 𝛿

𝑖

] = 0,

𝜇

𝑖

⋅ 𝛿

𝑖

= (𝐶 − 𝛼

𝑖

) ⋅ 𝛿

𝑖

= 0.

(20)

Thus based on K.K.T conditions three cases occurred.

Case 1. None support vectors if (𝛼
𝑖

= 0)

𝛼

𝑖

= 0 󳨀→ {

𝜇

𝑖

= 𝐶 󳨀→ 𝛿

𝑖

= 0

𝑦

𝑖

(𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏) − 1 ≥ 0.

(21)

Case 2. Outliers if (𝛼
𝑖

= 𝐶)

𝛼

𝑖

= 𝐶 󳨀→ {

𝜇

𝑖

= 0 󳨀→ 𝛿

𝑖

≥ 0

𝑦

𝑖

(𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏) − 1 + 𝛿

𝑖

= 0.

(22)

Case 3. Support vectors if (0 < 𝛼

𝑖

< 𝐶)

0 < 𝛼

𝑖

< 𝐶 󳨀→ {

0 < 𝜇

𝑖

< 𝐶 󳨀→ 𝛿

𝑖

= 0

𝑦

𝑖

(𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏) − 1 = 0.

(23)

In Case 3, each 𝑥

𝑖

corresponding to 𝛼

𝑖

are support vector
machines. Thus by multiplying both sides of first s.t. of (19)
by 𝑦 as follows:

𝑤

𝑇

⋅ 𝑥

𝑖

+ 𝑏 = 𝑦

𝑖

, (24)

the amount of the bias term can be obtained as follows:

𝑆 = {𝑖 | 0 < 𝛼

𝑖

< 𝐶} , 𝑖 ∈ 𝑆,

𝑏 =

1

|𝑆|

𝑆

∑

𝑖=1

(𝑦

𝑖

− 𝑤

𝑇

⋅ 𝑥

𝑖

) ,

(25)

and also using (10), 𝑤 becomes

𝑤 =

𝑛

∑

𝑖=1

𝛼

𝑖

⋅ 𝑦

𝑖

⋅ 𝑥

𝑖

. (26)

Finally, by having the amounts of 𝑤 and 𝑏, the optimal
hyperplane decision function can be expressed as follows:

𝑦

𝑖

= Sign (𝑤𝑇 ⋅ 𝑥
𝑖

+ 𝑏) . (27)

3.2. Nonlinear SVM. For nonlinearly data, the selection of
optimal hyperplane for separation of data is difficult. For this
case, Cortes and Vapnik [2] used the Hilbert-Schmidt theory
[24] in order to transform the 𝑑-dimensional input vector
𝑥 into (usually higher) an 𝑁-dimensional feature vector by
using an𝑁-dimensional vector function 0:

0 : 𝑅

𝑑

󳨀→ 𝑅

𝑁

,

0 : 𝑥 󳨀→ 𝑧,

𝑧 = 0 (𝑥) .

(28)

Therefore based on the SVM algorithm, the discriminator
equation can be applied into 𝑧 space instead of 𝑥 space as
follows:

𝑤

𝑇

⋅ 𝑥 + 𝑏 = 0 󳨀→ 𝑤

𝑇

⋅ 𝑧 + 𝑏 = 0

󳨀→ 𝑤

𝑇

⋅ 0 (𝑥) + 𝑏 = 0.

(29)

And according to the properties of soft margin classifier
method, the dual problem is obtained as follows:

𝐿

𝐷

=

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼

𝑖

⋅ 𝛼

𝑗

⋅ 𝑦

𝑖

⋅ 𝑦

𝑗

⋅ 0 (𝑥

𝑇

𝑖

) ⋅ 0 (𝑥

𝑗

) −

𝑛

∑

𝑖=1

𝛼

𝑖

,

𝛼

𝑖

≥ 0,

(30)

by substituting 𝐾(𝑥

𝑖

, 𝑥

𝑗

) instead of 0(𝑥𝑇
𝑖

) ⋅ 0(𝑥

𝑗

), the dual
formulation becomes

𝐿

𝐷

=

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼

𝑖

⋅ 𝛼

𝑗

⋅ 𝑦

𝑖

⋅ 𝑦

𝑗

⋅ 𝐾 (𝑥

𝑖

, 𝑥

𝑗

) −

𝑛

∑

𝑖=1

𝛼

𝑖

,

𝛼

𝑖

≥ 0,

(31)
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Table 3: Properties of kernel functions.

Kernel function Expression Comment
Linear 𝐾(𝑥

𝑖

, 𝑥

𝑗

) = 𝑟 + 𝛼 ⋅ 𝑥

𝑇

𝑖

⋅ 𝑥

𝑗

𝛼 > 0

Polynomial 𝐾(𝑥

𝑖

, 𝑥

𝑗

) = (𝑟 + 𝛼 ⋅ 𝑥

𝑇

𝑖

⋅ 𝑥

𝑗

)

𝑝

𝛼 > 0

Gaussian 𝐾(𝑥

𝑖

, 𝑥

𝑗

) = exp(− 1

2𝜎

2

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖

− 𝑥

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

2

) 𝜎 ̸= 0

Sigmoid 𝐾(𝑥

𝑖

, 𝑥

𝑗

) = tanh (𝛽
0

+ 𝛽

1

⋅ 𝑥

𝑇

𝑖

⋅ 𝑥

𝑗

) 𝛽

1

> 0

𝑥

𝑖

, 𝑥
𝑗

are input vectors and 𝑟, 𝛼, 𝜎, 𝛽
0

, and 𝛽
1

are kernel parameters.

where 𝐾(𝑥

𝑖

, 𝑥

𝑗

) is kernel trick (nonlinear function) and
is applied to change the linear discriminator model into
nonlinear form. In this study, four commonkernel trickswere
applied in SVM in order to find the best kernel function
including linear kernel function, polynomial kernel function,
Gaussian kernel function, and sigmoid kernel function as
presented in Table 3.

Therefore, the optimal hyperplane decision function is
expressed as follows:

𝑦 = sign(
𝑛

∑

𝑖=1

𝛼

𝑖

⋅ 𝑦

𝑖

⋅ 𝐾 (𝑥

𝑖

, 𝑥) + 𝑏) . (32)

3.3. Multiclass SVM (M-SVM). The basic theory of SVM
is designing the discriminator (hyperplane) with maximum
margin between the two classes, while most of classification
problems are in the multiclass models [25]. For 𝑁 classes’
model, Cortes andVapnik [2] presented a strategy to compare
one class with the remaining classes and this leads to
generating the 𝑁 classifiers. Therefore, this method needs
the solution of the 𝑁 quadratic programming optimization
problems. This strategy can be named as “one-versus-rest”
and was used in this research.

4. Data Generation, Selection of
Input Parameters

For classification of the imposed global damage of these
sample frames, M-SVM and MM-SVM were employed. In
order to do so, twenty suitable ground motion records are
selected and scaled to ten levels of PGA, then each scaled
record applied to each frames and the amount of damagewere
obtained using IDARC-2D software [26]. After carrying out
the NTHA, 600 data were generated and divided into three
classes based on the Park and Ang damage definition (see
Table 2) including 153, 62, and 385 data for class number 1,
class number 2, and class number 3, respectively.

For generation of each input data, the appropriate param-
eters should be selected that are able to describe the properties
of R/C frames and ground motion characteristic. In this
investigation, seven and four parameters were chosen for
structural and ground motion properties, respectively. The
structural parameters were selected based solely on geometry
and dimension of sample frames and without any relation to
the engineering analysis such as first mode period, ductility
and energy absorption of structural elements, and top dis-
placement. In addition, for ground motion parameters, the

main and available characteristics of records were selected.
The ranges and definition of parameters are shown in Table 4.

The scaling of the data set is very important for training
and also testing process of network. Thus, before presenting
the data to the network, it is advised to normalize them.
Therefore, linear normalization method was used to change
the input parameters range between zero and one.

5. Models Used for Classification

In this study, two models of neural networks consisting of
M-SVM and MM-SVM were applied. In order to find the
best kernel function for training process, the total accuracy
prediction scores of the test data were calculated. Also,
the kernel parameters (𝑝, 𝑟, 𝛼, 𝜎, 𝛽

0

, and 𝛽

1

) and penalty
factor (𝑐) should be determined to reach the maximum
margin between classes and theminimum classification error
between real and predicted data. The amounts of 𝑝, 𝑟, 𝛼, 𝛽

0

and 𝛽

1

were obtained using trial and error. Also for the two
remaining parameters (𝑐 and 𝜎), the grid-search method was
considered and the best values were selected automatically
using Libsvm-3.17 [27] in the Matlab software. The results
showed that 143, 149, 155, and 152 class labels from the total
of 180 test data class labels were correctly predicted for linear,
polynomial (5 degree), Gaussian and sigmoid functions,
respectively. Therefore the Gaussian function was chosen as
the best kernel trick function.

5.1. M-SVM Model. In the M-SVM, the set of normalized
data which include 600 input data and each data containing
eleven elements were shuffled and then applied to this
machine that 70% and 30% of the total data were used for
training and testing process, respectively. Figure 4 shows the
comparison of actual classes and predicted classes of the
imposed global damage for train data, test data, and all data of
M-SVM. In this Figure, the hollow circles and stars indicated
the actual classes and predicted classes, respectively, which if
the classification be correctly done, then the hollow circles
and stars will be overlapped together. The obtained results
showed that the M-SVM was predicted the classes number 1
andnumber 3with high precision. But for class number 2, this
performance was very low because the M-SVM was not able
to determine the proper margins based on feature of input
data.

Also for evaluation of the obtained results from classified
data, the confusion matrix is used and is defined as an error
matrix or a contingency table to determine the performance
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Table 4: The range of structural and ground motion parameters used.

Type Parameters Definition Range of parameters

Structural

H/B The ratio of total building height to width 1.44–1.78
L (m) Frame load share from lateral bays 3.25–3.35

IC (mm4) Total moment of inertia for first story columns 200000–106666.7
IB (mm4) Total moment of inertia for first story beams 90000–50625

N Number of stories 4–8
B Number of bays 3-4

M (m) Maximum bay length 3–4.5

Ground motion

PGA (g) PGA 0.1–1.0
FC (Hz) Frequency content 0.22–4.297
𝐸

𝑇

(sec) Effective time 6.99–36.32
A/V (g/cms−1) Ration of PGA to PGV 0.004–0.029
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Figure 4: Comparison of the actual and predicted classes for train
data, test data, and all data of M-SVM.

of network. Each element of thismatrix expresses the number
of actual classes versus predicted classes. The structure of
confusion matrix is shown in Figure 5.

Whereas TP is a true positive observation, TN is a true
negative observation. FN is a false negative since observation
is an actual negative (−) but the classifier label is positive
(+) and FP is a false positive since observation is an actual
positive (+), nonetheless, the classifier label is negative (−).
For assessment of this matrix, some parameters can be used
which are shown in Table 5.

Total

TP FP

FN TN

N

P

N PTotal

Predicted class+ Predicted class−

Actual class+

Actual class−

Figure 5: Sample of confusion matrix.

The confusion matrix for the train data, test data, and all
data of M-SVM is given as follows.

Confusionmatrix for the train data = [

112 0 0

20 2 19

0 0 267

], total
accuracy = 90.71%, 𝐶 = 76.11, 𝜎 = 1.8885,

Confusion matrix for the test data = [

41 0 0

12 0 9

4 0 114

], total
accuracy = 86.11%, 𝐶 = 117.38, 𝜎 = 2.3453,

Confusion matrix for the all data = [

153 0 0

35 1 26

4 0 381

], total
accuracy = 90.71%, 𝐶 = 346.69, 𝜎 = 7.7198.

Based on extracted confusion matrices, the amounts of SEN,
SPC, PRE, ACC, Error, NPV, and PPV for each class and
each set of data are presented in Table 6. The obtained
results from these parameters showed that the best and worst
classifications were done for class number 3 and class number
2 with ACC equal to 95% and 89.83%, respectively. Also, the
low value of PRE for class number 2 represents inaccuracies
in classification of this class.

5.2. MM-SVM Model. For generation of MM-SVM, a one-
layer feed-forward MLP neural network [28, 29] was used at
first level, then the output of this network was applied to M-
SVM in form of input data. This combined artificial neural
network was named MM-SVM and is shown in Figure 6.
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Figure 6: The architecture of combined MLP with M-SVM (MM-SVM).

Table 5: Properties of parameters used for evaluation of confusion matrix.

Name Definition Function

Sensitivity or recall (SEN) The rate of true positive SEN =

TP
TP + FN

Specificity (SPC) The rate of true negative SPC =

TN
FP + TN

Precision (PRE) The fraction of observations classified as positive that are actually positive PRE =

TP
TP + FP

Accuracy (ACC) The proportion of the total number of predictions that are correct ACC =

TP + TN
TP + TN + FP + FN

Error The proportion of the total number of predictions that are incorrect Error = FP + FN
TP + TN + FP + FN

NPV The negative predictive values NPV =

TN
TN + FN

PPV The positive predictive values PPV =

TP
TP + FP
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Figure 7: Number of hidden layer neurons versus test error.

At the first level of MM-SVM, 600 input data applied
to MLP neural network. In this network, each layer’s nodes
are connected to the next layer nodes with a specific weight
similar to the synaptic weight in human neural networks. For
training process, the Levenberg-Marquardt back propagation
algorithmwas employed to update the weights and bias terms
of the MLP network. Therefore, using this network leads to

changing the primal data space from the eleven dimensions to
one dimension.TheMLP network consists of eleven neurons
in the input layer, optimum neurons in the hidden layer, and
one neuron in the output layer. The number of neurons and
the type of activation function in the hidden layer are very
important parameters for the network training process. In
this research, Gaussian and linear functions were used for
the hidden layer and the output layer of the MLP network,
respectively. In addition, the number of hidden layer neurons
was determined based on the minimum test error, as in the
following equation:

Error (%) = (

∑

𝑘

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑂

𝑖

− 𝑇

𝑖

󵄨

󵄨

󵄨

󵄨

𝑚 ⋅ 𝑛

) ⋅ 100, (33)

where𝑂
𝑖

is the output of the neural network, 𝑇
𝑖

is the desired
output, 𝑘 is the number of testing or training data, 𝑚 is the
number of testing or training segments, and 𝑛 is the number
of neural network outputs for testing and training procedures
[30]. The test error values for different number of neurons
in hidden layer which were calculated based on the Gaussian
function are shown in Figure 7.
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Table 6: The SEN, SPC, PRE, ACC, Error, NPV, and PPV values for each class.

Train data Test data All data
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

SEN (%) 84.85 100.0 93.36 71.93 00.00 92.68 79.69 100.0 93.61
SPC (%) 100.0 90.67 100.0 100.0 88.33 92.98 100.0 89.82 97.93
PRE (%) 100.0 04.88 100.0 100.0 00.00 96.61 100.0 01.61 98.96
ACC (%) 95.24 90.71 95.48 91.11 88.33 92.78 93.50 89.83 95.00
Error (%) 04.76 9.286 04.52 08.89 11.67 07.22 06.50 10.17 05.00
NPV (%) 93.51 100.0 87.58 88.49 100.0 85.48 91.28 100.0 87.91
PPV (%) 100.0 04.88 100.0 100.0 00.00 96.61 100.0 01.61 98.96

Table 7: The RMSE, MSE, 𝑅, 𝜇, and 𝜎 values for each set of data.

Train data Validation data Test data All data
RMSE 0.24341 0.30799 0.31044 0.26488
MSE 0.05925 0.09486 0.09637 0.07016
𝑅 0.95944 0.93508 0.93819 0.95224
𝜇 −0.012685 −0.0013085 −0.056020 −0.017479
𝜎 0.24337 0.30971 0.30706 0.26452
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Figure 8: Comparing the real and predicted values.

Therefore, the minimum test error was obtained equal to
4.09 for the 25 hidden layer neurons. In the MLP network,
all the data was divided into three sets that include train data
(70% of all data), validation data (15% of all data), and test
data (15% of all data). For finding the best fit of the data set,
the statistical models were used. For this reason, root mean
square error (RMSE), mean square error (MSE), correlation
coefficient (𝑅), mean of error (𝜇), and standard deviation of
error (𝜎) were considered [31]. In the training process, the
network stopped after 16 iterations with MSE and gradient
equal to 0.0413 and 0.0254, respectively. In addition, the best
validation performance was 0.09486 at epoch 10. The values
of RMSE, MSE, 𝑅, 𝜇, and 𝜎 are presented in Table 7.

As seen in Table 7, the RMSE and MSE variables in
testing cases are greater than in training and validating cases.
Also the amount of Rs ranged between 0.93508 and 0.95944.
Figure 8 compares the real output values and the predicted
values of all data. The most variation of errors for all data
sets happened between −0.5 and +0.5 which successfully
represents the network damage prediction values with high
accuracy. The regression and fit function for the train,
validation, test, and all data are shown in Figure 9. The high
value of 𝑅 (around 0.95) indicates a good linear relationship
between predicted values and actual values for the total
response in theMLPmodel.Moreover, the histogram of error
for all data is presented in Figure 10. The concentration of
the bins error around the zero line with mean −0.017479 and
standard deviation 0.26452 for all sets of data represents a
good performance of this network.

At the second level of MM-SVM, the obtained outputs
of the first level (MLP network) were applied to the M-SVM
as input data. This set includes 600 input data and each data
consists of only one element. Figure 11 shows the comparison
of the actual classes and the predicted classes of the imposed
global damage for the train data, test data, and all data of
MM-SVM. For all classes, the results showed that the MM-
SVM predicted the classification of global damage with high
accuracy compared to M-SVM. Indeed, reduction in feature
space of input data and creating high correlation between the
input and output data by the MLP neural network lead to
determine more precisely of margins for each class by the M-
SVM.

For evaluation of the system’s performance of MM-SVM
network, the confusionmatrix for the train data, test data, and
all data is given as follows.

Confusion matrix for the train data = [

105 7 0

0 36 5

0 4 263

],
total Accuracy = 96.19%, 𝐶 = 76.11, 𝜎 = 0.1928,
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Figure 9: The regression and fit function for each set of data.

Confusion matrix for the test data = [

39 2 0

5 11 5

0 1 117

], total
Accuracy = 92.78%, 𝐶 = 32, 𝜎 = 0.8781,

Confusion matrix for the all data = [

144 9 0

7 44 11

0 5 380

], total
Accuracy = 94.67%, 𝐶 = 181.0193, 𝜎 = 0.7071.

Based on extracted confusion matrices from MM-SVM, the
amounts of SEN, SPC, PRE, ACC, Error, NPV, and PPV

for each class and each set of data are presented in Table 8.
The maximum and minimum of SPC were obtained equal to
98.66% and 93.98% for class number 2, respectively. Also for
all data, the ACC-values for class number 1, class number 2,
and class number 3 were extracted equal to 97.33, 94.67, and
97.33 respectively.

The above obtained results for all three classes showed
that although the amount of data for each class is different,
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Table 8: The SEN, SPC, PRE, ACC, Error, NPV, and PPV values for each class.

Train data Test data All data
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

SEN (%) 100.0 76.60 98.13 88.64 78.57 95.90 95.36 75.86 97.19
SPC (%) 97.78 98.66 97.37 98.53 93.98 98.28 98.00 96.68 97.61
PRE (%) 93.75 87.80 98.50 95.12 52.38 99.15 94.18 70.97 98.71
ACC (%) 98.33 96.19 97.86 96.11 92.78 96.67 97.33 94.67 97.33
Error (%) 01.67 3.810 02.14 03.89 07.22 03.33 02.67 05.33 02.67
NPV (%) 100.0 97.10 96.73 96.40 98.11 91.94 98.43 97.40 94.89
PPV (%) 93.75 87.80 98.50 95.12 52.38 99.15 94.12 70.97 98.70
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Figure 10: The error histogram for all data.

the amount of these parameters are close together which indi-
cated theMM-SVMmodel to be highly suited to classification
of global damage for R/C slab column frames and provide
reference for future seismic assessment of this frame’s type.

6. Discussion

Since that the percentage of input data for class number,
class number 2, and class number 3 was equal to 25.5%,
10.3%, and 64.2% of all data, respectively, the M-SVMmodel
showed very weak performance for classification of class
with minimum members. In fact, this model predicted only
2, 0, and 1 data from the set of 41, 21, and 62 considered
data for the train, test and all data cases of class number
2, respectively, whereas the MM-SVM model was able to
predicte 36, 11, and 44 data for this class. Indeed, using the
MLP model in first level of MM-SVM leads to reducing
the dispersion and complication in feature space of input
data and for this cause, in the second phase, the M-SVM
was able to determine the margins for each class with high
precision. Table 9 compares the ACC-value for M-SVM and
MM-SVM models. These results showed that the MM-SVM
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Figure 11: Comparison of the actual and predicted classes for train
data, test data, and all data of MM-SVM.

Table 9: Comparing the ACC-value for M-SVM and MM-SVM.

Data set M-SVM (%) MM-SVM (%) Improvement (%)
Train data 90.71 96.19 5.48
Test data 86.11 92.78 6.67
All data 90.71 94.67 3.96

classifier improves significantly the performance in terms of
recognition rate and error rate comparedwithM-SVMmodel
for one classification task of global damages.

7. Conclusion

In this study, the classification of the imposed seismic damage
under earthquake loads for R/C slab-column frames in the
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Famagusta city was investigated. Based on the Park and Ang
global damage classification, the three classes of damage are
applied including repairable (economic), beyond repair (not
economic), and loss of building (collapse). The NTHA was
used to generate the 600 databases. Two ANNs, M-SVM,
and MM-SVM were applied to establish the relationship
between the structural and groundmotion parameters (input
data) and damage classification (output data). The following
conclusions were obtained from this investigation.

In theM-SVM, to find the best kernel trick, four different
kernel functionswere applied including linear function, poly-
nomial function (5 degree), Gaussian function, and sigmoid
function and they evaluated using maximum accuracy of test
data. The results showed that the Gaussian function had the
maximumaccuracy and it was employed as an efficient kernel
trick function.

The number of hidden layer neurons for the first level of
MM-SVM (MLP neural network) was selected based on the
minimum test error, which was obtained equal to 25 neurons.
Additionally, the value of𝑅 for train data, validation data, test
data, and all data was calculated around 0.96, 0.94, 0.94, and
0.95, respectively.

Comparing the classification results of the M-SVM and
MM-SVM showed that the total accuracy of MM-SVM is
more than M-SVM. Also for class number 2 (class with the
lowestmember), the obtained values of PRE or PPV indicated
that the MM-SVM predicted the label of this class with high
efficiency towards theM-SVM.Thus, theMM-SVM is proven
as an efficient and time saving way for classification of the
imposed global damage under earthquake loads and it can be
used for similar R/C slab-column frames solely by selecting
the structural geometric and ground motion parameters. In
addition, this method of damage classification can be used by
the insurance companies because it is easy and fast.
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