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ABSTRACT 

The Cross Entropy (CE) method which was initiated and developed by Reuven 

Rubinstein has been applied to combinatorial optimization problems with promising 

results. The CE method is actually a generic approach for solving combinatorial 

optimization. The CE method has been applied successfully to well known 

optimization problems such as traveling salesman, quadratic assignment problem, 

and the maximal cuts. In this study, the solution methodology of Traveling Salesman 

Problem (TSP) for different CE parameters are considered and tested. 

Keywords: Travelling Salesman Problem, Genetic Algorithm, CE parameter 
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ÖZ 

Reuven Rubinstein tarafından geliştirilen Çapraz Entropi (CE) yöntemi umut verici 

sonuçlar ile kombinatoryel optimizasyon problemlerine uygulanmıştır. Çapraz-

Entropi (CE) yöntemi CE gibi yolculuk satıcısı, kuadratik atama problemi ve 

maksimal kesimler olarak optimizasyon problemleri başarıyla uygulanmış olan bir 

kombinasyon optimizasyonu için genel bir yaklaşımdır. Bu çalışmada, farklı CE 

parametreleri için Satıcı Problemi (TSP) çözüm yöntemi olarak uygulandi ve 

testedildi. 

Anahtar Kelimeler: Gezgin Satıcı Problemi, Genetik Algoritma 
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Chapter 1  

INTRODUCTION 

In general, an optimization problem   needs a very reliable an optimal program to be 

solved. For a given optimization problem, the search of a robust algorithm is always 

the goal. Nevertheless, the idea carries by all the solution converges to the global 

optimization. The global optimization goal’s is to find the function’s global 

extremum in solution subspace. The global optimization is usually done through 

several methods such as simulated annealing, evolution strategies, hill climbing 

methods and the Cross-Entropy method. In this work, the Cross-Entropy method 

(CE) is explored with the aim to use it for solving c strained optimization problem.  

The CE method was developed between 1999 and 2001 by Rubinstein; the idea of 

CE comes from a work carried out by Rubinstein in 1997 where the aim was 

variance minimization. The principal objective of the CE method is the modeling of 

rare events. Such events (rare events) are those which probability of appearance is 

less than 10
-4

.  The Monte Carlo method is used for the rare event’s probability 

estimation. In practice, the Monte Carlo estimation requires more effort. 

Furthermore, the effort seems to be inversely proportional to rare event probability. 

This means if the probability is less than10
-4

, then the sample size used for the Monte 

Carlo estimation should be greater than 10
4
. The main two processes of the CE 

method consist primary of the gradual change of the sample size to enable an 
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accurate estimation of the rare event probability and secondly the sequence of sample 

distribution is constructed using the CE [25] [26]. 

1.1 Structural Reliability Analysis by Importance Sampling 

The time invariant structural reliability problem is defined as follow. A real-valued 

random vector  1 2, , , nx x x x , together with a joint probability density function

 f x  represents uncertain structural parameters. Structural performance depending 

on random parameters is defined by the limit state function  g x . The limit state 

function is always defined to be negative value function for parameters which failure 

occurs. Therefore, the limit state function defines a subset in the random variable 

space called the failure domain   : 0F x g x   [25] [15]. Further, the failure’s 

probability is defined by 

 

 

 d                                                (1.1)

F

FP f x x


 
 

this probability of failure can be estimated using Monte Carlo integration[9]. 

Generally, for engineering structure a small probability of failure is desired. Thus the 

Monte Carlo method appears as efficient to solve those type of problem.  Thus 

application of variance reduction techniques, like importance of sampling, is usually 

targeted. The formula for importance sampling for evaluating
FP  is based on (1.1), it 

is rewritten as follows: 

  

 
    

 

 
0                                       (1.2)

F

F h

f x f x
P h x dx E I g x

h x h x


 
   

 
  

where  h x  is an importance sampling density[1][9]. 
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 I is the indicator function of the failure domain, and hE is the expectation operation 

with respect to the density  h x . 

 Having m independent sample points
 k

x , mk ,,1  from the distribution  xh , the 

expectation in (1.2) can be estimated by: 

 
  

  
  1

1ˆ 0

k
m

k

F k
k

f x
P I g x

m h x

 
  
 
 

 .                                     (1.3) 

The optimal density function  h x  which minimizes the variance of this estimator is 

defined to have the following form: 

                           

 

 
 , 0,

0,

f

f x
if g x

Ph x

otherwise






 

                                              

(1.4) 

However, this formula is more theoretical, because the generation of independent 

random variables needs the knowledge of the term of our interest FP . In practice, the 

distribution, from which samples are built, is generally chosen to resemble the 

distribution with density  h x [1][9]. 

1.2 Adaptive Importance Sampling 

The sampling distribution is mostly chosen to be a parametric family of distribution 

from which independent random samples can be generate easily. The family

  , ,f x v v V F [25] [26], where v is a vector of parameters, x the random vector 

and  ,f x v  the probability density function is used. Since we are interesting I 

evaluating the probability of failure mentioned in (1.3), the parameters v  should be 

chosen such a way to facilitate that estimation. For instance, from a multivariate 
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normal distribution data, the parameters v of the sampling distribution can be 

generated by minimizing the variance by following formula 

 

                                   
   

 

 ,

,
min

,ff x v
v V

f x u
Var I x

f x v




 
 
                                         

(1.5) 

or alternatively by: 

 

   
 

 

2

, 2

,
min

,ff x v
v V

f x u
E I x

f x v




   
  
   

. 
(1.6) 

The above optimization problem is solved by estimating the expectation as follows: 

 
  

  
  

  
  1 1

, ,1
min               (1.7)

, ,
f

i i
n

i

i iv V
i

f x u f x u
I x

n f x v f x v





 
 
 
  

  

where the probability density of the random sample
 i

x , ni ,,1 .Is defined by

 1,f x v  [25 [15]]. 

An adaptive algorithm for the failure probability estimation using (1.7) is defined as 

follows 

1. Take    1, ,f x v f x u . Generate the sample 1, , Nx x  with the density function

 1,f x v  then solve the optimization problem (1.7). Denote the solution by
*v̂ . 

Assume 
*v̂  to be the estimation of the optimal parameter vector v

. 

2. Estimate the failure probability based on (1.3) taking    *ˆ,h x f x v . 

Take *

1
ˆv v from the first step of the algorithm to accurate the estimate of v

. 
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1.3 The Cross-entropy Method 

The cross-entropy introduced and developed by Rubinstein in 1997 is usually used 

for the selection of an important sampling distribution. The cross-entropy method 

knowing also as Kullback-Leibler distance is based on two probabilities distribution 

which densities functions are  xf  and  xg  it is defined as follow  

 
   

 

 
, ln

f x
D f g f y dx

g x
   .                      (1.8) 

. 

Remark: In general    , ,D g f D f g  thus the cross-entropy method doesn’t 

define a distance function in the formal sense of the definition of a distance, 

otherwise    , ,D g f D f g  [25]. 

Consider the distribution h  given by (1.4) and the distribution  ,f x v F  , the 

cross-entropy can be defined as follows: 

        
   

 

   
   

 

1

1

1

1

,

,
, , ln

,

,
ln

,

f

f

f

f

f

f

f

ff x u

P I x f x u
D h x f x v P I x f u dx

f x v

P I x f x u
E P I x

f x v



 











 
  

  



                         (1.9) 

The distributions h  and  ,f x v  should be similar, therefore the cross-entropy of h  

and  ,f x v  should be minimal, in which case the optimal parameter v
is the 

solution of the problem 

     min , ,
v V

D h x f x v

                                                                                      (1.10) 

or alternatively  
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        ,
max ln ,

ff x u
v V

D v E I x f x v


 
                                                              (1.11) 

the solution of (1.10) can be approximated using an importance sampling method: 

   
  
  

  
1 1

,1ˆmax ln ,
,

f

i
n

i

n i iv V
i

f x u
D v I x f x v

n f x v





 
 

 
  


                                          (1.12) 

1.4 Basic Cross-entropy Algorithm 

In general case, the function D  in (1.11) is convex furthermore it is a differentiable 

function with respect to V , so the solution of (1.12) is found by solving the following 

system of equations [25]: 

           

    
  
  

  
1 1

,1ˆ ln , 0
,

f

i
n

i i

n i
i

f x u
D v I x f x v

n f x v




   
.                              (1.13) 

The system (1.13) has a simple form for independent random variable. Let consider 

for instance a set of normal variables which are independent and which variables 

have join probability density functions defined by  

                 

 
 

2

21

1
, , exp

22

n

i i

i
ii

x
f x


 

 

 
  

 
 


                                         (1.14) 

where  1, , n    are mean values and  1, , n    are  the standard 

deviations of the components. The gradient of the logarithm of the probability 

density function are defined as follow  

            

 
2

ln , ,
, 1, ,i i

i i

f x x
i n

  

 

 
 


                                                   (1.15) 

           

   
2 2

3

ln , ,
, 1, .i i i

i i

f x x
i n

   

 

  
 


                                        (1.16) 
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Thus, the following set of equations for optimal parameters of (1.14) can be obtained 

by substituting formulas (1.15) and (1.16) into (1.13) [7] [10]: 

         

  
  

  1 1 1

,0,11
ˆ

, ,
f

i
n

i

i i i
i

f x
x I x

n f x


 







 
                                                             (1.17) 

          

    
  

  
22

1 1 1

,0,11
ˆ

, ,
f

i
n

i

i i i i
i

f x
x I x

n f x
 

 







 
                                              (1.18) 

Using equations (1.13), the algorithm proposed for minimum variance criteria can be 

adapted easily for the probability of failure estimation using the cross-entropy 

optimal parameters. 
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Chapter 2  

LITERATURE REVIEW 

2.1 History 

The Cross Entropy (CE) is said to be an efficient and trustful method, for the 

computation and estimation of probabilities of rare-event. Later on, research in the 

CE fields made of it a robust to for both combinatorial optimization and for the rare 

event simulation.  

During about a half century, a method called Kullback-Leibler or simply Cross 

Entropy which has successfully been used for measuring information in various 

fields of sciences. Therefore, the actual Cross Entropy, was developed and got its 

name from the Kullback-Leibler. The Kullback-Leibler was particularly used in the 

field of neural computation. 

The Cross Entropy is a method based on iterative computation following two main 

steps [26]. 

 The generation of a random data sample (it is generally vectors, trajectories 

etc.) using a random mechanism. 

 The update of data generated in the first step by the random mechanism to 

produce to produce an accurate sample for the next stage iteration. 
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The key of the Cross Entropy is that it has a precise and concise mathematical 

structure and the sample parameters are defined for deriving fast. This makes sense 

in term of an optimal point of view. 

Many combinatorial and optimization problems have got worth solution from the 

cross entropy method. There are the traveler Selman problems, the quadratic 

assignment problem, the maximal cut problem, the buffer allocation problem, just to 

name few of them. Both deterministic problem and noisy problem can be solved 

using the Cross Entropy method. 

Dr. David Wolpert et al have a collection of probability works which aims are related 

to the Cross Entropy method. His approach is based on information theory like a 

bridge to put together, statistical physic, game theory, and distributed optimization 

control system.  

Usually in the rare-event simulation field, the Cross Entropy method is used in 

association with another method called the important Sampling. 
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Chapter 3 

INTRODUCTION EXAMPLES TO THE CE METHOD 

In the introduction chapter, we defined the CE method and its algorithm. In this 

chapter, we will discuss about how the CE method works via a simple case of 

continuous optimization problem. Those examples will range rare-event simulation, 

to the combinatorial optimization.  

3.1. Some Various Illustration Examples 

3.1.1 Example Based on Rare-event Simulation 

Consider the following weighted graph [25]. 

 

Figure 3.1 

 

 

Figure 3.1: weighted graph 

Figure 3.1 is a weighted graph which weights are random and denoted by 1 5, ,x x . 

Now let assume that the independent variables 1 5, ,x x  (weights) are exponentially 
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distributed with respective means 1 5, ,u u . The probability distribution is then 

defined as  

5 5

1 1

1
( , ) exp

j

j jj j

x
f x u

u u 

 
   

 
   .                              (3.1) 

There exists a shortest path to move from the node A  to the node B .  Let’s denote 

the length of this path by  S x .  Based on the aim of this study, simulation is used to 

estimate [3] [7] [25]. 

          S x
l P S x EI





  

                                    
(3.4) 

equation is actually the probability that the shortest path length’s exceed a given 

fixed value . A common method estimation of the value in the equation (3.4) is the 

use of Crude Monte Carlo  CMC  simulation. The CMC consist to the draw of a 

random sample 1, , Nx x  from distribution of x for further use.  

  
1

1 N

S x
i

I
N 



                                    (3.5) 

in this case (3.5) is considered to be an unbiased estimator of l . The probability l is 

very small when the value  is large. Using the CMC in this case leads us to a very 

large effort. N must be large in order to obtain an precise value of l . The mentioned 

effort can be avoided by the use of the importance sampling (IS). It consists to 

consider another probability function ( )g x such that
  

( ) 0 ( ) 0
S x

g x I f x


    . 

Using ( )g x , the probability l can be symbolize as  
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     

( ) ( )
( )

( ) ( )
gS x S x

f x f x
l I g x dx E I

g x g x  
     .                                               (3.6) 

The inferior g on E  is to show the computation is done with respect to g  . Here g  is 

the important sampling  IS  [7] [25]. It follows in this case that an unbiased 

estimator of l is  

     
1

1ˆ
N

iS x
i

l I W x
N 



                (3.7) 

here, l̂ =importance sampling or likelihood ratio estimator. 

     
( )

( )

f x
W x

g x


                                                                     

(3.8) 

is the likelihood ratio (LR).  

1, , Nx x is a random sample comes from g . 

In the particular case where g f , we have 1W  . The likelihood ratio estimator in 

(3.7) becomes the Crude Monte Carlo of (3.5). 

Consider g  to be such that 1 5, ,x x are independently, exponentially distributed, 

with respective means 1 5, ,v v . Then we have 

 
5 5

1 1

( ; ) 1 1
; , exp

( ; )

j

j

j jj j j

vf x u
W x u v x

f x v u v u 

  
       

  
 

                     

(3.9) 
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The vector parameter  1 5, ,v v v is used to determine the “change of measure”. 

The problem here seems to be the reverse of the problem states by the Crude Monte 

Carlo simulation. This means a certain simulation effort is given, and we try to select 

the vector parameter v which leads us to the accurate estimation of l [8].  

Applying the CE algorithm mentioned in introduction chapter, with initial parameter

N , 1N ,  between 0.01 and 0.1. Furthermore let consider that the vector parameter 

 0.25, 0.4, 0.1, 0.3, 0.2u  and assuming that we are computing the 

probability that   2S x   .  

Using the CMC method with 10
7
 samples leads to an estimated value of 1.65*10

-5
 

with a relative estimated error of 0.165.  Using now a sample of 10
8
, the estimated 

value is 1.30*10
-5

 with a relative estimated error of 0.03 [25].  

3.1.2 Example Based on Combinatorial Optimization 

Let us consider  1, , ny y y being a binary vector in which we assume not to know 

the entrance of y which are 0 as well as those which are 1. However, we assume that 

there exists an “oracle predictor” which for each input vector  1, , nx x x returns 

the response  
1

n

j j

j

S x n x y


   . The CE method can be used here as follow for 

the combinatorial optimization. Generating a sequence of parameters vectors 

0 2
ˆ ˆ, ,p p  and sequence of levels 1 2

ˆ ˆ, ,   such that 1 2
ˆ ˆ, ,   converges to optimal 

performance n and 0 2
ˆ ˆ, ,p p to the optimal degenerated parameters vectors which 

coincide with y .  
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Assuming we have the following parameters  1,1,1,1,1,0,0,0,0,0y initial 

parameters vectors  0
1 1 1ˆ , , ,

2 2 2
p  and 50N  , with 0.1   . The result is 

shown in the following table. It is clear that the convergence of ˆ
tp and ˆ

t  to the 

respective optimal parameter 
*p y and the optimal performance * n  is fast.  

The numerical results of this can be found in [9]. 

3.2 The CE Method for Simulation and Optimization 

3.2.1 Case of Rare-event Simulation 

The simulation rare event based on the cross entropy method is discussed here. The 

ideas or roots of the CE method will be explicated here. 

Let’s consider a random vector  1, , nx x x  which values are taken in a space x . 

Let   be a measure and   ;f v  a density probability functions family on x with 

respect to  . Here v is a parameters vector of real values. It follows that

       ;EH x H x f x v dx


  , with H being any measurable function. In what 

will follow, let’s assume that  dx dx   for simplicity.  

Let’s consider now a real value function  S x  on x . Let assume that we want to 

compute the probability that  S x  is greater than or even equals to a real value . 

Here the value is considered to be a threshold (level) under  ;f v  . The mentioned 

probability is computed by  
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     u u S x
l P S x E I





  

                                           
(3.10) 

if the probability computed in (3.10) is very small, if it is for instance smaller than 

10
-5

, then   S x   is said to be a rare-event [23] [25]. 

The estimation of l  in (3.10) can be done by the by the Monte-Carlo simulation. In 

which case, 
  

1

1 N

S x
i

I
N 



 is defined to be an unbiased estimator of l . Nevertheless, 

the crude Monte-Carlo [25] simulation become a brainstorm, when   S x   is a 

rare event; because the simulation effort needs to reach the aim is very large.  

  An important alternative method of solving this problem is based the importance 

sampling. This is stated as follow. Consider a random sample 1, , nx x from one 

importance sampling density g  on  , next estimate l  by the likelihood ratio (LR) 

estimator.  

  

 

 1

;1ˆ
i

N
i

S x
i i

f x u
l I

N g x


 
                                                             

(3.11)  

The best estimation of l  is done by using the change of measure with the following 

density function 

 
    

*
;

S x
I f x u

g x
l


                                                           (3.12) 

it follows from (3.11)  and (3.12) that  

  

 

 *

;
,       

i

i

S x

i

f x u
I l i

g x
  .                                                (3.13) 
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Now we have l which is a constant, it follows that the estimator defined by (3.11) has 

a zero variance. Therefore, we need for the process a number 1N   sample just. 

At this level what seems obviously to be a difficulty is that the function *g  depends 

mainly on the parameter l which is unknown. It is convenient that g is chosen, such 

to belong to the following densities family   .;f v .  The goal can be reached, if we 

adopt the following idea. That is to choose v , the reference parameter (also named by 

tilting parameter) such a way to minimize the distance between the foregoing *g and 

the function  .;f v . On the other hand, the Kullback-Leibler distance is a convenient 

method for measurement of the distance between two densities functions. The 

following formula defined the Kullback-Leibler distance 

 
 

 
       , ln ln lng

g x
D g h E g x g x dx g x h x dx

h x
   

                

(3.14) 

NB: In (3.14), the word distance is used to call  ,D g h  , but it is just conceptual. 

Actually  ,D g h haven’t all the fulfillment properties of a distance. For instance

 ,D g h  is not symmetric [25].  

Now recalling the formula (3.12), the Kullback-Leibler [17] [20] distance is 

minimized between 
*g and the function  .;f v if and only if v is chose in a way that

   * ln ;g x f x v dx  is minimized. Which actually lead us to solve the following 

maximization problem 

   *max ln ;
v

g x f x v dx
                                                           

(3.15) 
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recalling *g  from (3.12), and substituting it into (3.15), the following maximization 

program is obtained 

               

    
 

;
max ln ;

S x

v

I f x u
f x v dx

l



 .                                        (3.16)  

Finally recalling (3.14), the problem stated in (3.16) is equivalent to  

      max max ln ;u S xv v
D v E I f x v




                                 
 (3.17) 

3.2.2 Case of combinatorial optimization 

The CE method algorithm for combinatorial optimization is discussed in this section.  

The following maximization problem is use as guide to illustrate the method. 

 Consider x to be a finite set of class. Let S  be the real-valued efficiency function 

on x . The problem is to find the maximum S  of over x  and to find the state(s) at 

which attained S  this maximum. Let called the maximum
*  [13] [16]. It follows 

that  

        * * max
x

S x S x





  .                                       (3.18) 

The first thing to do is the association of the optimization problem stated in (3.18) 

with an estimation problem which is meaningful. For various levels R   , a set of 

indicator functions   ( )S x
I


 is defined. Let consider next   .; ,f v v V to be a 

family of probability densities on  [25] [3]. Where v is a real valued vector which 

parameterized the probability densities functions   .; ,f v v V . For a given u V , 

we associate to (3.18) the number estimation problem 
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         ( ) ( )
( ) ;u uS x S x

x

l P S x I f x u E I
 

 
 

   
                    

(3.19) 

where uP is the probability computed when the random state has the probability 

density function  .;f u  and is uE  the corresponding expectation operator. The show 

the association between (3.18) and (3.19), let consider the following assumptions

*  and  .;f u is the density uniformly defined on  . It is important to note that 

typically    * * 1;l f x u
x

   . Where x is the cardinality of  . This means,for

*  , a good way of estimating  l   is to use the LR estimator 

   ( )
1

1ˆ ˆ; ,
N

i TS x
i

l I W x u v
N




  with reference parameter *v given by 

   *

( )
argmax ln ;u S x

v

v E I f x v


             (3.20) 

The parameter in (3.20) could be estimated by 

       *

( )
1

1
ˆ argmax ln ;

N

iS x
v i

v I f x v
N




 
               

  (3.21) 

In (3.21), ix are generated from the probability densities function  .;f u . It is 

furthermore clear that when  is almost equals to * , then probability mass assigned 

by *(.; )f v are close to
*x . This can therefore be used to compute an approximate 

solution of the problem stated in equation (3.18). Generally, the estimator given by 

the formula (3.21) is suitable and useful if and only if
 ( )

1
S x

I

  [3] [7]. In which 

case, one should choose u  such that   uP S x  shouldn’t be too small. From what 

preceded it is clear that, there is a close relation between the choice of and u .  
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The entire procedure mentioned is implemented by the following algorithm [9] [22]. 

Algorithm: (Main Cross Entropy Algorithm for Optimization) 

1. Consider
*

0v̂ u . Set the counter 1t  . 

2. Create a sample 1, , Nx x   using the density 1(.; )tf v  then compute the 

 1  -quantile ˆ
t  sample’s performance. 

3. Base on the same initial sample 1, , Nx x , solve the following stochastic 

program    1ˆ( )
1

1ˆ ˆmax ( ) max ; , ln ( ; )
t

N

i t iS x
v v

i

D v I W x u v f x v
N

 


  , setting 1W   and 

denote its solution by ˆ
tv . 

4. If for a given t d , for instance 5d  ,  

      1
ˆ ˆ ˆ
t t t d                                               

(3.22) then stop the process (denote by T the final iteration); else set 1t t  and 

iterate the process from the step 2.   
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Chapter 4  

CROSS-ENTROPY METHOD FOR POWERFULL 

SIMULATION 

In sciences, usually the performance of system such as storage system, 

telecommunication networks, assurance risk, and inventory system is based on rare-

event. However, the simulation of rare-event using the crude Monte Carlo method 

requires a considerably large number of trials and it’s therefore, time and space 

consuming. To palliate to it, new methods are developed [25] [8]. 

In chapter some of the techniques used for an optimal rare-event simulation are 

explored. They are importance sampling, Kullback-Leiber Cross-Entropy [17]. 

4.1 Importance Sampling 

Considered the following stochastic system which the expected performance l  is 

given by:  

             , ,f fl E H x E S x S x f x dx            
 (4.1) 

where S  represents the sample performance function.  .,  is the real-valued 

function based on the sample performance. The expectation fE  is computed here 

with respect to f   that is why f  is at the subscript of fE . One can have for instance 

the indicator functions [17][12] [25] 
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          
;

S x
S x I


 




                                          
(4.2) 

and the Boltzmann functions 

          ; exp /S x S x    .                               (4.3) 

Considering for instance the framework problem of the stochastic shortest path, the 

shortest path can be computed by  

     
1, ,

j

i
j p

i B

S x min x




 
                                            

(4.4) 

where jB  stands for the j-th complete path that moves from the source to the sink. 

The exist p  completes paths. ix is the duration or the weight of the links. 

Consider another density function g such that it dominated Hf . This means 

     0 0g x H x f x   . Following the foregoing relation, the performance 

value l can be computed by  

    
 

 
     

 

 g

f x f x
l H x g x dx E H x

g x g x
  .                          (4.5) 

In equation (4.5), the expectation is computed with respect to the function g . The 

function g  is said to be the importance sampling density [2].  

An estimator of the mean value l  which is unbiased is given by  

       
1

1ˆ
N

i i

i

l H x W x
N 

 
                                                      

(4.6) 
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In equation (4.6), the value l̂  is called the likelihood ratio  LR estimator or the 

importance sampling  IS .  

The functionW  is the ratio of the two functions f  and g . 

           /W x f x g x  .                               (4.7) 

The function W is called usually the likelihood ratio. There exists a single particular 

case where  f g , this happens when there is no change of the measure. In such 

case, we have 1W   [25]. The estimation given in the equation (4.6) is therefore 

reduced simply to the crude Monte Carlo  CMC  estimator given by  

       
1

1ˆ
N

i

i

l H x
N 

 
                                         

(4.8)    

In equation (4.8), the series 1, , Nx x  is a random sample vector coming from the 

density function f .  

 While choosing the IS density g , the minimization of the variance of the mean 

estimator l̂  should be considered.  

The minimization of l̂ variance is stated as follow with the respect to the density 

function g .   

      
 

 g
g

f x
minVar H x

g x

  
 
  

.                                  (4.9) 
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As reminder, the problem stated by the equation (4.9) has the following solution 

     
   

     
*

H x f x
g x

H x f x dx



.                            (4.10) 

It is important to notice that in case   0H x  , then  

     
   * H x f x

g x
l


                                            

(4.11) 

and 

         * * *
ˆ 0

g g g
Var l Var H x W x Var l   .                        (4.12) 

The density function *g is named the optimal importance sampling density [25] [17]. 

4.2 Kullback-Leibler Cross-Entropy 

This method can also be used instead of the variance minimization method. Here 

optimal parameter vector is computed based on a “distance” defined between two 

probability distribution functions g and h . This distance is defined as [17] 

 
 

 
 

           

( , ) ln

            ln ln

g x
D g h g x dx

h x

g x g x dx g x h x dx



 



 



                         

(4.13)  

reminding that the distance ( , ) 0D g h   ;  i.e. the distance should be positive with the 

equality ( , ) 0D g h  only if g h and the  measure of the set is 1. The aims of the 

CE method in this case is to choose the important sample density function h in a way 

to minimize the kullback-Leibler  distance which exist between h and the optimal IS 

density *g  defined in (4.10) . It follows that the solution of the functional 

optimization problem stated by  
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*min ( , )
h

D g h                                                                      (4.14) 

is the CE importance sample density *h  .  Based on the relation *( , ) 0D g h   , it is 

obvious that solution of the problem stated in (4.14) is given by * *h g  .  By 

optimization over all the density function h , the CE importance sampling (IS) and 

the variance minimization (VM) densities function coincide. On the other hand, 

using the sampling likelihood ration (SLR) approach, there is a restriction of the 

densities function class to a family   .; ,f v v V , in which the nominal density

 .;f u  is included. Following the CE method, the aims is now to solve the 

following parametric optimization problem 

        *min , .;
h

D g f v                     (4.15)  

recalling the equation (4.10), we have      * 1g x k H x f x with 

     k H x f x dx  .  Considering the formula given by the equation (4.13), the 

right-hand side is independent on v  . Therefore, the process of minimizing the 

Kullback-Leibler distance between  .;f v and *g  is exactly equivalent to the 

process of maximizing, the following equation with respect to v . 

           ; ln ; ln ;uH x f x u f x v dx E H x f x v  .                    (4.16) 

Assuming for simplicity that   0H x  , the absolute signs are dropped from the 

formula (4.16) and the optimal parameter based on the Kullback-Leibler distance is 

given by the solution of the equation [17] 
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       max max ln ;u
v v

D v E H x f x v
                                    

(4.17) 

which is equivalent to  

         max max , , ln ;w
v v

D v E H x W x u w f x v
       

                                (4.18) 

This w  tilting parameter. With  , ,W x u w  being the likelihood ratio given by

 
 

 

;
, ,

;

f x u
W x u w

f x v
 . 

The optimal solution *v can be estimated by computing the optimal solution of the 

following program [25] 

          
1

1ˆmax max , , ln ;
N

i i i
v v

i

D v H x W x u w f x v
N 

  .                  (4.19) 

With 1, , Nx x  being a random sample from  .;f w . 

The program stated by the equation (4.19) is called the stochastic counterpart of the 

Cross Entropy program states by the equation (4.18). It can also be called the 

simulated Cross Entropy program. The function D̂  is typically a differentiable and 

concave function with respect to v .  Therefore the optimal solution of equation (4.19) 

may be obtained by solving the following equations system with respect to v. 

       
1

1
, , ln ; 0

N

i i i

i

H x W x u w f x v
N 

  .                                                 (4.20) 

The solution of (4.18) may also be obtained by solving the equation  
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       ln ; 0uE H x f x v 
                                               

(4.21)  
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Chapter 5  

COMBINATORIAL OPTIMIZATION 

Combinatorial optimization is a subset of optimization that is related to algorithm 

theory, operation research, and computational complexity theory. Combinatorial 

optimization algorithms are mainly used in many applications like planning, 

management, operation of telecommunication and communication networks. To find 

the optimal path or to find the combination of paths that leads to NP-hard problems is 

one of the important combinatorial problems. There exist a number of well known 

methods for finding optimal or near optimal solutions to these problems like 

simulated annealing [4], tabu search [21], genetic algorithms [23], ant colony system 

[5] and the cross entropy method [3] [22] [16] [24] [7] [15] [18]. The cross entropy 

(CE) method (Rubinstein and Kroese, (2004) was motivated by Rubinstein in 1997. 

It originated from the field of rare event simulation. The CE method is a general 

Monte-Carlo approach to combinatorial and continuous multi-extremal optimization 

and importance sampling. The method derives its name from the Kullback-Leibler 

cross entropy distance [17] [20]. The CE method was modified in [3] by Rubinstein 

to solve both continuous multi-extremal and various discrete combinatorial 

optimization problems. There are three main steps of CE method for optimization 

problems: 

1. Translate the optimal problem into an associated estimation problem, the so called 

associated stochastic problem (ASP). 
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2. Generate sample data by choosing a probability family, initializing the parameters, 

and then generating feasible solutions according to the chosen distribution. 

3. Update parameters based on the Kullback-Leibler [17] [20] cross entropy distance. 

 

The main goal of this work is to introduce more efficient ranges of CE parameters 

like sample size (N), smoothed parameter ( ) and rarity parameter (  ), and to 

modify CE algorithm for optimization to achieve optimal solution with less 

computational time and less iteration number. The Traveling Salesman Problem 

(TSP) is considered a tutorial problem for the CE method. We used MATLAB to 

implement cross entropy method for solving the TSP. Numerical experiments were 

performed with different CE parameters on different sizes of matrices for TSP. With 

these numerical experiments we conclude our observations. The rest of the work is 

organized as follows: In the second section the general CE method is described. In 

the third section, the results of the numerical experiments and observations are 

presented. And the last section summarizes and concludes this work. 
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Chapter 6 

PRELIMINARIES 

In this section we present some background on the CE method and TSP. 

6.1 The Cross Entropy Method 

As mentioned above CE method was developed by Rubinstein in 1999 for solving 

optimization problems. The reader is referred to Rubinstein and Kroese (2004), de-

Boer at al. (2005) and references therein for context [9], extensions and applications. 

The main idea of the CE method for optimization is given below. Suppose that we 

aims tominimize (maximize) some objective function say ( )S x over all x X . Let 

take a fixed parameter  and set  

                         
min ( )
x X

S x


                                                                         (6.1)

  

then we define a family of probability density function,   ,f v V  on the random 

vector x [3] [22]. Then the optimal problem translated into an associated stochastic 

problem which is defined below 

            u u S x
p S x E I


 


   .      (6.2)  

Cross Entropy Method for Combinatorial Optimization Problems. ASP is the 

expected value of the index set that satisfies the condition which is objective function 

value is greater than or equal to fixed parameter . Converting optimization problem 
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to the estimation problem was the first step of CE method for the optimization. At 

the second step , the random variables are generated from the probability density 

function. Then the reference parameters  , 0tv t  and the levels ,t t  are 

initialized. After that feasible solutions are generating according to the chosen 

distribution. At the last step parameters are updated based on the Kullback-Leibler 

CE distance to produce a better sample in the next iteration. The main CE algorithm 

for optimization is summarized in Algorithm 6.1 [9] [22]. 

The CE Algorithm 6.2 

Step 1: Choose some 0v , set 1t  . 

Step 2: Generate a sample 1 2, ,..., Nx x x from the density  1, tf v  and compute the 

sample  1   quantile t of the performances according to 
 1t S




  
 . 

Step 3: Use the same sample 1 2, ,..., Nx x x and solve the stochastic program 

          
1

1
max max ; ,  ;

i

N

i is xv v
i

D v I W x u w In f x v
N 






        (6.3) 

denote the solution by ( ).tv  

Step 4: Apply smoothed equation   1
ˆ ˆ1 , 1,...,t t tv v v i n       to smooth out the 

vector ˆ
tv . 

Step 5: If for some t d , say 5d  , 1
ˆ ˆ ˆ

t t t d       then stop (let T 

denote the final iteration); otherwise set 1t t  and reiterate from Step 2. 

The above algorithm can be summarized as follows; 

At the first step of the algorithm the parameter vector v was initialized and the level 

Counter t was set to 1. At the second step, the random sample data was generated 
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from the chosen probability density function to calculate °t values that satisfies the 

following condition 

      
1

1
tv tp S x  


      (2.4)  where  is 

the rarity parameter. The choice of rarity parameter plays a critical role to keep CE 

algorithm close to global extrema with high probability and avoid local one. 

At the third step CE algorithm iterates by using 1tv  and t to update tv by solving the 

stochastic program 2.3 according to Kullback-Lieber cross entropy distance. In the 

Stochastic program  ; ,iW X u w is the likelihood ratio of the probability density 

function. At the fourth step, by using smooth parameter , algorithm smoothed out 

the values of tv to reduce the probability that some component ,t iv to be 0 or 1 at the 

first few iterations, which causes algorithm to converge wrong solution. Last step is 

the stopping criterion. If the CE algorithm runs with the same objective function 

values for say d = 5 times then the algorithm terminates and set t= T where T is the 

number of iteration. Otherwise algorithm increases the level counter and continues 

with step 2. 

6.2 Traveling Salesmen Problem (TSP) 

In this paper we used MATLAB to implement CE method for solving the TSP [9] 

[22] which aims to find the shortest tour that visits all the cities exactly once. Let the 

objective function  Z x be the total length of tour x X then we calculate 

 
1

, 1 ,1

1

min min
n

xi xi n
x X x X

i

Z x c c



 



 
  

 
 where  1 2, , , nx x x x  with 1 1x  denotes 

permutation of  1,2, , ,  in x   where 1,2, ,i n  is the i’th city to be visited in the 
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tour represented by x , and ijc is the distance (or cost) from city i to city j . The main 

CE algorithm for TSP is summarized in Algorithm 2.2 [22] [3] [16]. 

Step 1: Choose an initial reference transition matrix b 0p̂ say with all off diagonal 

elements equal to
1

1n 
. Set 1t  . 

Step 2: Generate a sample 1 2, , , Nx x x   of tours via Trajectory Generation using Node 

Transitions Algorithm [16], with 
1

ˆ
tP P and compute the sample  1  quantile of 

the performances according to  ˆ 1t N     . 

Step 3 : Use the same sample to update ˆ
tP via 

  

  

1
,

1

ˆ
K ijK t

K t

N

X XS X
k

t ij N

S X
K

I I

p

I















. 

Step 4: Apply smoothed equation to smooth out the matrix. 

Step 5: If for some t d , say 1
ˆ ˆ ˆ5, t t t dd         then stop, otherwise set 

1t t  and reiterate from step 2. 

6.3 Implementation Notes 

The parameters that are used by the CE method (the CE parameters) are the sample 

size N , the rarity parameter   and the smoothing parameter   . In this paper we 

tweak the CE parameters and compare the ones that are used by Rubinstein (2004). 

According to [22] the CE parameters for MATLAB computer program of TSP are 

chosen: < N = 210n (where n is number of nodes),  = 0:01 and  = 0:7 (smoothed 

parameter) within the ranges:
2 25 10 ,0.3 0.8n N n      
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0.01, if 100

ln
, if 100

n

n
n

n

 
 

  
 

respectively. In order to achieve optimal or near optimal solution 

with less computational time and less iteration number, different CE parameters 

within their ranges are used. By this method different results are obtained and 

comparisons are done with the known ones. We implement CE method for solving 

the problem by using a computer with properties Intel (R) Core (TM)i7 CPU and 

3.07 GHz processor with at least 10 times reapplication. Many implementations are 

done for CE applications of TSP by various sizes. 

Table 6.1: Br17 with 17 nodes (best known optimal solution is 39) 

Sample 

number(N) 

Rarity 

parameter

 )  

Smoothing 

parameter

 ) 

Av. 

Count  

Av. 

Opt. sol 

Av. cpu. 

time  

Av. 

Error (e) 

 

 

n
2
=289 

 

0.01 

0.3 13.3 39.8 3.4509 0.0203 

0.7 9 47.6 2.33228 0.2002 

0.8 8.3 48.6 20.5581 0.2457 

 

0.16 

0.3 43.4 41.1 12.17276 0.0533 

0.7 23.9 39.5 7.3576 0.0127 

0.8 21.1 40.1 6.49422 0.0278 

 

5 n
2
=1445 

 

0.01 

0.3 42.3 44.7 65.22319 0.145 

0.7 10.6 39 13.7305 0 

0.8 9.7 39.1 12.42068 0.0025 

 

0.16 

0.3 44.4 42.4 68.43775 0.0863 

0.7 26.8 39 41.27225 0 

0.8 24.2 39.2 37.20877 0.005 

  0.3 16 39 41.517 0 
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10 n
2
=2890 

0.01 0.7 10.3 39 24.73429 0 

0.8 9.5 39 41.27225 0 

 

0.16 

0.3 47.9 43.2 147.64644 0.169 

0.7 27.6 40 84.95841 0.0254 

0.8 42.3 40.6 74.27452 0.04 

 

The generalization of all results is done by comparing the best known solution. The 

new obtained results are generalized in known example Br17 [19] with 17 nodes 

where the best known solution is 39 and P43 with 43 nodes where the best known 

solution is 5620. Table 6.1 presents 18 different outcomes for TSP for br17 [19]. 

6.4 Observations 

Observations are done for different ranges of CE parameters. In this section some 

results and observations of CE algorithm stated as follows: 

 It follows form the table 6.1 that he following values of CE parameters gives us 

best known optimal solution which is 39 for Br17 [3] [19] [18] as it is seen in table 

6.1. 

Table 6.2: CE parameters 

Sample 

number  

Rarity parameter  Smoothing 

parameter 

Av. Rel. Error 

N=5n
2 

 =0.01  =0.7 0   

0   N=5n
2  =0.16  =0.7 
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N=10n
2 

 

 =0.01 

 =0.3 

 =0.7 

 =0.8 

 

 

 

 

The parameter values which results in exact optimal solution each produce 

different average CPU times and average iteration numbers. For the following CE 

parameters algorithm 2.2 produces best average CPU time (13.7305) with smallest 

average relative experimental error (0): For N=10n
2
,  = 0.01 and  = 0.3 values 

algorithm produces highest average CPU time which is 41. 517 seconds.  

For N=5n
2
,  = 0.01 and  = 0.7 values algorithm produces highest average CPU 

time which is 13.7305 seconds.  

As a result of an observations when N=5n
2
= 1445,  = 0.7 and = 0.01 algorithm 

2.1 runs with best average number of iterations and average number of CPU time 

with 10.6 and 13.7305 seconds respectively. 

During the numerical experiments we observed that when smoothing parameter 

increased both average CPU time and iteration number decreased. Therefore, 

observations show that CPU time and iteration number with smoothing parameter 

are not proportional. Also it is observed that when rarity parameter  increases both 

CPU time and number of iterations increases too. Hence, rarity parameter   and 

number of iterations are proportional. 
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Although for small sizes of matrices like n <100, elite sample percentile  is 

suggested
ln n

n
[22], our numerical experiments show that by taken elite sample 

percentile  equal to 0:01 instead of 
ln n

n
it is obtained less average number of 

iterations and average number of CPU time with zero relative error. These results are 

better than the results given in [18]. 

When 
ln n

n
  = 0.16 there is only one optimum solution at  = 0.7, N=5n

2
=1445 

and  = 0.7. Results show that while 
ln n

n
  when Samples number (N) increases, 

average number of CPU time, number of iterations and average relative error 

increases also. 

There must be an increment of smoothing parameter , when rarity parameter  is 

ln n

n
in order to be a decrement of average number of CPU time and the average 

number of iterations. In other words, to obtain more effective results, if there is an 

increment on rarity parameter ½ there must be an increment on smoothing parameter 

( )As a result, for the following CE parameters N=5n
2
=1445,  = 0.7,  = 

0.01algorithm runs with best average iteration number and average CPU time with 

10.6 and13.7305 in seconds, respectively. 

 The following table contains results of CE algorithm for TSP for P43 [19] cost 

matrix where the best known optimal solution is 5620. It can be observed from the 

table that best known optimal value and smallest relative experimental error of the 
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problem is obtained for the CE parameters N=10n
2
=1445 = 18490,  = 0.3 and  = 

0.01. 

Table 6.3: P43 with 43 nodes (best known optimal solution is 5620) 

Sample 

number(N) 

Rarity 

parameter(  )  

Smoothing 

parameter    

Av. 

Count  

Av. 

Opt. 

sol 

Av. cpu. 

time  

Av. 

Error (e) 

 

 

n
2
=1849 

 

0.01 

0.3 62.3 5635 631.92 0.00262 

0.7 26.9 5656.3 277.37368 0.0062 

0.8 24.7 5669.3 248.67647 0.0083 

 

0.16 

0.3 185.5 5628 2053.9 0.00132 

0.7 87.9 5632.8 990.51 0.00195 

0.8 81.3 5634.7 889.67 0.00256 

 

 

5 n
2
=9245 

 

0.01 

0.3 62.3 5635 631.92 0.00262 

0.7 38.2 5625.2 1973.411 0.0009255 

0.8 33.6 5627.1 1680.8 0.00128 

 

0.16 

0.3 177.8 5627.9 9911.157 0.001406 

0.7 110.1 5624.9 6117.101 0.000872 

0.8 98.1 5625 5986.155 0.0008563 

 

 

10 n2=18490 

 

0.01 

0.3 81.7 5623.9 8381.058 0.000694 

0.7 42.9 5624.3 4431.513 0.000765 

0.8 36.6 5629.06 3346.2513 0.0006942 

 

0.16 

0.3 88.6 5624.6 6500.2 0.00139 

0.7 110.1 5624.9 6117.097 0.0008721 

0.8 94.8 5625.2 10259.37 0.0009256 
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 It follows from the table that CE algorithm archives near optimal value of the 

problem with smallest average relative experimental error (0.000765) for the 

following CE parameters: N = 102 = 18490,  = 0:01 and  = 0.7 

Numerical results show that if the smoothing parameter   increase from 0.3 to 

0.7then the average CPU time and the average iteration number decrease at most by a 

factor of 0.5 as observed in br17. 

Similar to the br17 results the choice of rarity parameter  has a contrast with 

suggested one by Rubinstein [22] [18]. As mentioned before it was suggested to 

select  

0.01  100

ln
  100

if n

n
if n

n






 




 

in our numerical experiments it is observed that although for both cases n is less 

than100 with the choice of 
ln n

n
  algorithm runs with worse CPU time and 

average iteration number than the value of  = 0.01.It is known that the choice of 

rarity parameter plays an important role to achieve an optimal solution for TSP. This 

effect can be easily seen in the graphical representation of rarity parameter and CPU 

time of the iteration of the algorithm to get the optimal solution of the problem. The 

following graph is rarity parameter versus CPU time for matrix br17 and p43where 

the other CE parameters are fixed as below: for br17 5 n
2
=1445,  =0.7 and N = 10 

n
2
=2890,  =0.7, for p43 N = 5 n

2
=9245,  =0.7 and N = 10 n

2
 =18490,  =0.7.
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                                            Figure 6.1: Results graph 

 This figure includes (a) N = 5 n
2
 =1445,  =0.7, (b) N = 10 n

2
 =2890,  =0.7 for 

br17 cost matrix of TSP and (c), (d) includes N =5 n
2
=9245,  =0.7 and N = 10n

2
 

=18490,  =0.7 for p43 cost matrix for TSP respectively. 

It follows from the graph 3.1 that the CPU times increase during the increments of 

rarity parameter. Numerical experiments show that the value of the rarity parameter

 =0.01 gave better CPU time (14.849085) with 0 relative experimental error than 

the CPU time (37.152770) for 
ln ln17

17

n

n
   =0.16 in graph 3.1 (a). It was also 

found that the lower bound for  is 0.0007, N =5 n
2
=1445. In graph 3.1 (b) for N = 

10 n
2
 =2890, 0.7  experiments show that the value of the rarity parameter 

=0.01 gave better CPU time (28.015066) with 0 relative experimental error than the 
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CPU time (78.66035) for 
ln ln17

17

n

n
   =0.16. It was also found that the lower 

bound for  is 0.00035.In the graph 3.1 (c) and (d) are rarity parameter versus CPU 

time for matrix p43 where the other CE parameters are fixed. When N = 5 n
2
 =9245, 

 =0.7 it follows from the graph3.1 (in both (c) and (d)) that the CPU times increase 

during the increments of rarity parameter. Numerical experiments show that the 

value of the rarity parameter  =0.01 gave better CPU time (1817.72464) with lower 

relative experimental error than the rarity parameter 
ln ln 43

43

n

n
   =0.08 where the 

CPU time=8542.748905 and it was also found that the lower bound for  is 0.0001. 

When N = 10 n
2
 =18490,  =0.7 then from the graph 3.1 (d) shows that the CPU 

times increase during the increments of rarity parameter. Again as in other numerical 

experiments also show that the value of the rarity parameter  =0.01 gave better 

CPU time (4883.11913) with lower relative experimental error than the rarity 

parameter 
ln ln 43

43

n

n
   =0.08 where the CPU time=9850.426922. It was also 

found that the lower bound for  ½ is 0.00055. 

All these observations can be summarized as below in a table 3.2; 

1. It follows from the graphs that the CPU times increase during the increments of 

rarity parameter. 

2. Following table gives the values of CPU times for different values of rarity 

parameter  . 
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Table 3.3: Rarity parameter relation with CPU time and lower bounds for Cross 

Entropy Method for Br17 and P43. 

 Lower bound for 
  

Rarity parameter 
  

CPU time  Optimal 

solution 

 n
2
 0.0007 0.01 14.849085 39 

  ln17

17
=0.16 

37.152770 39 

Br17-10 

n
2
 

0.00035 0.01 28.015066 39 

  ln17

17
=0.16 

78.66035 39 

P43-5 n
2
 0.0001 0.01 4883.11913 5629 

  ln 43

43
=0.08 

9850.426922 5626 

P43-10 n
2
 0.00055 0.01 1817.724640 5624 

  ln 43

43
=0.08 

8542.748905 5627 

 

It can be seen from the table that the value of the rarity parameter  =0.01 gave 

better CPU time than the rarity parameter
ln n

n
  . Also it was observed that the 

lower bound of  decrease at most a factor of 0.5 when the sample size N increase 

from 5 n
2
 to 10 n

2
. 
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Chapter 7 

CONCLUSION 

In this thesis we investigate Cross-Entropy method and application on the solution 

methods of TSP.  

In order to achieve optimal or near optimal solution with less computational time and 

less iteration number, different CE parameters within their ranges are used. By this 

method different results are obtained and comparisons are done with the known ones. 

We implement CE method for solving the problem by using a computer with 

properties Intel (R) Core (TM) i7 CPU and 3.07 GHz processor with at least 10 times 

reapplication. Many implementations are done for CE applications of TSP by various 

sizes. The generalizations of all results are done by comparing the best known 

solution. The new obtained results are generalized in known example Br17 with 17 

nodes where the best known solution is 39 and P43 with 43 nodes where the best 

known solution is 5620. 

 

After all simulations of CE algorithm, the obtained results show that parameter 

choosing plays an important role for obtaining optimal or near optimal solution with 

less iteration and less computational time. For the following CE parameters algorithm 

2.2 runs with best average CPU time (13.7305) with zero average relative 

experimental error for TSP with matrix br17: N = 5 n
2
 = 1445,  = 0.7,  = 0.01. For 

the following CE parameters algorithm 2.2 runs with best average CPU time 
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(4431.513) with smallest average relative experimental error for TSP with matrix 

p43: (N = 10, n
2
= 18490,  = 0.7,  = 0.01) we also observe that the choice of rarity 

parameter  used in the algorithm plays a critical role to keep CE algorithm close to 

global extreme with high probability and avoid to local one. Our numerical 

experiments show that the choice of rarity parameter  has a contrast with suggested 

one by Rubinstein in [22] [3]. It is observed that although for both cases n is less than 

100 with the choice of 
ln n

n


 
  
 

algorithm runs with worse CPU time and average 

iteration number than the value of  = 0:01 as it is seen in table 3.1. 

 

Same experiments can be done for Quadratic Assignment problem or other well-

known combinatorial optimization problems for further research. Some techniques 

can be applied to speed up CE algorithm for different combinatorial optimization 

problems. While the CE method has been widely deployed to efficiently solve a wide 

range of difficult problems, such as the Max-Cut, Quadratic Assignment Problem 

and Traveling Salesman problems, there still remains a great deal to be understood 

about the dynamics and convergence properties of the method. 
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