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INTRODUCTION



Figure 1: General relativity (GR) is a theory of gravitation that was developed
by Albert Einstein between 1907 and 1915
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Figure 2: Gravity
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Figure 3: General relativity explains gravity as the curvature of spacetime
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Figure 4: The inter-changeable nature of gravity and acceleration is known
as the principle of equivalence.
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WHAT IS A WORMHOLE?



Figure 5: Hypothetical shortcut between distant points
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Figure 6: Can we make journeys to farther stars?

2



Figure 7: How can we open gate into space-time?

• How can we connect two regions of space-time?

• Can we make stable and traversable wormholes?



MOTIVATION
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Figure 8: Wormhole

-We do not know how to open the throat without exotic matter.
-Thin-shell Methods with Israel junction conditions can be used to
minimize the exotic matter needed.

However, the stability must be saved.
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Figure 9: How to realize Wormholes in real life
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History of Wormholes

Figure 10: Firstly , Flamm’s work on the WH physics using the Schwarzschild
solution (1916).
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Figure 11: Einstein and Rosen (ER) (1935), ER bridges connecting two
identicalsheets.
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Figure 12: J.Wheeler used ”geons” (self-gravitating bundles of
electromagnetic fields) by giving the first diagram of a
doubly-connected-space (1955).

Wheeler added the term ”wormhole” to the physics literature at the
quantum scale.
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Figure 13: First traversable WH, Morris-Thorne (1988).
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Figure 14: Then Morris, Thorne, and Yurtsever investigated the requirements
of the energy condition for traversable WHs.
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Figure 15: A technical way to make thin-shell WHs by Visser (1988).
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Traversable Wormhole Construction Criteria

• Spherically symmetric and static metric
• Obey the Einstein field equations.
• Must have a throat that connects two asymptotically flat regions
of spacetime.

• No horizon, since a horizon will prevent two-way travel through
the wormhole.

• Tidal gravitational forces experienced by a traveler must be
bearably small.

• Traveler must be able to cross through the wormhole in a finite
and reasonably small proper time.

• Physically reasonable stress-energy tensor generated by the
matter and fields.

• Solution must be stable under small perturbation.
• Should be possible to assemble the wormhole. ie. assembly
should require much less than the age of the universe.
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Traversable Lorentzian Wormholes

The first defined traversable WH is Morris Thorne WH with a the
red-shift function f(r) and a shape function b(r) :

ds2 = −e2f(r)dt2 + 1
1− b(r)

r

dr2 + r2(dθ2 + sin2 θdϕ2). (1)

• Spherically symmetric and static

• Radial coordinate r such that circumference of circle centered
around throat given by 2πr

• r decreases from +∞ to b = b0 (minimum radius) at throat,
then increases from b0 to +∞

• At throat exists coordinate singularity where r component
diverges

• Proper radial distance l(r) runs from −∞ to +∞ and vice versa



HAWKING RADIATION OF THE
TRAVERSABLE WORMHOLES
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Figure 16: Hawking radiation
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Figure 17: Black hole information paradox
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Figure 18: ER=EPR
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Figure 19: The radiation is due to the black hole capturing one of a
particle-antiparticle pair created spontaneously near to the event horizon.
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• For studying the HR of traversable WHs, we consider a general
spherically symmetric and dynamic WH with a past outer
trapping horizon.

• The traversable WH metric can be transformed into the
generalized retarded Eddington-Finkelstein coordinates as
following

ds2 = −Cdu2 − 2dudr+ r2
(
dθ2 + Bdφ2

)
, (2)

where C = 1− 2M/r and B = sin2 θ.
• Proca equation in a curved space-time :

1√
−g∂µ

(√
−gψν;µ

)
+
m2

ℏ2
ψν = 0, (3)

in which the wave functions are defined as ψν = (ψ0, ψ1, ψ2, ψ3).

• Use WKB approximation, the following HJ ansätz is substituted
into Eq. (3)

ψν = (c0, c1, c2, c3) e
i
ℏ S(u,r,θ,ϕ), (4)
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• Furthermore, we define the action S(u, r, θ, ϕ) as following

S(u, r, θ, ϕ) = S0(u, r, θ, ϕ)+ℏS1(u, r, θ, ϕ)+ℏ2S2(u, r, θ, ϕ)+.... (5)

• Then one can use the separation of variables method to the
action S0(u, r, θ, ϕ):

S0 = Eu−W(r)− jθ − kϕ, (6)

• It is noted that E and (j, k) are energy and real angular
constants, respectively.

• After inserting Eqs. (4), (5), and (6) into Eq. (3), a matrix equation
2



∆(c0,c1, c2, c3)T = 0 (to the leading order in ℏ) is obtained by

∆11 = 2B [∂rW(r)]2 r2,
∆12 = ∆21 = 2m2r2B+ 2B∂rW(r)Er2 + 2Bj2 + 2k2,

∆13 = −2∆31
r2 = −2Bj∂rW(r),

∆14 =
∆41
Br2 = −2k∂rW(r),

∆22 = −2BCm2r2 + 2E2r2B− 2j2BC− 2k2C, (7)

∆23 =
−2∆32
r2 = 2jBC∂rW(r) + 2EjB,

∆24 =
∆42
Br2 = 2kC∂rW(r) + 2kE,

∆33 = m2r2B+ 2BEr2∂rW(r) + r2BC [∂rW(r)]2 + k2,

∆34 =
−∆43
2B = −kj,

∆44 = −2r2BC [∂rW(r)]2 − 4BEr2∂rW(r)− 2B(m2r2 + j2).
2



The determinant of the ∆-matrix (det∆ = 0) is used to get

det∆ = 64Bm2r2
{
1
2 r

2BC [∂rW(r)]2 + BEr2∂rW(r) + B
2
(
m2r2 + j2

)
+
k2
2

}3
= 0.

(8)
• Then the Eq. (8) is solved for W(r)

W±(r) =
∫ (

−E
C ±

√
E2
C2 −

m2

C − j2
CB2r2 −

k2
Cr2

)
dr. (9)

• The above integral near the horizon (r→ r0) reduces to

W±(r) ≃
∫ (

−E
C ± E

C

)
dr. (10)

• The probability rate of the ingoing/outgoing particles only
depend on the imaginary part of the action.

• Eq. (10) has a pole at C = 0 on the horizon.
• Using the contour integration in the upper r half-plane, one
obtains

W± = iπ
(

−E
2κ|H

± E
2κ|H

)
. (11)
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From which
ImS = ImW±, (12)

that the κ|H = ∂rC/2 is the surface gravity.
• Note that the κ|H is positive quantity because the throat is an
outer trapping horizon.

• When we define the probability of incoming particles W+ to
100% such as Γabsorption ≈ e−2ImW ≈ 1.

• Consequently W− stands for the outgoing particles.
• Then we calculate the tunneling rate of the vector particles as

Γ =
Γemission
Γabsorption

= Γemission ≈ e−2ImW− = e
2πE
κ|H . (13)

• The Boltzmann factor Γ ≈ e−βE where β is the inverse
temperature is compared with the Eq. (13) to obtain the Hawking
temperature T|H of the traversable WH as

T|H = −κ|H2π , (14)
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• Surprisingly, we derive the the negative T|H that past outer
trapping horizon of the traversable WH radiate thermal
phantom energy (i.e. dark energy)

• Additionally, the radiation of phantom energy has an effect of
reduction of the size of the WH’s throat and its entropy.

• The main reason of this negativeness is the phantom energy
which is located at the throat of WH.

• Moreover, as a result of the phantom energy, the ordinary
matter can travel backward in time.

• Nonetheless, this does not create a trouble. The total entropy of
universe always increases, hence it prevents the violation of the
second law of thermodynamics.

• Moreover, in our different work, we show that the gravitino also
tunnels through WH and we calculate the tunneling rate of the
emitted gravitino particles from traversable WH.



THIN-SHELL WORMHOLES
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• Constructing WHs with non-exotic (normal matter) source is a
difficult issue in General Relativity.

• On this purpose, firstly , Visser use the thin-shell method to
construct WHs by minimizing the exotic matter on the throat of
the WHs.

2



• We need to introduce some conditions on the
energy-momentum tensor.
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Input: Two space-times

-Use the Darmois –Israel formalism and match an interior spacetime
to an exterior spacetime

-Use the Lanczos equations to find a surface energy density σ and a
surface pressure p.

-Use the energy conservation to find the equation of motion of
particle on the throat of the thin-shell wormhole

-Check the stability by using different EoS equations.

-Check Stability by using the

Outputs Thin-shell wormhole

σ < 0 with extrinsic curvature K > 0 of the throat means it required
exotic matter.
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ON A PARTICULAR THIN-SHELL WH



• The line element of a Scalar Hairy Black Hole (SHBH)
investigated by Mazharimousavi and Halilsoy is

ds2 = −f(r)dt2 + 4r2dr2
f(r) + r2dθ2, (15)

where

f(r) = r2
l2 − ur. (16)

• Here u and l are constants.

• Event horizon of the BH is located at rh = uℓ2.

• It is noted that the singularity located at r = 0.

• Firstly we take two identical copies of the SHBHs with (r ≥ a):

M± = (x|r ≥ 0),

• The manifolds are bounded by hypersurfaces M+ and M−, to get
the single manifold M = M+ +M−,
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• We glue them together at the surface of the junction

Σ± = (x|r = a).

where the boundaries Σ are given.
• The spacetime on the shell is

ds2 = −dτ 2 + a(τ)2dθ2, (17)

where τ represents the proper time .
• Setting coordinates ξi = (τ, θ), the extrinsic curvature formula
connecting the two sides of the shell is simply given by

K±ij = −n±γ
(
∂2xγ
∂ξi∂ξj

+ Γγαβ
∂xα
∂ξi

∂xβ
∂ξj

)
, (18)

where the unit normals (nγnγ = 1) are

n±γ = ±
∣∣∣∣gαβ ∂H∂xα ∂H

∂xβ

∣∣∣∣−1/2 ∂H∂xγ , (19)

with H(r) = r− a(τ).
2



• The non zero components of n±γ are calculated as

nt = ∓2aȧ, (20)

nr = ±2

√
al2(4ȧ2l2a− l2u+ a)

(l2u− a) , (21)

where the dot over a quantity denotes the derivative with
respect to τ .

• Then, the non-zero extrinsic curvature components yield

K±ττ = ∓
√
−al2(8ȧ2l2a+ 8äl2a2 − l2u+ 2a)
4a2l2

√
−4ȧ2l2a− l2u+ a

, (22)

K±θθ = ± 1
2a 3

2 l

√
4ȧ2l2a− l2u+ a. (23)

• Since Kij is not continuous around the shell, we use the Lanczos
equation:

Sij = − 1
8π
(
[Kij]− [K]gij

)
. (24)

where K is the trace of Kij, [Kij] = K+ij − K−ij .
2



• Firstly, K+ = −K− = [Kij] while [Kij] = 0.

• For the conservation of the surface stress–energy Sijj = 0.

• Sij is stress energy-momentum tensor at the junction which is
given in general by

Sij = diag(σ,−p), (25)

with the surface pressure p and the surface energy density σ.

• Due to the circular symmetry, we have

Kij =

 Kττ 0
0 Kθθ

 . (26)

Thus, from Eq.s (25) and (24) one obtains the surface pressure
and surface energy density .

• Using the cut and paste technique, we can demount the interior
regions r < a of the geometry, and links its exterior parts.
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• The energy density and pressure are

σ = − 1
8πa 3

2 l

√
4ȧ2l2a− l2u+ a, (27)

p =
1

16πa 3
2 l

(
8ȧ2l2a+ 8äl2a2 − l2u+ 2a

)
√
4ȧ2l2a− l2u+ a

. (28)

Then for the static case (a = a0), the energy and pressure
quantities reduce to

σ0 = − 1

8πa
3
2
0 l

√
−l2u+ a0, (29)

p0 =
1

16πa
3
2
0 l

(
−l2u+ 2a0

)√
−l2u+ a0

. (30)

Once σ ≥ 0 and σ + p ≥ 0 hold, then WEC is satisfied.
• It is obvious from Eq. (24) that negative energy density violates
the WEC, and consequently we are in need of the exotic matter
for constructing thin-shell WH.
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• We note that the total matter supporting the WH is given by

Ωσ =

∫ 2π

0
[ρ
√
−g]

∣∣
r=a0

dϕ = 2πa0σ(a0) = − 1

4a
1
2
0 |l|

√
−l2u+ a0.

(31)
• Stability of the WH is investigated using the linear perturbation
so that the EoS is

p = ψ(σ), (32)
where ψ(σ) is an arbitrary function of σ.

• It can be written in terms of the pressure and energy density:
d
dτ (σa) + ψ

da
dτ = −ȧσ. (33)

• From above equation, one reads

σ′ = − 1
a (2σ + ψ), (34)

and its second derivative yields

σ′′ =
2
a2 (ψ̃ + 3)(σ +

ψ

2 ). (35)
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where prime and tilde symbols denote derivative with respect to
a and σ, respectively.

• The conservation of energy for the shell is in general given by

ȧ2 + V = 0, (36)

where the effective potential V is found from Eq. (27)

V =
1
4l2 −

u
4a − 16a2σ2π2. (37)

• In fact, Eq. (36) is nothing but the equation of the oscillatory
motion in which the stability around the equilibrium point
a = a0 is conditional on V′(a0) = 0 and V′′(a0) ≥ 0.

• We finally obtain

V′′ = − 1
2a3

[
64π2a5

(
(σσ′)

′
+ 4σ′σ

a +
σ2

a2

)
+ u
]∣∣∣∣
a=a0

, (38)
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or equivalently,

V′′ = 1
2a3 {−64π

2a3
[
(2ψ′ + 3)σ2 + ψ(ψ′ + 3)σ + ψ2

]
− u}

∣∣∣∣
a=a0

.

(39)
• The equation of motion of the throat, for a small perturbation
becomes

ȧ2 + V′′(a0)
2 (a− a0)2 = 0.

• Note that for the condition of V′′(a0) ≥ 0 , TSW is stable where
the motion of the throat is oscillatory with angular frequency
ω =

√
V′′(a0)
2 .
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Some Models of EoS Supporting Thin-Shell WH

In this section, we use particular gas models (linear barotropic gas
(LBG) , chaplygin gas (CG) , generalized chaplygin gas (GCG) and
logarithmic gas (LogG) ) to explore the stability of TSW.

Stability analysis of Thin-Shell WH via the LBG

The equation of state of LBG is given by

ψ = ε0σ, (40)

and hence
ψ′(σ0) = ε0, (41)

where ε0 is a constant parameter. By changing the values of l and u
in Eq. (35), we illustrate the stability regions for TSW, in terms of ε0
and a0.

2



Figure 20: Stability Regions via the LBG

Stability analysis of Thin-Shell WH via CG

The equation of state of CG that we considered is given by

ψ = ε0(
1
σ
− 1
σ0

) + p0, (42)
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and one naturally finds

ψ′(σ0) =
−ε0
σ20

. (43)

After inserting Eq. (39) into Eq. (35), The stability regions for
thin-shell WH supported by CG is plotted in Fig.
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Figure 21: Stability Regions via the CG

2



Stability analysis of Thin-Shell WH via GCG

By using the equation of state of GCG

ψ = p0
(σ0
σ

)ε0
, (44)

and whence

ψ′(σ0) = −ε0
p0
σ0
, (45)

Substituting Eq. (41) in Eq. (35), one can illustrate the stability
regions of thin-shell WH supported by GCG as seen in Fig.
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Figure 22: Stability Regions via the GCG
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Stability analysis of Thin-Shell WH via LogG

• In our final example, the equation of state for LogG is selected
as follows (ε0, σ0,p0 are constants)

ψ = ε0 ln(
σ

σ0
) + p0, (46)

which leads to

ψ′(σ0) =
ε0
σ0
. (47)

• After inserting the above expression into Eq. (35), we show the
stability regions of thin-shell WH supported by LogG in Fig.

2



Figure 23: Stability Regions via the LogG
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• In summary, we have constructed thin-shell WH by gluing two
copies of SHBH via the cut and paste procedure.

• To this end, we have used the fact that the radius of throat must
be greater than the event horizon of the metric given: (a0 > rh).

• We have used LBG, CG, GCG, and LogG EoS to the exotic matter.
• Then, the stability analysis (V′′(a0) ≥ 0) is plotted.
• We show the stability regions in terms a0 andε0
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HAYWARD THIN-SHELL WH IN
3+1-D



• The metric of the Hayward BH is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2. (48)

with the metric function

f (r) =
(
1− 2mr2

r3 + 2ml2

)
(49)

and
dΩ2 = dθ2 + sin2 θdϕ2. (50)

• It is noted that m and l are free parameters.
• At large r, the metric function behaves as a Schwarzchild BH

lim
r→∞

f (r) → 1− 2m
r +O

(
1
r4

)
, (51)

whereas at small r becomes a de Sitter BH

lim
r→0

f (r) → 1− r2
l2 +O

(
r5
)
. (52)
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• Thin-shell is located at r = a .
• The throat must be outside of the horizon (a > rh).
• Then we paste two copies of it at the point of r = a.
• For this reason the thin-shell metric is taken as

ds2 = −dτ 2 + a (τ)2
(
dθ2 + sin2 θdϕ2

)
(53)

where τ is the proper time on the shell.
• The Einstein equations on the shell are[

Kji
]
− [K] δji = −Sji (54)

where [X] = X2 − X1,.
• It is noted that the extrinsic curvature tensor is Kji.
• Moreover, K stands for its trace.
• The surface stresses, i.e., surface energy density σ and surface
pressures Sθθ = p = Sϕϕ , are determined by the surface
stress-energy tensor Sji.

2



• The energy and pressure densities are obtained as

σ = −4a

√
f (a) + ȧ2 (55)

p = 2
(√

f (a) + ȧ2
a +

ä+ f′ (a) /2√
f (a) + ȧ2

)
. (56)

• Then they reduce to simple form in a static configuration
(a = a0)

σ0 = − 4
a0
√
f (a0) (57)

and

p0 = 2
(√

f (a0)
a0

+
f′ (a0) /2√
f (a0)

)
. (58)

• Stability of such a WH is investigated by applying a linear
perturbation with the following EoS

p = ψ (σ) (59)
2



• Moreover the energy conservation is

Sij;j = 0 (60)

which in closed form it equals to

Sij,j + SkjΓiµkj + SikΓjkj = 0 (61)

after the line element in Eq.(53) is used, it opens to
∂

∂τ

(
σa2
)
+ p ∂

∂τ

(
a2
)
= 0. (62)

• The 1-D equation of motion is

ȧ2 + V (a) = 0, (63)

in which V (a) is the potential,

V (a) = f−
(aσ
4

)4
. (64)

• The equilibrium point at a = a0 means V′ (a0) = 0 and
V′′ (a0) ≥ 0.

2



• Then it is considered that f1 (a0) = f2 (a0), one finds V0 = V′0 = 0.
• To obtain V′′ (a0) ≥ 0 we use the given p = ψ (σ) and it is found
as follows

σ′
(
=
dσ
da

)
= − 2a (σ + ψ) (65)

and
σ′′ =

2
a2 (σ + ψ) (3+ 2ψ′) , (66)

where ψ′ = dψ
dσ . After we use ψ0 = p0, finally it is found that

V′′ (a0) = f′′0 −
1
8

[
(σ0 + 2p0)2 + 2σ0 (σ0 + p0) (1+ 2ψ′ (σ0))

]
(67)
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Some models of EoS

Now we use some models of matter to analyze the effect of the
parameter of Hayward in the stability of the constructed thin-shell
WH.

Linear gas

For a LG, EoS is choosen as

ψ = η0 (σ − σ0) + p0 (68)

in which η0 is a constant and ψ′ (σ0) = η0.

2



Figure 24: Stability of Thin-Shell WH supported by LG.

Fig. shows the stability regions in terms of η0 and a0 with different
Hayward’s parameter. It is noted that the S shows the stable regions.
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Chaplygin gas

For CG, we choose the EoS as follows

ψ = η0

(
1
σ
− 1
σ0

)
+ p0 (69)

where η0 is a constant and ψ′ (σ0) = − η0
σ20
.

2



Figure 25: Stability of Thin-Shell WH supported by CG.

In Fig., the stability regions are shown in terms of η0 and a0 for
different values of ℓ. The effect of Hayward’s constant is to increase
the stability of the Thin-Shell WH.
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Generalized Chaplygin gas

The EoS of the GCG is taken as

ψ (σ) = η0

(
1
σν

− 1
σν0

)
+ p0 (70)

where ν and η0 are constants. We check the effect of parameter ν in
the stability and ψ becomes

ψ (σ) = p0
(σ0
σ

)ν
. (71)
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Figure 26: Stability of Thin-Shell WH supported by GCG.

We find ψ′ (σ0) = − p0
σ0
ν . In Fig., the stability regions are shown in

terms of ν and a0 with various values of ℓ.
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Modified Generalized Chaplygin gas

In this case, the MGCG is

ψ (σ) = ξ0 (σ − σ0)− η0

(
1
σν

− 1
σν0

)
+ p0 (72)

in which ξ0, η0 and ν are free parameters. Therefore,

ψ′ (σ0) = ξ0 + η0
η0ν

σν+10
. (73)
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Figure 27: Stability of Thin-Shell WH supported by MGCG.

To go further we set ξ0 = 1 and ν = 1. In Fig., the stability regions are
plotted in terms of η0 and a0 with various values of ℓ. The effect of
Hayward’s constant is to increase the stability of the Thin-Shell WH.
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Logarithmic gas

Lastly LogG is choosen by follows

ψ (σ) = η0 ln
∣∣∣∣ σσ0
∣∣∣∣+ p0 (74)

in which η0 is a constant. For LogG, we find that

ψ′ (σ0) =
η0
σ0
. (75)

2



Figure 28: Stability of Thin-Shell WH supported by LogG.

In Fig., the stability regions are plotted to show the effect of
Hayward’s parameter clearly. The effect of Hayward’s constant is to
increase the stability of the Thin-Shell WH.

2



• In this section we construct thin-shell WHs from the Hayward
BH.

• On the thin-shell we use the different type of EoS with the form
p = ψ (σ) and plot possible stable regions.

• We show the stable and unstable regions on the plots.
• Stability simply depends on the condition of V′′ (a0) > 0.
• We show that the parameter ℓ, which is known as Hayward
parameter has a important role.

• Moreover, for higher ℓ value the stable regions are increased.
• It is checked the small velocity perturbations for the throat.
• It is found that throat of the thin-shell WH is not stable against
such kind of perturbations.

• Hence, energy density of the WH is found negative so that we
need exotic matter.
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