
A Connectivity Preservation Scheme for Randomly
Deployed Wireless Sensor Networks

Nivine Mahmoud Samarji

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University
July 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Serhan Çiftçioğlu
Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işık Aybay
 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Assoc. Prof. Dr. Muhammed Salamah
 Supervisor

Examining Committee

1. Assoc. Prof. Dr.Muhammed Salamah

2. Asst. Prof. Dr. Adnan Acan

3. Asst. Prof. Dr. Gurcu Oz

 iii

ABSTRACT

A wireless sensor network (WSN) consists of spatially distributed low-power sensors

for the purpose of monitoring an area of interest such as battle field or environmental

conditions such as weather, earthquakes, pressure, etc. These sensor nodes monitor

the field, sense and process the monitored data, then deliver the processed data to the

sink in a multi-hop fashion. To achieve communication between nodes, network

connectivity should be maintained, which is not always the case especially when

sensor nodes are randomly deployed. This will result in the appearance of

unreachable nodes or isolated nodes. In most of these cases, network will be

partitioned and disconnected. Therefore, connectivity is an essential key factor for

determining network quality of service (QoS).

This thesis focuses on achieving high connectivity for randomly deployed wireless

sensors by referring to the concept of building a network virtual backbone approach.

Although the concept of connected dominating set (CDS) is used as a method to

achieve this purpose; however, this method has limitations in presence of isolated or

unreachable nodes. Therefore, this thesis contributes to the CDS approach by adding

few anchor nodes at calculated distance to gain high network connectivity.

Using MATLAB, extensive simulations have been carried out and the results showed

that connectivity has been gained by activating few anchor nodes or spare nodes to

random WSNs. Our algorithm had approximately twice the Fiedler value

enhancement of Random Addition algorithm.

Keywords: Wireless Sensor Networks, Network Connectivity, Anchor Nodes, QoS.

iv

ÖZ

Kablosuz duyarga ağı (WSN) dağınık ve düşük güç sensörlerden oluşmaktadır. Bu

tür ağlar savaş alanı veya hava, deprem ve basınç gibi çevre koşullarının

izlenmesinde kullanılmatadır. Bu sensör düğümleri alan duygusu izler, ve izlenen

verileri işler, sonra da bir multi-hop metodla işlenmiş verileri belirli bir düğüm

istasyonuna iletir. Algılayıcı düğümleri rastgele dağıtıldığı göz önünde bulundurarak,

düğümler arasındaki iletişimi sağlamak için, ağ bağlantısı sağlam bir şekilde

tutulmalıdır. Ayrıca düğümleri rastgele dağıtıldığından dolayı, bazı düğümler ya da

izole edilmiş veya ulaşılamayan duruma gelir. Bu durumların çoğunda, ağ

bölümlenmiş ve kopmuş hale gelir. Bu nedenle, bağlantı, ağ hizmeti kalitesinin

(QoS) saptanması için önemli bir anahtar faktördür.

Bu tezde sanal ağ omurgası yaklaşımı kavramını kullanarak rastgele dağıtılan

kablosuz sensörler için yüksek bağlantı sağlanması üzerinde duruluyor. Bağlı

görünen set (CDS) kavramı bu amaca ulaşmak için bir yöntem olarak kullanılmasına

rağmen; bu yöntemde, izole edilmiş ya da ulaşılamaz düğüm mevcudiyetinde

sınırlamalar vardır. Bu nedenle, bu tez, yüksek ağ bağlantısı elde etmek için

hesaplanmış mesafeden birkaç çapa düğümler ekleyerek CDS yaklaşımına katkıda

bulunmaktadır.

MATLAB kullanarak, geniş simülasyonlar yapılmıştır ve sonuçlar birkaç çapa

düğümler ekleyerek yüksek bağlantı elde edildiğini göstermiştir. Bizim algoritma

Rastgele İlavesi Algoritmasının yaklaşık iki Fiedler değer artışı vardır.

Anahtar Kelimeler: Kablosuz Sensör Ağları, Ağ Bağlantısı, Çapa Düğümler, QoS

v

To My Father's Soul, My Mother, Brothers,

and Husband

vi

ACKNOWLEDGEMENT

First and foremost I would like to show my high gratitude and appreciation to my

supervisor, Assoc. Prof. Dr. MUHAMMED SALAMAH for his endless effort and

great support along with valuable information that had benefit value on

understanding this interesting topic with more details during his supervision of my

thesis. I must show my sincere respect to his passion that he had for Wireless

Communication Systems, as without his keen support, valuable comments and

suggestions, I would not have been able to complete this work.

I would like to express my special thanks to my mother, my brothers, and my lovely

husband for their love, trust, and support in all means. I dedicate this study to my

father's soul who was and will always be my idol.

Finally, I would like to thank all my friends for supporting and encouraging me

during my thesis study.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ……………………………………………………………………………………iv

DEDICATION………………………………………………………………………..v

ACKNOWLEDGEMENT .. vi

LIST OF TABLES .. ix

LIST OF FIGURES…………………………………………………………………..x

LIST OF SYMBOLS/ABBREVIATIONS ... xi

1 INTRODUCTION .. 1

 1.1 Overview ... 1

 1.2 Problem Description.. 2

 1.3 Related Work .. 4

 1.4 Contributions and Organizations .. 11

2 MODELS AND ASSUMPTIONS .. 12

 2.1 Assumptions .. 12

 2.1.1 Graph Theory Background ... 13

 2.2 System Model ... 13

 2.2.1 Distributed Source Separation Detection Protocol 14

3 THE PROPOSED CONNECTED DOMINATING SET with ANCHOR NODE

ACTIVATION SCHEME ... 16

 3.1 Methodology ... 16

4 PERFORMANCE EVALUATION OF CDSA SCHEME 22

 4.1 Simulation Model .. 22

 4.2 Results and Interpretation ... 23

viii

 4.2.1 Complexity Analysis ... 30

 4.2.2 Comparison of CDSA with Different Algorithms 30

 4.2.3 Comparison with the Semi-Definite Programming (SDP) Optimization

Problem and Random Addition Algorithm ... 32

5 CONCLUSION AND FUTURE WORK.. 35

REFERENCES ... 37

APPENDICES ... 42

Appendix A: Program Code ... 43

 Appendix A.1: Connectivity percentage Calculation of CDSA Algorithm 43

 Appendix A.2: Finding the Next Node in Set ... 54

 Appendix A.3: Calculating the Fiedler Value for Network 55

Appendix B: Number of Runs for System Simulation .. 56

Appendix C: Fiedler Value .. 57

ix

LIST OF TABLES

Table 1: Simulation parameters in an area 100mx100m .. 22

Table 2: Simulation parameters in an area 200mx200m .. 23

Table 3: Simulation parameters in an area 500mx500m .. 23

Table 4: Simulation results of connectivity % for diffferent number of nodes

deployed in an area 100mx100m ... 24

Table 5: Simulation results of connectivity % for diffferent number of nodes

deployed in an area 200mx200m ... 24

Table 6: Simulation results of connectivity % for diffferent number of nodes

deployed in an area 500mx500m ... 24

Table 7: Connectivity % for different connectivity enhancement algorithms 31

Table 8: Fiedler value results ... 33

x

LIST OF FIGURES

Figure 1: Sensor Architecture [30] [31] ... 2

Figure 2: Sensor Node [31] .. 2

Figure 3: CDS of Graph G [8] .. 3

Figure 4: Accumulative Cooperative Transmission [15] ... 5

Figure 5: CDSA Flowchart ... 17

Figure 6: Demonstration of CDSA Algorithm ... 21

Figure 7: Illustration of Table 4 ... 25

Figure 8: Illustration of Table 5 ... 25

Figure 9: Illustration of Table 6 ... 25

Figure 10: Simulation of connectivty % results for N=25 at different area size...….26

 Figure 11: Simulation of connectivty % results for N=50 at different area size. 26

 Figure 12: Simulation of connectivty % results for N=75 at different area size. 27

 Figure 13: Simulation of connectivty % results for N=100 at different area size. 27

 Figure 14: Simulation of connectivty % results for different N at different area

100mx100m. .. 28

 Figure 15: Simulation of connectivty % results for different N at different area

200mx200m. .. 28

 Figure 16: Simulation of connectivty % results for different N at different area

500mx500m. .. 29

 Figure 17: Connectivty % versus number of nodes for different algorithms. 32

Figure 18: Fiedler value versus number of relays for CDSA scheme and algorithms in

[21]. .. 33

xi

LIST OF SYMBOLS/ABBREVIATIONS

A Area

A Laplacian matrix element

A(G) Laplacian matrix for graph G

AODV Ad-hoc On Demand Distance Vector

BS Base Station

CCOS Connected Cut Occurred Somewhere

CCPRP Coverage and Connectivity Preserving Routing Protocol

CDS Connected Dominating Set

CDSA Connected Dominating Set with Anchor nodes

CH Cluster Head

DCD Distributed Cut Detection Method

DOS Distributed frOm Source

DSSD Distributed Source Separation Detection

E Edge

G Graph

G(V,E) Graph consists of vertices and edges

ICCPRP Improved Coverage and Connectivity Preserving Routing

Protocol

MN Mobile Node

M Unit in meter

MP-ECCL Multi-hop-Point Enhancing Coverage/Connectivity with

Network Lifetime

N Number of sensor nodes

xii

QoS Quality of Service

R Transmission Range

RFIC Radio-Frequency Integrated Circuit

SDP Semi-Definite Protocol

SSBR Straight Skeleton Construction Based Reconstruction

UDG Unit Disk Graph

V Vertex

WSN Wireless Sensor Network

λ2 Second smallest eigenvalue

1

Chapter 1

INTRODUCTION

1.1 Overview

A wireless sensor network consists of many tiny, cheap, low-power, autonomous

microelectronics which are heavily deployed in an area for the purpose of

monitoring, sensing and transmitting the sensed data to sink. A sensor is usually

made up of an analog-to-digital converter, transceiver, on-board processor, and a

battery unit, mobility assistance and location finding system which are optional and

depend only on application requirement [4]. The sensor architecture is shown in

Figure 1 and Figure 2. The most simulating benefit of using WSN, besides its low-

cost, is related to its flexibility and versatility of sensors [1]. Placement of sensor

nodes neither requires a special infrastructure to exit, such as network cables for

internet connection or electric mains for power supply, nor does it require any human

intervention [1] [4]. Instead, sensor nodes adapt themselves to existing environment

and use the radio-frequency integrated circuits (RFIC) which is built in sensor nodes

for communication. WSNs have been used in numerous areas of interests such as

environmental monitoring, battlefield surveillance, healthcare monitoring,

transportation, and much more. Besides, its diverse usage and flexibility, there are

some serious challenges that face WSN. On first place, deployment of nodes is

critical challenge which might cause existence of unconnected partitions when these

nodes are randomly deployed. This leads to many negative consequences on network

topology as well as network performance.

Therefore, management of network topology

connectivity [4]. Second, Energy consumption is considered vital

be managed carefully

nodes will die quickly and data will be lost.

heterogeneity, data aggregation

challenges have direct impact on the overall network performance and QoS.

1.2 Problem Description

This thesis focuses on

since sensor nodes are equipped with limited power supply, there

managed routing algorithm that reduces energy consumption during transmission.

For this purpose, a connected dominating set (

high density nodes who are supposed to act as virtual backbone for network

connectivity, and transm

density nodes who are

which in this case will

earlier, when wireless

isolated or unreachable node

Figure 1.1.1 Figure 1.1.1 Figure 1: Sensor

2

Therefore, management of network topology is essential to

Second, Energy consumption is considered vital

be managed carefully since sensor nodes are supplied with limited battery

nodes will die quickly and data will be lost. The rest of challenges could be node

data aggregation, or fault tolerance. All of the above

challenges have direct impact on the overall network performance and QoS.

Problem Description

This thesis focuses on achieving high connectivity using different scenarios.

since sensor nodes are equipped with limited power supply, there

managed routing algorithm that reduces energy consumption during transmission.

For this purpose, a connected dominating set (CDS) [8] will be constructed out of

high density nodes who are supposed to act as virtual backbone for network

vity, and transmit the sensed data to the sink; whereas,

are under same communication range will be

will save energy and prolong network lifetime

earlier, when wireless sensors are randomly deployed, the probability of having

isolated or unreachable nodes is high [7] [8] [12]. Coverage in WSNs is considered a

 Figure 2: Sensor N: Sensor Architecture [30] [31]

 guarantee network

Second, Energy consumption is considered vital and critical issue to

since sensor nodes are supplied with limited battery otherwise

The rest of challenges could be node

fault tolerance. All of the above mentioned

challenges have direct impact on the overall network performance and QoS.

connectivity using different scenarios. First,

since sensor nodes are equipped with limited power supply, there should be a

managed routing algorithm that reduces energy consumption during transmission.

will be constructed out of

high density nodes who are supposed to act as virtual backbone for network

to the sink; whereas, the rest of low

under same communication range will be set to sleep mode

and prolong network lifetime. Also, as stated

sensors are randomly deployed, the probability of having

Coverage in WSNs is considered a

2: Sensor Node [31]

3

key factor in QoS. Node coverage is the ratio of number of redundant nodes to the

total number of sensor nodes. Area coverage is the ratio of area covered to the total

area of the field [6]. Having full connected network is considered ideal in WSNs.

Our study focuses on flat-based network structure illustrated in the construction of

connected dominating set (CDS) which is known to have positive impact on

maximizing network lifetime by using high density connectors as backbone

infrastructure and multi-path routing protocol for delivering sensed data between

sensor nodes will be done through the CDS heads, that are considered to be the

network gateway [8].

The work in this thesis will be based on some assumptions such as sensor nodes are

homogeneous having same sensing range and energy supply. We assume having

Boolean sensing model where sensing task is not affected by strength of emitted

signal [22]. The network architecture presented here is modeled as a unit disk graph

(UDG), G= (V, E) where V represents the sensor nodes and E represents the link

among these sensor nodes. Illustration of CDS is shown in Figure 3 where the black

nodes represent the CDS of graph G.

This thesis will highlight the problem of network partition, that can caused by

different factors such as node failure, and will provide a method to overcome the

Figure 3: CDS of Graph G, [8]

4

network partition and gain high connectivity. Network partition is main reason for

splitting network topology into parts, which may lead to disconnecting the

communication between source and destination [12]. A survey has been presented

[9] that mentioned various partition detection techniques and route discovery

methods. Therefore, maintaining a reliable communication between source and

destination, partition detection techniques have been used [3] [13] [7] [18].

Simulations have been carried out using MATLAB to analyze the improvement of

connectivity and a comparison with different connectivity enhancement algorithms

has been made. In particular, the effect of anchor node activation on the network

connectivity has been investigated. As well as, the efficiency of our algorithms has

been validated by using the network health indicator, the Fiedler value. The findings

of this work had a positive impact on the design and implementation of WSNs.

1.3 Related Work

Improving coverage and connectivity of WSNs had simulated many researchers of

this field for decades. Network connectivity is considered vital for having successful

operations of WSNs. Network connectivity can be maintained either by clustering or

virtual backbone [4]. There have been proposed different connectivity schemes for

having successful network operations. Different connectivity schemes have been

proposed in [4], [15] where cooperative sensing was used to reach a disconnected

node by combining the power of emitted signals during the simultaneous

transmission. Figure 4 describes the increase in the emission range to reach a

destination by summing up the emitted signal power.

5

Figure 4: Accumulative Cooperative Transmission, [15]

Sharma et al. [8] proposed a preserving scheme for network connectivity and

coverage for randomly deployed sensors. As it is known, WSNs suffer from

coverage problem since sensors have limited supplied energy therefore, they have

limited sensing range. In their paper, authors focused on maintaining network

connectivity with preserved coverage. The approach started with forming the

constructed dominating set (CDS) which is considered an inward-outward approach

that is consisted of high dense nodes forming the virtual backbone for network

connectivity. The WSN system can be looked at as inward-outward graph where a

graph G consisting of vertices V as nodes and edges E as links, G (V, E). Their

algorithm focused at choosing the highest density node and then choosing among the

neighbors of this node the highest density node and adding it to virtual backbone and

so on. They have simulated their algorithm based on different number of nodes along

with different area size, and the results showed that network lifetime had increased

since this method had good impact on saving energy by placing the least density

nodes to sleep mode. Therefore, connectivity had been maintained where coverage

had been preserved. However, their algorithm was affected by the presence of

isolated or partitioned network.

6

Different coverage enhancement schemes in WSNs have been proposed by Dagar

and Saroha [25] by using the Delaunay triangulation method and the Grid based

coverage. In grid based scheme, the distance between two nodes is given by 2*R

where R is sensing range. Whereas the distance measured in Delaunay triangle was

computed by Euclidean distance. Results showed that coverage efficiency was

maintained using Delaunay triangle. An energy efficiency algorithm has been

proposed by Tiwari and Dhoke [1] based on data aggregation in a Cluster head

model and Tree based model. They summarized the advantages and disadvantages

for these two methods. They stated that both methods aggregate and gather data in

energy-efficient manner which maximizes network lifetime. However some issues

should be taken into consideration, in cluster head model, number of clusters that

form the network should be considered, as well as the cluster head selection

procedure and the optimal number of nodes in a cluster. However, for the Tree based

model, data loss issue is considered vital since the whole sub-tree under a node that

has experienced data loss will also lose the data. Therefore, authors have proposed an

adaptive and automated method that will choose which model to use based on given

constraints, and which will maximize the lifetime of WSNs. Sakkari and Basavaraju

[10] proposed a Multi-hop-Point Enhancing Coverage / Connectivity with Network

Lifetime (MP-ECCNL). They focused on maximizing network lifetime by choosing

connector nodes with high residual power that will deliver data using a low cost

route in a multi-hop fashion to sink. Comparing their results with the original

LEACH algorithm, MP-ECCNL had better network lifetime. Network coverage gap

has been solved in [14] using the cooperation of mobile robots that are able to move

to desired location for network repairing. Idoudi et al. [20] considered cluster based

hierarchical scheme and mobile robots able to carry redundant nodes whenever they

7

are found and use deploy them at position where coverage gap is found. The

simulation of this algorithm resulted in network coverage and connectivity

improvement by using optimal number of robots.

Nema and Shukla [14] provided a method for network energy saving by considering

flat communication network where each sensor node considered a multi-hop fashion

for data delivery. They have used mobile anchor nodes which are able to move to

specific location in the network where coverage hole exists. Their results had

positive impact on overall coverage and connectivity of network as well as

maximizing lifetime of network. Tezcan and Wang [2] suggested a distributed

algorithm to find an optimal coverage set by eliminating the redundant nodes

provided that network connectivity is guaranteed. They extended their study to

guarantee network connectivity by finding the minimum number of dominating

nodes in the coverage set, where no extra routing protocols will be used as these

dominating nodes act as virtual backbone or gateway to carry data to sink. This

method provided an effective node scheduling and overall network energy saving.

Srivastava and Yadav [6] proposed an improved algorithm to original coverage and

connectivity preserving routing protocol (ICCPRP) for the sake to increase network

lifetime and providing full connectivity during network operation. They considered

heterogeneous nodes having two and three level of heterogeneity, randomly deployed

in large area, where an algorithm was performed to determine cluster heads (CHs)

based on high density and high energy power. Consequently the non-CH nodes,

based on the minimum distance between any CH and themselves, will send join

cluster request. As a result, CHs collect data from these non-CH nodes and send the

data to sink. This method had shown enhancement in service time as well as 100%

sensing coverage ratio has been maintained in comparison with the original CCPRP.

8

Joshi and Younis [17] presented a novel linear time distributed method to conquer

multiple node failure and regain connectivity. They assumed WSN consist of static

nodes as well as mobile nodes (MNs) that will help in reconnecting partitioned

network. They assumed the field to be modeled as convex polygon for the purpose of

finding the minimum path distance that MNs will travel to reconnect with partitioned

segments. They named their algorithm Straight Skeleton Construction Based

Reconstruction (SSBR). This algorithm allows MNs to move inward along the

straight skeleton path of the convex polygon that will be determined once after

network initialization. Simulations had resulted in good performance where

minimum number of MNs moves along the shortest path to regain connectivity

which had good impact on overall network lifetime. Ibrahim et al. [21] have

proposed an algorithm that will act as a connectivity precaution by using the Fiedler

value [21] that is used as an indicator for the network health and connectivity status.

They quantified the network connectivity by the use of Fiedler value, which is the

second smallest eigenvalue of the Laplacian matrix representing the network.

According to this, the proposed algorithm finds the optimum number of relay nodes

that can result in maximum Fiedler value, which will increase the network lifetime.

Their results showed an effective increase in Fiedler value by communicating with

few relay nodes. In addition, this algorithm showed a less computational time in

comparison with other search scheme. However, their algorithm can't guarantee a

reconnection of disconnected network by adding relay nodes to disconnected

network.

Hole detection technique was inspired by Kleinberg et al. [16] that detected failure in

wired network. Their network was modeled as undirected graph of n nodes, and k

9

edges can be destroyed by an advisory. The failure is detected by some detection

agents or sentinels, and they help in pair-wise communication. However, Kelinberg

et al method required a large number of detection agents or sentinels in large scale

networks, and it suffered from false detections. The idea of using mobile or hybrid

sensor nodes was introduced to overcome the coverage problem and have an area

covered efficiently [30]. Babaie and Pirahesh [30] used the triangular structure

approach for the aim of detecting the location of coverage holes, their sizes, and the

movement directions of mobile nodes to repair coverage. They have assumed

different coverage hole shape according sensor nodes location, they calculated the

coverage hole area for each type of hole structure. After hole calculation, they assure

if hole exist based on the area of hole if it is greater than zero. Otherwise, there is no

hole in network. Then they allow mobile nodes to move toward the direction of

center of either the circumcircle if the area hole is greater than the sensor sensing

region or the center of incircle if the area of hole is smaller than the sensor sensing

region. The results showed they had exact coverage hole location and size. Another

approach to heal coverage hole in WSNS was presented by Sukumaran and

Saravanabava [5] where they focused on having a distributed algorithm called

QUAD that each node will execute to determine if it is a stuck node or not. They

declared that each node should be able to communication with its neighbor in 360°,

so each node will execute the QUAD algorithm in each π/4 partitions, and they

assumed a node to be stuck if at least it can't communicate with its neighbor in at

least one partition. After detecting a stuck node, this node generates a hole detection

packet containing its ID and location and forward it to the boundary node in a right

hand direction in which it can receive it back. Using a defined attractive force which

will be generated at center of hole , will pull inward nodes toward the center. Their

10

results came out with effective hole detection and healing process which improved

the network coverage. For more hole detection techniques can be found in a survey

proposed by Antil and Malik [27]. Sulthana and Ali [3] have proposed a distributed

cut detection method (DCD) for the purpose of detecting any disconnected portions

in wireless sensor networks referred to as "cut". In DCD method each sensor node

was able to detect its connection status with the source detected by the event arise

called disconnected from source (DOS) event. Each sensor node keeps track of recent

steady state observed which is updated every interval of time. A subset of sensor

node is able to experience the connected cut occurred somewhere (CCOS) event

based on any change of local state and determine the location of cut. The

convergence rate of DCD method was quite fast and independent of size of network.

A low overhead scheme for detecting cuts has been presented by Shrivastava et al.

[7], where their method is based on duality transform for detecting linear cut.

However, Pimple and Pandey in [13] and Jayashree and Kalaivani in [18], proposed

a distributed source separation detection (DSSD) method which is not based on linear

cut of nodes from source and doesn't require sentinels ; instead, it allows each sensor

node to determine if it is connected to a source node , namely sink, by monitoring its

local state convergence, as long as there is communication between its neighbors , its

local state converges to positive number otherwise it will be zero. DSSD method

includes only nearest neighbors communication that has good impact on energy

efficiency. This algorithm makes use of local state of each node to detect if a re-

connection occurs after fixing a failed node.

Different methods have contributed for network recovery. Some of these methods

use relay nodes, robot sensors as in [24] [9]. In [24], Dini et al. have presented a low

overhead communication method for reconnecting partitioned network by using

11

mobile nodes. Mobile nodes are sent to the partition once it has been detected. They

have two important phases to run while moving in the network. The Monitoring

phase allows mobile node to detect its neighbor by checking the communication link

with its neighbor. If the communication link is good, it will add this node to its

neighboring list. Second phase is the verification phase that will check the

connectivity degree with the connected nodes. It will be triggered once the mobile

node discovers a decrease in its neighborhood, to check if it has reached an isolated

node. Based on the hello message that mobile node will broadcast, it checks the

epoch if it is old means reached an isolated node. The mobile node is assumed to

carry sensor nodes and able to place them at final position, but this adds complexity

to mobile nodes. Simulations have shown both effectiveness in respond to

disconnection probability as well as efficiency in terms of communication over head.

1.4 Contributions and Organizations

This thesis has the following contributions:

First, connectivity findings for network with random deployment of homogeneous

nodes were tested through simulations. Second, activating the spare or anchor nodes

has overcome the problem of isolated nodes found in CDS, [8]. Third, activating few

anchor nodes at calculated distances has showed 100% connectivity gain of the

overall network, in addition to this, analyzing the activation of just minimum number

of these few anchor nodes has regained connectivity greater than 90%.

The rest of this thesis is organized as follows. Chapter 2 describes models and

methods engaged in this thesis. Chapter 3 describes the proposed CDSA algorithm.

Chapter 4 presents different simulations, comparisons, interpretations. Chapter 5

presents the conclusion and future work.

12

Chapter 2

MODELS AND ASSUMPTIONS

2.1 Assumptions

The work in this thesis will be based on the following assumptions:

Assumption 1: Sensor nodes are homogeneous having same sensing range. We

assume having Boolean sensing model where sensing task is not affected by strength

of emitted signal [22]. The network architecture presented here is modeled as a unit

disk graph (UDG), G= (V, E) where V represents the sensor nodes and E represents

the link among these sensor nodes.

Assumption 2: A Base Station knows the exact number of nodes to be spread in LxL

m2 area field plus their position [7]. Base station never fails. All sensor nodes know

the sink location and initially a fully connected network was considered [13].

Assumption 3: Assuming the Distributed Source Separation (DSSD) is an approach

used for detecting existence of isolated nodes in the network [13].

Assumption 4: A time-driven network, where each head of (CDS), will send a

periodic beacon message containing its status. Since typical epoch durations are in

order of seconds or tens of seconds, we assume the epoch length to be 60 seconds

[11].

13

Assumption 5: Assume to have Ad-hoc On Demand Distance Vector (AODV)

method for routing messages between sensor nodes and sink. This method based on

path discovery and maintenance concepts. It allows sensor nodes to discover routes

for message delivery. It is known to be one of the most efficient routing protocols

due to shortest path discovery characteristic and its lowest power consumption [19].

Assumption 6: Assume to have 10% of the randomly deployed sensor nodes used as

spare nodes or anchor nodes that will be activated whenever necessary.

2.1.1 Graph Theory Background

First, a graph is defined as pair G = (V, E) of sets where the elements of V are the

vertices (or nodes, or points) of the graph, and the elements of E are its edges. An

edge is usually constructed between neighbor vertices that fall under same

communication range. A vertex with no neighbors is said to be isolated. A graph is

said to be directed if the edges connecting the vertices are one-way; otherwise, the

graph is undirected.

A connected dominating set CDS(G) of a graph G=(V, E), is defined as a subset of

V(G) where there exists at least one node in CDS(G) which is adjacent to a node in

V(G)-CDS(G) [8]. CDS forms the essential network backbone.

2.2 System Model

We assume having Boolean sensing model, where a node can detect an event if it

occurs within its sensing range [22]. This model doesn’t take into consideration the

environmental effect on the emitted signal strength. System architecture is required

to meet the needs of WSNs and to cope with the most difficult constraint which is the

power limitation. To make WSN feasible, network architecture should be developed

to synthesize the environmental data collection application out of the underlying

hardware capabilities. The network architecture presented here is modeled as a unit

14

disk graph (UDG), G= (V, E) where V represents the sensor nodes and E represents

the link among these sensor nodes. Usually UDG is used to model network

connectivity where nodes discover network topology and estimate the routing

strategy as a mean for routing data to collection of points.

Our study focuses on flat-based network structure illustrated in the construction of

connected dominating set (CDS) which is known to have positive impact on

maximizing network lifetime by using high density connectors as backbone

infrastructure and multi-path routing protocol for delivering events or sensed data

between sensor nodes. Sensor nodes send their events or sensed data to source or

sink through their corresponding set head (heads of CDS). Using multi-hop routing

technique CDS heads deliver any info to source too.

2.2.1 Distributed Source Separation Detection Protocol

Distributed Source Separation (DSSD) protocol is a distributed approach which

allows each sensor node to determine its local status, that is, either separated from

source node or still connected. Therefore, this protocol enables each node to monitor

its status for isolation detection [13].

In our work, we have assumed the running of DSSD protocol. After creating the CDS

for the sensor network, each CDS head will have to detect its scalar status by running

the DSSD approach and check if it is still connected to the sink or has become

isolated. If any set head can't reach the sink, it experiences a Disconnected frOm

Source (DOS) event [3] [7].

If set head can reach the sink but connected to an isolated CDS, it experiences a

Connected but a Cut Occurs in the Set (CCOS) [3] [7].

15

This info will be collected at the sink, knowing the location of partitioned or isolated

region. At this point, the BS will have to run our proposed algorithm for anchor node

activation at the calculated distances.

16

Chapter 3

THE PROPOSED CONNECTED DOMINATING SET
WITH ANCHOR NODES ACTIVATION SCHEME

3.1 Methodology

Our work highlights an essential problem that faces wireless sensor networks

especially in case of randomly deployed sensor nodes. Two important issues, one is

related to random deployment of nodes which might result in having isolated nodes

and unconnected network partitions resulting in network topology destruction. The

second issue is related to the restricted battery supply that sensor nodes are

encapsulated with, which will degrade with time, causing the sensor node to die and

losing network connectivity . Therefore, the above two issues have direct negative

impact on network topology and as a result, unconnected partitions will exist

resulting in unsatisfied network performance. We have proposed a Connecting

Dominating Set with Anchor node activation (CDSA) scheme that focuses on the

construction of connected dominating set (CDS) used in [8] where Sharma et al. have

used it for better nodes communication and power supply saving. The CDS algorithm

used in [8] forms a virtual backbone, consisting of high density nodes that are

responsible for data forwarding to the sink. The CDS algorithm has proven to be

efficient in network energy saving and has a positive impact on network lifetime.

However, the CDS algorithm suffers from communication deficiency in the presence

of isolated nodes, causing the network connectivity to be lost and communication

between CDS nodes and their neighbors will be missing. Therefore, besides the CDS

17

algorithm that has been used in [8], we have adopted the idea of anchor node

deployment used by Nema and Shukla [14]. Anchor nodes used in [14] are mobile

nodes in which they are able to move to the desired location for reconnecting

purposes. However, in our proposed scheme, we have reduced the complexity of

using mobile nodes and considered the activation of static anchor nodes or spare

nodes illustrated in Figure 5 and algorithm steps.

Figure 5: CDSA Flowchart

18

The position of anchor nodes is very important to ensure the communication among

respective nodes is maintained. Therefore, we have first considered the minimum

distance between any isolated node and connected node. Note that, a connected node

is a node having a path to the sink. The minimum distance between any two points is

the midpoint; therefore, we have activated the first anchor node at the half of the

minimum distance after checking the distance between the midpoint and the isolated

node, connected node falls under the communication range. If so, anchor node will

be activated at half the minimum distance. However if the distance between midpoint

and the isolated node, connected node doesn't fall under communication range, then

one anchor node is not sufficient to ensure communication, therefore, necessary

number of anchor nodes will be activated at equal distances between isolated node

and connected node. After the first activation, the isolated node and anchor node will

be added to list of connected nodes. Then, we suggested to find a closest isolated

node among the isolated node list if exist, to the previous isolated node, which is now

added to list of connected nodes. First we check if the distance between the new

isolated node, old isolated node (which is now connected node) falls under the

communication range then we consider the position of centroid point of the three

nodes: new isolated node, old isolated node which is now connected node, and the

previous close node to old isolated node. Also, we check if the distances from

centroid position to the three nodes fall under the communication range, then we

activate the anchor node at the centroid to ensure communication. If this is the case,

we make sure to deactivate the previous anchor node which was activated at half the

distance and also delete it from the connected node list. As before, the anchor node

and new isolated node will be added to list of connected nodes. Our algorithm

continues till no isolated nodes exist in the network.

19

Explanation of the CDSA algorithm is found in the following steps:

Step 1: Inputting the necessary data (number of nodes, sensing range, transmission

range, area field, sink location which is in center).

Step 2: Starting from the sink, we find all the nodes that fall under the

communication range, and mark them as zero and store them in an array. Then

iterating over each neighbor of the sink to find all the nodes that fall under

communication range for each neighbor node and store them in same array, and mark

all of them zero. Then starting from a non-zero node if available, and continue as

before to find its neighbors and mark them as zero, and so on. When finishing from

this connected set, store it in another block of same array. We continue creating

connected sets till all nodes marked zero. Then, we draw communication line

between nodes that are within communication range for each connected set. As a

note, having only one block of the array means having one full connected network.

Step 3: We need to create the Connected Dominating Set that consist of nodes having

the highest density in each connected set. Therefore, first in each connected set, we

need to find the density for each node and sort them in descending order. The first

node having highest density will be placed in array called core, and will be the set

head. After finding the first set head, we mark it zero as well as its neighbors. Then

we select among its neighbor nodes, the one with highest density and store it in core

node. Then, we keep selecting the highest density non-zero neighbor and store it in

core set and we mark the corresponding neighbors of each core node as zero. This

CDS algorithm is inward-outward method. We continue in finding the core nodes in

each connected set till all nodes are marked zero in each connected set.

20

Step 4: We find the isolated nodes which are the nodes that are not connected to the

sink. For instance, nodes connected to sink are first block of array S{1}. We can now

calculate the connectivity of the available network before any anchor node

activation.

Step 5: This step is related to connecting isolated nodes with anchor nodes.

First, after knowing each isolated node, we need to find the minimum distance

between any isolated node and any connected node with the sink. After finding the

minimum distance between isolated node and connected node, we calculate if this

distance is less than twice the transmission range. If yes one anchor node is sufficient

to be activated at half the minimum distance and to restore the connection of this

isolated node. If no then we need to activate the necessary anchor nodes number.

Anchor nodes and the isolated nodes that have become connected are to be added to

connected node list. After activation of first anchor node (s), then we start iteration,

by finding the closest isolated node to previous isolated node that have become

connected, and we check if the distance is less than twice the transmission range. If

this is the case, we need to make sure if the activation of the anchor node position

will be at the centroid (connected node, isolated node that have become connected

and the closest isolated node to the previous isolated node), by checking the distance

from centroid to each node if it is less than the transmission range, if this is the case

then we need to deactivate the first anchor node and place it at the centroid. If not

then we keep the first anchor node position at half the minimum distance. We

continue with the algorithm till no isolated node exists.

Step 6: We finally calculate the percentage of connectivity after nodes activation.

Having optimum number of anchor nodes, high connectivity has been achieved.

21

Step 7: We have compared our proposed algorithm with different connectivity

enhancement techniques as well as with the SDP algorithm which is based on Fiedler

value that represents the connectivity.

A demonstration of CDSA algorithm is shown in Figure 6.

The Fiedler value refers to the algebraic connectivity of graph [23]. Fiedler value

refers to the second smallest eigenvalue of matrix representing the network

connectivity. Fiedler value measures the network connectivity status. When the

network is fully connected the Fiedler value is greater than zero; however, when the

network becomes disconnected the Fiedler value is zero. Therefore, based on the

Fiedler value of the randomly deployed WSN, we can monitor the status of the

network connectivity. Having a positive Fiedler value ensures a connected network

which is desired in WSN. More detail on Fielder value is found in Appendix C.

*anchor node

Figure 6: Demonstration of CDSA Algorithm

22

Chapter 4

PERFORMANCE EVALUATION OF CDSA SCHEME

4.1 Simulation Model

Analyzing connectivity of homogeneous WSNs is done through simulations. We

have assumed a homogeneous WSN and the simulations are written in MATLAB.

We assume having different number of nodes (25, 50, 75, and 100) placed randomly

in LmxLm area field (100mx100m, 200mx200m, and 500mx500m). We have run the

proposed algorithm 50 times for each case and calculate the number of isolated nodes

and percentage of connectivity by taking the average.

The simulation parameters that were used to obtain the results are listed in Table 1

and Table 2.

Sink position (50m, 50m)

Number of nodes 25, 50, 75, 100

Sensing Range 10m

Transmission Range 20m

Table 1: Simulation parameters in an area 100mx100m

23

Sink position (100m,100m)

Number of nodes 25, 50, 75, 100

Sensing Range 10m

Transmission Range 20m

Sink position (250m,250m)

Number of nodes 25, 50, 75, 100

Sensing Range 10m

Transmission Range 20m

4.2 Results and Interpretation

We have simulated the proposed algorithm based on different network parameters.

First, we have considered the above parameters in Table 1, Table 2, and Table 3 for

50 runs and took the average or mean. Connectivity percentage increases with the

increases of sensor nodes and decreases when field area to be sensed is getting larger.

The respective results are shown in Table 4, Table 5, and Table 6. Figure 7, Figure 8,

and Figure 9 illustrate the respectively Table 4, Table 5, and Table 6. For detailed

explanation of required number of runs can be found in Appendix B. Also, we have

analyzed the change in number of deployed nodes with respect to fixed area size and

vice versa. Also, we have analyzed the change in connectivity % for each number of

sensors at fixed area size as shown in Figure 14, Figure 15, and Figure 16 and the

Table 2: Simulation parameters in an area 200mx200m

Table 3: Simulation parameters in an area 500mx500m

24

change in connectivity % for different area size for fixed number of sensors as shown

in Figure 10, Figure 11, and Figure 12.

 Connectivity % for

Anchor nodes N=25 N=50 N=75 N=100

0 96.46 98.35 98.59 98.90

1 100 100 100 100

2 100 100 100 100

3 100 100 100 100

 Connectivity % for
Anchor nodes N=25 N=50 N=75 N=100

0 83.15 88.76 92.39 97.23
1 96.30 97.23 98.38 100
2 99.78 100 100 100
3 100 100 100 100

 Connectivity % for
Anchor nodes N=25 N=50 N=75 N=100

0 70.25 80.82 86.45 91.22
1 85.81 92.28 95.21 96.61
2 91.23 95.98 98.48 99.28
3 93.89 97.57 99.70 99.98

4 97.71 97.99 100 100

5 100 100 100 100

Table 4: Simulation Results of connectivity % for different N deployed in an
area 100mx100m

Table 5: Simulation results of connectivity % for different N deployed in

an area 200mx200m

Table 6: Simulation results of connectivity % for different N deployed in an

area 500mx500m

25

80

85

90

95

100

0 1 2 3

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor nodes

N=25

N=50

N=75

N=100

96

98

100

0 1 2 3

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor nodes

N=25

N=50

N=75

N=100

70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

0 1 2 3 4 5

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of anchor nodes

N=25

N=50

N=75

N=100

Figure 7: Illustration of Table 4

Figure 8: Illustration of Table 5

Figure 9: Illustration of Table 6

26

60

70

80

90

100

0 1 2 3 4 5

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor Nodes

N=25-Area 100mx100m

N=25 A=200mx200m

N=25 A=500mx500m

80

85

90

95

100

0 1 2 3 4 5

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor nodes

N=50 A=100mx100m

N=50 A=200mx200m

N=50 A=500mx500m

Figure 10: Simulation of connectivity % results for N=25 at different area size

Figure 11: Simulation of connectivity % results for N=50 at different area size

27

80

85

90

95

100

0 1 2 3 4 5

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor Nodes

N=75 A=100mx100m

N=75 A=200mx200m

N=75 A=500mx500m

80

85

90

95

100

0 1 2 3 4 5

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor Number

N=100 A=100mx100m

N=100 A=200mx200m

N=100 A=500mx500m

Figure 12: Simulation of connectivity % results for N=75 at different area size

Figure 13: Simulation of connectivity % results for N=100 at different area size

28

96

97

97

98

98

99

99

100

100

0 1 2 3

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor nodes

N=25

N=50

N=75

N=100

80

85

90

95

100

0 1 2 3

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor nodes

N=25

N=50

N=75

N=100

 Figure 14: Simulation of connectivity % results for different N at area 100mx100m

Figure 15: Simulation of connectivity % results for different N at area 200mx200m

29

60

70

80

90

100

0 1 2 3 4 5

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Anchor Number

N=25

N=50

N=75

N=100

As it is shown in Table 5, for 25 and 50 sensor nodes, it is needed to have one anchor

node activated to achieve high network connectivity (above 90%). However, to have

full network connectivity, 2 anchor nodes are needed to be activated at area

200mx200m and one anchor node needed to be activated at area 100mx100m.

We have also simulated our proposed algorithm for different number of sensor nodes

as shown in Table 3. According to results, 2 anchor nodes were needed to be

activated for 25 sensors, 1 anchor node for 50 and 75 sensor nodes to have high

network connectivity. Results are shown in Table 6. Figure 10, Figure 11, Figure 12,

and Figure 13 show that as area size increases, number of anchor nodes needed to be

activated to obtain high connectivity % was required. While fixing area size and

changing the number of nodes as in Figure 14, Figure 15, and Figure 16 show that as

number of nodes increases less anchor nodes were required to be activated to obtain

high connectivity %.

Figure 16: Simulation of connectivity % results for different N at area 500mx500m

30

4.2.1 Complexity Analysis

Our proposed algorithm is based on distance matrix. We need to find the Euclidean

distance between nodes which is fundamental factor for calculating the neighbor

density and constructing the CDS method. Since we have N number of nodes, the

maximum number of links is N(N-1)/2, Hence if all nodes are connected, there will

be maximum of NC2 links where C is the combination, NC2 = N(N-1)/2. Therefore,

our algorithm has complexity of O(N2). The complexity analysis is validated by Liu

et al. [31].

4.2.2 Comparison of CDSA with Different Algorithms

Comparing our proposed CDSA algorithm which is based on using both CDS and

anchor node activation with the proposed algorithms for connectivity enhancement in

paper [15], our algorithm has proved to be more efficient in terms of having optimum

number of nodes needed to have high connectivity; whereas, having high

connectivity has been achieved even with low number of nodes as shown in Table 6

where at node number 10, connectivity was 90%, however in other algorithm, high

connectivity has been achieved when the number of nodes were 170 for multi-hop ,

140 for hybrid 1, and 100 for hybrid 2. Table 7 and Figure 17 show the conducted

results of CDS algorithm, CDSA, Multi-hop, Hybrid1 and Hybrid 2 algorithms

respectively. It is clear that hybrid 2 algorithm reveals high connectivity (90%) when

number of nodes was 100 while the multi-hop and hybrid 1 show less connectivity

percentage. However, our proposed algorithm revealed high connectivity (90%)

when number of nodes was 10.

31

The results of connectivity percentage in Table 7 of the proposed CDSA algorithm

have been selected based on activating the optimum number of anchor nodes that

have resulted in high network connectivity (>=90%). Representation of the results

found in Table 7 is shown in Figure 17.

Area 500mx500m, Sensing range= 25, Transmission range=50. CDS analysis

Number
of

Nodes

CDS%
Connectivity

[15]

Proposed
CDSA %

Connectivity

Multihop %
Connectivity

[15]

 Hybrid_1 %
Connectivity

[15]

 Hybrid_2 %
Connectivity

[15]

Optimum
number

of anchor
nodes

10 9.0909 90.1961 2.5 2.5 5 2

20 12.313 90.2439 5 9 9 1

30 15.7557 90.3226 6 11 13 1

40 17.6471 90.4762 6 17 25 0

50 18.1818 90.9091 6 25 38 0

60 27.7152 91.2088 11 38 58 0

70 29.0909 91.358 15 48 72 0

80 34.5679 91.5493 18 58 78 0

90 38.2979 91.6012 28 65 85 0

100 41.7582 93.0693 38 72 90 0

110 62.6718 94.8177 48 78 93 0

120 63.64 96.0397 60 82 95 0

130 71.7557 98.0127 70 86 97 0

140 81.1527 98.082 80 90 97 0

150 85.214 98.3202 81 91 97 0

160 89.313 98.6597 85 92 98 0

170 92.7152 98.7099 88 94 98 0

180 94.4751 99.4733 95 95 98 0

190 98.5075 100 98 96 99 0

200 98.5075 100 98 97 99 0

Table 7: Connectivity % for different connectivity enhancement algorithms

32

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

C

o

n

n

e

c

t

i

v

i

t

y

%

Number of Nodes

CDS% Connectivity

Multihop % Connectivity

CDSA Scheme

Hybrid_1 % connectivity

Hybrid_2 % Connectivity

4.2.3 Comparison with the semi-definite programming (SDP) optimization

problem and random addition algorithm

Ibrahim et al. [21] have proposed a method for connectivity enhancement based on

quantifying the network connectivity using the Fiedler value [23]. By definition, the

Fiedler value is the algebraic connectivity of a graph [23]. It is considered to be the

second smallest eigenvalue of Laplacian matrix whose off-diagonal entries values {0,

1, -1}. Fiedler value is known to be a network health indicator; whenever the Fiedler

value greater than zero indicates a connected network and vice versa. Network

lifetime is defined as the time needed for the network to become disconnected [21].

Therefore, a direct relation occurs between keeping the network operating for

maximum time and maximizing the network lifetime. As stated before, Fiedler value

is considered to be the measure of network connectivity. Therefore, Fiedler value is

considered to be a measure for network lifetime as well. More details regarding

Fiedler value is found in Appendix C. We have taken the average of Fiedler value for

50 runs, for random deployment of number of relays and for the CDS algorithm, then

Figure 17: Connectivity % versus number of nodes for different algorithms

33

we compared our results with the ones found in paper [21]. Results are shown in

Table 8 and in Figure 18.

Comparison of the results in Table 8 with the ones in [21] is shown in Figure 18.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6

Random_addition algorithm

CDS algorithm

CDSA algorithm

SDP algorithm

Figure 18: Fiedler value versus number of relays for CDSA scheme and algorithms

in [21].

N=100, Area = 10x10, Transmission range is 3

Taking the average value for 50 runs

Anchor Nodes
Fiedler Value for
CDSA algorithm

Fiedler Value for CDS
algorithm

0 2.00 2.00

1 2.58 2.45

2 3.03 2.68

3 3.31 3.01

4 3.56 3.22

5 4.03 3.50

6 4.21 3.72

Table 8: Fiedler value results

34

As it is shown, the SDP algorithm has shown better Fiedler values due to many

aspects related to uniform distributions of sensor nodes, in addition of using the

semi-definite programming package for finding best relays locations. However, our

algorithm is based on random deployment of sensor nodes as well as random

addition of relays. It is shown that our proposed algorithm has shown better Fiedler

value than the CDS algorithm and the random addition algorithm proposed in [21].

The Fiedler value enhancement for CDS algorithm was found to be approximately

20% that is better than the Fiedler value enhancement for random addition algorithm

which was found to be 15%, due to the fact that the construction of CDS maximizes

the network lifetime and therefore will have higher Fiedler value than the random

addition. The Fiedler value enhancement for SDP algorithm was found 35 %;

however, the difference isn't too much between Fiedler value enhancement between

our algorithm which is found to be 29% and the SDP algorithm which was found

35%. On the other hand, the Fiedler value enhancement for our algorithm is

approximately twice the one for Random Addition algorithm which is found to be

15%.

35

Chapter 5

CONCLUSION AND FUTURE WORK

We have proposed an algorithm to solve the problem of isolated nodes found in

randomly deployed wireless sensor networks. We have proposed a CDSA algorithm

to solve the problem of isolated nodes found in randomly deployed wireless sensor

networks. In this thesis, we have improved the connectivity percentage and network

performance for randomly deployed WSN. This algorithm has showed efficiency in

terms of connectivity percentage that has reached its maximum by activating few

anchor nodes at calculated distances.

 The CDSA algorithm has outperformed different connectivity enhancement

algorithms. CDSA has reached high connectivity with low number of nodes, at node

number 10, connectivity was 90%, however in other algorithm, high connectivity has

been achieved when the number of nodes was 170 for multi-hop, 140 for hybrid 1,

and 100 for hybrid 2. CDSA algorithm proved to have approximately twice the

Fiedler value enhancement (29%) than Random Addition of relays algorithm (15%).

We have simulated our proposed algorithm for small area size of 500mx500m and

our Future work will evaluate the network connectivity percentage for randomly

deployed sensors in larger area size. We also have assumed having the base station a

prior knowledge of sensor nodes locations. In our future work, we will consider a

localization algorithm for detecting sensor nodes positions. In addition to evaluating

network performance for randomly deployed heterogeneous nodes as well. Finally, a

36

spanning tree construction algorithm can be used in future work to find the best

anchor nodes position for repairing network connectivity purposes in the presence of

isolated nodes.

37

[1] Tiwari, G., & Dhoke, A. (2015). Adaptive Data Aggregation Method for WSN,

International Journal of Advanced Research in Computer Science and Software

Engineering (IJARCSSE), vol. 5, no.1, 23-24

[2] Tezcan, N., & Wang, W. (2007). Effective Coverage and Connectivity

Preserving in Wireless Sensor Network. IEEE Wireless Communications and

Networking Conference(WCNC), 3388 - 3393.

[3] Sulthana, M., & Ali, S. (2013). A Distributed Cut Detection Method for

Wireless Sensor Networks. International Journal of Modern Engineering

Research (IJMER), vol. 3, no. 4, 2510-2513.

[4] Sultan, A., Merabti, M., Askwith B., & Kifayat, K. (2007). Network

Connectivity in Wireless Sensor Network: A Survey. 24th IEEE Instrumentation

& Measurement Technology Conferance (IMTC).

[5] Sukumaran, V., & Saravanabava, T. P. (2014). Modified Sensor Deployment

Algorithm for Hole Detection and Healing Using NS2. International Journal of

Engineering Research and Applications, vol. 4, no. 4, 43-50.

[6] Srivastava R., & Yadav, A. K. An Efficient Routing Protocol in Heterogeneous

Wireless Sensor Network for Coverage & Connectivity Preserving.

International Journal of Communication and Computer Technologies, vol. 2,

REFERENCES

38

no. 7.

[7] Shrivastava, N., Suri, S., & Toth, C. (2005). Detecting Cuts in Sensor Networks.

[8] Sharma, L., Singh, J., & Agnihotri, S. (2012). Connectivity & Coverage

Preserving Schemes for Surveillance Applications in WSN. Internal Jounal of

Computer Applications, vol. 50.

[9] Shalini, S., Ramalakshmi, K., & Angelin, P. (2013). A Survey on Partition and

Recovery Methods of Node Failure in Wireless Sensor Networks. International

Journal of Advanced Research in Computer Science and Software Engineering,

vol. 3, no. 12, 932-936.

[10] Sakkari, D. S., & Basavaraju, T. G. (2013). Optimized Coverage &

Connectivity for Randomly Deployed Wireless Sensor Network for Lifetime

Conservatory. International Journal of Computer Engineering & Technology

(IJCET), vol. 4, no. 6, 247-255.

[11] Romer, K. (2008). Discovery of Frequent Distributed Event Patterns in Sensor

Networks. 5th European Conference, EWSN, Bologna, Italy.

[12] Ritter, H., Winter R., & Schiller, J. (2004). A Partition Detection System for

Mobile Ad-Hoc Networks.

39

[13] Pimple, J., & Pandey, Y. (2012). Cut Detection in Wireless Sensor Network

Using Distributed Source Separation Detection (DSSD) Approach.

International Journal of Scientific and Research Publications, vol. 2, no. 12.

[14] Nema, S., & Shukla, N. (2014). Calculation on Converage & Connectivity of

Random Deployed Wireless Sensor Network Factors Using Heterogeneous

Node. International Journal of Advanced Research in Computer Engineering &

Technology (IJARCET), vol. 3, no. 1.

[15] Krohn, A., Beigl, M., Decker, C., Riedel, T., Zimmer, T., & Varona, D. (2006).

Increasing Connectivity in Wireless Sensor Network Using Cooperative

Transmission.

[16] Kleinberg, J., Sandler, M., & Slivkins, A. (2004). Network Failure Detection

and Graph Connectivity. 5th Annual ACM-SIAM, New Orleans, Louisiana.

[17] Joshi, Y. K., & Younis, M. (2014). Straight Skeleton Based Reconnection in a

Wireless Sensor Network. An Ad Hoc and Sensor Symposium, Globecom.

[18] Jayashree, R., & Kalaivani, R. (2012). An Algorithm To Detect Separation And

Reconnecting Wireless Sensor Network Partitions. International Journal of

Engineering Research & Technology (IJERT), vol. 1, no. 10.

[19] Jain, R., & Kshirsagar, M. (2012). Study of Different Communication Protocols

for Wireless Sensor Networks. National Conference on Innovative Paradigms in

40

Engineering & Technology (NCIPET).

[20] Idoudi, H., Houaidia, C., Saidane, L. A., & Minet, P. (2012). Robots-Assisted

Redeployment in Wireless Sensor Networks. Journal of Network Technology,

vol. 3.

[21] Ibrahim, A., Seddik, K., & Liu, K. (2007). Improving Connectivity via Relays

Deployment in Wireless Sensor Networks. Global Telecommunications

Conference.

[22] Hossain, A., & Mishra, R. (2013). Sensing & Link Model for Wireless Sensor

Network: Coverage & Connectivity Analysis. 2nd National Conference EAPE.

[23] Fiedler, M. (1973). Algebraic Connectivity of Graphs. Czechoslovac

Mathematical Journal.

[24] Dini, G., Pelagatti, M., & Savino, I. (2008). An Algorithm for Reconnecting

Sensor Network Partitions. EWSN, 253-267.

[25] Dagar, A., & Saroha, V. (2013). An Efficient Coverage Scheme for Wireless

Sensor Network. International Journal of Advanced Research in Computer

Science & Software Engineering, vol. 3, no. 4.

[26] Banks, J., Carson, J., Nelson, B., & Nicol, D. (2001). Discrete Event System

41

Simulation. Prentice Hall, Internal Series in Industrial And System Engineering.

[27] Antil, P., & Malik, A. (2014). Hole Detection for Quantifying Connectivity in

Wireless Sensor Networks: A Survey.

[28] Al-Karaki, J. N., & Kamal, A. E. (2004). Routing Techniques in Wireless

Sensor Networks: A Survey. IEEE Wireless Communication.

[29] http://research.ee.port.ac.uk/index.php?page=mobility-optimisation-of-wireless-

sensor-networks

[30] Babaie, S., & Pirahesh, S. (2012). Hole Detection for Increasing Coverage in

Wireless Sensor Network Using Triangular Structure. International Journal of

Computer Science, vol. 9, no. 1.

[31] Liu, Z., Wang, B., & Guo, L. (2010). A Survey on Connected Dominating Set

Construction Algorithm for Wireless Sensor Network. Information Technology

Journal, vol. 9.

42

.

APPENDICES

43

Appendix A: Program Code

Appendix A.1: Connectivity % Calculation for CDSA Algorithm
Program Code: wsnsimulation.m
clc
clear all
NumberOfNodes=100
n=NumberOfNodes+1 % The number of nodes
L=10 % Dimension of the field
srange=1.5 % sensing range
txrange=3 %transmission range

coord = L*rand(n,2); % Randomly select the coordinates of the location of n nodes.
coord(1,:) = [L/2, L/2];

for i=1:n
 for j=1:n
 dist(i,j)= sqrt(sum((coord(i,:)-coord(j,:)).^2)); %Finding the euclidean distance
between node i and node j
 dist(j,i)=dist(i,j);% radio channel is reciprocol
 end
end
% dist

count=1;
temp=1:n;

% currentNode=findNewNode(temp, n)
% temp(currentNode)=0;

% S{count}(1)=currentNode % each element in the array S keeps one set
% of connected nodes.nodes of Si can't communicate with nodes in
% another set Sj. Splitting the nodes into arrays S{1},S{2},...
while findNewNode(temp, n)<=n
 nextNodeInSet=1;
 S{count}(1)=findNewNode(temp, n);%that is selecting the first node in Si, the
output of findNewNode() is always 1 which is sink
 while length(S{count})>=(nextNodeInSet)
 for k=1:n
 if dist(S{count}(nextNodeInSet), k) < txrange % current node and node k are
in communication range
 if temp(k) ~= 0 %from the set temp, we find the node that is not already
selected in to another set in S,the nodes that are already selected are marked as 0 in
temp

44

 S{count}=[S{count} k];%this operation appends the element k at the
end of the vector S{count}
 temp(k)=0; % once a new node is found that is in the transmission range
of one node in the set, that node has to be added to the set
 end
 end
 end
 nextNodeInSet=nextNodeInSet+1;
 end
 S{count}(1)=[];% there was a problem in the loop. The first element was counted
twice.
 %So I had to remove the first element so that the first element is there only once
 count=count+1;
end

S;

figure

plot(coord(:,1), coord(:,2), 'bo') % plot the nodes
hold on
plot(coord(1,1), coord(1,2), 'bo', 'Color', 'g') % plot the sink

legend('Sensor Node', 'Sink')

figure

plot(coord(:,1), coord(:,2), 'bo') % plot the nodes
hold on
plot(coord(1,1), coord(1,2), 'bo', 'Color', 'g') % plot the sink
% draw lines between nodes who are in same communication range
for count=1:length(S)
 for i=1:length(S{count})
 for j=i:length(S{count})
 if dist(S{count}(i),S{count}(j)) < txrange
 plot([coord(S{count}(i), 1) coord(S{count}(j), 1)], [coord(S{count}(i), 2)
coord(S{count}(j), 2)]);
 end
 end
 end
end

% Find the density of each nodes which is stored in array Sd

density = zeros(1,n);% first the density vector is initialized as zero for all nodes
for count=1:length(S)
 Sd{count}=zeros(1, length(S{count}));% create a vector Sd whose length is same
as S{count} , initially zero
 for i=1:length(S{count})

45

 for j=i+1:length(S{count})
 if dist(S{count}(i),S{count}(j)) < txrange %then I find each neighbor for
each node and increment the corresponding
 %value of density vector
 % density(S{count}(i)) = density(S{count}(i))+1;
 %density(S{count}(j)) = density(S{count}(j))+1;
 %Sd{count}(i)=Sd{count}(i)+1;
 Sd{count}(j)=Sd{count}(j)+1;
 end
 end
 end
end

density;

% Finding the nodes with highest density by sorting Sd and add it to
% dominating set then find its neighbour with highest density . nei
% is vector that stores list of neighbor. Core is array storing DS
% keeping the nodes in Si in a vector temp, and marking all the nodes
% selected as core or neighbor as zero, stopping the iteration when all the nodes are
selected or all values in temp are zeros

for count=1:length(S) %then for each set, I find the core nodes
 if length(S{count}) >1
 nei=[];
 neiDensity=[];
 temp=S{count};
 [Ssorted, idx]= sort(Sd{count}, 'descend');%first, the first core node is found by
finding the highest density node out of all nodes in the set
 Core{count}(1)=S{count}(idx(1));
 temp(idx(1))=0;
 for i=1:length(S{count})
 % for j=i+1:length(S{count})
 if dist(S{count}(i),Core{count}(1)) < txrange
 nei=[nei, S{count}(i)];
 neiDensity=[neiDensity, Sd{count}(i)];
 temp(i)=0;
 end
 %Find the nodes that are to be core nodes
 end
 coreNum=2;
 while nnz(temp)>0 % nnz is inbuilt function in Matlab that returns the number
of non zero elements in a matrix, stopping the iteration when all the nodes are
selected or all values in temp are zeros
 [neiSorted, idxNei]=sort(neiDensity, 'descend'); %then I find core nodes 2
onwards by selecting the highest density nodes out of the neighbours
 Core{count}(coreNum)=nei(idxNei(1));
 temp(temp==idxNei(1))=0;% once a node is either a core node, or a neighbor
of core node, that node is eliminated from the temp vector

46

 %we are done when the temp vector
 %is all zero then that vector is
 %completely done that is all the nodes in the set are either core nodes or a
neighbor of core nodes

 neiDensity(nei==Core{count}(coreNum))=[];
 nei(nei==Core{count}(coreNum))=[];
 for i=1:length(S{count})
 % for j=i+1:length(S{count})
 if dist(S{count}(i),Core{count}(coreNum)) < txrange
 if sum(nei==S{count}(i))==0 % this checks whether the i th nodes is a
member of the vector nei
 if sum(Core{count}==S{count}(i))==0 %checks whether the i th
node in S{count} is a member of the set Core, the sum is zero means the nodes is not
a member of the vector nei
 nei=[nei, S{count}(i)]; %in other words, whether that
node is already a neighbor of a core node
 %if the node is in neither set, the node is added to the
 %set of neighbors of all core nodes
 neiDensity=[neiDensity, Sd{count}(i)];
 temp(i)=0;
 end
 end
 end

 % end
 end
 coreNum=coreNum+1;
 end
 end
end
% Core
% S
length(S)
% Mark the core nodes in red
for i=1:length(Core)
 for j=1:length(Core{i})
 plot(coord(Core{i}(j),1), coord(Core{i}(j),2), 'bo', 'Color', 'r');
 end
end
plot(coord(1,1), coord(1,2), 'bo', 'Color', 'g');
xlabel('X axis');
ylabel('Y axis');

legend('Sensor node', 'Sink', 'CDS node')

isolatedNum=0;
for i=2:length(S)
 if length(S{i})==1
 isolatedNum=isolatedNum+1;

47

 end
end

isolatedNum;

%connectivity = (n- isolatedNum)/n;
%S{count}-Core{count} should give the number of nodes that are not in the core
and
%Core{count} gives the number of nodes in the core

%Find the isolated nodes

% isolatedNodes=[];
% for count=2:length(S)
% if length(S{count})==1 % checks if nodes has no neighbors ,or single
% isolatedNodes=[isolatedNodes, S{count}];%isolatedNodes array of single
isolated nodes
%
% end
% end

 NumNodesConnectedtoSink=length(S{1})
NumNodesInBackBoneConnectedToSink=length(Core{1})
NumNodesNotConnectedtoSink=n-length(S{1})
PercentOfNodesinBackBoneConnectedToSink=length(Core{1})/n*100
PecentOfNodesConnectedToSinkBeforeAnchor=length(S{1})/n*100
%connectivitybeforeanchor = NumNodesConnectedtoSink/n*100
FiedlerBeforeAnchor=Fiedler(coord, txrange)

% isolatedNodes;
% anch{1}=[];%set of anchor nodes used to connect isolated nodes
% connectingNode=[];
%
% % Connect isolated nodes with anchor nodes.
% isoConnected=[];
% for i=1: length(isolatedNodes)
% distIso=dist(isolatedNodes(i),:);% distance between each isolated node and
rest of nodes, but we need to check if closest node is also isolated!
% distIso(isolatedNodes(i))=inf;
%
% [minVal, idx] =min(distIso);%idx is the index of the node having minimum
distance from this isolated node
% minDist=distIso(idx);
% iter=0;
% while sum(isoConnected==idx)~=0 && iter < n % here we are checking if
the node that is closest to the isolated node is also another isolated node that is
already connected to another set
% distIso(idx)=inf;
% [minVal, idx] =min(distIso);

48

% minDist=distIso(idx);
% iter=iter+1;
% end
% connectingNode=[connectingNode, idx];
% if minDist<2*txrange % One anchor node is sufficient to connect this
node
%
anch{i}=[(coord(idx,1)+coord(isolatedNodes(i),1))/2,(coord(idx,2)+coord(isolatedN
odes(i),2))/2];% anch is placed at half distance btwn idx and isolatednode
% else % if dist is > 2*transmission range, one anchor node is not sufficient.
More than one are required
% numAnchors=max([1,floor(minDist/txrange)]); %Find the number of
anchors required,if ceil(60/25 =2.4)=3 so 3-1 is 2 nodes
% xinc=(coord(idx,1)-coord(isolatedNodes(i),1))/numAnchors; %Find the
icrementing required for placing anchor nodes.
% yinc=(coord(idx,2)-coord(isolatedNodes(i),2))/numAnchors;
SUnconnected={};
count=1;
anch={};
connectedNodes{1}=S{1}; % In the first iteration, only the cluster connected to the
sink is connected. This is in S{1}
for i=2:length(S)
 SUnconnected{i-1}=S{i}; % All the other sets are unconnected
end
%cc
connTarget=1 %0.90
conncount=1;
 connectivity=1-length(cell2mat(SUnconnected))/(n)

 conn(conncount)=1-length(cell2mat(SUnconnected))/(n)
 FiedlerVal=[];
while (length(SUnconnected)>0 && connectivity < connTarget)
 UCDist=[];
 %if length(SUnconnected)>0
 SvecUC=cell2mat(SUnconnected); % Convert the arrays into vectors
 connectedNodesVec=cell2mat(connectedNodes); % Convert the arrays into
vectors

 for i=1:length(connectedNodesVec)
 for j=1:length(SvecUC)
 UCDist(i,j)=sqrt(sum((coord(connectedNodesVec(i),:)-
coord(SvecUC(j),:)).^2)); % Find the distance between all connected nodes and all
unconnected nodes
 end
 end

 % in the following code, the minimum of the distance matrix is found.
 if length(connectedNodesVec)>1 %if there is only one row to UCDist, the
following code does not work. So a special code is written for that case.

49

 [minDist, idxC]=min(min(UCDist)); % idxC is the index of the isolated node
that is closest to a connected node
 [minDist, idxR]=min(UCDist(:,idxC)'); % idxR is the index of the connected
not that is closest to an isolated node
 else
 [minDist, idxC]=min(UCDist);
 idxR=1;
 end
 closestConnectedNode=connectedNodesVec(idxR); % This is the connected node
that is closest to an unconnected node
 closestIsoNode=SvecUC(idxC); % This the the unconnected node that is closest
to a connected node.
 closestConnectedNodeVec(count)=closestConnectedNode; % Enter the above
found nodes in array
 closestIsoNodeVec(count)=closestIsoNode; % Enter the above found nodes in
array

 if minDist<2*txrange
 numAnchors=1;
 anch{count}=(((coord(closestConnectedNode,:)+coord(closestIsoNode,:))))/2;
% if the nodes can be connected by one anchor node, find the location of the anchor
node.
 coord(end+1,:)=anch{count};

 else % if dist is > 2*transmission range, one anchor node is not sufficient. More
than one are required
 numAnchors=max([1,ceil(minDist/txrange)-1]); %Find the number of anchors
required,if ceil(60/25 =2.4)=3 so 3-1 is 2 nodes
 xinc=(coord(closestConnectedNode,1)-
coord(closestIsoNode,1))/(numAnchors+1); %Find the incrementing required for
placing anchor nodes.
 yinc=(coord(closestConnectedNode,2)-
coord(closestIsoNode,2))/(numAnchors+1);

 for j=1: numAnchors
 anch{count}(j,:)=[coord(closestConnectedNode,1)-j*xinc,
coord(closestConnectedNode,2)-j*yinc];%Finding the location coordinates of the j th
anchor node connecting the ith isolated node
 coord(end+1,:)=anch{count}(j,:);
 end
 end

 for i=1:length(SUnconnected)
 if sum(find(SUnconnected{i}==closestIsoNode))>0 % Find the set that
contains the unconnected node that is now connected by anchor node
 for anchCount=1:length(anch{count}(:,1))

50

 SUnconnected{i}(end+1)=length(coord(:,1))-numAnchors +anchCount; %
add all the newly added anchors to the list of the set that is just connected
%anch{count}(anchCount,:);
 end
 connectedNodes{count+1}=SUnconnected{i}; % and add it to the array of
connected nodes
 if length(SUnconnected)>1
 for k=i:length(SUnconnected)-1
 SUnconnected{k}=SUnconnected{k+1}; % Remove the set connected
using anchor nodes from the array of unconnected nodes.

 end
 SUnconnected(end)=[];
 break
 else
 SUnconnected={};
 break
 end
 end

 end

 if minDist<2*txrange % try to connect more than one CDS with one anchor node

 SvecUC=cell2mat(SUnconnected); % Convert the arrays into vectors
 connectedNodesVec=cell2mat(connectedNodes); % Convert the arrays into
vectors

 %for i=closestIsoNode %1:length(connectedNodesVec)
 UCDist=[];
 for j=1:length(SvecUC)
 UCDist(j)=sqrt(sum((coord(closestIsoNode,:)-coord(SvecUC(j),:)).^2)); %
Find the distance between all connected nodes and all unconnected nodes
 end
 %end

 [minDist, temp]=min(UCDist);
 closestSecondNode=SvecUC(temp); % This is the closest unconnected node to
the unconnected node that is now conneccted by anchor node

 if minDist<2*txrange

centroid=(((coord(closestConnectedNode,:)+coord(closestIsoNode,:)+coord(closestS
econdNode,:))))/3;

 if sqrt(sum((centroid-coord(closestIsoNode,:)).^2))<txrange &&
sqrt(sum((centroid-coord(closestConnectedNode,:)).^2))<txrange &&
sqrt(sum((centroid-coord(closestSecondNode,:)).^2))<txrange
 %if this condition is satisfied, one anchor node is sufficient
 %to connect all three

51

 anch{count}=centroid;
 coord(end+1,:)=anch{count};
 closestIsoNodeVec(count+1)=closestSecondNode;
 anch{count+1}=[];
 for i=1:length(SUnconnected)
 if sum(find(SUnconnected{i}==closestSecondNode))>0 % Find the set
that contains the unconnected node that is now connected by anchor node
 for anchCount=1:length(anch{count}(:,1))
 SUnconnected{i}(end)=length(coord(:,1)) ;
%anch{count}(anchCount,:);
 end
 connectedNodes{count+2}=SUnconnected{i}; % and add it to the
array of connected nodes
 if length(SUnconnected)>1
 for k=i:length(SUnconnected)-1
 SUnconnected{k}=SUnconnected{k+1}; % Remove the set
connected using anchor nodes from the array of unconnected nodes.

 end
 SUnconnected(end)=[];
 count=count+1;
 break
 else
 SUnconnected={};
 break
 end
 end

 end

 end
 end
 end

 connectivity=1-length(cell2mat(SUnconnected))/(n)

 count=count+1;
 conncount=conncount+numAnchors;
 if numAnchors>1
 conn(conncount-numAnchors:conncount)=1-
length(cell2mat(SUnconnected))/(n)
 else
 conn(conncount)=1-length(cell2mat(SUnconnected))/(n)
 end
 if length(FiedlerVal)>0 && numAnchors>1
 FiedlerVal(conncount-numAnchors-1:conncount-1)= FiedlerVal(conncount-
numAnchors-1)
 end

52

 FiedlerVal(conncount-1) =Fiedler(coord, txrange)
end
%end

if length(anch)>0

if length(anch{1})>0 % in cases where two isolated nodes can be connected using
one anchor node, I have deleted the other anchor node
 for i=1:length(anch)
 if length(anch{i})~=0
 % plot([anch{i}(1,1) coord(connectingNode(i),1)], [anch{i}(1,2)
coord(connectingNode(i),2)], '-.');
 for j=1:length(anch{i}(:,1))
 plot((anch{i}(j,1)),(anch{i}(j,2)), '*', 'Color', 'k');
 if j>1
 plot([anch{i}(j,1) anch{i}(j-1,1)], [anch{i}(j,2) anch{i}(j-1,2)], '-.');

 end

 % plot([anch{i}(j,1) connectingNode(i)], [coord(trialNode, 2)
centroid(2)], '-.')
 end
 plot([anch{i}(j,1) coord(closestIsoNodeVec(i),1)], [anch{i}(j,2)
coord(closestIsoNodeVec(i),2)], '-.');
 plot([anch{i}(j,1) coord(closestConnectedNodeVec(i),1)], [anch{i}(j,2)
coord(closestConnectedNodeVec(i),2)], '-.');

 else
 plot([anch{i-1}(1,1) coord(closestIsoNodeVec(i),1)], [anch{i-1}(1,2)
coord(closestIsoNodeVec(i),2)], '-.');
 plot([anch{i-1}(1,1) coord(closestIsoNodeVec(i-1),1)], [anch{i-1}(1,2)
coord(closestIsoNodeVec(i-1),2)], '-.');
 end
 end
end

legend('Sensor node', 'Sink')
% 1- Number of nodes. 2- Area (L*L). 3- % of nodes in backbone.
% 4- # of nodes connected in backbone (nodes in backbone +nodes connected with
backbone).
% 5- % of nodes not connected to backbone. 6- Min # of anchor nodes deployed. 7-
% of connectivity after anchor deployment.

figure
plot(0:(conncount-1),conn, '-o')
xlabel('Number of anchor nodes')
ylabel('Connectivity')

ax = gca;
%ax.XTick = [0:(conncount-1)];

53

set(ax,'XTick',[0:(conncount-1)]);
%grid on
end
anchCount=0;

if length(anch)>0
for i=1:length(anch)
 if length(anch{i})>0
 anchCount=anchCount+length(anch{i}(:,1));
 end
end

end
FiedlerValFinal =Fiedler(coord, txrange);
connectedNodesVec=cell2mat(connectedNodes);

NumberOfNodes=n
disp('Area=')
disp([num2str(L), 'X', num2str(L)])
 %coord=coord;
for i=1:20
 coord(end+1,:)=L*rand(1,2);
 FiedlerVal(end+1)=Fiedler(coord, txrange);

end

 figure
plot(0:length(FiedlerVal),[FiedlerBeforeAnchor, FiedlerVal])
xlabel('Number of Anchor nodes')
ylabel('Fiedler value')
ax = gca;
%ax.XTick = [0:(conncount-1)];
set(ax,'XTick',[0:length(FiedlerVal)]);

%PercentOfNodesInBackbone=
NumberOfAnchorNodes=anchCount
PercentofConnectivity=(length(connectedNodesVec)-anchCount)*100/n
FiedlerBeforeAnchor
 FiedlerVal
FiedlerValFinal

54

Appendix A.2: Finding the Next Node in the Set

Program Code: FindNewNode.m

function nextNode=findNewNode(temp, n) % find a node that is not chosen in any
sets ,it takes out the next node that is not marked as zero

for i=1:n+1
 if i<=n
 n;
 length(temp);
 if temp(i)~=0
 break
 end
 end
end

nextNode=i; % if all the nodes are 0, the nextNodes is n+1. That means

55

Appendix A.3: Calculating the Fiedler Value for the Network

 Program Code: FiedlerValue.m

function fvalue=Fiedler(coord, txrange)
% Find Fiedler value of a network

% clc
% clear all
% NumberOfNodes=10
% n=NumberOfNodes+1 % The number of nodes
% L=100 % Dimension of the field
% srange=25 % sensing range
% txrange=25 %transmission range
%
% coord = L*rand(n,2); % Randomly select the coordinates of the location of n
nodes.
% coord(1,:) = [L/2, L/2];
n=length(coord(:,1))
for i=1:n
 for j=1:n
 dist(i,j)= sqrt(sum((coord(i,:)-coord(j,:)).^2)); %Finding the euclidean distance
between node i and node j
 dist(j,i)=dist(i,j);% radio channel is reciprocol
 end
end

conn=dist<txrange;
laplace=-conn;
for i=1:n
 laplace(i,i)=sum(conn(i,:))-1;
end

laplace;

e=eig(laplace);
fvalue=round(e(2)*1e6)/1e6;
fvalue;

56

Appendix B: Number of Runs for System Simulation

Based on the Discrete Event System Simulation by Banks et al. [26], we have chosen

a confidence interval: 100 (1-α) % to be 95 %, (α=0.05).

The required sample size R or number of runs should satisfy equation(1):

R >= (tα/2,R-1S0/є)2 which is based on t distribution as long as R <50 otherwise R

should satisfy equation(2): R >= (zα/2S0/є)2 which is based on z distribution.

In our algorithm, we have reached number of runs 50 which satisfies equation (2)

where variance is 0.0325 and zα/2 is z0.025=1.96.

57

Appendix C: Fiedler Value

In 1973, Miroslav Fiedler, has studied the algebraic connectivity of a graph G [23].

Assuming graph G(V,E) be unidirectional finite graph with fixed order w1, w2, …,

wn of set of vertices V and edges E. Considering a Laplacian matrix A(G) which is

symmetric, having sum of rows 0, and positive semi-definite (A(G)=UUT where U is

the (0,1,-1) vertex-edge adjacency matrix of graph G). This matrix A(G) has its off-

diagonal elements aik= aki = -1 if (wi,wk) є E . That is if there exist a path between

node i and node k, then the Laplacian entry value Li,k = -1 and Li,i is the degree of

connectivity for node i. The eigenvalues of the Laplacian matrix A(G):

 0 <= λ1 <= λ2<= a(G) <= λ3<=….<= λn. It follows that a(G) is 0 when graph G is

disconnected. Therefore, the second smallest eigenvalue λ2=a(G) shall be the

algebraic connectivity of graph G and its corresponding eigenvector is referred to

Fiedler vector. Fiedler vector is usually used to improve the algebraic connectivity of

a network topology. The algebraic connectivity has important information on

network connectivity of a graph, such as, if the network is disconnected, then the

multiplicity of zero reveals number of disconnected sub-graphs.

The author in [23] considered the network field to be equally divided into n sub-

regions. They deployed a number of relays at specific positions and then they found

which region having the maximum Fiedler value. They then divide the region with

maximum Fiedler value into n equally sub-regions after deploying certain amount of

relays at specific positions, then they found which region had maximum Fiedler

value and keep on repeating same procedure so that no more improvement in Fiedler

value.

	ABSTRACT

	ACKNOWLEDGEMENT

	LIST OF TABLES

	Chapter 1

	INTRODUCTION

	1.1 Overview

	1.2 Problem Description

	1.3 Related Work

	1.4 Contributions and Organizations

	MODELS AND ASSUMPTIONS

	2.1 Assumptions

	2.1.1 Graph Theory Background

	2.2 System Model

	Chapter 3

	THE PROPOSED CONNECTED DOMINATING SET WITH ANCHOR NODES ACTIVATION SCHEME

	3.1 Methodology

	Chapter 4

	PERFORMANCE EVALUATION OF CDSA SCHEME

	4.1 Simulation Model

	4.2 Results and Interpretation

	4.2.1 Complexity Analysis

	4.2.3 Comparison with the semi-definite programming (SDP) optimization problem and random addition algorithm

	Chapter 5

	CONCLUSION AND FUTURE WORK

	APPENDICES

	Appendix A: Program Code

	Appendix A.1: Connectivity % Calculation for CDSA Algorithm

	Appendix A.2: Finding the Next Node in the Set

	Appendix A.3: Calculating the Fiedler Value for the Network

	Appendix B: Number of Runs for System Simulation

	Appendix C: Fiedler Value

