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ABSTRACT

The tunneling time problem was a very popular problem at the end of the 20th century.

In Quantum Mechanics only observables can be measured, i.e. these observables are

real quantities. From mathematics it is well known that only hermitian operators have

real eigenvalues, therefore we associate observables as eigenvalues of Hermitian oper-

ators. Until now no Hermitian operator for the time was not found. Therefore many

approaches in order to determine the time a particle spends in a region or needs to travel

across a region are developed. Based on this the Bohmian Dwell Time, the Büttiker

Landauer Time, the Larmor Clock, and the minimal tunneling time are presented and

discussed in this thesis.

Keywords: Quantum Mechanics, Traversal Time, Tunneling Time, Larmor Clock,

Dwell Time
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Öz

Tünelleme zamanı problemi yirminci yüzyılın sonunda çok popüler araştırma alanıydı.

Kuantum mekanikte sadece görünebilirler ölçülebilir, yani bu görünebilirler reel bir

değerdir. Matematikten bilinir ki Hermityan opertörlerin özdeğerleri reel sayıdır, ve

bundan dolayı görünebilirleri Hermityan operatörlerin özdeğerleri ile ilişkilendirilir.

Şimdiye kadar kuantum fiziksel zaman kavramı için Hermityan operatör bulununa-

madı. Dolayısı ile kuantum mekanite zaman kavramını, yani bir parçacığın bir bölgede

geçirdiği veya bir bölgeyi geçmek için harcadığı zamanı, tanımlamak amacı ile

farklı yaklaşımlar geliştirildi. Buna bağlı olarak Bohm kalma zamanı, Büttiker Lan-

dauer zamanı, Larmor saatı, ve minimal tünelleme zamanı yaklaşımları bu tezde ver-

iliyor ve tartışılıyor.

Anahtar Kelimeler: Kuantum Mekanik, Geçme Zamanı, Tünelleme Zamanı, Larmor

Saati, Kalma Süreci
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Chapter 1

INTRODUCTION

In Quantum Mechanics the time plays a mystic role. This can be easily seen when the

interested reader follows the discussion on superluminal tunneling experiments carried

out by Günter Nimtz [14] in Germany or by Raymond Chiao [8] at Berkley. As we

know from the standard quantum mechanics lecture all observables are the eigenvalues

of Hermitian operators. If time is an observable, then there must be a Hermitian time

operator. Unfortunately until now there is no hermitian time operator. Therefore physi-

cists tried to invent different approaches to the tunneling time problem. Starting from

a semiclassical approaches to variational approaches. As the hot discussions on the

superluminal tunneling shows that the community of physicists still is very sensitive to

the time problem in quantum mechanics.

Many different approaches for the definition of the tunneling time or traversal time

respectively have been given. A review of various tunneling times was given by Hauge

[10]. One of the first fruitful approaches to the time problem was given by Baz’ and

Rybachenko [2, 15] by proposing the Lamor clock as a measure of traversal time. This

method is reviewed in chapter 4. Büttiker defined first the Dwell time, which can be

seen as a semiclassical approach. Leavens developed the idea of the Dwell time using

Bohmian trajectories as shown in chapter 2.1. The Dwell times for rectangular barrier

as well as for two δ-spike potentials is calculated. In chapter 3 the Büttiker Landauer

time is presented. The tunneling time is calculated for a constant localized barrier

with a small time varying periodic perturbation. Finally the concept of the minimal

tunneling time is put forward. The minimal tunneling time is based on a variational

1



principle approach [4]. Exemplarily the minimal tunneling time for the symmetric

constant barrier is calculated and compared to the corresponding Dwell time calculated

in chapter 2.2.2. Furthermore the minimal tunneling time is used to determine the level

splitting in the symmetric quadratic double well potential.
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Chapter 2

DWELL TIME

2.1 Bohmian Dwell Time
Following C. Richard Leavens Bohmian trajectory approach to timing electrons in

[13], we will now develop the idea of the Bohmian Dwell time.

Lets consider the one dimensional stationary quantum motion. We consider a contin-

uous double degenerate spectrum of eigenstates ψE(x) of the stationary Schrödinger

equation. (
− ~2

2m

∂2

∂x2
+ U(x)

)
ψE(x) = EψE(x) (2.1)

With the solution of the Schrödinger equation (2.1) we can determine the probability

current in one dimension j(x), as following:

j(x) =
~
m

Im

(
ψE(x)∗

∂

∂x
ψE(x)

)
(2.2)

As we are interested in determining the time of a quantum particle spent in the interval

a < x < b we may come up with the following definition of the traversal time:

τD =
1

|j(ψE(x)|

∫ b

a

|ψE(x)|2dx (2.3)

Where does this come from? In the Bohmian ontological interpretation of quantum

theory, the characteristic times for quantum particles will be discussed in terms of real
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trajectories, rather than virtual paths like in the Feynman’s path integral formalism [9].

Let’s consider a single quantum point-like particle propagating in the potential V (x, t)

accompanied by the wave function ψE(x, t), examining the potential at each point in

space-time and guides the particle’s motion accordingly, such that the particle has a

deterministically well defined position x(t) and velocity v(t) at each instant of time t.

Bohm postulates in [3] that the particles equation of motion is given as:

v(t) = dx(t)/dt, and ρ(x, t)v(x, t) = j(x, t) (2.4)

where

ρ(x, t) = ψE(x, t)∗ψE(x, t)

is the single particle probability density and

j(x, t) =
~
m

Im

(
ψ∗E(x, t)

∂

∂x
ψE(x, t)

)
denotes the probability current density. Here we have to note that the velocity v(x, t)

can never exceed the vacuum speed of light c.

In analogy to classical statical mechanics we have to to define first the probability

distribution for a particle property f , which is defined for all trajectories as following:

Π(f) =

∫
all spaces

ρ(x(0), 0)δ(f − f(x(0))dx(0) (2.5)

where f(x(0)) is the value of the property of a particle following the trajectory x(x(0), t)

and x(0) denotes the initial position of the particle.

We now consider the complete set of trajectories that start at x(0) for the trajectory

x(x(0), t) and reaches the final destination X at least once at the time t > 0. As in

the Bohmian trajectory theory the trajectories do not cross or touch each other, this

set must consist of a continuous interval [x
(0)
a , x

(0)
b ]. Because of the nonintersection

property of the trajectories there is only one x(0) in the interval [x
(0)
a , x

(0)
b ] for which

the trajectory x(x(0), t) reaches the final point X at a particular time T . So if we want

4



to calculate the arrival time distribution we get

Π(T ) =

∫ x
(0)
b

x
(0)
a

ρ(x(0), 0)δ(T − T (x(0)))dx(0). (2.6)

As one can see easily T (x(0)) depends on the starting position x(0). The relation be-

tween δ(T − T (x(0)) and δ(x(x(0), t)−X) is given by:

δ(x(x(0), t)−X)
∣∣∣
t=T

=
δ(t− T (x(0)))

|dx(x(0), t)/dt|

∣∣∣∣∣
t=T

=
δ(t− T (x(0)))

|v(x(x(0), t), t)|

∣∣∣∣∣
t=T

=
δ(T − T (x(0)))

|v(X,T )|
(2.7)

Inserting now (2.7) into (2.6) the probability distribution for the arrival time yields to:

Π(T ;X) = |v(X,T )|
∫ x

(0)
b

x
(0)
a

ρ(x(0), 0)δ(x(x(0), T )−X)dx(0) (2.8)

This integral is just the probability density ρ(X,T ). So (2.8) reduces to:

Π(T ;X) = |v(X,T )|ρ(X,T ) = |j(X,T )| (2.9)

Normalizing this probability distribution gives:

Π(T ;X) =
|j(X,T )|∫∞

0
|j(X, t)|dt

(2.10)

(2.10) is the probability distribution of all arrival times for all particles reaching X at

any time t > 0. Π(T ;X) is not defined in the case if the integral in the denominator

becomes 0. This actually is the case if no particle arrives X at a time t > 0. Also it

is not defined is the numerator becomes infinite, i.e. if there is a periodic motion of

particles described by the set of trajectories passing forever periodically x = X .

If the particle arrives at x = X at the time t = T from the left the velocity field

v(X,T ) > 0 is positive, and therefore according to (2.4) the probability current density
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j(X,T ) > 0 is also positive. We will denote this case with (+). In the case where the

particle arrives from the left obviously the velocity field v(X,T ) < 0 is negative and

analogously according to (2.4) j(X,T ) < 0 is also negative. This case is denoted by

(−). So finally we will write (2.10) as following:

Π(T ;X) = Π+(T ;X) + Π+(T ;X) (2.11)

with

Π±(T ;X) = ± j±(X,T )∫∞
0

(j+(X, t)− j−(X, t)) dt
(2.12)

where

j±(x, t) = j(x, t)Θ(±j(x, t)). (2.13)

From (2.4) it is obvious that Π±(T ;X) ≥ 0 for all X and T .

2.1.1 Transmission and reflection times

For the discussion of the transmission and reflection times we have to set up a gedanken

experiment in order to model the system mathematically. We consider the one dimen-

sional scattering experiment of a particle coming from the left of the localized barrier

V (x, t) = Θ(x(x− d))V (x, t). In the following we will only consider positive valued

potentials. If we assume that the wave function ψE(x, t) is normalized and located far

to the left at the time t = 0. If we now integrate the probability density ρ(x, 0) from

zero to infinity:

P0 =

∫ ∞
0

ρ(x, 0)dx

and compare this with the transmission probability PT

PT =

∫ ∞
d

ρ(x, t∞)dx, (2.14)

where t∞ denotes the time when the scattering process is completed, we see that the

relation between P0 and PT is given as

PT � P0.

This relation is important, in order not to get any significant contribution to the trans-

mission probability from the wave function at the starting point. As already denoted
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above the Hermitian time operator operator has not been found yet and therefore time

can not be considered as an observable. Now we are extending our experimental set

up to carry out many experiments with the same setup and the same intrinsic wave

functions ψE(x, 0), and average the corresponding reflection and transmission times.

In the following we are going to consider many identically setup experiments of the

type described above and determine the average transmission and reflection times cor-

respondingly. We will denote this times as τT (a, b) and τR(a, b) respectively, indicating

the average time the particle is spending in the region a ≤ x ≤ b after the time t = 0.

These particles are either transmitted or reflected. Recalling that the barrier V (x, t) is

not vanishing in the region [0, d], the average transmission time τT (0, d) is obviously

identified as the so-called tunneling time.

In order to determine the average transmission and reflection times for a point-like

particle, with the initial position x = x(0) at the time t = 0, the particle spends in the

region [a, b] we can use the classical stopwatch expression:

t(a, b, x(0)) =

∫ ∞
0

∫ b

a

δ
(
x− x(x(0), t)

)
dx dt (2.15)

The mathematical modeling of a classical stopwatch is very straightforward. As we are

considering a point-like particle the probability density of this particle is trivially given

as δ
(
x− x(x(0), t)

)
. Integrating this probability density over the interval [a, b] gives us

the time dependent probability. After integrating the time from zero to infinity we get

the time that the particle started at the point x(0) at the time t = 0 spend in average in

the interval [a, b].

By averaging (2.15) over all starting points we get the so-called mean dwell-time:

τD(a, b) =

∫ ∞
−∞

t(a, b, x(0))ρ(x(0), 0) dx(0) (2.16)

As all these integrals are considered to be Lebesgue integrable and the order of inte-

gration can be changed according the theorem of Fubini. Therefore we get for mean
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dwell-time

τD(a, b) =

∫ ∞
0

∫ b

a

∫ ∞
−∞

ρ(x(0), 0)δ
(
x− x(x(0), t)

)
dx(0)︸ ︷︷ ︸

ρ(x,t)

dx dt. (2.17)

The integral ∫ ∞
−∞

ρ(x(0), 0)δ
(
x− x(x(0), t)

)
dx(0) = ρ(x, t)

is the distribution of particles ρ(x, t) at the time t. So the dwell-time simplifies to:

τD(a, b) =

∫ ∞
0

∫ b

a

ρ(x, t) dx dt. (2.18)

In order to write τD(a, b) also in terms of the probability current density we are going

to use the equation of continuity

∂tρ(x, t) + ∂xj(x, t) = 0. (2.19)

If we multiply the equation of continuity (2.19) by t and integrate the equation of

continuity over the time from zero to infinity and the location from a to b we get:∫ b

a

∫ ∞
0

t∂tρ(x, t) dt dx = −
∫ b

a

∫ ∞
0

t∂xj(x, t) dt dx∫ b

a

[
tρ(x, t)

∣∣∣∞
0
−
∫ ∞
0

ρ(x, t) dt

]
dx = −

∫ ∞
0

t

∫ b

a

∂xj(x, t) dx dt (2.20)

The expression

tρ(x, t)
∣∣∣∞
0

= 0

becomes zero because at the time t = 0 the probability density is finite, at the time t =

∞ the probability density becomes zero at every point of the interval [a, b], because the

probability of the particle at the time t = ∞, i.e. at a time after the scattering process

is completed, to be in the scattering region is also zero. Applying the fundamental

theorem of calculus on the right hand side of the equation (2.20) we get:
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−
∫ b

a

∫ ∞
0

ρ(x, t) dt dx = −
∫ ∞
0

t (j(b, t)− j(a, t)) dt∫ ∞
0

∫ b

a

ρ(x, t) dx dt =

∫ ∞
0

t (j(b, t)− j(a, t)) dt (2.21)

Inserting now (2.21) into (2.18) we get for the dwell time:

τD(a, b) =

∫ ∞
0

t (j(b, t)− j(a, t)) dt (2.22)

Up to now we have not differentiated between transmitted and reflected particles. As

we are dealing here with Bohmian trajectories, we want to recall that the trajectories

do not cross each other. So there is a trajectory xB(t) = x(x
(0)
B , t) that divides the

trajectories into trajectories associated with transmitted particles (x(0) > x
(0)
B ) and

trajectories associated with reflected particles (x(0) < x
(0)
B ) . In the following we will

use x(Bt) to separate the contributions of the transmitted and reflected particles.

The probability for a transmitted particle is then:

PT =

∫ ∞
xb(t)

ρ(x, t) (2.23)

with

ρ(x, t) = ρT (x, t) + ρR(x, t)

and

ρT (x, t) = ρ(x, t)Θ(x− xB(t)) (2.24)

ρR(x, t) = ρ(x, t)Θ(xB(t)− x). (2.25)

Inserting this into equation (2.18) we get:

τD(a, b) = PT τT (a, b) + PRτR(a, b) (2.26)

9



with

PT τT (a, b) =

∫ ∞
0

∫ b

a

ρ(x, t)Θ(x− xB(t)) dx dt =

=

∫ ∞
0

t (j(b, t)Θ(b− xB(t))− j(a, t)Θ(a− xB(t))) dt (2.27)

and

PRτR(a, b) =

∫ ∞
0

∫ b

a

ρ(x, t)Θ(xB(t)− x) dx dt =

=

∫ ∞
0

t (j(b, t)Θ(xB(t)− b)− j(a, t)Θ(xB(t)− a)) dt (2.28)

The dwell, transmission, and reflection times are all positive, real valued, and additive,

i.e.

τD(a, c) = τD(a, b) + τD(b, c), with a < b < c. (2.29)

Analogously this expression is also true for τT and τR.

Because the reflection and transmission times τT (a, b) and τR(a, b) depend explicitly

on the boundary trajectory xB(t), the integrands are not anymore bilinear in ψE(x, t)

as in (2.18), and are rather implicit functionals of ψE(x, t) themselves. Therefore if we

consider the transmission and reflection times for wave packets, we can not determine

them as easily as using a Fourier transform. So there is no simple relationship between

the τT (a, b) and τR(a, b) respectively and its stationary counterparts τT (a, b; k) and

τR(a, b; k) respectively. So the general properties of the transmission and reflection

times can not be transferred to the stationary case.

The stationary case will be elucidated in the next section where the Dwell time will be

discussed in the framework of Büttikers [5]idea.

10



2.2 Dwell Time
If we consider now the scattering process in the stationary case where a particle will

be described by the wave function

ψ(x, t) = ψk(x)e−iEt/~

and with E = ~2k2/2m.

τD(x1, x2; k) =
1

v(k)

∫ x2

x1

|ψ(x; k)|2 dx (2.30)

where v(k) is the incoming flux (which is in parallel to Smith’s idea). So the dwell

time can be seen as the ratio of the probability of a particle being found in the region

between x1 and x2 over the incoming flux.

Analogously to of the straight forward approaches to the tunneling time problem was

given by Smith in [16], where he introduced the lifetime for a one dimensional elastic

collision, which is resembles the basic idea of Büttiker’s definition of the dwell time

τD [5].

2.2.1 Dwell Time for a localized barrier

If we consider the simple example of a one dimensional barrier V (x) that is localized

on the interval (b, a):

V (x) =


V (x) if b ≤ x ≤ a

0 else

(2.31)

The solution of the time independent Schrödinger equation

11



(
− ~2

2m

d2

dx2
+ V (x)

)
ψ(x; k) = Eψ(x; k) (2.32)

of the localized potential V (x) as given in (2.31) is then:

ψ(x; k) =



eikx +
√
Reiβe−ikx x < b

χ(x; k) b < x < a

√
Teiαeikx x > a

(2.33)

This situation is illustrated graphically in the figure 2.1 below.

a b x

Figure 2.1: One dimensional potential barrier

Returning to Büttikers definition of the dwell time (2.30) we can see that in this defini-

tion there is no distinction between the reflected and transmitted components. There-

fore it is obvious that this definition of the tunneling time averages over all scattering

channels as already noted by Smith [16].

2.2.2 Dwell Time for the localized constant potential

Now let us calculate the dwell time for the potential barrier

12



V (x) = V0Θ(x(d− x)) =


V0 if 0 < x < d

0 else

(2.34)

0 d xI II

Figure 2.2: One dimensional rectangular potential barrier

The Solution of the Schrödinger equation in the regions I , II , III are given as follow-

ing:

ψI(x; k) = eikx +Re−ikx (2.35)

ψII(x;κ) = Aeκx +Be−κx (2.36)

ψIII(x; k) = Teikx (2.37)

where k =
√

2mE/~2 and κ =
√

2m(V0 − E)/~2.

The wave function ψ(x) has to be continuous and continuous differentiable at all

points, therefore the wave function has to be continuous differentiable especially at

the x = 0 and x = d. Therefore we have to fulfill the following continuity relations:

ψI(0; k) = ψII(0;κ) (2.38)

ψII(d;κ) = ψIII(d; k) (2.39)

ψ′I(0; k) = ψ′II(0;κ) (2.40)

ψ′II(d;κ) = ψ′III(d; k) (2.41)
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Using (2.35), (2.36), (2.37) results:

1 +R = B (2.42)

Aeκd +Beκd = Teikd (2.43)

ik (1−R) = Aκ (2.44)

(Aκeκd −Bκe−κd) = ikTeikd (2.45)

Solving (2.42)-(2.45) with respect to A,B,R, T gives:

T =
4ikκed(κ−ik)

e2dκ(k + iκ)2 − (k − iκ)2
(2.46)

R =
(k2 + κ2) sinh(dκ)

(k − κ)(k + κ) sinh(dκ) + 2ikκ cosh(dκ)
(2.47)

A = − 2k(k − iκ)

e2dκ(k + iκ)2 − (k − iκ)2
(2.48)

B =
kedκ(k + iκ)

(k − κ)(k + κ) sinh(dκ) + 2ikκ cosh(dκ)
(2.49)

Simplifying these equations for κd� 1 we get:

T =
4kκ

k2 + κ2
e−(ik+κ)d exp

{
arctan

k2 − κ2

2kκ

}
(2.50)

R = exp
{
−2i arctan

κ

k

}
(2.51)

A = − 2k(k − iκ)

e2dκ(k + iκ)2 − (k − iκ)2
(2.52)

B =
k√

k2 + κ2
exp

{
i arctan

κ

k

}
(2.53)

For

ψII = A sinhκx+B coshκx
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we can now calculate the Dwell time for the rectangular barrier as following. First we

have to determine the absolute square of the wave function ψII(x).

|ψII(x)|2 = (A? sinhκx+B? coshκx) (A sinhκx+B coshκx)

= |A|2 sinh2 κx+ (A?B + AB?) sinhκx coshκx+ |B|2 cosh2 κx

For the Dwell time we have to calculate now the integral
∫ d
0
|ψII(x)|2 dx:

∫ d

0

|ψII(x)|2 dx = |A|2
d∫

0

sinh2 κx dx+ |B|2
d∫

0

cosh2 κx dx+

+ (AB? +B?A)

d∫
0

sinhκx coshκx dx =

= |A|2 −κd+ cosh(κd)

2κ
+ |B|2 κd+ coshκd sinκd

2κ
+ (AB? +B?A)

sinh2 (κd)

2κ

(2.54)

Inserting now the coefficients A and B from (2.48) and (2.49) into (2.54) gives:

τD =
2

v

k2 [2κd (κ2 − k2) + k20 sinh (2κd)]

q [k40 cosh (2κd)− (−k2 − 2κk + q2) (−k2 + 2κk + κ2)]

=
2

v

k2

κ

2κd (κ2 − k2) + k20 sinh (2κd)

k40 cosh(2κd)− k40 + 8κ2k2

After simplification we get:

τD =
k2

vq

2κd (κ2 − k2) + k20 sinh (2κd)

k40 sinh2 (2κd) + 4κ2k2
(2.55)

With the flux

v = jin =
~k
m
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we can now calculate the Dwell time for the rectangular barrier for 0 < E < V0 by

inserting v into (2.55) and get finally:

τD =
mk

~κ
2κd (κ2 − k2) + k20 sinh (2κd)

k40 sinh2 (2κd) + 4κ2k2
(2.56)

Now we need to calculate the Dwell time for the case E > V0. We can directly get the

result from (2.56) by substituting κ by iκ and exploiting the identity

sinh(ix) = i sinx

we get for th Dwell time for E > V0:

τD =
mk

~iκ
2iκd (−κ2 − k2) + k20 sinh (2iκd)

k40 sinh2 (2iκd)− 4κ2k2

=
mk

~iκ
2iκd (−κ2 − k2) + k20i sin (2κd)

−k40 sin2 (2κd)− 4κ2k2

=
mk

~iκ
(−i) (2κd (κ2 + k2)− k20 sin (2κd))

−
(
k40 sin2 (2κd) + 4κ2k2

)
=

mk

~κ
2κd (κ2 + k2)− k20 sin (2κd)

k40 sin2 (2κd) + 4κ2k2

Finally we have to determine the Dwell time for the case E = V0. This case can be

dealt by taking the limit as κ→ 0. So we get:

lim
κ→0

mk

~κ
2κd (κ2 + k2)− k20 sin (2κd)

k40 sin2 (2κd) + 4κ2k2
=
mb

~k0
1 + k20b

2/3

1 + k20b
2/4

(2.57)

Summarizing the results for the Dwell time in all three cases we get:

τD =



mk
~κ

2κd(κ2−k2)+k20 sinh(2κd)

k40 sinh2(2κd)+4κ2k2
for E < V0

mb
~k0

1+k20b
2/3

1+k20b
2/4

for E = V0

mk
~κ

2κd(κ2+k2)−k20 sin(2κd)

k40 sin2(2κd)+4κ2k2
for E > V0

(2.58)
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2.2.3 Solution of the Schrödinger Equation for the Double Spike Potential

We want to solve the Schrödinger Equation for the double spike potiential, i.e.

V (x) = V0 [δ(x− b/2) + δ(x+ b/2)] . (2.59)

Shown in the figure below.

Figure 2.3: Double Spike potential.

Therefore we make the Ansatz:

ψ(x) =



ψI(x) = eikx +Re−ikx for∞ < x < −b/2

ψII(x) = Aeikx +Be−ikx for − b/2 < x < b/2

ψIII(x) = Teikx for b/2 < x <∞

For the solution of the Schrödinger equation we have to comply with the following

boundary conditions:

1. The wave function has to be continuous at x = −b/2 and x = b/2.

2. The derivative of the wave function has a jump at x = −b/2 and x = b/2.

Continuity conditions at x = −b/2 and x = b/2:
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ψI(−b/2) = ψII(−b/2) (2.60)

ψII(b/2) = ψIII(b/2) (2.61)

in detail this means:

e−
1
2
ibk +Re

ibk
2 = Ae−

1
2
ibk +Be

ibk
2 (2.62)

Be−
1
2
ibk + Ae

ibk
2 = Te

ibk
2 (2.63)

First we have to motivate the jump condition in case of δ-potentials. Therefore we will

integrate the Schrödinger Equation from −ε− b/2 to ε− b/2 and calculate the limit as

ε→ 0.

lim
ε→0

[
− ~2

2m

∫ ε−b/2

−ε−b/2
ψ′′(x) dx+

∫ ε−b/2

−ε−b/2
V (x)ψ(x) dx

]
= E lim

ε→0

∫ ε−b/2

−ε−b/2
ψ(x) dx

(2.64)

considering the first term of the Schrödinger Equation:

lim
ε→0

[
− ~2

2m

∫ ε−b/2

−ε−b/2
ψ′′(x) dx

]
= lim

ε→0

[
− ~2

2m

(
ψ′
(
ε− b

2

)
− ψ′

(
−ε− b

2

))]
(2.65)

As −ε− b/2 is in region I and ε− b/2 is in region II equation (2.65) gets

lim
ε→0

[
− ~2

2m

(
ψ′
(
ε− b

2

)
− ψ′

(
−ε− b

2

))]
= − ~2

2m

[
ψ′II

(
− b

2

)
− ψ′I

(
− b

2

)]
(2.66)

As the potential is given by equation (2.59), the second term in equation (2.70) can be

18



written as

lim
ε→0

[∫ ε−b/2

−ε−b/2
V (x)ψ(x) dx

]
=

lim
ε→0

[∫ ε−b/2

−ε−b/2
V0 (δ(x− b/2) + δ(x− b/2))ψ(x) dx

]
=

V0ψ(−b/2) = V0ψI(−b/2) = V0ψII(−b/2) (2.67)

Finally we can verify easily that the right hand side of equation (2.70) vanishes. Using

Ψ(x) as antiderivative of ψ(x) we get

E lim
ε→0

ε−b/2∫
−ε−b/2

ψ(x) dx = E lim
ε→0

[
Ψ

(
ε− b

2

)
−Ψ

(
−ε− b

2

)]
=

= E

[
Ψ

(
− b

2

)
−Ψ

(
− b

2

)]
= 0 (2.68)

Using equations (2.67), (2.66), and (2.68) the condition of equation (2.70) can be sum-

marized as

− ~2

2m

[
ψ′II

(
− b

2

)
− ψ′I

(
− b

2

)]
+ V0ψI(−b/2) = 0 (2.69)

Analogously the same calculation can be carried out for

lim
ε→0

[
− ~2

2m

∫ ε+b/2

−ε+b/2
ψ′′(x) dx+

∫ ε+b/2

−ε+b/2
V (x)ψ(x) dx

]
= E lim

ε→0

∫ ε+b/2

−ε+b/2
ψ(x) dx,

(2.70)

resulting in the boundary condition

− ~2

2m

[
ψ′III

(
b

2

)
− ψ′II

(
b

2

)]
+ V0ψIII(b/2) = 0 (2.71)

Introducing the abbreviation:

κ =
2mV0
~2
− ik
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the equations (2.69) and (2.71) yield to

−Aκe−ibk/2 +Bκ∗eibk/2 + ik
(
−e−ibk/2 +Reibk/2

)
= 0 (2.72)

−ik
(
Aeibk/2 −Be−ibk/2

)
− Tκeibk/2 = 0 (2.73)

R =
(k − iκ)(iκ∗ + (2k + iκ) cos(bk) + κ sin(bk))

e2ibkk(k − iκ) + (k + iκ)2 − ieibk(k − iκ)κ∗
, (2.74)

A =
2k(k + iκ)

e2ibkk(k − iκ) + (k + iκ)2 − ieibk(k − iκ)κ∗
, (2.75)

B =
2k(k − iκ)

(−ik − κ)κ∗ + (2k2 + ikκ− κ2) cos(bk) + (3k + iκ)κ sin(bk)
, (2.76)

T =
4k2

e2ibkk(k − iκ) + (k + iκ)2 − ieibk(k − iκ)κ∗
(2.77)

For the calculation of the Dwell Time we are only interested in the Reflection coeffi-

cient R and the Transmission Coefficient T (2.30). Therefore according to (2.30) we

have to calculate first the integral of the absolute square of the wave function in region

II, then we have to calculate the current density of the incident wave and get For the

calculation of the Dwell Time we have to calculate first the integral of the absolute

square of the wavefunction, i.e. for ψII(x) = Aeikx +Be−ikx we get:

∫ b

−b

∣∣∣Aeikx +Be−ikx
∣∣∣2 dx =

∫ b

−b

(
Aeikx +Be−ikx

)(
A∗e−ikx +B∗eikx

)
dx∫ b

−b

(
|A|2 + |B|2 + AB∗e2ikx +BA∗e−2ikx

)
dx =

(
|A|2 + |B|2

)
2a+Re

(
1

2ik
AB∗e2ikx

)∣∣∣a
−a

=

= 2a
(
|A|2 + |B|2

)
+

2 sin 2ka

k
Im(AB∗) (2.78)

The current density of the incident wave ψI(x) = eikx +Re−ikx is given as:

j =
~
m

Im (ψ∗(x)∂xψ(x)) =
~
m

Im
((
e−ikx +R∗eikx

)
ik
(
e−ikx −R∗eikx

))
=

=
~k
m

Im(i(1 + |R|2)) =
~k
m

(1 + |R|2) (2.79)
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So we get for the dwell time between the double spikes

τ =
2a (|A|2 + |B|2) + 2 sin 2ka

k
Im(AB∗)

~k
m

(1 + |R|2)
(2.80)

with A,B,R, T from the equations (2.74)- (2.77).
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Chapter 3

BÜTTIKER-LANDAUER-TIME

Landauer and Büttiker analyzed in [6] the behavior of a particle tunneling through a

time modulated barrier. In this work they verified that the particle interacts with the

barrier and showed that the tunneling time depends on the modulation frequency. For

low modulation frequencies the tunneling barrier looks static to the particle, whereas

for high modulation frequencies the particle tunnels through the time-averaged barrier.

This tunneling can also be inelastic loosing or gaining modulation quanta.

The time dependent barrier

V (x, t) = V0(x) + V1(x) cosωt, (3.1)

where V0(x) denotes the static part of the barrier, and V1(x) is the amplitude of a small

modulation of the barrier. Incoming particles with the Energy E will interact with the

perturbation V1(x) cosωt and will therefore inelastically absorb or emit modulation

quanta ~ω. If the modulation frequency ω is low, i.e. that the interaction time 1/ω

much greater than the traversal time through the static barrier the barrier appears to the

particle to be static. If the reciprocal of the modulation frequency is much smaller than

the traversal time for the static barrier then the particle sees many cycles of oscillations.

So the particle tunnels through a time averaged barrier. The effective barrier will not

be larger or smaller than the static barrier. The only thing that changes is the Energy

of the particles differ either because the particle absorbs or emits modulation quanta.

22



Particles with higher energy tunnel much easier through a barrier than particles with

lower energy.

The interaction time of the transmitted particle can be given in semiclassical approxi-

mation using the following arguments. Let us start with the relation between momen-

tum and velocity:

p(x) = mv(x),

where p denotes the momentum of the particle, m the mass of the particle, and v the

velocity of the particle. Considering the units we can solve this equation with respect

to 1/v and get
1

v
=

m

p(x)
.

the unit of 1/v is s/m. If we now integrate both sided with respect to x we get:

τ =

∫ x2

x1

1

v(x)
dx =

∫ x2

x1

m

p(x)
dx (3.2)

from the correspondence principle for a free particle we know that p(x) = ~κ(x) =√
2m(V0(x)− E)/~2 we get for the interaction time, with x1 and x2 denoting the

classical turning points.

τ =

∫ x2

x1

m

~κ(x)
dx =

∫ x2

x1

m

~
√

2m(V0(x)− E)/~2
dx =

∫ x2

x1

√
m

2(V0(x)− E)
dx

(3.3)

τ is the semiclassical interaction time of a particle traveling in a one dimensional po-

tential from x1 to x2. The Energy is below the barrier. The interaction time for energies

above the barrier is given as τ =
∫ x2
x1

√
m

2(E−V0(x)) dx.

Coming back to the Büttiker-Landauer problem. For simplicity we will consider the
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spatially uniform Hamiltonian

H =
p2

2m
+ V0 + V1 cosωt (3.4)

describing the potential inside the barrier. Here V0 and V1 are considered constant.

If we solve the time independent Schrödinger equation within the barrier for the time

independent Hamiltonian H̃ = p2

2m
+ V0 for E < V0 we get

H̃φE(x) = EφE(x) =⇒ φE(x) = Aeκx +Be−κx.

Therefore the solution of the time-dependent Schrödinger equation for (3.4)

Hψ(x, t;E) = i~∂tψ(x, t;E)

is

ψ(x, t) = φE(x) exp

(
−iEt

~

)
exp

(
−iV1
~ω

sinωt

)
. (3.5)

using the identity 9.1.41 in [1], i.e.

exp

(
z · 1

2

(
t− 1

t

))
=

∞∑
n=−∞

tkJn(z), (3.6)

where Jn(z) denotes the Bessel function of first kind for integer order n. We can

now expand (3.5) using (3.6) by identifying t = e−iωt and z = V1
~ω in terms of Bessel

functions of the first kind as following:

ψ(x, t) = φE(x) exp

(
−iEt

~

) ∞∑
n=−∞

Jn

(
V1
~ω

)
e−inωt. (3.7)

This mathematical expansion can be interpreted also physically. The time modulation

of the potential causes so-called sidebands, which can be interpreted as particles which

absorbed (n > 0) or emitted (n < 0) modulation quanta. This becomes obvious if we

take the time derivative of (3.7)
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i∂tψ(x, t) =
∞∑

n=−∞

φE(x) exp

(
−iEt

~

)
Jn

(
V1
~ω

)
e−inωt(E + n~ω). (3.8)

At the beginning of our discussion we considered the amplitude of the modulation of

the potential as small. In this case we can observe that for V1/~ω � 1 according to [1]

9.1.7,

Jn(V1/~ω) ∼
(
V1

2~ω

)n
· 1

Γ(n+ 1)
=

(
V1
~ω

)n
· 1

2nn!
∝
(
V1
~ω

)n

So the order of V1/~ω corresponds to the order of the sidebands.

In order to find the the solution for the oscillating potential we have to solve the time

independent Schrödinger equation for the energies E and E± ~ω like in section 2.2.2.

The transmission coefficient T for the static barrier is according to (2.50) as:

T =
4kκ

k2 + κ2
e−(ik+κ)d exp

{
i arctan

k2 − κ2

2kκ

}
As we consider the V1 cosωt as small perturbation, we will assume for the following

that ~ω � E and ~ω � V0 − E. Then the wave vectors for the sidebands

k± =
√

2m(E ± ~ω)/~2 =
√

2mE/~2
√

1± ~ω
E
≈
√

2mE/~2(1± ~ω
2E

)

with k =
√

2mE/~2 k± simplifies to

k± ≈ k ± mω

2~k
.

Analogously κ± simplifies to :

κ± ≈ κ∓ mω

2~κ
.

then we get for the transmission coefficients multiplying the transmitted waves at the

frequencies E/~± ω for multiplying exp [ik± − i(E ± ~ω)t/~] as:
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T± = T
V1

2~ω
(
e±ωτ − 1

)
(3.9)

with

τ =
md

~κ

τ can be directly calculated from (3.3) for κ(x) = κ = const. and can be identified as

traversal time through the constant barrier V0. This traversal time is the time a particle

needs to travel over a distance d with the velocity v = ~k/m.

The transmission probability gets then:

|T±|2 = |T |2
(
V1

2~ω

)2 (
e±ωτ − 1

)2 (3.10)

where |T |2 is given as:

|T |2 =
16k2κ2

(k2 + κ2)2
e−2kd (3.11)

For ω � 1/τ , i. e. the frequency of the barrier is small compared to the traversal time,

the barrier looks static and the transmission probability for the two sidebands gets:

|T±|2 = |T |2
(
V1

2~ω

)2 (
1± ωτ +O((±ωτ)2)− 1

)2
= |T |2

(
V1τ

2~

)2

(3.12)

In the high frequency limit, i. e. ωτ � 1 we can analyze the behavior of the transmis-

sion probability. In the case where the particle absorbs a quantum of ~ω and therefore

has the energy E + ~ω. This particle traverses the barrier which looks as an averaged

barrier of the height V0 more easily compared to the energies E and E − ~ω. The

transmission probability in this case becomes then

|T+|2 = |T |2
(
V1

2~ω

)2

e2ωτ

This is the transmission probability of a particle that traverses the barrier at the higher

energy, where the quanta ~ω can be absorbed everywhere along the traveling path of

the particle.
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Considering now |T−|2 we can see that in the high frequency limit, because of the

exponential decay of the transmission probability gets:

|T−|2 = |T |2
(
V1

2~ω

)2 (
e−ωτ − 1

)2 ≈ |T |2( V1
2~ω

)2

In this case we can see that the transmission probability strongly depends on the width

of the barrier, decays according to (3.11) exponentially with respect to the barrier

width.

Using the WKB approximation we can extend the discussion to more general barrier

shapes. According to [11] the wave function

ψ(x, t) = AeiS/~

is determined by the solution of the time-dependent Hamilton-Jacobi equation

∂tS(x, t) =
1

2m

(
∂S(x, t)

∂x

)2

− V (x, t). (3.13)

S denotes the classical action. The solution of (3.13) is given as S(x, t) = S0(x, t) +

σ(x, t), where

S0(x, t) = −Et+ i~
∫
κ(x)dx

is the solution for the static barrier V (x) = V0(x), whereas σ(x, t) arises from the

modulation ω and is given as:

σ(x, t) = i
m

2

(
eiωt

∫ x

x0

V1(ξ)

~κ(ξ)
exp

{
−
∫ x

ξ

mω

~κ(ζ)
dζ

}
dξ+

+ e−iωt
∫ x

x0

V1(ξ)

~κ(ξ)
exp

{∫ x

ξ

mω

~κ(ζ)
dζ

}
dξ

]
(3.14)

x0 is the classical turning point at the left, where σ(x, t) is assumed to be 0. If V1(x)

is small, we have again only two sidebands. We can see from the first term in equation

(3.14), that the damping for the higher sideband is lower compared to the damping of
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the lower sideband. This fact complies with our previous observations. Furthermore

with v(x) = ~κ(x)/m we can rewrite equation (3.14) as following:

σ(x, t) = i
m

2

(
eiωt

∫ x

x0

V1(ξ)

~κ(ξ)
exp

{
−
∫ x

ξ

ω

v(ζ)
dζ

}
dξ+

+ e−iωt
∫ x

x0

V1(ξ)

~κ(ξ)
exp

{∫ x

ξ

ω

v(ζ)
dζ

}
dξ

]
(3.15)

In case of the lower side band the particle looses energy, so we can interpret this as

dissipative tunneling. The traversal time in this case gives an estimate of the impact of

friction effects on tunneling. The energy loss of a particle with velocity v and friction

coefficient γ is then given by:

∆E = γ

∫ d

0

v(x) dx (3.16)

As we don’t have an exact idea what happens to the velocity inside the barrier, we can

not calculate the energy loss based on (3.17) exactly. But for small dissipation, i.e. for

∆E � 1 we can use the velocity of the unperturbed system v0(x). In this case the

energy loss can be evaluated to:

∆E = γ

∫ d

0

~κ(x)

m
dx (3.17)

In order to find the transmission probability for small dissipation we assume that the

effective decay rate κ =
√

2m(V (x)− E(x))/~ with E(x) = E − ∆E(x) is the

energy corrected decay rate for the damped system. In this case according to [6] th toe

first order in γ we find

~κ = ~κ0 +
γ

v0(x)

∫ x

0

v0(ξ)dξ.

Resulting in the phase integral for the exponential damping of the wave function:

S =

∫
~κ dx = S0 + γ

∫ x

0

dξ

v0(ξ)

∫ ξ

0

v0(ζ)dζ (3.18)
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For a smooth v0(x) we can find that the contribution in (3.18) is of the order γd2, where

d is the length of the barrier. So dissipation causes as expected decreased transmission.

This property was predicted by Caldeira and Legget in [7].
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Chapter 4

LARMOR CLOCK

One of the first approaches to the tunneling time problem was proposed by Baz’ [2].

Rybachenko applied Baz’s work to a one dimensional localized potential barrier [15].

This approach is based on the idea to use Larmor precession to measure the time a

particle spends within the barrier. In order to employ Larmor precission we have to add

a small magnetic field in z-direction as perturbation to the one dimensional localized

barrier V (x) as shown in figure 4.1.

a b x

Figure 4.1: One dimensional localized potential barrier with small magnetic field B =

ezB0 in the region [x1, x2]as perturbation.

The ”infinitesimally small magnetic field” as Rybachenko [15] denoted this field is

localized in the region [x1, x2], which includes also the region of the localized potential

V (x). For x < x1 and x > x2 the magnetic field B = 0. In order to have an interaction

of the quantum particle with the magnetic field, we consider a quantum particle with

spin s = 1/2 and therefore a magnetic moment of µ = 2µs, where the spin is polarized

along the x-axis. This is the same setup of the gedanken experiment employed by Baz
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[2] to determine the average collision time. Now we will employ the same idea to

determine the average transmission and reflection times of the particles spent in the

region [x1, x2].

τrefl =
θrefl

ω
, and τtr =

θtr

ω
, (4.1)

where θrefl and θtr denote the angle of the rotation of the spin for the particles reflected

and transmitted respectively by the barrier V (x). Furthermore ω = 2µB/~ denotes the

Larmor frequency. As the magnetic field is infinitesimally small the times τrefl and τtr

are basically independent of the strength of the magnetic field. Now we have to solve

the stationary Schrödinger equation including the magnetic field.(
− ~2

2m

∂2

∂x2
− µBσ̂ + V (x)

)
ψ̂(x) = Eψ̂(x) (4.2)

Here ψ̂(x) is an operator with respect to the to the spin variables. In absence of the

magnetic field, i.e. B = 0 the solution of equation (4.2) is given as:

ψ̂(x) = Î



eikx +Re−ikx for x < x1

Teikx for x > x2

αφ1(x) + βφ2(x) for x1 < x < x2

, (4.3)

where φ1(x) and φ2(x) are the linearly independent solutions of (4.2) in absence of

the magnetic field, and Î denotes the identity matrix. We can identify R and T as the

reflection and transmission amplitudes respectively.

As we have mentioned above the magnetic field in the region [x1, x2] is infinitesimally

small so we will take the infinitesimally small magnetic field into account by the energy

shift−µBσ̂. This changes the wave functions φ1(x) and φ2(x) in the region [x1, x2] as

following:

φ̂1(x+ µBσ̂)− Îφ1(x,E) = −µBσ̂ dφ1(x,E)

dE
(4.4)

φ̂2(x+ µBσ̂)− Îφ2(x,E) = −µBσ̂ dφ2(x,E)

dE
(4.5)
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Obviously the coefficients R, T, α, β change when the magnetic field is switched on.

Actually our main interest is the effect of the perturbation by the magnetic field on the

reflection and transmission amplitudes, which are given according to [15] as:

R̂(E, φ̂1, φ̂2) = ÎR(E, φ̂1, φ̂2) + µBσ̂
δR

δE
(4.6)

T̂ (E, φ̂1, φ̂2) = ÎT (E, φ̂1, φ̂2) + µBσ̂
δT

δE
(4.7)

The differential operator δ/δE is a differential operator where only the functions φ1(x)

and φ2(x) are varied, i.e.
δ

δE
=

d

dE
−
(
∂

∂E

)
φ1,φ2

(4.8)

Applying now the operatores R̂ and T̂ on the spin wave function χ0
s,ms

of the incident

particle the spin wave function of the reflected and transmitted particles become:

χrefl
s,ms

=

(
1 + µB

1

R

δR

δE
σz

)
χ0
s,ms

(4.9)

χtr
s,ms

=

(
1 + µB

1

T

δT

δE
σz

)
χ0
s,ms

(4.10)

These spin wave function we can identify as the rotation angles θrefl and θtr for the

rotation with respect to the z-axis.

θrefl = 2µBIm

(
1

R

δR

δE

)
= 2µBIm

(
δ ln |R|
δE

)
(4.11)

θtr = 2µBIm

(
1

T

δT

δE

)
= 2µBIm

(
δ ln |T |
δE

)
(4.12)

Inserting (4.13) and (4.14) into (4.1) and exploiting the Larmor frequency ω = 2µB/~

we get:

τrefl =
2µB

ω
Im

(
1

R

δR

δE

)
= ~Im

(
δ ln |R|
δE

)
(4.13)

τtr =
2µB

ω
Im

(
1

T

δT

δE

)
= ~Im

(
δ ln |T |
δE

)
(4.14)

In order to determine the reflection and transmission times we have to express the re-

flection amplitudeR and the transmission amplitude T in terms of φ1(x1), φ2(x1), φ
′
1(x1), φ

′
2(x1)
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and φ1(x2), φ2(x2), φ
′
1(x2), φ

′
2(x2) explicitly to determine the partial derivatives (∂R/∂E)φ1,φ2

and (∂T/∂E)φ1,φ2 respectively. The constants α and β can be chosen arbitrarily 6= 0

to ensure the linear a proper linear combination of the solution φ1 and φ2.

Based on this we can now see that the Larmor clock gives us in general complex reflec-

tion and transmission times depending on the logarithmic derivatives of the reflection

and transmission amplitudes R(E,B) and T (E,B) at B = 0. This linear response

theory gives us 2 complex or 4 real time scales.
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Chapter 5

MINIMAL TUNNELING TIME

In the following we want to define the minimal tunneling time τmin(E) using a varia-

tional approach as discussed in [4]. As motivation we refer to chapter 2.1 where we

ellucidated the Bohmian Dwell time approach. There we defined the Bohmian Dwell

time τD in (2.3) as a functional of the wave function ψE(x) (2.1). It is preferable to

deal with a tunneling time that solely depends on the potential structure V (x) and the

energy of the particle then on the actual wave function. It seems to be advantageous

to use the functional τD(ψE(x)) as a time scale independent functional from the wave

function ψE(x). Therefore a simple variational principle is employed. The properties

of this functional τD(ψE(x)) are

• positive definite

• has a lower bound

• varies in the 2D space of the eigenfunctions ψE(x)

Consequently the dwell time τD(ψE(x)) becomes minimal for some special solution

of the Schrödinger equation (2.1) denoted by ψmin
E (x). The Dwell time for this wave

function is then τD(ψmin
E (x)), which can be interpreted as the minimal tunneling time

τmin(E). This minimal tunneling time is the minimal tunneling time in the potential

V (x) for the interval a < x < b.

τmin = min
Hψ=Eψ

(
1

j(ψE)

∫ b

a

|ψE(x)|2
)

(5.1)
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The eigenstate ψmin
E (x) minimizes equation (5.7), and can therefore be seen as the

minimal wave function of the barrier V (x) in the region a < x < b. From equation

(5.7) we can see that there is no maximum for the Dwell time functional τD(ψE(x)),

because the Dwell time diverges for solutions ψE(x) that carry no current, i.e. the

current density j(ψE) ≡ 0. The current density becomes zero e.g. in the case when

the solutions of the Schrödinger equation (2.1) are are real. If we take a closer look at

the variational principle we can see that the minimal solution refers to the origin of the

time scale in a variational procedure. The tunneling time (5.7) is not universally the

minimal tunneling time that can be found by all different tunneling time approaches.

But this is another valid approach to define a tunneling time. The additivity of Dwell

times as depicted in (2.29) can obviously not be resembled in (5.7). So we can deduce

from equation (5.7) the inequality:

τmin(a, b;E) ≥ τmin(a, c;E) + τmin(c, b;E) (5.2)

In the limit of the classical motion the equality should hold. Another interesting prop-

erty of the minimal tunneling time is that τmin(E) is determined as a local quantity,

whereas most other approaches depend on global quantities, as we can see directly e.g.

in the case of the Smith Dwell time.

5.1 Explicit Expressions

In the following based on the the variational principle (5.7) we want to determine

τmin(E) and the corresponding wave function ψmin
E (x). Let us consider the two real

linearly independent solutions of the Schrödinger equation (2.1) c(x) and s(x) for the

energy E. In this general treatment we only require the Wronskian of the solutions to

be normalized, i.e.

W(s(x), c(x)) = s′(x)c(x)− s(x)c′(x) = 1 (5.3)

By scaling of s(x) we can always satisfy this property. Also note that the normalization
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using the wronskian is independent of the boundaries a and b. Now in order to find the

minimal tunneling time and the minimal wave function we have to insert the general

solution of (2.1)

ψE(x) = αc(x) + βs(x) (5.4)

into (2.3) and perform the variation of the complex parameters α and β and we get

τmin(E) =
2m

~

(∫ b

a

c(x)2dx

∫ b

a

s(x)2dx−
∫ b

a

s(x)c(x)dx

)1/2

. (5.5)

τmin(E) is according to the Cauchy-Schwartz inequality for integrals [1] positive defi-

nite and independent of the of the basis functions c(x) and s(x). The only requirement

is the satisfaction of equation (5.3). [4] proposes one possible pair of conjugate com-

plex wave functions ψmin
E (x)

ψmin
E (x) ∝ c(x)−

(∫ b
a
c(ξ)2dx∫ b

a
c(ξ)2dx

)1/2

exp

±i arccos

∫ b
a
s(ξ)c(ξ)dξ√∫ b

a
c(ξ)2dξ

∫ b
a
s(ξ)2dξ


(5.6)

For the special case of a symmetric potential barrier, i.e. V (−x) = V (x) and a = −b

the expressions for the minimal tunneling time and the minimal wave function sim-

plifies. Selecting one eigenstate as even parity, i.e. c(−x) = c(x) and one eigenstate

as odd parity, i.e. s(−x) = −s(x) we get for the minimal tunneling time and the

corresponding wave function:

τmin(E) =
4m

~

√∫ b

0

c(x)2dx

∫ b

0

s(x)2dx (5.7)

ψmin
E (x) ∝

√∫ b

0

s(ξ)2dξ c(x)± i

√∫ b

0

c(ξ)2dξ s(x) (5.8)
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5.2 Minimal Tunneling Time for the Square Barrier
Let us calculate the minimal tunneling time for the symmetric rectangular barrier

V (x) = V0Θ(x− b/2)Θ(b/2− x) (5.9)

Then the wave number κ in the barrier is given as

κ =
1

~
√

2m|E − V0|. (5.10)

Taking into account the condition (5.3) then we find the fundamental solutions c(x)

and s(x) in the barrier region as:

c(x) = cos(κx), s(x) =
1

κ2
sin(κx) (5.11)

These are the fundamental solutions for E < V0. For E < V0 the trigonometric

functions will be replaced by its hyperbolic counterparts, then we obtain for τmin(E):

For E > V0:

τmin(E) =
4m

~

√∫ b

0

cos(κx)2dx

∫ b

0

1

κ2
sin(κx)2dx

=
4m

κ~

√
1

2

∫ b

0

(1 + cos(2κx))dx
1

2

∫ b

0

(1− cos(2κx))dx

=
m

κ~

√(
b+

1

2κ
sin(2κb)

) (
b− 1

2κ
sin(2κb)

)

=
m

κ~

√(
b2 − 1

4κ2
sin(2κb)2

)
=

m

2κ2~
√

(2κb)2 − sin(2κb)2

=
m

κ2~
√

(κb)2 − sin(κb)2

Analogously we can calculate the minimal tunneling time for E < V0. In this case as

mentioned above we have to take the corresponding hyperbolic functions for c(x) =
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cosh(κx) and s(x) = sinh(κx)/κ in order to calculate the minimal tunneling time for

E < V0. Analogously we get for E < V0:

τmin(E) =
4m

~

√∫ b

0

cosh(κx)2dx

∫ b

0

1

κ2
sinh(κx)2dx

=
4m

~

√∫ b

0

1

4
(cosh(2κx) + 2)dx

∫ b

0

1

κ2
1

4
(cosh(2κx)− 2)dx

=
m

κ2~
√

sinh(κb)2 − (κb)2

In the case E = V0, i.e. κ = 0 we can determine the minimal tunneling time by the

limiting process

τmin(E = V0) = lim
κ→0

m

κ2~
√

sinh(κb)2 − (κb)2 =
mb2√

3~

Finally putting all results together we get for the minimal tunneling time τmin(E):

τmin(E) =



m
~κ2

√
sinh2 κb− κ2b2 for E < V0

mb2√
3~ for E = V0

m
~κ2

√
κ2b2 − sin2 κb for E > V0

(5.12)

The corresponding Dwell time was already calculated in chapter 2.2.2, which is defined

only for E ≥ 0.

τD =



mk
~κ

2κd(κ2−k2)+k20 sinh(2κd)

k40 sinh2(2κd)+4κ2k2
for E < V0

mb
~k0

1+k20b
2/3

1+k20b
2/4

for E = V0

mk
~κ

2κd(κ2+k2)−k20 sin(2κd)

k40 sin2(2κd)+4κ2k2
for E > V0

(5.13)
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The minimal tunneling time is compared to the dwell time in the following figure 5.1

Figure 5.1: Traversal times for a rectangular barrier of width d = 6Å and height

V0 = 2eV. The solid line denotes the minimal tunneling time τmin, whereas the dashed

line denotes the Dwell time.

5.3 Energy Splitting in Symmetric Double Well Potential

5.3.1 Solution for the parabolic symmetric double well potential

We are considering now the symmetric double well potential.

U (x) =



mω2

2
(x+ b)2 x < −c = − b

2

mω2

2

(
b2

2
− x2

)
−c < x < c

mω2

2
(x− b)2 x〉c = b

2

(5.14)
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Figure 5.2: The symmetric double well potential U(x).

First we have to solve the Schrödinger equation (2.1) for this symmetric potential, i.e.

we have to solve the following two differential equations:[
E +

~2

2m
∂2x −

mω2

2
(x± b)2

]
ψ1,3 (x) = 0 (5.15)[

E +
~2

2m
∂2x −

(
mω2b2

2
− mω2

2
x2
)]

ψ2 (x) = 0 (5.16)

In order to transform the Schrödinger equations to a known equation, we change the

variables:

ξ =

√
2mω

~
=⇒ ∂

∂x
=

√
2mω

~
∂

∂ξ
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using the abbreviations

β =

√
2mω

~
b, U0 =

mω2b2

4
=

~ωβ2

8

the Schrödinger equations (5.15) and (5.16) transform to:(
∂2

∂ξ2
− (ξ ± β)2 +

E

~ω

)
ψ1,3(ξ) = 0 (5.17)(

∂2

∂ξ2
+
ξ2

4
+

(
E

~ω
− β2

8

))
ψ2(ξ) = 0 (5.18)

Let us compare the resulting differential equations with the parabolic cylinder function

in [1] 19.1.2 and 19.1.3.

For the oscillator:
(
∂2

∂ξ2
− ξ2

4
− a
)
Ya(ξ) = 0

For the inverse oscillator:
(
∂2

∂ξ2
+
ξ2

4
− a
)
Ya(ξ) = 0

For a = − E
~ω or a = β2

8
− E

~ω . For the regular solution in the third region we have to

fulfill the requirement of the wave function to vanish in the limit as ξ →∞. Then we

get for ψ3(ξ) according to [1] 19.8.1:

ψ3(ξ) = U

(
− E

~ω
, ξ − β

)
(5.19)

U(a, x) is the parabolic cylindrical function. Now we have to take the logarithmic

derivatives at x = c, i.e. ξ = β/2. Before we do this, we will exploit the recurrence

relation for the parabolic cylinder function [1] 19.6.2.

U ′(a, x) =
1

2
xU(a, x)− U(a− 1, x) (5.20)
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we get for the derivative ∂ξψ3(ξ):

∂ξψ3(ξ)
∣∣∣
β/2

= ∂ξU

(
− E

~ω
, ξ − β)

)∣∣∣
β/2

=

=
1

2
(ξ − β)U

(
− E

~ω
, ξ − β)

)
− U

(
−1− E

~ω
, ξ − β)

)∣∣∣
β/2

=

= −β
4
U

(
− E

~ω
,
β

2

)
− U

(
−1− E

~ω
,−β

2

)
(5.21)

So we get for the logarithmic derivative

∂ξψ3(ξ)

ψ3(ξ)

∣∣∣
ξ=β/2

= −β
4
−
U
(
−1− E

~ω ,−
β
2

)
U
(
− E

~ω ,−
β
2

) (5.22)

with a = β2

8
− E

~ω .

The even solution in region II is given as:

ψ2(ξ) = e−iξ
2/4M

(
1

4
− ia

2
,
1

2
,
iξ2

2

)
(5.23)

Note that M(a, b, z) is the Kummer Hypergeometric function. The derivative of ψ2(ξ)

is then:

ψ2(ξ)
′ = − i

2
ξψ2(ξ) + iξe−iξ

2/4M

(
1

4
− ia

2
,
3

2
,
iξ2

2

)′
(5.24)

Using the identity [1] 13.4.12

M

(
1

4
− ia

2
,
3

2
,
iξ2

2

)′
−M

(
1

4
− ia

2
,
3

2
,
iξ2

2

)
= −

(
1

2
+ ia

)
M

(
1

4
− ia

2
,
3

2
,
iξ2

2

)
(5.25)

In the next step we will determine the even and odd solutions in the region 2. The

even solution can be determined easily by substitution of a with ia and x with ix in

the equations for the parabolic cylinder functions: So we get for the even solution in

region 2:
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ψ
(e)
2 (ξ) = e−iξ

2/4M

(
1

4
− ia

2
,
1

2
,
i

2
ξ2
)

(5.26)

with a =
β2

8
− E

~ω
. Calculating the derivative of the even solution in region 2:

ψ
(e)
2

′
(ξ) =

i

2
ξψ

(e)
2 (ξ) + iξeiξ

2/4M

(
1

4
− ia

2
,
1

2
,
iξ2

2

)′
(5.27)

using the identity (5.25) we get:

ψ
(e)
2

′
(ξ) =

i

2
ξe−iξ

2/4M

(
1

4
− ia

2
,
1

2
,
iξ2

2

)
−iξe−iξ2/4

(
1

2
+ ia

)
M

(
1

4
− ia

2
,
3

2
,
iξ2

2

)
(5.28)

The odd solution in the region 2 is given as:

ψ
(o)
2 (ξ) = ξe−iξ

2/4M

(
3

4
− ia

2
,
3

2
,
i

2
ξ2
)

(5.29)

The derivative in of ψ(o)
2 (ξ) is then

∂

∂ξ
ψ

(o)
2 (ξ) =

(
1− iξ2

2

)
e−iξ

2/4M

(
3

4
− ia

2
,
3

2
,
i

2
ξ2
)

+iξ2e−iξ
2/4M

(
3

4
− ia

2
,
3

2
,
i

2
ξ2
)′

(5.30)

Using the identity [1] 13.4.13:

(b− a)M(a, b− 1, x) = bM(a, b, x) + zM ′(a, b, x) (5.31)

we get for the derivative of of ψ(o)
2 (ξ) :

∂

∂ξ
ψ

(o)
2 (ξ) = e−iξ

2/4M

(
3

4
− ia

2
,
1

2
,
iξ2

2

)
− iξ

2
e−iξ

2/4M

(
3

4
− ia

2
,
3

2
,
iξ2

2

)
(5.32)

Finally we have to determine the solutions in region 3 for E = 1
2
~ω:
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The regular solution in this case is given as:

ψ
(r)
3 (ξ) = e−(ξ−β)

2/4) (5.33)

The irregular solution in this case is given as:

ψ
(i)
3 (ξ) = (ξ − β)e−(ξ−β)

2/4M

(
1

2
,
3

2
,
1

2
(ξ − β)2

)
(5.34)

which can also be written in the form:

ψ
(i)
3 (ξ) = e−(ξ−β)

2/4

∫ ξ

β

e−(x−β)
2/4dx (5.35)

5.3.2 Connection between the minimum tunneling time and level splitting

If we consider the potential illustrated in figure 5.2, showing a symmetric potential

U(x) composed of two potential wells separated by a potential barrier. If we consider

the wells individually, each well has a discrete energy spectrum with the energies En.

As we have here a symmetric structure the states on the left, as well as on the right

are in resonance and the double degeneracy will disappear by the effect of electrons

tunneling from region 1 to region 2, i.e. the potential wells can not be treated inde-

pendently. The tunneling of electrons will cause a small energy shift ∆En, splitting

the eigen energies into doublets Ẽn ±∆En/2. Now let us consider a single well, e.g.

the potential well on the right. The hamiltonian of this single potential well is denoted

by Hwell. Then the eigenstates of this potential well are given by the solutions of the

stationary Schrödinger equation:

Hwellψn(x) = Enψn(x) (5.36)
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As a consequence of the existence of the second well, the eigenstates split into two

states with definite parity, i.e. even and odd parity of the complete system:

ψ(e)
n (x) ≈ α (ψn(x) + ψn(−x)) (5.37)

ψ(o)
n (x) ≈ β (ψn(x)− ψn(−x)) (5.38)

The pre-factors can be determined by the symmetry requirements,

ψ(e)
n (x = 0) = 1

ψ(o)
n (x = 0)′ = 1

The wronskian of both functions will be normalized at x = 1. Then we get for the

eigenstates of the complete system, i.e. for the potential U(x) including both wells:

Hψ(o)
n (x) =

(
Ẽn +

∆En
2

)
ψ(o)
n (x)

Hψ(e)
n (x) =

(
Ẽn −

∆En
2

)
ψ(e)
n (x)

So the existence of the second potential well leads to a change in the eigen energies by

Ẽn − En, which is exponentially small in the WKB approximation. The question of

interest is now how the energy splitting is connected to the tunneling time through the

potential barrier in the center of the potential. At the time t = 0 the system will be in

the superposition of the states (5.37) and (5.38):

ψ
(r)
E (x, 0) = βψ(e)

n (x) + αψ(o)
n (x) (5.39)

Now if we consider the time evolution of the complete system using (5.39) and (5.39)

we get:

ψ
(r)
E (x) = 2αβe−iẼnt/~ (ψn(x) cos Ωnt+ iψn(−x) sin Ωnt) (5.40)

with Ωn = ∆En/~. We can see that the electrons are oscillating between the two wells

with a period Tn = 2π/Ωn, i.e. that an electron travels through the central barrier in

the time Tn/2. So we can assume that Tn/2 is the characteristic tunneling time for this
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setup. In the next step we have to show the relation of the characteristic tunneling time

Tn/2 with the minimal tunneling time τmin.

The wave functions ψ(e)
n (x) and ψ

(o)
n (x) are orthogonal functions in the symmetric

interval −d < x < d, therefore the number of particles N(d) will be constant with

respect to time in this interval,i.e.

N(d) =

∫ d

−d
|ψ(r)
E (x)|2dx =

∫ d

−d
ψ(e)
n (x)2dx+

∫ d

−d
ψ(o)
n (x)2dx (5.41)

The current density at the center of the barrier is then

j(x = 0, t) =
~
m
Im

(
ψ

(r)
E (x)∗

∂

∂x
ψ

(r)
E (x)

)
. (5.42)

Inserting equation (5.40) into (5.42) we get:

j(x = 0, t) = − ~
m

sin Ωt

(
ψ(e)
n (x)

∂

∂x
ψ(o)
n (x)− ψ(o)

n (x)
∂

∂x
ψ(e)
n (x)

) ∣∣∣∣
x=0

(5.43)

=
~
m

sin ΩtW
(
ψ(e)
n (x), ψ(o)

n (x)
)∣∣∣∣

x=0

(5.44)

whereW
(
ψ

(e)
n (x), ψ

(o)
n (x)

)∣∣∣∣
x=0

is the Wronskian of the odd and even function at the

point x = 0. As we mentioned before that the normalization of the wave functions

will be done using the wronskian of the even and odd wave functions, equation (5.44)

simplifies to:

j(x = 0, t) = − ~
m

sin Ωt. (5.45)

So now let us have a look at the following integral from [12] at page 99:

∫ ∞
0

ψ(e)
n (x)ψ(o)

n (x) dx = − ~2

2m

W
(
ψ

(e)
n (x), ψ

(o)
n (x)

)∣∣∣∣∞
x=0

E
(o)
n − E(e)

n

(5.46)

As ψ(o)
n (x) and ψ(e)

n (x) are both bound states, the Wronskian of these two functions

vanishes as x approaches ∞. On the other hand as mentioned above the Wronskian
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at x = 0 is used for the normalization and is therefore 1. Since we know that Tn =

2πΩn = 2π~/∆En, equation (5.46) becomes:∫ ∞
0

ψ(e)
n (x)ψ(o)

n (x) dx =
~2

2m

1

E
(o)
n − E(e)

n

=
~

4πm
Tn (5.47)

rewriting this equation we get for the characteristic tunneling time in this system:

Tn =
4πm

~

∫ ∞
0

ψ(e)
n (x)ψ(o)

n (x) dx (5.48)

Although the functions in the integrand depend implicitly on the tunneling time Tn,

equation (5.48) is an exact statement. In order to get rid of the implicit dependency of

the integrand on the tunneling time we will substitute the exact wave functions by the

wave functions c(x) and s(x) of the unperturbed system, as in (5.4). This is justified by

the fact that the deviation of the eigenenergy of the real system from the unperturbed

system is exponentially small. Wo we obtain finally the approximation for Tn as:

Tn ≈
4πm

~

∫ d

0

c(x)s(x) dx (5.49)

Now we can express the the characteristic time Tn in terms of the minimal tunneling

time τmin from (5.7) and get:

Tn ≈ π
√
τmin(−d, d, En)2 − 4τmin(0, d, En)2 (5.50)

τmin(0, d, En) is exponentially small compared to the minimum tunneling time τmin(−d, d, En)

for opaque tunneling barriers and may therefore be omitted, so Tn becomes:

Tn ≈ πτmin(−d, d, En) (5.51)

Numerical results for the energy splitting in the exact case and the energy splitting of

the ground state using the minimal tunneling time were determined according to [4]
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using the the dimensionless measure γ =
√

2mω/hbard for the separation of both

wells. We get from the exact solutions in section 5.3.1 and the solutions using the

minimal tunneling time the following numerical results in the following table:

γ U0 ∆E0 (exact) ∆E0 (using τmin) relative error

3 1.125 4.86088× 10−2 5.32624× 10−2 9.57× 10−2

5 3.125 6.46587× 10−5 6.49829× 10−5 5.01× 10−3

7 6.125 1.97591× 10−9 1.97615× 10−9 1.23× 10−4

8 8.000 2.78036× 10−12 2.78040× 10−12 1.41× 10−5
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Chapter 6

CONCLUSION

In this thesis various tunneling time approaches were discussed. First the Dwell time

was discussed using Bohmian trajectories, then the Dwell time was also defined in the

sense of Büttiker and Smith. Based on this the Dwell time was calculated for two ex-

amples explicitly, i.e. for a rectangular barrier and for symmetric double δ- Potential.

Then the Büttiker Landauer time was discussed. In this framework the calculations

showed the inelastic nature of this tunneling process, because of the interaction of the

particle with the perturbing time varying barrier. The Larmor Clock was reviewed as

one of the first approaches to establish a traversal time concept in Quantum theory. Fi-

nally the variational approach of the tunneling time, the Minimal Tunneling time, was

presented. First the Minimal Tunneling Time for the rectangular barrier was calculated

and compared with the the Dwell time, then the connection of the minimal tunneling

time with the energy splitting in a harmonic double well potential was determined and

the results were compared to the exact solutions of the Schrödinger equation.
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