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ABSTRACT 

From ages to ages there had been expectation of individuals on a specific predictions 

and future occurrences. So also in a game, different participant that involves in those 

specified game have their various expectations of the results or the output of the 

game they are involved in. That is why we need a mathematical theory that helps in 

prediction of the future expectations in our day to day activities. Therefore the 

Martingale Theory is a very good theory that explains and dissects the expectation of 

a gamer in a given game of chance. So in this thesis, we shall talk about the 

Martingale Theory expressing the expectations of a gamer in a game of chance, and 

also discuss the gaming strategies so as to enlighten everyone involved in a specific 

game their required expectation after proper understanding of the Martingale Theory.  

Keywords: Martingale, Game of chance, Random walk, Stopping time.   
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ÖZ 

Eski zamanlardan günümüze kadar insanların gelecekteki oluşumlar ile ilgili belirli 

öngörüleri ve beklentileri olmuştur. Hatta farklı katılımcıların dahil olduğu belirli bir 

oyunda, oyuncunun dahil olduğu oyunun sonucuna yönelik çeşitli beklentileri vardır. 

Bu sebebledir ki, günlük hayatımızda gelecekle ilgili beklentiler hakkında öngörüde 

bulunabilmek için matematiksel Teoriye ihtiyaç duyulmaktadır. Bir şans oyununda 

oyuncunun beklentisini açıklamak ve incelemek için Martingale Teorisi 

kullanılmaktadır. Bu tezde oyuncunun beklentisi ifade etmek için Martingale Teorisi 

hakkında konuşacağız ve ayrıca oyun stratejilerini tartışacağız. 

Anahtar kelimeler: Martingale, şans oyunu, rasgele adım, durma zamanı  
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Chapter 1  

    INTRODUCTION 

Martingale is a betting strategy that was traced back as at 18 centuries in France. 

This strategy was introduced for a game in which a specific gambler wins his stake if 

a coin comes up heads and loses it if same coin comes up tails. The gambler needs to 

double his bet after every loss since he/she is not ready to loose nor give up and 

his/her aim is to recover all previous losses plus win and gain a profit that is 

equivalent to the original stake. This same Martingale strategy has been applied to 

some other games like the roulette, as the probability of hitting either red or black is 

close to 0.5. 

We can also describe a Martingale as a model of a fair game in which the knowledge 

of the past events or the knowledge of the already known result of the game can 

never help to predict the result or the mean of the expected winnings. Consequently, 

a Martingale is a sequence of random variables or rather a stochastic process for 

which, at a given time in the realized sequence, the expectation of the next value in 

the sequence is equal to the present observed value inconsequential of the knowledge 

of all previously observed values. 

On the other hand, in a non-martingales process, we may still have a situation where 

the expected value of the process at one time is equal to the expected value of the 

process at the next time. However, knowledge of the previous outcomes, for 

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Realization_(probability)
http://en.wikipedia.org/wiki/Expected_value
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instance, “the previous cards drawn out from a set of cards” may be able to reduce 

the uncertainty of upcoming outcomes. Thus, the expected or resulting value of the 

next outcome given a definite knowledge of the present and all previous outcomes 

may definitely be higher than the current outcome provided we use the said winning 

strategy. Martingale does not include the possibility of the winning strategies based 

on already known game history, and thus making the system a model of fair games. 

Since a gambler with inexhaustible measure of wealth will almost surely flip head, 

with this said reason, the Martingale betting strategy was concluded to be as a sure 

system of gaming by those who recommended it. Even though none of the gamblers 

possesses an inexhaustible wealth, and the exponential movement of the bets placed 

would eventually bankrupt the gamer and the gamblers who chose to use the 

Martingale system often wins a minute net reward, thus appearing to have a faultless 

and accurate strategy. However, the gambler's expected results and values mostly 

ends up being zero (or even less than zero) because the small probability that he will 

suffer an unimaginable loss exactly measures up and balance up with his gain. (In a 

casino, the expected result of a gambler is negative, simply because to the house's 

edge.) The possibility of catastrophic loss may not really be small since the bet size 

always rises in an exponential rate. The fact that strings of consecutive losses 

definitely occur more often than just an ordinary intuitional suggestions, can make 

the gambler go bankrupt quickly. 

1.1 A brief example on how the Martingale System works? 

The most effective and basic system of betting outside even money bets is the 

Martingale system.  In which a player has to double his bet after every loss in other 

to regain the previous loses. And immediately the player wins, the system back to its 

original state. This implies that just one win by the player will definitely recover all 

http://www.roulette.co.za/roulette-basics/roulette-bets/outside-bets/
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the accumulated losses and result in a net profit of the initial stake. Although it’s one 

of the most aggressive systems because of the risk it carries, since its progression is 

geometrical. The smaller the wins you need to recover your previous losses, the more 

catastrophic and dangerous the system becomes. 

Below is a brief description of how this system works, lets imagine we want to place 

a bet on horses in a given horse race competition.  And if we want to constantly bet 

on a single horse in the given horse race, and let’s assume the horses are 

numbered        , and we want to constantly place 1 chip bet on the horse 3 of 10 

always. If the sequence of the results of the winning horse in five consecutive races 

were to be            respectively, the following would occur: 

1. The first bet is 1 chip on the 3
rd

 horse. But since the winning horse was 5, thus, we 

lose and having a net profit of    . 

2. Since we lost, and so we must double our bet in other to regain fully.  Therefore we 

bet 2 chips instead of 1 (on horse 3 again). But since the winner again is the 7
th

 horse, 

we lose. And the Net profit now becomes:     i.e.      

3. Another loss means doubling the bet again which means we place 4 chips to regain 

fully and with the outcome result, which is the 4
th

 horse winning, We lose again. 

Therefore our net profit is:     i.e.        

4. We have lost again, so need to double the bet again. So we put  bet 8 chips on the bet 

for full recovery of the lost chips. With the result, the 6
th

 horse won the race and 

making us loose the chip and giving a net profit of           i.e.          

5. After this loss, we still have to double the bet and therefore we bet 16 chips. This 

time, we win with our 3
rd

 horse winning the race. Thus we have a net profit of : 
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With just one single win, we have been able to turn our previous losses i.e. fifteen 

times the original stake into a win, although very small profit but no loss. Of course, 

we could have arrived at the same sets of results if we had used a different initial bet 

(and thus we create more risk in other to win more) or by betting a different thing 

entirely other than even said money bet. 

If you examine and study the just concluded example very well, we can deduce that 

doubling the bets simply implies betting only 1 chip extra more than our present net 

loss on each occasion. This is the main reason why we can easily conclude that the 

system works: Since the sum of the combined previous losses will definitely be one 

lesser than our next bet, then this implies that we always stand a chance of making a 

profit on every spin. But with what we deduce in the above example, just a little 

short and relatively small loss streak increases the required bankroll totally and 

significantly. We have to bet 16 good chips just to be able to win only one because of 

the accumulated losses. This is a very dangerous decision which is encountered in a 

system as aggressive as this so called Martingale system. And also we can’t forget 

the fact that it takes just a single win to recover from all the losses one might have 

accumulated. Therefore this fact makes the system more interesting and attractive, in 

addition to the danger of the system. 

1.2 Advantages and Disadvantages 

As far as the Martingales system is advantageous so also it has some disadvantages. 

One of the major disadvantages to the Martingales system with a specified bankroll 

that increases at a geometric rate is that it is definitely easy for a player using this 

system to end up in a disastrous and a catastrophic situation where he will definitely 

be faced with an unrecoverable losses, in which the chances are: is either what the 
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gambler has at hand might not be able to meet up with the table limit, or he totally 

runs out of chips. And, even mathematically, if neither of these never occurs in any 

circumstances, the player would always hope that he will definitely gains back the 

money he had invested in the bet and with this, making him ending up needing 

infinitely numerous time (in which no person has) to ensure that he eventually 

recovers all what he has lost and if possible add some additional gain. Since every 

roulette table in all the various casino has a betting maximum/limit or a certain 

amount of chip or cash to put in the bet, and also there is a limit to every player’s 

bankroll, it is mathematically certain that at some point during the commencement of 

the game that the Martingale system will result in the player either losing all of his 

chips or coming short of the table limit and so he/she won’t be able to continue in the 

bet or game. Other betting system tries to reduce the odds of this happening by 

decreasing the rate and the speed at which losses have to be recovered. 

And also since almost all gambler are so eager get back their losses after 

accumulating a reasonable number of loses. Then the situation becomes more 

difficult since you have to bet more than what you’ve already loosed and it requires 

more risk since it’s not certain that one is definitely going to win in the next bet. 

Then it puts the gambler in a very difficult position of choice. Because the ending 

result might be catastrophic since it’s a game of chance. The winner can easily say 

the system is very nice and productive one while the looser mostly says the system 

sucks.  
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Chapter 2  

REVIEW OF PROBABILITY THEORY 

2.1 Probability Terminology 

For a proper understanding of the theory of martingale, there are necessary 

probability terms that are needed to be explained.  

1. Outcome: It can be easily explained as the result of an experiment. For 

instance if a coin is tossed, the point at which it comes to rest gives either a 

head or a tail. That’s the outcome of the result of the experiment of tossing 

the coin. 

2. Trial: Each time we roll a die or toss a coin is called a trial. 

3. Experiment: It consist of one or more trails which may give different results 

4. Favourable Outcome: When an experiment is performed and the desired 

outcome becomes the real outcome of the experiment then we say it is 

favourable. For example if we want a 4 to come up in the experiment of 

tossing a die, and after tossing the die, we get a 4 as an outcome. Then we say 

the outcome is favourable. 

5. Equal likely Outcome: While performing a probability experiment with 

either a die or a coin. The instrument used i.e. a die or a coin has an equal 

likely outcome if it is not bent or the die is not unequally customized to land 

with a desired figure. 

6. Event: An event is a subset of the sample space in which a probability can be 

assigned. i.e.   
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7. Sample space: The sample space is the collection or sets of all the sample 

points or all the possible outcome of an experiment.    

2.2 Definition of Some Terms 

2.2.1 Sigma-Algebra (-Algebra)  

Definition 2.1: A Sigma-Algebra (-Algebra) or  Sigma-Field (-field) on a given 

non empty set X is a collection of the subsets of X which is closed under 

Compliments, Union of countably many sets and Intersection of countably many 

sets.  

Consider a set X. A σ–algebra   of subsets of X is a collection  of subsets of X 

satisfying the following conditions:                                                             

 (a) ∅ ∈    

(b) if   ∈   then its complement    is also in    

(c) if         is a countable collection of sets in   then their union ⋃   
 
    

Sometimes we will just write “Sigma-Algebra” instead of “Sigma-Algebra of subsets 

of X.” There are two extreme examples of sigma-algebras:  the collection {∅, X} is a 

sigma-algebra of subsets of   and also the set      of all subsets of   is a sigma-

algebra. Any sigma-algebra   of subsets of X lies between these two extremes: 

{∅  }        . 

 Algebra is required to be closed under finitely many set operations. That is to say, a 

σ-algebra is an algebra of sets, completed to include countably infinite operations. 

The pair (X,  ) is also a field of sets, called a Measurable space. For example, 

If      {         }  one possible σ-algebra on X is 

http://en.wikipedia.org/wiki/Algebra_of_sets
http://en.wikipedia.org/wiki/Algebra_of_sets
http://en.wikipedia.org/wiki/Completeness_(order_theory)
http://en.wikipedia.org/wiki/Field_of_sets
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    { ∅ {    } {    } {          } }, where ∅ is the empty set. However, a finite 

algebra is always a σ-algebra. If {            } is a countable partition of X then 

the collection of all unions of sets in the partition with the empty set is a σ-algebra. 

2.2.2 Probability Space 

Definition 2.2: A probability space           consist of  

1. The sample space   which is the set of all possible outcomes  ∈   of some 

random experiment. 

2. The event   which is the collection of all possible events under consideration 

and each subset of   is an event. 

3. And   which is the assignment of the probabilities to the events, in other 

words it implies the function   from events to probability. 

The set of all possible subsets of   is denoted by    thus       , consisting of all 

allowed events i.e. those events to which one can assign probabilities. 

2.2.3 Probability Measure 

Definition 2.3: Measurable space is a pair        with   a    field of subsets of    

is called a measurable space.  

2.2.4 Filtration 

Definition 2.4: A sequence of σ-algebra’s        on a   such that       

           is called a filtration. (Since    is a σ-algebra for each n). As    

increases, our knowledge at time n increases. It contains all events A such that at 

time n it is possible to conclude whether A occurs or not.  

Let         be a probability space, A filtration         is an increasing family 

        of sub- σ-algebra of  . That is to say for each t,    is a σ-algebra including 

http://en.wikipedia.org/wiki/Partition_of_a_set
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in   and if    ,       . A probability space         endowed with a filtration 

        is called a filtered probability space. 

2.2.5 Adapted Process 

Definition 2.5: If   is a         on  , then a function       is said to be 

             if { ∈  } ∈   for every Borel set  ∈   if         is a 

probability space, then such a function   is called a random variable.      

Definition 2.6: A process or a sequence of random variables          is called 

Adapted (to the Filtration   ) namely                   if    is                for 

each                    

Example 2.2: If                     is the           generated by                

then                   is adapted to                  

2.2.6 Indicator Function 

For any event A∈  , the function       {
      ∈  
        

 is a random variable. We call 

such random variable an Indicator Function.  

2.2.6.1 Properties of Indicator Random Variables 

1.  ∅      and         

2.                

3.              if and only if     

4.  ⋂    
    ∏    

     

5. If    are disjoint then  ⋃    
    ∑    

     

2.2.7 Measurable space 

Definition 2.7: A pair (     with   being a σ-field of subsets of   is called a 

measurable space. Given a measurable space, a probability measure P is a function 

          , with the following properties: 
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a)         , for all  ∈   (nonnegative) 

b)         

c)   ⋃   
 
     ∑       

    disjoint sets       ∅  for all     

A probability space is a triplet         with  , a probability measure on 

(     

2.2.8 Random Variable 

Definition 2.8: If   is a         on  , then a function       is said to be 

  measurable if { ∈  } ∈   for every Borel set  ∈  , if         is a probability 

space, then such a function   is called a random variable. A random variable can be 

furthermore explained as the collection or set of values obtained from a probability 

experiment which are subject to variation simply because of chance.  

2.2.9 Stochastic Process  

Definition 2.9:  Given a probability space         and a measurable space (    , 

an S-valued stochastic process is a collection of S-valued random variables on    

indexed by a set T (time). In other words a stochastic process    (also known as 

random process) is a map                 where           is the space of 

(equivalence classes of) bounded measurable functions for a probability space   

            . 

The notion of a stochastic process is very important both in mathematical theory and 

its applications in science, engineering, economics, etc. It is used to model a large 

number of various phenomena where the quantity of interest varies discretely or 

continuously through time in a non-predictable fashion. 

Every stochastic process can be viewed as a function of two variables    and  . For 

each fixed             is a random variable, as postulated in the definition. 
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However, if we change our point of view and keep   fixed, we see that the stochastic 

process is a function mapping   to the real-valued function              These 

functions are called the trajectories of the stochastic process X. 

2.2.10 Mathematical Expectation 

Definition 2.10: Giving that   as a random variable defined on a probability space 

        then the expected value of   denoted by      is defined as the Lebesque 

Integral ∫     
 

∫          
 

 provided the Integral exist, then it’s called 

Expected value of X . 

In probability theory, mathematical expectation, also known as the expected value of 

a random variable can be described as the average value of a long-run experiment. 

For example the mathematical expectation of the experiment of rolling a die is 3.5 

because the average value of large numbered rolled die in its extreme state is 3.5 

which is the expected value.  

2.2.10.1 Properties of Expectation 

1.          for any  ∈  . 

2. If      ∑      
 
    is a sample function, then    ∑         

    

3. If   and   are integrable random variable then for any constants    ∈  , the 

random variable       is integrable and                  

(linearity) 

4.      if        with probability   almost surely. 

5. Monotonicity: if     almost surely, then       and also if      

almost surely and       then     

2.2.11 Conditional Expectation 

We can recall that the conditional probability of   given    
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   |   
      

    
                

Clearly,    |        if   and   are independent. 

Given that         the conditional distribution function of a random variable   

given   is given as 

    |   
        

    
         ∈   

and therefore  

   |   
      

    
 

is the conditional expectation of   given  . 

2.2.11.1 Conditioning on an Event. 

Definition 2.11: For any integrable random variable   and any event  ∈   such that 

        the conditional expectation of   given   is defined by  

   |   
 

    
∫      
 

 

2.2.11.2 Conditioning on a Discrete Random Variable  

The conditional expectation of a discrete random variable   with possible value 

                   such that           for each  . Founding out the value of    

amounts to finding out which of the events {     } has occurred or not 

conditioning by   should therefore be the same as conditioning by the events 

{     } . 

Definition 2.12: Let   be an integrable random variable and let                    such 

that           for each  , then the conditional expectation of   given   is 

defined to be a random variable    |   such that  

      |         |{     }  if        .      
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2.2.11.3 Conditioning on an Arbitrary Random Variable  

Definition 2.13: Let   be an integrable random variable and let   be an arbitrary 

random variable, then the conditional expectation of   given   is defined to be a 

random variable    |   such that 

1.    |   is                 

2. For any  ∈      ∫    |    
 

 ∫     
 

. 

The conditional probability of an event  ∈   given   is    |       |  . 

2.2.11.4  Conditioning on a   Algebra 

Definition 2.14: Let   be an integrable random variable on a probability space 

(       and let   be a   Algebra contain in  . Then the conditional expectation of 

  given   is defined be a random variable    |   such that. 

1.    |   is   measurable  

2. For any  ∈   

∫   |  
 

   ∫   
 

 

The condition probability of an event  ∈   given a   Algebra   can be defined by 

   |       |  . The notion of condition expectation with respect to   Algebra 

extends conditional on a random variable   in the sense that  

   |         |     when      is the   Algebra generated by    

2.2.12 General Properties of Conditional Expectation 

Given that    ∈          ∈               are sub-   Algebra on   

1. (Linearity) Let    ∈           then 

       |       |       |    

Proof: For any  ∈    

∫     |       |     
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 ∫    |      ∫   |     
  

 

 ∫   
 

  ∫   
 

 

Since         are   measurable, and also by uniqueness we have  

∫(    |       |  )   
 

       |   

2.  (   |  )         (By replacing     in 1) 

3. (Positivity)  If      then    |     almost surely. 

4. (Monotonic) If         then     |      |   almost surely. 

5. (Fatou’s Lemma) if       then            |              |   almost 

surely  

6. (Dominated Convergence Theorem) |     |             and      

almost surely, then     |      |   almost surely. 

7. (Jensen’s Inequality) If       is convex, and   |     |     then 

      |           |    almost surely. 
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Chapter 3  

THE MARTINGALE THEORY 

3.1 Basic Definition  

Definition 3.1: A sequence of random variables or random process         is a 

Martingale with respect to a filtration         if for all     

 

1. If     is integrable for all   that is    |  |    

2.         is adapted to         

3.       |       (or generally)       |                

If (1) and (2) holds but instead of (3) we have 

4.   |    |       , then we say    is a Supermartingale with respect to the 

filtration     and on the other hand if (1) and (2) holds but in place of (3) we have   

5.   |    |       , then we say    is a Submartingale with respect to filtration. 

   will only be a submartingale or supermatingale if and only if    itself is a    

Martingale. 

Since Martingales describe a fair game of chance, a submartingale can also be 

termed as a favourable game in which the expectation of the gambler is greater than 

the previous or foreknowledge of the games result. Also a supermartingale is also 

called an unfavorable game where the expectation of the gambler is less than the 

previous result of a known game.  
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The random sequence    models the outcomes of particular random phenomena that 

take place through time, whereas the filtration    tells us precisely what is known in 

each period. If    is a supermartingale, then at time   we have partial information 

about the outcome of this random phenomena at least inasmuch as the values of 

          are concerned, and conditioning on this information, we expect the value 

of      to be less than or equal to the observed value at date   For instance, if the 

daily value of a given stock is modeled as a Martingale, then we expect the value of 

the stock on Friday to be equal to its value on Thursday, conditional on all the 

information available to us on Thursday. It is important to note that the expected 

values of the terms of a Martingale remains constant through time. 

3.2 Some Examples of Martingales 

Example 3.1: Let        be an independent random variable with         for all 

   . The process         defined by                       is a Martingale as 

long as the random variable    is independent of         and        . 

Solution: Since  |  |   |  |  ∑  |  |    
  for all      and since the 

independent properties implies  

         |                        |                               

 Remark: It is obvious that         for all       then         is a 

submartingale, although if  |  |    for all    , then         is a 

supermartingale. Generally, if         are independent random variables with 

 |  |    for all    , then the process                               

            is a Martingale.  

Example 3.2: Sum of independent zero-mean random variables. Let                  be a 

sequence of independent random variables with  |  |                           

 |  |             . 
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Define:                                  

                          {∅   } 

then for any      , we have (almost surely)  

    |             |          |                     . 

Hence  

    |            (almost surely)  

 

Example 3.3: Products of non-negative independent random variables of mean 1.  

Let                    be a sequence of independent non-negative random variables with  

                  

 Define                                

                           {∅   } 

For       we have (almost surely) 

    |               |      

                               |      

                                    

        =      therefore   is a Martingale.  

Example 3.4: Show that if    is a Martingale with respect to filtration    then  

                            

Solution: taking expectation on both sides of the equality 

          |     Since is a Martingale, we get  

              |     Since    is independent of    then         for each     

Example 3.5: Given that   is an integrable random variable defined on a probability 

space         , and     a filtration in  , we define       |    for all positive 
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integer  , in other form of    |     we want to show that    is a martingale with 

respect to   . 

Solution: Since by definition of the conditional expectation,    is    measurable 

for each   and also |  |    | ||    hence we have        (  | ||   )  

  | |    which definitely means that    is integrable for each  . thus have 

 (      |   )       |     |    almost-surely  

    |       

3.3 Random Walk 

Definition 3.2: Random Walk (Drunkard’s Walk) Let                  be a integer valued 

random variable having common density  . Let    be n integer-valued random 

variable that is independent of the      and the set                          . 

The sequence         is called a Random Walk. 

 A one dimension random walk is a Markov chain whose state space is given by the 

integers                    for some probability               and              

Example 3.5: Let    be a symmetric random walk that is                  , where 

               is a sequence of independent random variables such that         

         
 ⁄  (a sequence of coin tosses). Show that   

    is a Martingale 

with respect to the filtration     (               

Solution:   
    (                   is a function of                 , hence it is 

measurable with respect to the:  

1.               generated by                    That is to say   
    is adapted to 

   since |  |  |              |  |  |         |  |    it follows that  

2.  (|  
   |)   (  

 )            Therefore   
    is integrable for 

each…  
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3.  (    
 |       (  

 |       (      |       (    
 |     

     
      (    |       (    

   

     
    (    )     (    

     
   . 

This simply means that  (    
       |       

          
    

therefore   
    is a Martingale. 

3.4 Game of Chance: Fair and Unfair Games 

For instance, suppose you take part in a game roulette, Let               be a sequence 

of integrable random variables where    are your winnings or loses per unit stake in 

a game  . If your stake in each game is one, then your total winning after   games 

will be                      . We take filtration   =  (                 , also we 

take      and     {∅  }. 

If     rounds of the game have been played so far your accumulated knowledge 

will be represented by the                  

The game is called a fair game if  

    |            

That is to say you expect that your fortune at step   will on averagely be the same as 

at step    . 

The game will be favourable to you if  

    |          . Thus    is a Sub-Martingale and the game is unfavorable to 

you if    is Super-Martingale,      |           for               with respect to 

filtration     

Definition 3.3: A gambling strategy               with respect to filtration              is 

a sequence of random variables such that    is                 for each  

           where    {∅  }   If you follow a strategy               then your 

winning after n games will be  
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3.5 A Fundamental Principle: You can’t beat the system 

Let               be a gambling strategy. 

1. If                is a bounded sequence and                    is a Martingale, then 

                 is a Martingale (a fair game will always result to a fair one no 

matter what you do). 

2. If                is a non-negative bounded sequence and                    is a 

supermartingale, then                  is a supermartingale. That is, an 

unfavourable game will always result to unfavorable game irrelevant of what you 

do. 

3. If                is a non-negative bounded sequence and                     is a sub-

martingale, then                 is a submartingale (a favourable game turns to a 

favourable one always). 

3.6 Stopping Times 

Naturally every gambler or someone engaging in a certain betting should have a plan 

that helps him to regulate himself on when to stop which could be based on a specific 

condition, since the possibility of him to continue for a very long period of time 

might be very small because he may definitely run out of chips at some time. 

Therefore he should know the time to stop which is his stopping time.  

Now the stopping decision on this wise can be modeled as a random variable which 

is measured with respect to the           which gives the necessary available 

information at each time   and this idea brought up the need for a stopping time. 

Definition 3.4: A map     {                 } is called a Stopping Time if 

a) {    }  {        } ∈                



  

21 

 

 Equivalently 

b) {    }  {        } ∈            . 

Proof: Let us prove the implication 

       

If   has property a), then {    } ∈    and {      } ∈           

so{    }  {    } {      } ∈   . 

         If   has property (b), then {    } ∈         

Therefore {    }  {    }           {   }} ∈    

Example: Every constant function from   into {        } is a stopping time 

with respect to any filtration    in any  -algebra on  : For instance,     is a 

Stopping time which gives us information to immediately terminate all. At the other 

hand  is when    : This is another stopping time which implies that one could 

never terminate or stop. Generally, if   is a stopping time with respect to    and   is 

any positive integer, then                is a stopping time with respect to   . 

Clearly, this stopping time explains that the stopping decision must be taken not later 

than the appointed period  .  

3.7 First Hitting time 

Suppose that a coin is tossed repeatedly and you win or lose     depending on which 

way it lands. Suppose that you start the game with for instance say   in your pocket 

and decide to play until you have     or until you lose everything. If    is the 

amount you have at step    then the time when you stop the game is  

      {             } and it’s called the FIRST HITTING TIME  

(of 10 or 0 by the random sequence        is a stopping time with respect to the 

filtration                        because {    }  {       }          

{         }  {    } or Each of the sets on the right hand side belongs to     
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so their intersection. This proves that {    } ∈    for each       is a stopping 

time. 

Definition 3.5: We call      the sequence stopped at    which is often denoted by   
   

Thus, for each  ∈     
                 where               and      is a 

stopped process at  . 

Proposition 3.1: Let   be a stopping time. 

1. If    is a Martingale, then                    is also a Martingale. 

2. If    is a Supermartingale, then so is       in particular,          

        .  

3. If    is a Submartingale, then                 is a submartingale also. 

 

3.8 Optional Stopping Theorem 

If    is a Martingale, then particularly                         

Example 3.5: Show that       is not necessarily equal to        for a stopping 

time  . However, if the equality             does hold, it can be very useful. The 

optional stopping theorem provides sufficient conditions for this to happen.  

Theorem3.1: (Optional Stopping Theorem) 

Let    be a Martingale and   a stopping time with respect to a filtration    such that 

the following conditions hold: 

1.     almost surely 

2.    is integrable  

3.  (   {   })    as     

Then            . 

Proof: Because                        {   }   it follows that  

                (   {   })   (   {   }). 



  

23 

 

Since      is a martingale by proposition, the first term on the right hand side is 

equal to               the last term tends to zero by assumption (3). 

The term (middle term)  (   {   })  ∑  (   {   })
 
      tends to zero as     

since the series       ∑  (   {   })
 
    is convergent and by assumption (2), it 

follows that               as required. 

Example 3.6: (Expectation of the first Hitting time for a random walk) 

 Let    be a symmetric random walk and let   be a positive integer. We define the 

first hitting time of         to be       {  |  |   }. 

It is obvious that   is a stopping time and it has been showed that   
    is a 

martingale. 

If the Optional Stopping Theorem can be applied, Then     
         

       

since     
      Hence,          

       since |  |    . 

Now, verifying the conditions of the Optional Stopping Theorem. 

1. Show that           we may estimate           We can think of     

tosses of a coin as   sequences of    tosses. A necessary condition for       is 

that no one of these   contains heads only therefore             
 

    
    

as    . Because         for                is a contracting sequence of sets and 

it follows                  ∑          
    contracting sequence. 

                 (by Borel-Cantelli). 

2. We need to show that      
        Indeed 

     

∑         
   ∑ ∑          

              ∑ ∑        
   

 
   

 
   

           ∑ (∑     
   ) 

                    ∑       
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        ∑       
      

 

   
    . 

Since   
 

      . The above series is therefore convergent moreover,    
      so 

  |  
   |      

                   

3. Since   
      on          (  

  {   })     {    }    as     

Moreover,  (  {   })      (  {   })                as     it then 

follows that  (   
     {   })     

3.9 Martingale Inequality and Convergence 

We begin with classical inequalities for martingales, called the DOOB 

INEQUALITIES, which are useful in studying convergence of Martingales and later 

the properties of stochastic integrals, then we present a classical result known as 

Doob’s Martingale Convergence Theorem, which provides the limit        of a 

Martingale. 

3.9.1 Doob’s Decomposition Theorem 

Let       be a measurable space and      a sub-martingale with respect to a 

filtration      in  , then there exist two sequences      and      in   such that  

                where  

1.      is a martingale with respect to      

2.                

3.      is    measurable for each   

Every submartingale can be split into a martingale and increasing predictable 

process. 
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Proposition 3.2: Doob’s Maximal Inequality  

Suppose that     ∈    is a non-negative submartingale with respect to filtration     

then for any                   (   {          })  where    is the 

characteristic function of a set A. 

Proof: Let   
          for      define      {        }  if there is a 

    such that      and     otherwise. Then   is a stopping time that     

almost surely. Since    is a submartingale, (      |       . So             

But        (   {  
   })   (   {  

   }). Observe that if   
     then       

(Since   
           . Moreover, if   

     then     and so       therefore  

                  
      (   {  

   }) it follows that      
     

         (   {  
   }). 

Theorem 3.2: (Doob’s Maximal    inequality) 

If     ∈    is a non-negative square integrable submartingale with respect to 

filtration     Then  |        |
    |  |  

Proof: Put   
                |  

 |   ∫    
 

 
  

       and by proposition 1, 

Doob’s Maximal Inequality   ∫  (   {  
   })  

 

 
  ∫         

 

{  
   }

 by Fubini 

Theorem, 

  ∫    ∫   
  

 

  
     ∫    

  
        ∫    

  
   by Cauchy-Schwartz 

Inequality  

    |  |  
 

 ⁄   |  
 |  

 
 ⁄   that is    |  

 |      |  |  
 

 ⁄    |  
 |  

 
 ⁄  

  (|  
 |  

 
 ⁄     |  |  

 
 ⁄    (|  

 |      |  | . 

Definition 3.7: Given an adapted sequence of random variables                and two 

real numbers a    we define a gambling strategy               by putting      for 
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     {
                    
                   
                                         

 

It will be called the Upcrossings strategy. Each         such that      and  

       will be called an Upcrossings of the interval       

The Upcrossings form a (finite or infinite) increasing sequence          

The number of Upcrossings made up to time n, that is  the largest   such that      

will be denoted by          (we put           if no such k exists. 

We refrain from playing the game and wait until    becomes less than    As soon as, 

this happens, we start playing unit stakes at each round of the game and continue 

until    becomes greater than    

The strategy    is defined in such a way that      whenever we refrain from 

playing the     games and      otherwise. 

Proposition 3.3: The Upcrossings strategy    is a gambling strategy. 

Proof: Prove that    is              for each    using induction  

Lemma. (Upcrossings Inequality) 

If                is a supermartingale and      then  

                          

Where            {         } 

Proof: Let                                             be the total 

winnings at step          if the Upcrossings strategy is followed. 

We put     . Since               is a super-martingale, by proposition, the 

(Fundamental Principle),    is a supermartingale. 

Let us fix an   and put           so that                 . 

Each Upcrossings increases the total winnings by at least       

    
            for           
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(We put      for simplicity) 

Moreover,         
            

it follows that                           (fundamental inequality) 

Taking expectation on both sides,  

                                

Since     is a supermartingale                   , 

hence                             

3.9.2 Doob’s Martingale Convergence Theorem. 

Theorem 3.3: (Doob’s MCT) 

Suppose that                 is a supermartingale with respect to a filtration               

such that        |  |     Then there is an integrable random variable   such that  

            almost surely. 

Proof. (Brzezniak, Zastawniak) 

Remark: The theorem is valid for Martingales because every Martingale is a 

supermartingale, it is also valid for supermartingale, since    is a submartingale if 

and only if     is a supermartingale. 

3.9.3 Uniform Integrability and    Convergence of Martingales  

The conditions of the Doob’s theorem imply pointwise almost surely convergence of 

martingales. Here we study convergence in   . 

 Definition 3.6: A sequence                 of random variables is called uniformly 

integrable if for every     there exist an     such that   

∫ | |    
{| |  }

 for all                 

 Proposition 3.4: Uniform integrability is a necessary condition for a sequence  

               of integrable random variables to converge in   .  
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 Lemma: If   is integrable, then for every      there is a     such that  

       ∫| |   
 

  

 Proof: Let      Since   is integrable, by proposition, there is a     such that   

∫ | |   
 

 {| |  }

 

Now  

∫| |   
 

∫ | |   
  {| |  }

∫ | |   ∫   
   {| |  }

 ∫ | |        
{| |  }

 
 

 
 

Let   
 

  
  then        ∫ | |   

 
    as required. 

 Proposition 3.5: A uniform integrable sequence of random variables is bounded in 

  , i.e.       |  |    

Proof: Because    is a uniformly integrable sequence, there is a     such that for 

all    ∫ | |  
{| |  }

     it follows that  

   |  |  ∫ |  |  
{|  |  }

 ∫ |  |       {|  |   }
{|  |  }

       for 

all    proving that    is a bounded sequence in     

Theorem 3.4: Every uniform integrable supermartingale/submartingale    converges 

in     

Theorem 3.5: Let    be a uniform integrable martingale, then       |     where 

         is the limit of    in    and                          is the filtration 

generated by     

Proof: For any     

    |       i.e. for any  ∈     ∫     
 

 ∫      
 

 

Let   be an arbitrary integer and let  ∈     for any     
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|∫         
 

|  |∫         
 

|  |∫         
 

|    |    |    as     

it follows that    ∫ |  |   ∫    
  

 for any  ∈     so        |     

Theorem 3.6: (Kolmogorov’s  0-1 law) 

Let                 be a sequence of independent random variables. we define the tail 

  Algebra  

                 , where                       then        or   for any  ∈    

Proof:  Take any  ∈   and define        |     where                       

By Theorem 3.4,    is a uniform integrable martingale, so      in     By Theorem 

3.5, 

    |        |    for all    Both          and    are measurable with respect to 

the   Algebra                      because this   Algebra is generated by the 

family of sets                 , it follows that      almost surely. Since    is a 

sequence of independent random variables, the   Algebra    and      are 

independent. Because         the   Algebra    and   are independent. Being 

  mesurable    is therefore independent of    for any    This means that    

     |               as therefore the             is also constant and equal 

to      almost surely. This means that         almost surely, so        or  . 

Since as                |         thus    is    measurable.  
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Chapter 4 

   CONCLUSION 

The martingale system as a betting strategy is a very interesting system in probability 

theory as a whole as discuss. With the proper knowledge of the martingale system, it 

can easily be applied to different aspects and areas of life. Since generally most 

circumstances warrants us to gamble with whatsoever we are engaging in since we 

might not be able to predict the outcome of the future occurrences, therefore the need 

of the proper knowledge and understanding of the martingale system is needed. 

There are few situations we can apply the martingale system to, so as to enhance the 

knowledge of applications to real situations and not just a theoretical propaganda. 

One of the areas of application is the prediction of the market prices which is briefly 

analyzed below.  

Consequently, a sequence                 is a martingale with respect to a random 

sequence                if for all         |                  is valid then for the 

market prediction, we can assume that   is a random sequence of the price unit, we 

can define   such that    ∑   
 
   , then the sequence   which is the price is a 

martingale. This is an implication from the price at a given point representing the 

consensus probability that the said event will definitely happen or definitely occur. 

Therefore it is the fair price for the proposed gamble. The expectation of the price in 

the coming future with the little information obtained is definitely equivalent to the 

present price.  
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The most important property of the martingale system that’s explains the process is 

the fact that             for all    . It can be explained further more by the 

property of expectation which is             |                          If this 

process is repeatedly iterated, it yields the desire equality, although it is applicable 

only to a constant time. 

The Martingale Theory is a good example of a stochastic process which is applicable 

to our daily life. By studying and understanding the concept, we have and know 

more about the expectations and possible outcomes of future predictions. Therefore 

the knowledge of the Martingale Theory cannot be neglected nor overemphasized.  
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