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ABSTRACT 

The finite-difference method is universally used for the approximation of differential 

equations. 

In this thesis two different approaches are reviewed for the error estimation of the 

approximation of the Dirichlet problem for elliptic equations, specifically Poisson’s 

and Laplace’s equations using various finite-difference schemes. 

The first approach is based on the difference analogue of the maximum principle. 

Applying Gerschgorin’s  majorant method to the analysis , also the order of accuracy 

of the proposed scheme is obtained. 

The second approach uses the difference analogue of Green’s function and Green’s 

third identity. In order to obtain an order of approximation, Gerschgorin’s  majorant 

method is applied in this approach also.  

Both methods gave similar approximations. 

Keywords: Finite-difference, maximum principle, Gerschgorin’s majorant method, 

Green’s function, Green’s third identity. 
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ÖZ 

Sonlu-farklar metodu, yakınsak çözümlemeler için evrensel olarak kullanılan bir 

metoddur. 

Bu tezde, Poisson denklemi için Dirichlet probleminin sonlu-farklar analogu, iki 

farklı hata analizi yöntemi ile gözden geçirilmiştir.  

Birinci yöntem, maksimum ilkesine (maximum principle) bağlıdır. Gerschgorin’in 

majorant metodunun da uygulanması ile sonlu farklar metodu analiz edilmiştir. 

İkinci yöntemde ise, Green fonksiyonunun sonlu-farklar analogu, ve Green’in 3. 

denklemi analogu kullanılmıştır. Yakınsaklık derecesinin elde edilmesi için, 

Gerschgorin’in majorant metodu da kullanılmıştır. 

İki yöntem de benzer sonuçlar vermiştir. 

Anahtar kelimeler: sonlu farklar, maksimum ilkesi, Gerschgorin majorant metodu, 

Green fonksiyonu.     
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Chapter 1 

INTRODUCTION 

The finite-difference method is one of the most widely applied methods for the 

approximation of ordinary and partial differential equations.  

This discretization method can be seen to be practiced in many applications of 

science such as in aerodynamics, dynamical meteorology and oceanography, 

mathematical physics, and many more disciplines. Hence, the error estimation and 

convergence analysis of this scheme carry practical, as well as theoretical 

importance.  

An example of the application of finite-difference can also be seen in Richardson’s 

extrapolation method. This method uses the finite-difference analogue of an equation 

to improve the order of convergence, thus resulting in a more accurate method. 

Hence, finite-difference can be viewed as the initial step for the improvement of 

error estimation. 

When analysing the convergence and error estimation of the applied finite-difference 

scheme, the determination of the order of accuracy obtained by the proposed scheme 
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is essential. Moreover, with investigation of the scheme, it might be possible to 

construct schemes with increased accuracy, therefore 

the approach taken for error estimation carries a lot of importance. In this thesis, two 

different methods for the analysis of finite-difference schemes have been reviewed. 

In Chapter 2, Gerschgorin’s majorant method has been reviewed for the analysis of 

the difference analogue of the Dirichelet problem for Poisson’s equation. It was 

shown that when the 5-point scheme is applied, second order accuracy is obtained for 

the approximate solution. Moreover, when the 9-point scheme was considered, an 

analysis with the majorant method proved that the scheme had an increased accuracy 

of 
4( )O h , h  is the mesh step.   

In Chapter 3, a second approach was discussed for error analysis. First of all, the 

finite-difference analogues of problems were defied by the related finite-difference 

Green’s function. Then, with the aid of the analogue of Green’s third identity, error 

estimation was obtained. Greschgorin’s majorant method was also applied when 

considering this approach. 

Conclusion is given in Chapter 4. 

 



 

4 

 

Chapter 2 

MAJORANT METHOD 

2.1 The Maximum Principle 

2.1.1 The canonical form of finite difference equation  

The maximum principle is frequently applied when considering the difference 

analogue of elliptic equations and is reviewed in this chapter. 

 

We let    be the set of interior nodes, and the set containing all grid nodes be

    , where   the set of boundary points. Now assume that, we have a point

S   and the point S  satisfies the equation   

        
( )

( ) ( ) ( , ) ( ) ( ),
K Patt s

N S y S M S K y K Z S


                ,S             (2.1) 

for grid function ( )y S  defined on .  Here the function ( )Z S and the coefficients of 

equation (1), ( )N S  and ( , )M S K are given grid functions; and the neighborhood of 

the point S  without the point S  are denoted by ( )Patt S   . 

Suppose that, we have this condition for the coefficients ( )N S  and ( , )M S Q   

           

( )

( )  0,     ( , )  0    for all  S , ( ),  

   T( ) ( ) ( , ) 0.    
K Patt S

N S M S K K Patt S

S N S M S K





   

  






                (2.2) 
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We call the point S  boundary point of the grid   if the value of ( )y S  is known at 

this point:  

( ) ( )       for    Sy S S   ,                                         (2.3) 

Now, if we compare (2.1) and (2.3) we will see for S   we have to set formally 

( ) 1, ( , ) 0N S M S Z   and ( ) ( )Z S S . 

A point S is an interior node of the grid , if equation (2.1) satisfies conditions (2.2). 

When the boundary conditions are Neumann or Robin boundary conditions there are 

no boundary points, that is,   . It is assumed that  is a connected grid, that is, 

for fixed points 
0S   and 

*S   a continuation of neighborhoods  ( )Patt S  are 

always available. We use the arbitrary points 1 2, ,..., mS S S   of the grid such that 

                  
1 0( ),S Patt S  2 1( ),...,S Patt S  1( ),m mS Patt S 

  
* ( )mP Patt P  

with 

                              

1

*

0 1

( , ) 0,        1,2,..., 1,

( , ) 0,       M( , ) 0.

i i

m

M S S i m

M S S S S

   

 

                                    (2.4) 

The point 
*S  may be a boundary point, therefore by definition of connectedness it is 

to be understood that all points exist in at least one neighbourhood ( )Patt S  of an 

arbitrary interior point. 
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We use this notation  

ℒ
( )

( ) ( ) ( ) ( , ) ( ),
K Patt S

y S N S y S M S K y K


                         (2.5) 

Since, from equation (2.1) we have
( )

( ) ( ) ( , ) ( ) ( )
K Patt S

N S y S M S K y K Z S


  , then  

                                               ℒ ( ) ( )y S Z S .                                                 (2.6) 

From equation (2.5) we have  

ℒ
( )

( ) ( ) ( ) ( , ) ( )
K Patt S

y S N S y S M S K y K


    

               +
( ) ( )

( , ) ( ) ( , ) ( )
K Patt P K Patt S

M S K y S M S K y S
  

   

              
( )( )

( ) ( , )  = ( , ) ( )) ( )( .
K Patt K Patt SS

N S M S K y M S K y S y KS


 
  

 
   

Since, from equation the (2.2) we have
( )

( ) ( ) ( , ) 0
K Patt S

T S N S M S K


   . 

ℒ ( )y S  maybe written in the form: 

ℒ
( )

( ) ( ) ( ) ( , )( ( ) ( ))
K Patt S

y S T S y S M S K y S y K


    .                        (2.7) 

We consider the finite-difference analogue of the heat conduction equation with 

weights, where the initial-value problem is given below. 

2

2
( , )

u u
f x t

t x

 
 

 
,          (0,1)x    and       t  > 0  , 
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0 1 2( ,0) ( ),           (0, ) ( ),          (1, ) ( )u x u x u t t u t t    . 

We form the grid  
1

, ,  0,1,..., ,  ,  0,1,...hT i jx ih t jT i N h j
N


 

      
 

, and for 

this scheme we have the form  

         

 
1

1

0

, 0 0 1 2

(1 ) ,

    ( ),       ( ),      ( ).

j j
j j ji i

i i i

j j

xx i i j N j

y y
y y

T

y y y u x y t y t

  

 




    

    

                         (2.8) 

Now we can write the canonical form as equation (2.1) for these scheme, giving S  

like a point of the grid 1;   S ( , ),hk i jS x t   where the nodes  1 , ,i jK x t

 2 1 1, ,i jK x t   3 1 1, ,i jK x t   4 1, ,i jK x t  5 1,i jK x t belong to the ( )Patt S  

and the set of  boundary points   consists of the nodes  ,0ix  and  0, ,jt   1, ,jt  

where      0,1,...,i N ,    0,1,....j   Now, rewrite equation (8) by fixing 1jt t  as 

   1 1 1

1 1 1 12 2 2 2

1 2 1 2( 1) 1j j j j j j j

i i i i i i iy y y y y y
T h h T h h

   
  

   

    
          

   
. 

We can say that ( , ) 0M S K   only if 

2

2(1 )

h
T





 and 0 1  . Using the same 

reasoning, ( ) 0T S  . 

2.1.2 The Maximum Principle 

Theorem 1: [8] Assume that ( )y S  is a grid function defined on   defined above, 

( )y S  constant, and let for ( )y S  conditions (1.2) and (1.4) be satisfied. Then, if  
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ℒ ( )y S ≤ 0  on the grid , then ( )y S will not take its maximal positive at the interior 

points S  , but if ℒ ( )y S  0  on the grid , then ( )y S will not take its minimal 

negative for S  . 

Proof: Assume that ℒ ( ) 0y S   at every interior point S  . Also, suppose that the 

value of ( )y S takes its maximal positive at an interior point
0S   , thus  

0( ) maxy S


 0( )y S C > 0  . 

Now, we have to show that there exists an interior point *S at which ℒ
*( ) 0y S  , 

contradicting ℒ ( ) 0y S  .  

By equation (2.7) we have  

                                             ℒ  0 0 0 0 0

( )

( ) ( ) ( ) ( , ) ( ) ( )
K Patt S

y S T S y S M S K y S y K


   . 

Since ( )y S is a maximal positive value at the interior point
0S  . So, 0( ) 0y S   and

0( ) ( )y S y K for all 0( )K Patt S , from condition (2.2) we have 0( ) 0T S  , then

0 0( ) ( )T S y S  0 and  

ℒ  0 0 0 0 0 0 0

( )

( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) 0
K Patt S

y S T S y S B S K y S y K T S y S


     . 
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Hence, we have ℒ ( ) 0y S  . However, we assumed that ℒ ( ) 0y S   at every interior 

point S  . So, clearly it is correct only for the case ℒ 0( ) 0y S 
 

By equation (2.7) it will be right only if 0( ) 0T S   and 0( ) ( )y K y S  for all  

0( )K Patt S  . 

Now, we take the point 
1 0( )S Patt S  at which

1 0 0( ) ( )y S y S C  . Since the grid is 

connected and ( )y S  constant on the grid , so that the connected grid has a 

sequence of points 1 2, ,..., ,mS S S S , and condition (2.4) holds for those points such that   

0 0 0

but

                       ( ) ( ) ,            ( )

                       S ( ),              M( , ) 0.

m

m m

y S y S C y S

Pat S

C

t S S

 

 



 

                     

 

   ℒ  ( ) ( ) ( ) ( , ) ( ) ( )m m m m my S T S y S M S S y S y S    

then  

               ℒ ( )my S  0( , ) ( ) ( ) 0mM S S y S y S   . 

Meaning 
*

mS S  we got contradiction. This proves that the first part of the theorem 

is valid. The remainder of the theorem will be proved with a similar method by 

replacing ( )y S  to ( )y S  . 



 

10 

 

Corollary 1: [8] Assume that the grid function ( )y S is defined on   and let ( )y S  

satisfies the conditions (2.2) and (2.4). If ( ) 0 on y S  and                                         

ℒ ( ) 0  for  Sy S   then ( ) 0 on Sy S w    , But if ( ) 0 on Sy S    and           

ℒ ( ) 0 on Sy S   , then ( ) 0 for Sy S     . 

Proof:  Assume that ( ) 0y S   for S  and ℒ ( ) 0 y S  for S  .  Let at least one 

inner point belong to , that is 0( )y S  < 0  for 0S  .  Then ( )y S  should attain the 

minimal negative value on , but by Theorem 1 it is impossible, because ( )y S 

constant on  0( ) ( ) 00,  on y S y S  . Thus, we have proved the first part of the 

corollary. The second part it will be proved in a similar method. 

Corollary 2: [8] The homogenous equation (2.1) subject to the boundary condition   

                            ℒ ( ) 0     on   Sy S   ,             ( ) 0    on    Sy S       (2.9) 

 has the unique solution ( )y S  0 . 

Proof: It is straight forward affirm that ( )y S  0  satisfies equation (2.9). In addition, 

for contradiction, suppose that ( )y S  0 . If at least for one point ( ) 0y S  , we have   

ℒ ( ) 0  on  y S   and ( ) 0  on  y S  then from corollary 1 ( ) 0  on  y S    .    At 

the same time we have ( ) 0  on  y S    . But it is impossible when ( ) 0y S  . So, 

we have proved Corollary 2.  

Corollary 3: [8] problem (2.1)-(2.4) possesses only one solution. 
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Theorem 2: [8](comparison theorem) suppose that ( )y S  satisfy problem (2.1)-(2.4) 

and assume that ( )Y S  satisfy the following problem: 

ℒ ( ) ( ),           S    (    ) ( ),         SY S SY S Z S      ,                   (2.10) 

  then the conditions 

( ) ( ),          S            ( ) ( ),          S  Z S Z S S S                       (2.11)        

provide validity to the inequality  

  ( ) ( )      for       Sy S Y S                     (2.12) 

Proof: since ℒ ( ) ( ) 0Y S Z S   on the grid function , and ( ) ( )S S   on the 

boundary , then by Corollary 1 we can say that ( ) 0Y S   on  . for functions 

( ) ( ) ( )u S Y S y S   and ( ) ( ) ( )v S Y S y S   we have the equations 

ℒ ( ) ( )uu S Z S   ℒ  ( ) ( ) 0Y S y S Z Z    for S  ,and  ( ) 0u Y y        

on the boundary , then by corollary 1 we have 0u  or y Y  on  the 

equations, 

ℒ ( ) ( )vv S Z S   ( ) ( ) 0Y S y S Z Z      

 on the grid function  , and ( ) 0v Y y       on the boundary  , so by 

corollary 1we have 0v  or y Y  on   . Now, we have the inequality  

Y y Y    or ( ) ( )y S Y S  on  . ( )Y S  is the majorant of the solution of (1.1)-

(1.3).  

Corollary 4: [8] For ( )y S , which is defined as the solution of 
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ℒ ( ) 0      for      Sy S   ,        ( ) ( )      for     Sy S S                    (2.13)   

we have the estimate   

max ( )
C CS

y S y
 


 

                                             (2.14) 

where, 

max ( )
C S

S
 

 


  . 

Proof: Assume the majorant ( )Y S  satisfies ℒ 0Y   on the grid nodes   and 

0
C

Y


   on the boundary . Then by Corollary 1 ( ) 0Y S   for S    and at 

some point of the grid ( )Y S  takes its maximum. But if ( )Y S const  by Theorem 1 

this point should be none of the interior points and, therefore,  

max ( ) max ( )
C CP w P

Y Y S Y S
 


  

   . 

If ( )Y S const , then ( )
C

Y S


 . For both cases 
C C

Y


 . 

Then we can say that the inequality 
C C

y Y   gives estimate (2.14). 

2.1.3 Error Analysis of Nonhomogeneous Equations 

We consider the solution of problem (2.1)-(2.3) in the form     

*y y w   , 

where * *( )y y S  satisfies 

ℒ *( ) 0    on   S ,     ( ) ( )    on  Sy S y S S      .                             (2.15) 
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We also have  ( )w w S  as a solution to the nonhomogeneous equation with 

homogeneous boundary condition            

ℒ ( ) ( )    for   S ,    ( ) 0    for    Sw S Z S w S                            (2.16) 

In the previous Corollary we estimated the value of the function *( )y S  by equation 

(2.14) and so we only need to consider the estimation of ( )w S .  

Theorem 3: [8] Assume that  ( ) 0T S   on . Then the solution of problem (2.16) is 

estimated by the inequality  

C
C

Z
w

T
                                                                  (2.17) 

Proof: Suppose that a majorant ( )Y S  is defined as 

ℒ ( ) ( )      on   ,    Y(S) 0     on    ,Y S Z S     

then by Corollary 1  ( ) 0   on     Y S    . 

The function ( )Y S  obtain the maximum at a node 0S  . As far as 0( )
C

Y S Y  is 

concerned, the equation 

ℒ 0( )Y P    
0

0 0 0 0 0

( )

( ) ( ) ( , )( ( ) ( )) ( )
K Patt S

T S Y S M S K Y S Y K Z S


    

Since, 0( )Y S  is a maximum so,  0( ) ( ) 0Y S Y K   then we can say that  

0 0 0( ) ( ) ( )T S Y S Z S  
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Now, we have 0( ) 0T S  , then 0

0

0

( )
( )

( ) c

Z S Z
Y S

T S T
  , (Y  

0( ) max ( )
c

Y S Y P Y
 

    

Since by comparison Theorem, we have 0 0( ) ( )
C

C

Z
w P Y P Y

T
    , then  

C
C

Z
w

T
  . 

 

Remark:  Estimate (2.17) is still appropriate for the equation (2.16) provided that 

instead of (2.2) other conditions 

( ) 0,       ( , ) 0,N S M S K   

( )

                 T( ) ( ) ( , ) 0
K Patt S

S N S M S K


    

hold for 
C

C

Z
w

T
 . 

Indeed, assume that  ( ) 0w S    is a maximal value at a point 0S  , so that  

0

0 0 0 0

( )

( )   ( ) ( , ) ( ) ( )
K Patt S

N S w S M S K w K Z S


    

                           
0

0 0 0

( )

( , )    ( ) ( )
K Patt S

B S K w S Z S


    . 

We have now 

0

0 0 0

( )

( ) ( ) ( , )  
K Patt S

w S N S M S K


 
  

 
 0( )Z P . 
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Since, 0( )T S   
0

0 0

( )

( ) ( , ) 0 
K Patt S

N S M S K


   then, 

0

0 0 0 0

0

( )
( ) ( )   ( ) ,            ( )      

( )C
C

Z S Z
T S w S Z S w w S

T S T
     . 

Theorem 4: [8] Suppose that Let h h h    be the set of regular and boundary 

points, the set of irregular points be denoted by *

h , and o

h  be the set of all strictly 

interior points: * o

h h h    . And let the conditions 

                    *( ) 0   on        and         T( ) 0    on    oT S S        

hold, then for a solution of problem (2.16) with  

                       ( ) 0     on      and       Z( )oZ S S   *0     on    . 

we have the estimate 

*

    
C

C

Z
v

T
 ,                                                    (2.18) 

where,  *
*

max ( )
C s

z z S


 . 

Proof: Assume that the function ( )Y S is a majorant and ℒ ( )  ( )Y S Z S  for  S   

and ( ) 0Y S   for P  , ( ) 0 Y S  .  The function ( )Y S at some point of the finite set

w  must take the maximum, but it does not enter the boundary, because ( ) 0Y S   

for S    . Also, it must not belong to the grid o  because the connectedness of 

o  and the maximum principle. So that, 
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* 0max ( )  max ( )  ( )

S S
Y S Y S Y S

  
   

where 0S  is a point belonging to the set * . 

By the first assumption, 0( ) 0T S  . By analogy to the proof of Theorem 3 we get 

inequality (2.18). The Remark given for Theorem 3 also applies by analogy to this 

case. 

2.2 Analaysis of   The   Dirichlet   Difference Problem 

2.2.1 Approximation of The Dirichlet Problem 

Consider               
2 2

2 2

1 2

( ),
u u

u F x
x x

 
    

 
  

where 1 2( , )x x x G  ,  G  is a 2-dimensional finite domain with the boundary .  

Let h h h    be the set of regular and boundary points, the set of irregular points 

be denoted by *

h , and o

h  be the set of all strictly interior points: * o

h h h    . 

So, at the regular points we have  

( ) 0 y x                                                                       (2.19) 

at the irregular points we have  

* ( ) 0 y x                                                                       (2.20) 

and at the boundary points we have  

( ),         on    y x  .                                                            (2.21) 
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Now, we obtain a uniform estimate of the approximate solution of problem (2.19)-

(2.21) with Dirichlet boundary conditions:

*

                ( )               at the regular ,

               ( )              at the irregular points,                                                         (2.

poin

22)

 

t

            

s

 

y x

y x





  

  

     y = ( )                 at 

    

th

  

e bo

   

 

undary.

        

x

Where,           
1 1 2 2

2

1 2 1 2

1

,           and  ,        x x x xy y y y y y y y


           , 

                     
1 1 2 2

2
* * * * * *

1 2 1 2

1

,              and   x x x xy y y y y y y y


           , 

 *
( ) ( )1 y h y y y h

y
h h h

 


  

 

 

    
   

 
 

 ,       1,2   . 

Leading to the alternative form  

 ( ),    for    s ,      y ( )    for    sh hy x x         .                                (2.23) 

In conformity with given problem (1.22) can be defined as   

( )

( ) ( ) ( , ) ( ) ( ),     ,       y ( )   for  h h

Patt x

N x y x M x y Z x x x x


    


         (2.24)    

where 

0,     M( , ) 0    for all    and   N( ) ( )  hx tx x Pa t s       

( )

 T( ) M( ) 0( , )
Patt x

x N xx





  . 

Let’s represent a solution of the sum of two functions  
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                                                      y y y  , 

where y  and y  are two convenient functions of the problems 

0     for     ,         on    h hy x y                                        (2.25) 

   for     ,     0   on    h hy x y       .                             (2.26) 

So, by the corollary of the comparison theorem we have estimation of (2.25) 

comparable to 

C C
y



  .                                                   (2.27) 

We decomposed the right-hand side    of problem (2.26) as  

*o    , 

where *    and    0o     are defined at the strictly interior points o

hx  , and 

* 0   and    o     at the near-boundary points 
*

hx   we have                  

                                                           y u k    

where u  and k  are two convenient functions of the problems 

    on   ,     0    on   o

h hu u                                          (2.28) 

*     on    ,     0    on   h hk k                                        (2.29) 

Now we evaluate individually the functions ( )u x  and ( )k x . With the intention to 

estimate ( )u x , it’s needful to have a majorant ( )Y x . Choosing the domain G so that 

the origin belongs to it, we construct this function as 
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2 2 2 2

1

( ) ( ),                
p

Y x L R r r x


     , 

where R  is the radius of a p-dimensional ball, or a circle when 2p  , centered at 

the origin, and the whole of G is contained in it, and L>0 is a constant that can be 

chosen later.  

By using 
2 0    for     x       

2 2 2 2 2 2
2

2

( ) 2( ) ( )
0

LR LR LR
LR

h




 
    

2 2 2
2

2

( ) 2 ( )
2

x h x x h
x

h

    
 



   
    , 

2 2 2 2
* 2 1 ( ) ( )

2    ,                =
2

h hx h x x x h
x

h h h h

       
  

  

 
 

 

     
    

  

. 

We determine that  

2 2 2

1

2         for   
p

o

hY LR Lr L x pL x 





           , 

* *2                    for   hY p L x      , 

where 
1 *

1

 .   Here 1 if the point 
p

hp x 


   



    is regular with respect to x . 

Hence, the function Y satisfies the problem  

                      
2 2( ),            Y( ) ( ) 0     for   ,hY F x x L R r x         
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where, *( ) 2     on      and  ( ) 2     on   o

h hF x pL F x p L     . Comparison with 

problem (2.28), where  oF   , that is, 
*0    on   hF  , and 0    for    hu x   , 

shows that ( ) ( ) ( )oF x F x x   with the constant L chosen as 
1

2

o

C
L

p
 .  

Now by the comparison theorem we have
*( ) ( ) 0    for    hF x F x x    , hence 

providing the inequality
C C

u Y . From the expression of Y  we can say that

2

C
Y LR . So, the estimation of a solution of the function ( )u x for problem (2.28) 

comparable to  

2 2

2 2
oC C

o

C

R R
u

p p
                                                            (2.30) 

is appropriate in the following norm max ( ) o
o
h

C
x

x


 


 . 

Now we are going to find the estimation of the function ( )k x . First, for problem 

(2.29) 

*

2

1
( )     for     ,      where    max     hT x x h h

h



                                          (2.31) 

( ) 0            o

hT x on   .                                           (2.32) 

After that, we consider the problem (2.29) where x  belong to the near-boundary 

point 
*

h   
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( )

* *

( ) ( ) ( , ) ( ) ( ),

( ) ( )   for     and     0   for   

Patt x

h h

N x k x M x k F x

F x x x k x



 

  



 

   


                         (2.33) 

If one of the points 0 0,   say  ( )x h


      , happens to be a boundary point, then 

0( ) 0k    and 0 does not belong to the ( )Patt x . 

Here ( )T x is defined as 

0

( )

( ) ( ) ( , )
Patt x

T x N x M x

 









    

                                                   
0 0

( )

( ) ( , ) ( , ) ( , )
Patt x

N x M x M x M x


  


 
    

 
  , 

since for the Laplace equation we have
( )

( ) ( , )
Patt x

N x M x





  , we can form the 

inequality 

( ) ( , )T x M x x h
   > 0  . 

If a point x  is near-boundary node not only with respect to of x , but also in other 

directions, then sum of the equation (2.33) contains no other terms for  

1 2, ,..., k     then  

0 1( ) ( , ) ( , )  . . . + ( , )kT x M x M x M x      > 0  . 
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Suppose that the point 
*

hx x  is an irregular near-boundary point only in some 

direction x  and 0 ( ) ,hx h


   
 
( ) hx h 


   . By the equation  

* *

1

( ),
p

k k x

 

 








      

where 

                                        x xy y
    ,  

                                        *
( ) ( )1 k h k k k h

k
h h h

 


 

 



    
   

 
 

  

                                                 
( )1 k k hk

h h h



 





  
   

 
 

. 

so we have  

                                       
2 2

1

1 1 2
( )  ,

p

N x
h h h h

 

   





     

                                       
2 2

( ) 1

1 2
( , )  ,

p

Patt x

M x
h h

 

  





 

    

                                        
2

1 1
( )T x

h h h  

   . 

If a point x  is irregular in some directions and a regular point only with respect to x

, then 

                                                            
2 2

1 1
( )T x

h h

   . 
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From Theorem 4 of section 1 to evaluate solution of (2.26) we have  

*

*
2 *

C C
C

k h
T


  .                                             (2.34) 

Combining the estimates (2.27), (2.30), (2.34) we have .
C C C C

y y u k    

2.2.2 The Uniform Convergence And The order of Accuracy of a Difference 

Scheme 

In this section we study the convergence and accuracy of scheme (2.23). We start by 

finding the error between difference and exact solution for (2.22), and assume that  

                                        z w w   , 

where w   is a difference solution of (2.22) and we have ( )w w x  as an exact 

solution of (2.22). Putting z w w   into (2.22) or (2.23) yields  

( )   on     and        z 0    on    z x                                  (2.35) 

where ( ) ( )x w x    , and 

2 2( ) ( ) ( )x O h O h   ,                for regular points, 

( ) (1)x O  ,                                 for irregular points, 

or, more particularly,  

2

4 24

12 12

M h M
p h   ,      for regular points  

    2pM  ,                               for irregular points  

where  
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1   

2
2 2

1
1

max ,           =2, 3, 4, . . . ,      ,        max  
p

p

k kx G p

w
M k h h h h

x


 


 
  




  


 . 

So 

0
*

2
2               

2C C C

R
z h

p
    . 

Putting the estimate of   at the irregular point and regular point s into the above 

inequality results in;  

2
2

4 2
24C C

R
z w w M pM h

 
    

 
.                                    (2.36) 

Theorem 2: [7]  Assume that ( )w x has continuous fourth derivatives in the space G  

, 
4( ) ( )w x C G where G G   then the difference scheme is of second-order 

accuracy. 

2.3 Higher-Accurate Schemes 

2.3.1 The Dirichlet Difference Problem with  Higher Accuracy 

On the bases of the 5-point scheme, we can construct operators giving an error 

approximation of 
4

( )O h  or 
6

( )O h  for a solution within the square (cube) grid. 

Consider ( )w w x satisfying the equation 

                                 

2

2
1

( )
p w

w f x
x 


   


 .                                                         (2.37) 
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For p=2 (2D case) we have   

2

1 2 1 2 2
( ) ,                   L ,        =1,2

w
u L L w L w L w w

x







     


 , 

by appealing to the difference operator  

1 2 1 2( )  ,          ,      =1,2x xu u u u u u
            , 

let ( )w w x  possess all necessary derivatives. So that  

                   
2 2

42 21 2
1 2 ( )

12 12

h h
w Lw L w L w O h      .                                    (2.38) 

By the equation 1 2 ( )L w L w f x    we obtain   

2 2

1 1 1 2 2 2 1 2,              ,         L w L f L L w L w L f L L w       

in order that  

            
2 2 2 2

41 2 1 2
1 2 1 2 ( )

12 12 12

h h h h
w Lw L f L f L L w O h


                                     (2.39) 

 

 

 

 

 

 

 

 

 

2 7 6 

0 
3 1 

4 8 5  

Figure 1: 9-points stencil 
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We substitute here f  in place of Lw  and change 1 2L L w  by the difference operator,  

                                      
1 1 2 21 2 x x x xw w   ~

4

1 2 2 2

1 2

w
L L w

x x



 

. 

This operator is defined on the 9 -point pattern given in Figure1 and we have 1 2w  , 

as follows, 

        
2

1 2 2 1 2 1 2
1 2 1 2

2

( , ) 2 ( , ) ( , )w x x h w x x w x x h
w

h

    
     

 
 

                     1 1 2 2 1 2 22 2

1 2

1
( , ) 2 ( , )w x h x h w x x h

h h
       

                    1 1 2 2 1 2( , )  4 ( , )w x h x h w x x     

                    1 1 2 1 1 2 2 1 2 22 ( , )  w( , ) 2 ( , )w x h x x h x h w x x h         

                    1 1 2 1 1 2 22 ( , )  w( , )w x h x x h x h       

 is required within the estimation of the error of approximation to 1 2 1 2w L L w    

through advantage of the good-established expansion     

2

( ) 2 ( ) ( )
( ),      ,       1xx

r x h r x r x h
r r r x h

h
   

   
      .     (2.40) 

 Suppose that 2( )r x C  ,x h x h  , so that  
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2

(4) * * * *( ) ( ),           ,       1,                     (2.41)
12

xx

h
r r r x r x h           

4( )r x C   ,x h x h  . By using pertaining 1x  to be fixed we could have    

2 4

2
2 2 1 2 1 2 2 2 2 2 24

2

( , ) ( , ),           ,        1.
12

h r
r L r x x x x h

x
   


     


                 

2 4

2
1 2 1 2 1 2 1 2 1 1 24

2

( , ) ( , )  ( , )
12

h w
w x x L w x x x

x



     


. 

Applying equation (1.41) with 2r L w  and 1x x  to the first summand yields  

      
2 4

* * * *1
1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 14

1

( , ) ( , )  ( , ),       ,           1
12

h w
L w x x L L w x x x x h

x
   


      


      

by the similar method for the second summand with respect to equation (2.39): 

2 24 6

2 2
1 1 2 1 1 2 1 1 1 1 14 2 4

2 1 2

 ( , )  ( , ),          ,      1
12 12

h hw w
x x h

x x x
     

 
     

  
 . 

What must be done is to bring together the outcomes acquired: 

22 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , ) ( , ) ( , ) ( ) ( ) ( )L L w x x w x x L L w x x O h O h O h           . 

Substituting into equation (2.39) the difference operator 1 2w   in to place of 1 2L L w ,

2

1 2 1 2 ( )L L w w O h    , 

and ( )f x  in to place of Lw , we finally obtain   
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2 2 2 2
41 2 1 2

1 2 1 2

2 2 2 2
41 2 1 2

1 2 1 2

( )
12 12 12

     ( )
12 12 12

h h h h
w Lw w L f L f O h

h h h h
f L f L f w O h


       

  
        

 

                               

(2.42) 

Since, the equation  

2 2

1 2
1 2

2 2

1 2
1 2

,       ,                       
12

    = ,
12 12

h h
y y y y

h h
f L f L f






         

 

                        (2.43) 

provides an approximation of order 4 for a solution ( )w w x  of Poisson’s equation 

(2.37). In fact, equation (2.42) gives  

         
4

1 2( ),                   w u Lw f O h L L L             . 

The operator   formed using the nodes in Figure 1 1 1 1 2 2 2( , );x m h x m h 
 

1 2, 1,0,1m m   , and used in  (2.43) is represented by  
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1 1

2 2

1 2 1 2

1 2

( 1 ) ( 1 )

2 2 2 2

1 2 1 2

( 1 ) ( 1 )

2 2

2 1

( 1 , 1 ) ( 1 , 1 )

2 2

1 2

( 1 , 1 ) ( 1

5 1 1 1 5 1

3 6

1 5 1
                     

6

1 1 1
                    

12

                    

w w w
h h h h

w w
h h

w w
h h

w w

 

 

   

  

   
       

   

 
    

 

 
    

 

  1 2, 1 )
,



                                     (2.44) 

where, 1 1 1 2( 1 ) ( 1 ) ( 1 , 1 )

1 1 2 1 1 2 1 1 2 2( , ),  w ( , ),  w ( , )w w x h x w x h x w x h x h   
       . 

When an equidistant grid is considered in all directions 1 2( )h h h   the equation is 

obtained as: 

21 2 3 4 5 6 7 8
0

4( ) 3

20 10

w w w w w w w w
w h 

      
   

(See Figure 1). 

To avoid exhaustive computations, we put 1  f in place of 1 L f  and  2  f  in place 

of 2L f into the equation of   and replace   by 
4

( )O h , as 
4

( )w O h     , 

so that 
2 2

1 2
1 2

12 12

h h
f f f       . 
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Chapter 3 

GREEN FUNCTION METHOD 

3.1 Second Order Estimates 

During this Chapter we will be able to consider the approximation of the following 

problem. 

2 2

1 2 1 2 1 22 2

1 2

1 2 1 2 1 2

( , ) ( , )    for       ( , )

  w( , ) ( , )      for        ( , ) .

w w
w x x F x x x x

x x

x x f x x x x





 
    

 

 

                    (3.1) 

Suppose that  and are defined the same as in Chapter 1. We form an 
1 2( , )x x  plane 

with a square grid, a distance h  apart in both x and y directions. These are called 

“mesh” nodes. Assume that the set of all those mesh nodes in   which are regular 

are in 
h . Those nodes in   which are not in h are denoted by

*

h . The remainder 

of the nodes forms the set h . 

For any node S  belonging to 
*

h h h     neighboring nodes ( )N S  are defined the 

same as in Chapter 1. 
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If 
1 2( , )w x x   is any grid function defined on 

*

h h h    satisfying the finite 

difference operator h , then for 
1 2( , )x x  h  

1 2 1 22

1 2

1 2 1 2 1 2

( , ) ( , )
( , )                        (3.2)

( , ) ( , ) 4 ( , )
h

w x h x w x x h
w x x h

w x h x w x x h w x x


    

   
     

        

which is the second order approximation of   for the function 

1 2( , )w x x 
4  in C  . More precisely, from equation (3.1) and (3.2) we have  

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

( , ) ( , ) ( , ) ( , )
( , ) ( , )

4 ( , ) ( , )
h

w x h x w x x h w x h x w x x h
w x x w x x

w x x F x x

      
  

 
 

By Taylor’s formula for 
1 2( , )w x x 

4C   

 
42 2 3 3 4

1 2
1 2 1 2 2 3 4

1 1 1 1

( , )
( , )) ( , )

2 6 24

w xw h w h w h
w x h x w x x h

x x x x

  
     

   
,  

                                      where 1 1 1( , )x x h    ,           

 
42 2 3 3 4

2 2
1 2 1 2 2 3 4

1 1 1 1

( , )
( , ) ( , )

2 6 24

w xw h w h w h
w x h x w x x h

x x x x

  
     

   
,  

                                    where 2 1 1( , )x h x   ,      

42 2 3 3 4

1 1
1 2 1 2 2 3 4

2 2 2

( , )
( , ) ( , )

2 6 24

w xw h w h w h
w x x h w x x h

y x x x

  
     

   
,  

                                    where 1 2 2( , )x x h   ,      

42 2 3 3 4

1 2
1 2 1 2 2 3 4

2 2 2 2

( , )
( , ) ( , )

2 6 24

w xw h w h w h
w x x h w x x h

x x x x

  
     

   
, 

                                       where 2 2 2( , )x h x   , so that 
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2 2

1 2 1 2 1 22 2

1 2

4 4 4 42

1 2 2 2 1 1 1 2

4 4 4 4

1 1 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
                                   

24

h

w w
w x x w x x Fw x x

x x

w x w x w x w xh

x x x x

   

   
       

   

    
    

    

 

since, from equation (3.1) we have 

2 2

1 22 2
( , ) 0

w w
F x x

x y

  
   

  
 , so that 

 
4 42

2 1
1 2 1 2 4 4

1 2

( , ) ( , )
( , ) ( , )

12
h

w x w xh
w x x w x x

x x

   
    

  
, 

where, 1 2( , )    and 1 2( , )    

since 4w C , let 
4 4

2 1
4 4 4

1 2

( , ) ( , )
max max ,  max

w x w x
M

x x

    
  

   
, so that 

2

1 2 1 2 4 1 2( , ) ( , ) ,            for   ( , )
6

h h

h
w x x w x x M x x     .              (3.3) 

At nodes of 
*,h h  is defined for any point

*

1 2( , ) hx x   as 

2

1 2 1 2 1 2

1 2 1 2 1 2

1 1
( , ) 2 ( , ) ( , )

1 ( 1)

1 1 1 1
                  ( , ) ( , ) ( , )

1 ( 1)

hw x x h w x h x w x h x

w x x h w x x h w x x


  


    


   

       
    

    
          

      

 (3.4)         

h  returns to the form (3.2) when 1   . We note that when h  is defined as 

(3.5), it approximates  to   first order accuracy for
3

1 2( , )  in w x x C  , i.e. 
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3 3

2 1
1 2 1 2 3 3

1 2

( , ) ( , )
 ( , )  ( , )

3
h

w x w xh
w x x w x x

x x

   
     

  
, 

 with, 1 1x h x h    and,  22 xx h h   , 

since 3w C , let us have 
3 3

2 1
3 3 3

1 2

( , ) ( , )
max max ,  max

w x w x
M

x x

    
  

   
, so that  

3
1 2 1 2

2
 ( , )  ( , )

3
h

M h
w x x w x x   .                                   (3.5) 

We recall the finite difference analogue of equation (3.1),   

*

1 2 1 2 1 2

1 2 1 2 1 2

                          ( , ) ( , ),    for     ( , ) ,

                            W( , ) ( , ),      for   ( , ) .

h h h

h

W x x F x x x x

x x f x x x x

 



   

 
                     (3.6) 

This gives a system of linear equations for the determination of the grid function

1 2( , )W x x . The solution for (3.6) exists and is unique.  

We will now show that  

*( ) ( ) ( ),   for     h h hP w P W P P        , 

where L   is a constant independent of  and P h , satisfies the inequality  

2

M
Lh  ,                                                           (3.7)  

where 

 
Q

sup  ( )M
S

S


 
 

                                                         (3.8) 
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for each function   defined on a subset Q  of  . Now we define the finite difference 

analogue of the Green’s function, ( , )hG S K  in the form 

2 *

, ( , ) ( , ) ,      for   S

      ( , ) ( , ),             for       S ,

h S h h h

h h

G S K S K h

G S K S K

  

 

    

 
                            (3.9) 

where  
*

h h hK      . 

Here  

1,       S
( , )

0,      S .

K
S K

K



 


                                             (3.10) 

Lemma 2.1 (maximum principle): [2] 

Assume that the function ( )R S is any grid function defined on
*

h h h    and 

0 ( )hR S  on h hC  , then ( )R S  will take its maximal on h  . 

Lemma 2.2 (Green’s third identity): [2] 

Suppose that the function ( )R S  is any grid function defined on 
*

h h h    , so that 

 
*

2( ) ( , ) ( ) ( , ) ( )
hh h

h h h

KK

R S h G S K R K G S K R S
   

                     (3.11) 

where 
*

h h hS      . 

Proof: we can prove it by the finite difference analogue of Green’s second identity.  
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Assume that ( )Z S is the RHS of equation (3.11), with the use of the Green’s 

function ( , )hG S K , we obtain 

*( ) ( )    on     h h h hZ S R S                                       (3.12)                        

( ) ( )      on    hZ S R S  .                                               (3.13)                          

So, from the uniqueness of the solution of equation (3.6), we can say that

( ) ( )Z S R S . 

 

Lemma 2.3: [2] 

*0         for        ( , )h h h hKG S K      .                             (3.14)                                 

Proof: Apply the maximum principle (lemma 2.1) to ( , )hG S K  for the randomly 

selected but fixed
*

h h hK     . 

 

Lemma 2.4: [2] 

*

*1      for   ( , )  S

h

h

K

h h hG S K


  


   .                   (3.15) 
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Proof: suppose that the mesh function ( )Z S  is given by  

*1,      for   ,
( )

0,     for   .

h h

h

K
Z K

K

 



  
 


                             (3.16) 

Then, ( ) 0,  where Kh hZ K    . By the definition of h  on 
*

h  we can obtain the 

inequality 
2( )hZ K h  . 

Now, by equations (3.11) and (3.16) it follows that for  
*

h hK     

 
*

2 ( , ) ( ) 1

h

h h

K

h G S K Z K


   

Since, 
2

( )
1

hZ K
h

   . Then 
*

) 1( ,

hK

hG S K


 , 

where, hS   the inequality (3.15) is satisfied. 

Lemma 2.5: [2] Assume that D   is the diameter of the smallest circle containing   

then  

*

2
2 *( , )     for         S

16
h h

h h h h

K

D
h G S K

 

  
 

    .                   (3.17) 

Proof: suppose that C  is the center of the  circle about   of diameter D . 
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Assume that
2

*( )
( )   for  S    where  ( )

4
h h h

S
Z S S


        is the Euclidean 

distance from C to S , so that   

                                          
*( ) 1,    for     Sh h hZ S      . 

Now define the grid function   

                                          
*

2( ) ( , )

h h

h

K

R S h G S K
  

   , 

by equation (3.9) we have  

                                       
*( ) 1,    for     Sh h hR S        

                                      ( ) 0,       for    S hR S   . 

Hence,   *( ) ( ) ( ) ( ) 0  for  Sh h h h hR S Z S R S Z S          ,                                

and 

2

( ) ( )   for  S
16

h

D
R S Z S    . 

By Lemma 2.1,in view that, 0Z  , it follows that   

   
*

2
2 *( ) ( , ) ,          for     S

16
h h

h h h h

K

D
R P h G S K

 

  
 

     . 

Theorem1: [2] If 
1 2( , )W x x and 

1 2( , )w x x  are the solutions of equations (3.6) and 

(3.1), respectively, then the inequality  
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2 34 32

96 3M

M M
h h  .                              (3.19) 

holds for the truncation error ( ) ( ) ( )S w S W S   . 

Proof:  Since ( ) 0S   for the boundary h  by Lemma 2.2 we have  

 
*

2( ) ( , ) ( )

h h

h h

K

S h G S K K
 

 
 

  .               (3.20) 

By equation (3.1) and (3.6) we have  

( ) ( ) ( )h hK w K w K    .                         (3.21) 

substituting equation (3.21) to (3.20) and using inequality (3.3) and (3.5) we have  

                        
*

2
2 334

2
( , )( ( , )

6 3
)

h h

h h

K K

Mh M
h G S K G S KS h

 


 

   . 

Hence from Lemmas (3.4) and (3.5), we  get equation (3.20). 
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Chapter 4 

CONCLUSION 

In this thesis, the use of the finite-difference method has been discussed for the 

approximation of elliptic equations. 

Section 2.1 in Chapter 2 has been devoted to the statement of the difference analogue 

of the maximum principle, and Gerschgorin's majorant method. With the review of 

these, the necessary tools were provided for the convergence analysis and error 

estimation for the finite-difference analogues of various problems. 

Gerschgorin's majorant method has been applied in Section 2.2 for the error 

estimation of the difference analogue of Poisson's equation, with Dirichlet boundary 

conditions. It has been shown that with the use of the 5-point scheme it is possible to 

obtain an accuracy of 
2( )O h , where h   is mesh step. 

Furthermore the applications of different schemes have been provided, where it is 

possible to obtain higher accuracy. 

In Chapter 3, another approach for error estimation was reviewed. First of all, a 

finite-difference Green's function for the Dirichlet problem for Poisson's equation 
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was introduced. Using this, an analogue of Green's identity has been obtained, along 

with Gerschgorin's majorant method, the error analysis was carried out. This method 

also provided second-error accuracy when the 5-point scheme was applied. 

Both of these methods can be generalized to mixed boundary conditions.        
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