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ABSTRACT 

Data analysis is the process of collecting and processing data with the aim of 

extracting significant and sound results to aid in decision making in almost every 

field where data collection is possible. However, when the number of variables 

involved in a process increase, processing of such data becomes more difficult. One 

way of alleviating such problems, is to reduce the number of variables to be 

processed in such a way that, the reduced version still represents great part of the 

variation in the data. This is achieved by the technique named Principal Component 

Analysis (PCA).  

One other aspect considered in this study is the case when the interpretation of data 

is not very easy, as some data values may not definitely be assigned to a sub group 

of interest. Handling such situations is becoming possible through the theory of 

fuzzy logic. This enables the partial assignment of data to different sub groups, 

through the use of fuzzy membership functions. Using different fuzzy membership 

functions, it is possible to generate different membership data sets. Application of 

PCA to such data produced some interesting results that can be handy in selecting 

the type of the membership functions.  

 Keywords: Fuzzy logic, fuzzy set, fuzzy membership, covariance matrix, 

correlation matrix, principal component analysis. 
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ÖZ 

Veri analizi, veri toplama, değerlendirme ve elde edilen sonuçların karar verme 

işlemlerinde kullanılması amacı ile veri elede edilebilecek her alanda kullanılan bir 

işlemdir. Ancak bir işlemde kullanılan değişken sayısı arttıkca, veri analizi daha zor 

hale gelir. Bu zorluğun üstesinden gelmenin bir yoluda, işlemi kontrol eden değişken 

sayısının, işlemdeki varyansın çok yüksek bir oranda temsil eileceği daha düşük bir 

boyuta indirgenmesidir. Bu amaca yönelik boyut indirgemesi Temel Bileşenler 

analizi yöntemi ile elde edilebilir.  

Bu tezde üzerinde çalışılan diğer bir konu, bazı verilerin veri setini oluşturan alt 

kümelerden herhangi birine kesin tayininin mümkün olmadığı durumlardır. Kesin 

olmayan kümeler kuramı ile bu tür durumların çözümünde büyük ilerlemeler 

sağlanmıştır. Bu kuram çerçevesinde üyelik fonksiyonları kullanılarak verilerin farklı 

alt kümelere kısmi tayini yapılabilmektedir.  Farklı üyelik fonksiyonları kullanılarak, 

farklı üyelik veri kümeleri üretmek mümküdür. Bu şekilde elde edilen veri 

kümelerinde temel bileşenler analizi yöntemleri uygulanmış ve tatmin edici 

sonuçlara ulaşılmıştır. 

Anahtar kelimeler: Kesin olmayan mantık, kesin olmayan küme, kesin olmayan 

üyelik, kovaryans matrisi, korelasyon matrisi, temel bileşenler analizi. 
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Chapter 1 

INTRODUCTION 

Various statistical techniques are used in data analysis, starting with the univariate 

case progressing towards the multivariate data analysis. Principal component 

analysis (PCA) is a statistical technique that provides the facility of dimension 

reduction, when available data is multivariate [1] and [2]. This is done without losing 

much from the inherent characteristics of the data. One other important issue in data 

processing arises when the data is inhomogeneous and has to be divided into sub 

groups.  Until recently it was assumed that an element in one sub group can not 

belong to another group, meaning the sub sets are disjoint. However, there are 

situations when an element can be considered as a partial member of two sub-sets. In 

such cases a fuzzy interval is defined between neighboring subsets, where elements 

in this interval are attributed membership values according to some membership 

function. That is each element of the fuzzy interval will have a% membership to one 

sub-set, and (1-a) % to the neighboring sub-set. Elements outside the fuzzy interval 

are considered as “crisp”, belonging to only one sub-set with membership value 1 

and not belonging to any other sub-set, meaning membership value 0 [3]. 

In this thesis an attempt is made to establish a relationship between the fuzzy 

membership values generated under different conditions assumed to be represented 

by different variables, and processing them through the PCA to achieve the reduction 

of variables for easy manipulation.  
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Chapter 3 summarizes the necessary concepts of classical set theory, algebra of fuzzy 

set theory, with examples.  A brief review of fuzzy interval and arithmetic intervals 

is presented.  

In chapter 4 fundamentals of the principal component analysis are explained in fair 

detail, and examples used to further clarify certain important concepts. Since PCA 

uses certain matrix algebra, a review of this is given. A brief summary of 

multivariate statistics is also introduced, as this provides the essential input to PCA. 

Covariance (S) and correlation (R) matrices computed from raw data are especially 

important in PCA. The work of researchers who contributed in the establishment of 

PCA, starting with K. Pearson and H. Hotelling are considered. Theory behind the 

determination of PCs based on the eigenvalues and eigenvectors of S or R matrices is 

briefly explained. Properties and interpretation of PCs are given. 

Chapter 5 summarizes the fuzzification and defuzzification processes, with 

subsequent applications. In the application part, topics presented in chapters 3 and 4 

are combined to show that the fuzzy membership data represented by different 

variables can be used in PC analysis. This is achieved by using numeric examples. 

First example with the same type fuzzy membership function, with different fuzzy 

intervals is tested. Obtained results were not satisfactory, as the generated variables 

turned out to have extremely high correlation. Second example where different fuzzy 

membership functions were applied for the same fuzzy interval produced better 

results, with variables still highly correlated, but not as in the first example. This 

enabled the application of PCA for dimension reduction and interpretation of 

obtained results. 
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Chapter 2 

LITERATURE REVIEW 

Fuzzy principal component analysis is a topic that is gaining momentum with 

increasing research devoted to this field recently. While PCA is a well-established 

methodology mainly applied in dimension reduction of high dimensional data, fuzzy 

logic has come into focus only in mid 1970s and rapidly gained ground in application 

fields where the establishment of a deterministic model is very difficult or 

impossible. As a result new terminology like fuzzy sets, fuzzy logic, fuzzy systems, 

and fuzzy control theories are introduced and found application in various fields. 

With the advent, of the fuzzy logic introduced in 1965 by Zadeh Lotfi. A., it 

developed to a new tool of processing data which are not defined explicitly but 

belong to a certain interval. Some interesting and useful sources that are referred to 

during this study on this topic are [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], 

[15], [16] and [17]. 

Since this study attempts to establish a link between the fuzzy logic and the PCA by 

creating multi variate data via the fuzzy membership functions, and processing this 

data by PCA, brief review of literature is also undertaken.  It is widely accepted that 

the work of KARL Pearson in 1901on the geometric representation of points aiming 

to determine the direction with the highest number of points in a given scatter plot, 

formed the base for the idea of principal components analysis. Harold Hotelling 

developed the foundation of PCA in 1933 as it is commonly accepted today [18]. In 
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1939 Girshick Meyer produced good results about multivariate hypothesis testing 

based on the PCA [27]. 

About two decades after Meyer, this in 1963, Anderson T.W contributed in the 

development of the principal component analysis, by establishing the computation of 

principal components using the covariance matrix as well as the asymptotic 

properties of the roots of the characteristic polynomial [18].  

In 1967 Jeffers studied the properties of eigenvalues and corresponding eigenvectors 

in his article titled “Two case studies in the application of principal component 

analysis “[28]. 

In 1974 Baxter proved that the graphic plot of principal component scores makes it 

easy to be understood. 
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Chapter 3 

CONCEPTS OF FUZZY SET THEORY 

Fuzzy set theory utilizes concepts of set theory in mathematics. Given a set and any 

entity, we can say that this entity is a member of or is not a member of the set. From 

probabilistic point of view, the membership of an entity to a set cannot be measured, 

since the membership does not depend on chance. Partial membership cannot be 

handled by the classical set theory concepts. However, the concepts of set theory are 

needed in fuzzy set theory. A brief review of set theory will be given. 

3.1  Classical  Set Theory  

This section is a review of the ordinary set theory. It forms the foundation to the 

concepts of the fuzzy sets which will be used in fuzzy logic. 

Let’s consider a nonempty set S , called the universal set and it is made of elements 

defined within a particular context. Each element from the universal set is usually 

called an element or a member of the set. A subset of , is made of the union of 

several elements of . The following notations have the corresponding meaning 

defined as follow [20]. 

Definition 1: 

a) : The element  belongs to the set S. 

b) : The element  doesn’t belong to the set S. 

c) : Shows that  is a subset of . 

S

S

x S x

x S x

A S A S
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In general the notation  implies that  is strictly included in , which means 

that there exists at least an element of  which is not in . Besides that, if  can 

also be equal to  the following notation is used . 

 which is called n-dimensional Euclidean space is the most useful universe for 

this study. In this space, a vector x  is represented by 

1

n

x

x

 
 


 
  

x  . 

Definition 2: Considering a subset ,  is said to be converse if for given 

two vectors  and  in  and for any , .  

For given two sets  and , the difference between them is defined by

. Considering the particular case where the set  is in the 

universal set , the difference  is called the complement of  with respect 

to . This complement set is usually denoted by  or .  

Remark: If is a universe and if  is included in  then the following equalities 

hold, 

,  and . 

Considered a set  and subsets  and , the following operation are defined 

a) : Multiplication of a set. 

b) : Union of two sets. 

c) : Intersection of two sets. 

A S A S

S A A

S A S

n

nA A

1

n

x

x

 
 


 
  

x

1

n

y

y

 
 


 
  

y A  0,1  (1 ) A   x y

1A 2A

 1 2 1 2|A A x A x A    1A

S
2S A 2A

S
2A 2A

U A U

A A U  U

S
1A 2A

 1 1|kA kx x A 

 1 2 1 2|   A A x x A or x A   

 1 2 1 2|  and A A x x A x A   



7 

 

 

Remark: 

    -  
 

,   ,    ,   . 

    -   If  then the sets 
1A  and 2A  are said to be disjoint. 

Definition 3: 

The characteristic function of a set S , indicates whether an element belongs to that 

set or not. It is defined and denoted by, 

.                                       (3.1.1) 

Considered a set S  and subsets  and , the following properties hold  

-    

-    

-    

3.2 Measurability of Sets 

This section defines the measurability of classical sets. The measure theory as 

defined here is useful in fuzzy set theory as well [10], [14], [16] and [17]. 

Given the universal set S and a family of subsets of S being A (A is nonempty), and 

non-negative real valued function defined on A, , the set  is a 

null set with respect to  if .That is to say . 

Properties of the measure   

1. Additivity property. For any collection of sets  in A satisfying  

1 1A S A  1A S S  1A  1 1A A 

1 2A A 

 
1  if  

0  if  
S

x S
x

x S


 


X

1A 2A

      
1 2 1 2

max ,A A A Ax x x X X X

      
1 2 1 2

min ,A A A Ax x x X X X

   
1 1

1A Ax x  X X

  ,0: A AB

 0)( B  BbbB  )()( 



 nAAA ,,, 21 
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  and , when ,  is  

said to be additive. If   said to be countably additive. 

2. ,  ,  ,  A B A B B A    A A A , and ( )B   implies ( ) ( ) ( )B A B A     , 

meaning that   is subtractive. 

When properties 1 and 2 are satisfied, and there exist C a nonempty set,   such 

that ( )C  , then   is said to be a measure on A.  

When  then  called trivial measure. If number of elements in A 

then  is a natural measure. A set  is said to have a finite measure if

. 

 Given such that  and  for all . 

 is  on A if every set of A has  measure.  

When  they imply . Then  is complete 

measure. 

Let , then  is monotone . 

For any  where , if  then  is 

countably sub additive . 


n

i iA
1

A njijiAA ji ,,1, , ,     )(
11 

n

i i

n

i i AA


  

n 

AC

0)( A  )(A

 AA

)(A

   
1

A


iiA 





1i iAA )( iA . ,1i

 finite-  finite- 

0)( and , ,  BBAB A 0)( A 

  )()( and , , BABABA   AA 

AnAAA ,,, 1  
n

i iAA
1

 )()(
1 i

n

i
AA  

  
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Let  be a measure on a universe ; let a set  and a sequence of set 

.  

- The measure  is said to be continuous from below at , if 

and  imply all together that  . 

- The measure is said to be continuous from above at , if ,

, , imply all together that 

[9,10]. 

- If  is continuous from below and from above at , or on  A, then  is said 

to be continuous. 

3.3 Algebra of Fuzzy Set Theory  

 In the section 3.1, the characteristic function of a set S was defined as in (3.1.1).  

This formula actually indicates the membership or the non-membership of an 

element to the set S. The aim of this section is to generalize the definition of the 

characteristic function on the case which an element has only a partial membership 

on a set [3], [7], [8], [9] and [11].This generalized characteristic function is 

illustrated via the following examples.  

Example 3.1: Let all adult human constitute all members of the universal set. The 

body mass index (BMI) is used to divide adults in to 4 groups as below  

 

 A BA

 jB  A

 B 1 2B B 

lim j

j

B B


    lim j

j

B B 




 B  jB  A

1 2 ,B B   1B   lim j

j

B B




   lim j

j

B B 




 B 

20

20 25

25 30

30

thin

normal
BMI

overweight

obese





 


 
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Although the boundary values defining the category of the person depending on the 

weight, the boundary values cannot be so sharp. There must be a transition interval 

around each boundary value. This interval indicates that a person cannot belong 

100% to one category or the other separated by the boundary. Therefore, the category 

of a person in this interval is not crisp, but it is fuzzy.  

If we assume the fuzzy relation between categories is linear, and decide the size or 

width of the fuzzy interval, then the membership of a person to adjacent categories 

can be determined.  

In example 1 let us assume the following Fuzzy intervals are valid 

 

 

 

Figure 1 shows the fuzzy relation between categories as given above. 

 
Figure 1: Linear fuzzy membership function for Body Mass Index 
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Based on the assumed fuzzy intervals, the linear membership function is computed as  

 when the slope is positive, and   when the slope is 

negative in the fuzzy interval (18, 22). For example if the BMI of a person is x=19, 

then this person is 25% in the normal category and 75% in the thin category.  

Example 3.2: Main ingredients of baking 1 kg cake are 300 grams flour, 300 grams 

sugar, 300 grams butter, and 5 eggs. Assume the sweetness of a cake can be 

classified according to sugar content as 

 

As explained in example 3.1, there will be a fuzzy interval in changing from one 

category to another. Let us assume the following fuzzy intervals 

 

If it is assumed that the fuzzy relationship is represented by the following function   

, then the fuzzy membership graph is 

as given in figure 2. Here a, b are the lower and upper boundaries for the fuzzy 

intervals, and y is the center point for , or intersection of two curves 

1 0.25 4.5x   2 0.25 5.5x   
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300  
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Sweetness
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 
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80  sweet
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Sweetness fuzzy
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fuzzy

very






 


 
 






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   
   

( )f x
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Figure 2: Fuzzy membership graph for the sweetness 

in the 80-120 gram fuzzy intervals. 

3.3.1 Fuzzy interval and Arithmetic Intervals  

In this section, the study assumes that a member set value  is uncertain. 

Nevertheless, it is assumed belonging to a certain interval, called range. It follows 

that , with  called the confidence interval for the value of . 

Moreover, if  then the interval . This topic is mainly 

concerned by close and bounded interval. They are graphically represent as given in 

figure 3. [3], [8], [9] and [11]. 
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Figure 3: Confidence interval in two-dimensional space. 

The operation and rules which are important for the interval of confidence are given 

in what follows [7], [8] and [9]. 

Definition:  Consider two confidence intervals  and . The following 

relations and properties hold [9]. 

1- Equality of interval:  if and only if  and . 

2- Intersection: . 

3- Union: . The union is defined 

provided that , otherwise the union result is not an interval, and 

therefore it is undefined. 

4- Inequality:  

a) The interval  is less than the interval  i.e. , if 

and only if . 

 1 1,v v  2 2,v v

   1 1 2 2, ,v v v v 1 2v v 1 2v v

       1 1 2 2 1 2 1 2, , max , ;min ,v v v v v v v v    

       1 1 2 2 1 2 1 2, , min , ;max ,v v v v v v v v    

   1 1 2 2, , 0v v v v 

 1 1,v v  2 2,v v    1 1 2 2, ,v v v v

1 2v v
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b) The interval  is greater than the interval  i.e. , 

if and only if . 

5- Inclusion:  if and only if  and . 

6- The width for a given interval , is defined and denoted by

 . An important note is that, a singleton  has a width 

; for all . 

7- Absolute value: . It is important to note that a singleton  

has an absolute value defined by , for all . 

8- Midpoint or mean: For a given interval , it is defined and denoted by

. 

9- Symmetric: A given interval  is symmetric if and only if  or 

. 

Behind the definitions mentioned above, there exists arithmetic for the interval of 

confidence defined as follow. 

Definition: Consider ,  and  to be 3 intervals of confidence. The 

following operations are defined [8], [14] and [15]. 

1- Addition: . 

2- Subtraction: . 

3- Reciprocal:  

   a) If  then . 

 1 1,v v  2 2,v v    1 1 2 2, ,v v v v

1 2v v
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   , max ,v v v v v  v

 1 1,v v

    1 1 1 1

1
,

2
m v v v v 

 1 1,v v 1 1v v 

  1 1, 0m v v 

 1 1,v v  2 2,v v  3 3,v v

     1 1 2 2 1 2 1 2, , ,v v v v v v v v   

     1 1 2 2 1 2 1 2, , ,v v v v v v v v   

 1 10 ,v v  
1

1 1
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1 1
, ,v v
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   b) If  then  is undefined. 

4- Multiplication: . Where  

and . 

5- Division: , provided that . 
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  2 2, 0v v 



16 

 

Chapter 4 

CONCEPTS OF PRINCIPAL COMPONENT ANALYSIS 

4.1 Basic Idea of Principal Components 

Principal components analysis is a multivariate technique of dimension reduction, for 

a given multivariate or high dimension data. A multivariate data of p variables and n 

observations can be represented as follows [1], [2] and [19].   

.                                                            (4.1.1) 

Principal components (PC) are some linear combinations of the p variables. It is represented 

as follows  

 ,                                                       (4.1.2) 

The equation (4.1.2) can also be represented in a matrix form as follows 

                           (4.1.3) 

1 2
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The transition from a  raw data given by the equation (4.1.1) to  linear 

combinations given by equations (4.1.2) and (4.1.3) is done through some algebraic 

and statistical considerations (operations, properties, transformations, assumptions). 

In order to understand what a PC is, there is a need to define the necessary algebraic 

and statistical concepts. 

4.2 Algebraic Review 

Understanding principle component analysis (PCA), require basic knowledge of 

matrix algebra. Starting with the basic definition of the vector, any vector is denoted 

by a bold lower case letter, and may have n elements [2], [20]. For example   

 is a column vector with n rows. The transpose of this vector is a row 

vector denoted by   

A matrix is made up of more than one vector. If there are n rows and p column than 

the matrix is denoted as  

.                                       (4.2.1) 

 Some of the vector and matrix operation that will widely be used in this thesis are 

briefly explained below. 

Trace of a square matrix: It’s the sum of the diagonal elements. If matrix A is 

, its trace . 
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Inverse of a square matrix: Given square matrix A, its invers is denoted by  

and has the property . Here I is identity matrix. Some useful 

properties of the invers of a matrix are [1], [2], [20] and [21]  

 Inverse of a symmetric matrix is also symmetric  

 Inverse of the transpose of A is the transpose of , 
1 1( ) ( )  A A  

 The inverse of the product of matrices A, B, C can be written as the product 

of the inverse of these matrices in reverse order.  

 If  is a scalar then  

 If A diagonal matrix, then its inverse  will be the reciprocals of the diagonal 

elements.   

 If matrix A is not square then the left inverse  and right inverse  can be 

computed. If A is  matrix and n<p then  and . Here 

 identity matrix. 

 If n>p . Here  identity matrix. 

Positive definite matrix: Consider a symmetric matrix  and any vector , such 

that the product  is defined, then  is said to be positive definite matrix if and 

only if . In case  the symmetric  is said to be positive semi 

definite. 

Theorem (Perron–Frobenius): If a positive definite matrix has elements which are 

all positive, then the elements of its first eigenvector are positive [1], [2], [18] and 

[20]. 

1
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1 1  A A AA I
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A
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r p
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 is p p pI

1 1 1( )  and l l n

    A AA A AA I  is n n nI

A x
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The foregoing theorem is important in principal components analysis. 

Orthogonal vector and matrix: Two vectors  and  are orthogonal 

if and only if their inner product  

. 

If a vector  is such that  

 

Then  is called a normalized vector. Any vector  can always be normalized using 

, provided that . Consider a matrix  whose columns are 

mutually orthogonal and normalized, such a matrix is called an orthonormal matrix 

[20]. 

Eigenvalue and eigenvectors: Considering any square matrix  and a scalar , if 

there exists a nonzero vector , such that , then  is said to be an 

eigenvalue of and  is said to be its corresponding eigenvector. Finding the 

eigenvectors of a given matrix, the following relation is used . The 

determinant  is then computed and set equaled to zero, . Then, 

find non-trivial eigenvectors [1], [2] and [20]. 
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4.2.1 Spectral Decomposition 

Consider a  square matrix  that has eigenvalues. . Let the 

diagonal matrix  of which elements are eigenvalues of  and the matrix  

whose elements are made of corresponding eigenvectors. Then 

 ,                                                                        (4.2.2) 

is called the spectral decomposition of the matrix . 

Square root of a matrix:  Consider a positive definite matrix  and its spectral 

decomposition (4.2.1). If a diagonal matrix which elements are all square root of the 

eigenvalues is used instead of the matrix , then the spectral decomposition gives 

the square root of the matrix . This means  [20, 21]. 

Note: Using the matrices ,  and , the square and the inverse of the matrix  

can be defined respectively by  and .  

4.2.2 Singular Value Decomposition 

The concept of spectral decomposition for a square symmetric matrix can be 

extended to non-square matrices. In this case it is called singular value 

decomposition. Consider , of rank k. then the singular value decomposition of 

 is given by . Where ; with 

 being the nonzero eigenvalues of the matrix  or . The k 

columns of  are made of the normalized eigenvectors of the matrix , whereas 

n n A 1 2, , , n  

D n nA n nP

A PDP

n nA

n nA

D
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1 1

2 2 A PD P

A D P A

2 2 A PD P
1 1  A PD P

n pA

 
n p

A A UDV  2 2 2

1 2, , , kdiag   D

 1 2, , , k   AA A A

U AA
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the k columns of  are made of the normalized eigenvectors of the matrix  [1] 

and [2]. 

4.2.3 Rotation. Let v  be a vector in two dimensional spaces. To rotate v  by an 

angle  counter clock wise,  can be multiplied by the matrix  

. 

If  then the rotation will be orthogonal [2, 20]. 

4.3   Statistical Review  

Principal component analysis is a techniques used in dimension reduction. One of the 

main fields of application of PCA is statistics. Hence, a brief review of some 

statistical theory is given in the following sub sections [19] and [22]. 

4.3.1 Covariance Matrix 

Consider a random variable  with a probability distribution f(x).The variance of 

, is a value that helps to measure the dispersion among the values of the 

distribution [22]. 

Considering for instance a sample of observations of a random variable , shown 

as a row vector . The dispersion of this observation can be 

measured by the computation of the sample variance, using the formula  

                                                              (4.3.1) 

Where  is the mean of the observation given in this case by . 

It can be shown that the formula (4.3.1) is equivalent to 
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.                                                             (4.3.2) 

In case, a population is considered instead of a sample, the following formula is used 

to compute the variance of the random variable X. 

                                                                 (4.3.3) 

It can also be proved that the formula (4.3.3) is equivalent to  

.                                                               (4.3.4) 

Where  represented the expectation of the variable , and  is the square 

of the population mean.  

Theorem 4.1: Let  be a random variable and  a constant, the variance of the new 

variable  is given by [2] and [22]. 

.                                                         (4.3.5) 

Considering a distribution with two random variables  and , the measurement 

of the dispersion between these variables is represented by their covariance. Let us 

consider a sample of n observations of two random variables  

and . The sample covariance of  and  is given by 

.                                            (4.3.6) 
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Where  and  are the means of the random variables  and  respectively.  

The formula (4.3.6) is equivalent to the following formula 

.                                                     (4.3.7) 

In case, a population distribution is considered instead of a sample, the following 

formula is used to compute the covariance among the observation 

.                                    (4.3.8) 

It is possible to show the equivalence between the formula (4.3.8) and the following 

formula 

.                                            (4.3.9) 

Consider two random variables  and . Considering also two constants  and 

. Then  is linear combination and its variance-covariance is defined as 

by 

          

(4.3.10) 

The formula (4.3.10) can be written simply as  

                                                           
(4.3.11) 
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Let consider the vectors  and , then the linear combination can be 

written as . Furthermore, considering the matrix  

defined by , the following relation holds  

.                          (4.3.12) 

Theorem 4.2: Recalling the formula (4.3.12), the matrix  is called 

variance-covariance matrix of the random variables  and . The entries  and 

 are called variance of the variables  and  respectively. The entrances  

and  are called covariance between the variables  and  [1], [2], [19] and 

[21]. 

Remarks: 

-  measures the dependence between the variables  and , whereas 

 measures the dependence between the variables and .Thus 

. This implies that the variance-covariance matrix is a symmetric 

matrix. 

- From the formula (4.3.7), if the random variable  has exactly the same 

distribution as the random variable , then  and 
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Thus . 

- Considering the previous formulas, it is important to mention that the symbol 

S  is preferred to denote the sample variance-covariance whereas the symbol 

σ  is used for the population variance-covariance. This notation will be 

adopted in what will follow. 

In multivariate data analysis, it is common to observe simultaneously  

variables. In this case to measure the dependence among the variables, computation 

of a  covariance matrix is required. Consider n simultaneous observations of 

p random variables. Then these observations can be represented in matrix from see 

(4.2.1) 

, 

The variance-covariance of these observations is a matrix computed and 

denoted as follow [1] and [2] 

                                                                                          

(4.3.13) 

where the entrances . It measures the variance among the 

variable  and it self. For , the covariance between the variables  and  

is defined and computed as follow 
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. 

 When a population is considered, the variance-covariance matrix is denoted by  

                                         (4.3.14) 

where the entrances  and  have respectively the same meaning with the entries 

 and  as given in (4.3.13).  

4.3.2 Correlation Matrix 

The correlation is a numerical value computed to measure the level of linear 

correlation between two or more observations from a multivariate data.  

Consider two random variables  and , the correlation coefficient between them 

is computed and denoted as follow [1], [2], [21] and [22] 

.                                                      (4.3.15) 
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The correlation between a variable and itself is perfect; this is why the diagonal 

elements are all equal to 1. . In the case of n 

observation, the correlation matrix will be, 

                                         (4.3.16) 

where . The correlation coefficient matrix is a symmetric matrix . 

4.4  Computation of Principal Components  

Given a  data matrix , there may be conditions that necessities the reduction 

of the size of this matrix. As p represent the number of the variables, it may be 

desirable to reduce them, without losing the inherent characteristic of the process 

under study, when p is large. Computations to achieve the required dimension 

reduction will be explained in the following sub sections [1], [2], [19], [21] and [23]. 

4.4.1 Theoretical Background  

The principle components are linear combination of p random variables 

. In the computation of PCs, the original coordinate system of the data 

is rotated to a direction such that the first PC points to the direction with the highest 

variation in the data, and the last PC point to the direction with the lowest variation 

in the data.  
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Computations of the PCs depend of the covariance matrix  obtained from the 

  data matrix. The eigenvalues and corresponding eigenvectors of  are 

 and . Since the covariance matrix is symmetric its 

eigenvectors are orthogonal. Let the square ( ) matrix  be made up of the p 

eigenvectors , then the PC matrix is given by  

                                                                          (4.4.1) 

Or 

    .                                            

(4.4.2)

                         

The variance of the Y matrix is made up of the diagonal element of the resulting 

matrix given below [1] and [2] 

                                                  
(4.4.3) 

and the covariance of the Y matrix ( ) is made up of the non-diagonal  elements in 

equation (4.4.3). From here, the  PC can be written as a linear combination  

that maximizes  subject to  and . Here

, representing p variables the following property  is important in 

PCA and is expressed as  

11 22 1 21 1
( ) ( )

p p

pp i p ii i
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             

.          (4.4.4)                                                                
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According to equation (4.4.4) the sum of the variances of a random variables is equal 

to the sum of eigenvalues of the covariance matrix . As a result, the proportion of 

total variance, explained by the  PC is given by  

1

,  1, ,k

p

ii

T p







 

  
.                                               (4.4.5) 

Equation (4.4.5) can be used to determent the number of PCs that can represent high 

percentage (80% or above) of total variation in the data. 

Another method to determent the number of PCs is the scree plot of the eigenvalue 

[1]. Since the eigenvalues are in decreasing order, the graph forms an elbow. 

Generally the point where the elbow is observed is taken as the number of PCs 

necessary to represent the majority of variation in the data.  

 
Figure 4: Eigenvalues of example 1 forming and elbow. 
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The PCs are obtained using the eigenvectors of the covariance matrix  

( ).  The correlation between PCs and the random variables is a 

useful tool. They show the relationship between PCs and the constituent variables. 

They are given by  

                      

   .                                     (4.4.6) 

Example: Consider the following dataset, representing the grades of 10 IT students 

in the following courses. Java programming ( ), Database management ( ), 

Introduction to statistics ( ) and English communication ( ). The data related 

with 4 variables is given in table 4.1. 

Table 4.1: Student grades for 4 different subjects. 
     

1 90 75 65 55 

2 70 80 60 50 

3 85 60 50 65 

4 70 70 55 50 

5 85 60 70 60 

6 45 55 55 50 

7 40 35 35 35 

8 60 45 50 40 

9 40 65 70 35 

10 60 65 65 60 

 

Compute the PCs using both covariance and correlation matrices. 

1 1 , ,Yp pY   e x e x
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i k
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Y X
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e
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Using the data from the table 4.4, the covariance matrix, its eigenvalues and 

corresponding eigenvectors are computed and given below. 

Covariance matrix 

. 

Eigenvalues 

. 

Eigenvectors  

, , and . 

The principal components are the linear combination of the random variables where 

the coefficients are the elements of the eigenvectors    

. 

The correlation matrix, its eigenvalues and corresponding eigenvectors computed 

from the same data are given as follows. 

 

 

  352.50   131.11    65.28    152.78

  131.11   182.22    102.78   63.89

   65.28    102.78    118.06   38.89

  152.78    63.89     38.89    111.11

 
 
 
 
 
 

S

1 2 3 4526.09, 160.80 , 43.48, =33.52      

1

    0.7675

    0.4433

    0.2703

    0.3761

 
 
 
 
 
 

e 2

    0.4735

   -0.6208

   -0.5944

    0.1926

 
 
 
 
 
 

e 3

   -0.1793

   -0.5359

    0.6002

    0.5661

 
 
 
 
 
 

e 4

    0.3932

   -0.3619

    0.4619

   -0.7078

 
 
 
 
 
 

e

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

 0.7675 +0.4433 +0.2703 +0.3761

0.4735 - 0.6208 - 0.5944 +0.1926

-0.1793 - 0.5359 +0.6002  +0.5661

0.3932 - 0.3619  +0.4619 - 0.7078

Y X X X X

Y X X X X

Y X X X X

Y X X X X








 
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Correlation matrix 

. 

Eigenvalues 

. 

Eigenvectors 

, , and . 

The principal components obtained are 

. 

Based on the computed PCs the percentage of variation represented by each PC are 

given table (4.2), where T is given in (4.4.5) 

 

 

    1.00    0.52    0.32    0.78

    0.52    1.00    0.70    0.45

    0.32    0.70    1.00    0.34

    0.77    0.45    0.34    1.00

 
 
 
 
 
 

R

1 2 3 42.56, 0.94 , 0.30, =0.20      

1

    0.5175

    0.5216

    0.4518

    0.5060

 
 
 
 
 
 

e 2

    0.4665

   -0.3960

   -0.6229

    0.4874

 
 
 
 
 
 

e 3

   -0.2756

   -0.6434

    0.5547

    0.4499

 
 
 
 
 
 

e 4

    0.6623

   -0.3964

    0.3166

   -0.5514

 
 
 
 
 
 

e

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

0.5175  + 0.5216 + 0.4518  + 0.5060

0.4665  - 0.3960 - 0.6229   + 0.4874

-0.2756  - 0.6434  + 0.5547  + 0.4499

0.6623 - 0.3964  + 0.3166  - 0.5514

Y X X X X

Y X X X X

Y X X X X

Y X X X X


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



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Table 4.2: Eigenvalues obtained from the covariance matrix, and corresponding 

percentage of variation they represent. 
Covariance matrix 

     Total 

     763.89 

T 0.69 0.21 0.06 0.04 1 

Cum. T 0.69 0.90 0.96 1  

 

Table 4.3: Eigenvalues obtained from the correlation matrix, and corresponding 

percentage of variation they represent. 
Correlation  matrix 

     Total 

     4 

T 0.64 0.235 0.075 0.05 1 

Cum. T 0.64 0.875 0.95 1  

 

It is observed that the first eigenvalue obtained from the covariance matrix represent 

90% of total variation in the data. Respective eigenvalue of the correlation matrix 

represents 87.5% of total variation.  Since the two percentages are very close, it 

indicates that for each variable the variance of the row data and the standardized data 

is compatible.  

Linear correlation between the PCs and involved variables is given in equation 

(4.4.6). Using this equation 
1 2 1 2, , , ,, ,   and 

i i i iY X Y X Y Z Y Z     are computed and presented 

in Table (4.3).  

 

1 2 3 4

526.09 160.80 43.48 33.52

1 2 3 4

2.56 0.94 0.30 0.20
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Table 4.4: Correlation coefficient values between the PCs and random variables, 

obtained from the covariance and correlation matrices. 
 

     

S matrix 

 0.9376 0.7532 0.5705 0.8183 

 0.3197 -0.5831 -0.6936 0.2316 

            

R matrix 

 0.8280 0.8345 0.7228 0.8096 

 0.4522 -0.3839 -0.6039 0.4725 

 

Coefficients of the PCs are eigenvalues. They indicate the contribution of each 

variable to the particular PC. The linear correlation coefficient between a PC and its 

constituent variables shows the degree of linear correlation. It must be noted that the 

variable with the highest contribution to the PC, may not also have the highest 

correlation with the PC. This is clearly visible from table (4.4). For example in the 

first PC obtained from the covariance matrix, the highest contributing variable is  

also has the highest correlation with . On the other hand, the second highest 

contributing variable  has the third highest correlation with .  
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Chapter 5 

FUZZY LOGIC AND PRINCIPAL COMPONENTS 

ANALYSIS 

The idea of principal components analysis has been extend to be adapted as a 

solution to various problems. Indeed, many methods with the roots in principal 

components analysis (PCA) exist. Probabilistic principal components analysis 

(PPCA), weighted principal components analysis (WPCA), fuzzy principal 

components analysis (FPCA) can be named just to mention a few.  In this chapter, 

the association of fuzzy algebra and PCA will be discussed theoretically and some of 

its application will be presented [6], [23] and [24]. 

5.1 Fuzzy Principal Components Analysis 

The fuzzy principal component analysis (FPCA) enables the fuzzification of the raw 

data matrix that helps to diminish the influence of possible outliers. 

5.1.1 Fuzzification Procedure and its Algorithms.  

To determine the structure of the data, the fuzzy clustering tool is designed to be 

adequate. The general procedure of the fuzzy clustering algorithm which is 

associated to an objective function is defined as follow. Consider a finite set of 

feature vector in 
p

. This means  1 2, , , p

p X x x x . Then X is a data matrix 

with its vectors defined as: 1 11 12 1, , , px x x   x , 2 21 22 2, , , px x x   x , …,

1 2, , ,p n n npx x x   x . Explicitly X  can be written as, 
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11 12 1

21 22 2

1 2

p

p

n n np

x x x

x x x

x x x

 
 
 
 
 
  

X . 

This is actually the view of a data set made of n  simultaneous observations of p

random variables. The entrance 
jkx  is defined by 1 2, , ,jk j j jpx x x

   x . Let 

consider now a s-tuple of supports or prototypes  1 2, , , sΛ L L L  each of them 

characterizing one of the s  defined clusters. Using all what mentioned, a partitioning 

of X  into s clusters is computed by the minimization of the objective function [5] 

and [24]. 

      2

1 1

, ,

ms n

i j j i

i j

J A x d x L
 

A Λ  

where  1 2, , , sA A AA  being the fuzzy partition.    0,1i jA x   is the degree of 

membership of the feature point 
jx  to the fuzzy cluster iA . The integer 1m   is the 

index of fuzziness.  ,j id x L  is the distance between the prototype of cluster iA  and 

the feature point 
jx . The mentioned distance may be the Euclidean distance if iL  is 

defined as elements in 
p

. The clustering algorithm is mainly based on the 

prototype choice and the defined distance. In this study, the linear prototype denoted 

 ,L u v  is chosen to characterize the fuzzy set. With the given main direction u  such 

that 1u  and v  is the center of the class. The line from the linear prototype is also 

called first PC of the set, with its direction given by the association u  of to the 

largest eigenvalue 1 .  The covariance matrix computed from the fuzzification 

procedure is [24] and [25] 
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     

 

1

1

. .

,    , 1, ,

p
m

k ki i kj j

k
ij p

m

k

k

A x x x x x

C i j n

A x





 

 



 .                            (5.1.1) 

Equation (5.1.1) and what preceded, mean that the characterization of the fuzzy set 

A  is done by the linear prototype principal component 1 (PC1) computed based on 

the fuzzy covariance matrix. At this point, the aim is to determine the membership 

degree called   such a way to make PC1 fit best to the data X . The following 

algorithm is used to determine the fuzzy memberships  .  

Algorithm 1: Computation of fuzzy memberships [6], [8], [13], [24], and [26]. 

Step 1: Set   1,   A x x  X . 

Step2: Compute the prototype  ,L u v , withu  being the eigenvector computed from 

the largest eigenvalue, itself computed from the fuzzy covariance matrix defined by 

equation (5.1). Compute v  the center of the fuzzy cluster A  by 

 

 

1

1

n
m

j j

j

n
m

j

j

A x x

v

A x












. 

Step 3: Compute the new degrees of fuzzy membership  jA x  as follow  

 
  

1

2 1

1

,
1

j

m
j

A x

d x L















. 
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Step 4: Compare the new fuzzy set to the old fuzzy set. If they are close enough, then 

stop and accept this as the new fuzzy set, otherwise, go back to step 2 and reiterate 

the algorithm. 

Knowing that the membership degree is a value between 0 and 1, a second algorithm 

can be defined, using the previous one to determine the best membership degree, 

computed from the previous algorithm. This membership degree should be such that, 

it maximizes the first eigenvalue.   

Algorithm 2: Computation of the best membership degree   [6], [13], [17] and 

[24]. 

Step 1: Set 0 0   and 0 0  . 

Step 2: Set the first membership value to be used (  initial value  ). 

Step 3: Using Algorithm 1 with initial   value and compute the optimal degree of 

fuzzy membership  A x .    

Step 4: Use   and  A x  computed in step 3, to compute the fuzzy covariance 

matrix C  as given in equation (5.1.1), then choose its largest eigenvector. 

Step 5: If 0   then 0   and 0  . 

Step 6: Compute increment   .  If 1   then reiterate the procedure from Step 

3; else stop the procedure and return the current 0  as optimal  . 

After the definition of the algorithms “Computation of fuzzy memberships” and 

“Computation of the best membership degree  ” given by Algorithm 1 and 

Algorithm 2 respectively, one can write a final algorithm that helps to compute the 

fuzzy principal component analysis as follow. 

Algorithm 3: Fuzzy principal component analysis [6], [13], [17], [24] and [26]. 



39 

 

Step 1: Compute the optimal  using Algorithm 2. 

Step 2: Using Algorithm 1 to compute the optimal fuzzy membership degrees using 

the   computed in step 1. 

Step 3: Use the result (fuzzy membership degrees) computed in Step 2, to compute 

the fuzzy covariance matrix C . 

 The classical procedure of computing PCs through eigenvalues and eigenvectors can 

now be carried out on the obtained C  matrix to find the fuzzy principal components. 

5.1.2 Application of PCA Concepts to Fuzzy Data. 

Example 1: Body mass index (BMI). Consider the following data set given in Table 

5.1 representing 21 observations of 4 random variables. Each random variable 

represent the membership value from the BMI data where  the fuzzy interval for BMI 

values is assume to be between 19 and 21, for the categories thin and normal. Based 

on the assumption that membership functions are linear, different fuzzy membership 

functions are used to compute membership values. According to fuzzy interval 

widths used functions are  

1

2

3

4

0.5 9.5 19 21

0.25 4.5 18 22
  

0.167 2.83 17 23

0.125 2. 16 24

x

x

x

x

x

x

x

x









  

  

  

  

                                             (5.1.2) 

Here, X values used in each equation, are the BMI values between 19 and 21with 

increments 0.1. Therefore, from each function in equation (5.1.2), 21 membership 

values were computed. Computed values form a data matrix of 21 4 . First column 

in the matrix represents fuzzy membership values computed for 
1x

 . Similarly, 

columns 2, 3 and 4 are computed from respective fuzzy membership functions for 

2x , 
3x , and 

4x (5.1.2). This data given in the table (5.1). 

 



40 

 

Table 5.1: Fuzzy membership data obtained from BMI values. 

1X  
2X  

3X  
4X  

0 0.0125 0.020057 0.01875 

0.05 0.0625 0.070058 0.0125 

0.1 0.1125 0.120059 0.11875 

0.15 0.1625 0.17006 0.16875 

0.2 0.2125 0.220061 0.21875 

0.25 0.2625 0.270062 0.26875 

0.3 0.3125 0.318934 0.31875 

0.35 0.3625 0.370064 0.36875 

0.4 0.4125 0.420065 0.41875 

0.45 0.4625 0.470066 0.46875 

0.5 0.5125 0.520067 0.51875 

0.55 0.5625 0.570068 0.56875 

0.6 0.6125 0.620069 0.61875 

0.65 0.6625 0.67007 0.66875 

0.7 0.7125 0.720071 0.71875 

0.75 0.7625 0.770072 0.76875 

0.8 0.8125 0.820073 0.81875 

0.85 0.8625 0.870074 0.86875 

0.9 0.9125 0.920075 0.91875 

0.95 0.9625 0.970076 0.96875 

1 1 1 1 

 

The z scores for each variable are computed and checked for normality through the 

standard normal quintile – quintile plot. Figure (5.1) shows the quintile – quintile 

plot for 1X . The fit of the point to a near perfect straight line is an indication of 

normality. 



41 

 

 
Figure 5.1: Standard normal quintile – quintile plot for 1X . 

The data in Table 5.1 will be used in PCA 

Principal component analysis based on the covariance matrix 

The covariance matrix computed from the BMI data in Table 5.1, is given below.  

    0.0963    0.0959    0.0958    0.0970

    0.0959    0.0956    0.0955    0.0967

    0.0958    0.0955    0.0953    0.0966

    0.0970    0.0967    0.0966    0.0980

 
 
 
 
 
 

S  

 

Eigenvalues and corresponding eigenvectors are 

   0.0000         0          0              0

         0       0.0000       0             0

         0            0       0.0001        0

         0            0          0          0.3851

 
 
 
 
 
 

SL

   0.3073   -0.7346   0.3406    0.4999

  -0.8093    0.1312   0.2819    0.4983
,  

   0.5006     0.6633   0.2490   0.4974

   0.0013    -0.0557  -0.8617   0.5043

 
 
 
 
 
 

SE

 

It is observed from the diagonal L  matrix, 1 0.3851  is very large compared with 

the remaining eigenvalues. This indicates that only the first PC is enough to represent 

the fuzzy membership values, for the BMI process. This is given as 

1 1 2 3 40.4999 0.4983 0.4974  0.5043  Y X X X X    . 

18.5

19

19.5

20

20.5

21

21.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

M
en

b
er

sh
ip

 

z scores 



42 

 

Principal component analysis based on the correlation matrix. 

Correlation matrix computed from the data given in Table 5.1 is  

    1.0000    1.0000    0.9999    0.9992

    1.0000    1.0000    1.0000    0.9993

    0.9999    1.0000    1.0000    0.9993

    0.9992    0.9993    0.9993    1.0000

 
 
 
 
 
 

R .  

Eigenvalues and corresponding eigenvectors computed from the R matrix are 

    0.0000        0            0          0

       0         0.0001        0          0
,  

       0         0            0.0011      0

       0         0                 0         3.9988

 
 
  
 
 
 

R RL E

   0.3083  -0.7355    0.3376   0.5000

   -0.8094   0.1290  0.2796    0.5001

   0.4998    0.6628    0.2468    0.5000

   0.0013   -0.0563    -0.8643    0.4999

 
 
 
 
 
 

 

Similar to the covariance matrix case, the first eigenvalue is dominating. Therefore, 

the first PC is enough to represent the fuzzy membership process.  

The first PC can be written as 

1 1 2 3 4 0.5000 0.5001 0.5000 0.4999Y X X X X    .  

First PC obtained from the S and R matrices are the same, with all coefficients are 

either 0.5 or extremely close to 0.5. This is an unusual situation indicating extremely 

high correlation between the variables, which is evident from the R matrix. They are 

all practically equal to 1. Reason behind this being the linear membership functions 

used in the generation of fuzzy membership values given in Table (5.1). To 

overcome this handicap, a new data set generated using a different approach, given in 

Example 2. 

Example 2: Referring to example 2 of chapter 3, the main ingredient sugar in 

determining the sweetness of the cake is divided into 4 categories. An interval 
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around the boundary values between the categories is defined as a fuzzy interval in 

transition from one category to another.  

Five different fuzzy membership functions are used in determining the membership 

values in the fuzzy interval. Decreasing membership values in a fuzzy interval 

obtained from each function are taken as the realizations of a random variable. 

Hence, an association is established between the membership values and the random 

variables. This is particularly true for each membership function, as there are 

infinitely many possible sets of membership values obtainable from each function, 

depending on its parameters.  

The following fuzzy membership functions are used in generating the membership 

values [8].For each fuzzy interval as the membership values to one category 

decrease, for the other category increase. In this example only the decreasing 

membership values for one fuzzy interval are considered. This is based on the 

assumption that all fuzzy intervals are of the same width. 

1- Linear membership function. 
1
( ; , )X x a b aX b   . The coefficients a and b are 

computed from the lower and upper boundaries of the fuzzy interval. Obtained 

membership values are assigned to random variable 1X . 

2- Z shaped membership function. Formally it is defined as  

1 2

2

1 2

1

2

1
1 2

2 1

2

2
22

2 1

2

1

1 2

( ; )

2

0

a a

X

a a

x a

x a
a x

a a
x a

x a
x a

a a

x a










 
     

 
  

  
 

 

                                    (5.1.3) 
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Suitable values are assigned to the constants 1 2 and a a , and membership values are 

computed. These set of membership values are assigned to the random variable 
2X . 

3- Cauchy membership function. This function is given by 

3 2

1
( ;a, ,c)

1

X b
x b

x c

a

 




                                                  (5.1.4) 

Parameter b is usually positive. If b>0 curve becomes concave up bell shaped. This 

function is the generalized version of the Cauchy distribution. Membership values 

from this function are assigned to 3X . 

4- Gaussian membership function.  

2

4

0.5( )
( ; , )

x c

X x c e  



                                                (5.1.5) 

Gaussian membership function is completely determined by the parameters c and  . 

c is the central value and  is the measure of width for the function. 

Membership values computed are assigned to 4X  . 

5- Sigmoidal membership function.  

5

1
( ; , )

1 exp[ ( )]
X x a c

a x c
 

  
                                      (5.1.6) 

The sigmoidal membership function produces a tail to the right or left, depending on the 

value of a. 5X  represents the membership values obtained from this function. 

Application of these 5 membership functions to the sugar content in a cake example, 

for the fuzzy interval 80 – 120 grams and the decreasing part of the membership 

values from 1 to 0, produced the results given in Figure (5.2).  
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Figure 5.2: Fuzzy membership values obtained from 

5 different membership functions 

The same data is also given in Table (5.2), and are used in dimension reduction 

analysis.  

Table 5.2: Fuzzy membership values from different membership functions 

assigned to random variables. 

1X : Lin 2X : Z shape 3X : Cauchy 4X : Gauss 5X : Sigmoid 

1 1 1 1 1.00000000 

0.95 0.995 0.990099 0.987282 0.99999998 

0.9 0.98 0.961538 0.950089 0.99999989 

0.85 0.955 0.917431 0.891188 0.99999917 

0.8 0.92 0.862069 0.81481 0.99999386 

0.75 0.875 0.8 0.726149 0.99995460 

0.7 0.82 0.735294 0.630779 0.99966465 

0.65 0.755 0.671141 0.534085 0.99752738 

0.6 0.68 0.609756 0.440784 0.98201379 

0.55 0.595 0.552486 0.354588 0.88079708 

0.5 0.5 0.5 0.278037 0.50000000 

0.45 0.405 0.452489 0.212503 0.11920292 

0.4 0.32 0.409836 0.15831 0.01798621 

0.35 0.245 0.371747 0.114957 0.00247262 

0.3 0.18 0.337838 0.081366 0.00033535 

0.25 0.125 0.307692 0.056135 0.00004540 

0.2 0.08 0.280899 0.037749 0.00000614 

0.15 0.045 0.257069 0.024743 0.00000083 

0.1 0.02 0.235849 0.015809 0.00000011 

0.05 0.005 0.21692 0.009845 0.00000002 

0 0 0.2 0.005976 0.00000000 
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Processing the data from Table 5.2 for dimension reduction 

Inıtially the covariance (S) and correlation (R) matrices from the data are to be 

computed to help determine the relationship between the variables. These are 

computed as below 

    0.0963    0.1169    0.0858    0.1111    0.1367

    0.1169    0.1458    0.1055    0.1374    0.1772

    0.0858    0.1055    0.0785    0.1032    0.1249

    0.1111    0.1374    0.1032    0.1369    0.16

S

41

    0.1367    0.1772    0.1249    0.1641    0.2374

    1.0000    0.9865    0.9872    0.9680    0.9041

    0.9865    1.0000    0.9857    0.9724    0.9523

 =     0.9872    0.9857    1.000

 
 
 
 
 
 
 
 

R 0    0.9955    0.9150

    0.9680    0.9724    0.9955    1.0000    0.9103

    0.9041    0.9523    0.9150    0.9103    1.00003

 
 
 
 
 
 
 
 

 

While correlations between the variables are very high, the lowest one is between the 

membership values obtained from the linear and sigmoidal membership functions.  

Eigenvalues ( l ) and eigenvectors (e ) obtained from S and R matrices are given 

below 

0.0000         0         0         0         0

         0    0.0005         0         0         0

         0         0    0.0045         0         0

         0         0         0    0.0231         0

 

SL

4.8321         0         0         0         0

         0    0.1264         0         0         0

;           0         0    0.0372    

        0         0         0         0    0.6668

 
 
 
  
 
 
 
 

RL      0         0

         0         0         0    0.0042         0

         0         0         0         0    0.0001

 
 
 
 
 
 
 
 

 

Eigenvalues from S and R matrices both indicate that one PC is enough to represent 

the whole process. This is because the first eigenvalue obtained from S accounts for 

95.5% of total variation in the data, and respective value from the R matrix is 96.6% 

from equation 4.4.5. Also the graph on Figure (5.3) shows an elbow at the end of the 
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first eigenvalue, and after the second eigenvalue tails off, supporting the sufficiency 

of one PC to represent the whole process. 

 
                       Figure 5.3:  Eigenvalues of example 2 forming and elbow 

    0.2409   -0.5994    0.5717    0.3436    0.3712

    0.0738    0.7728    0.4103    0.1108    0.4655

   -0.8758   -0.0938   -0.1316    0.3042    0.3382

    0.4114    0.0048   -0.6925    0.3930    0.4

SE

436

   -0.0174   -0.1862   -0.0891   -0.7891    0.5783

   -0.4487   -0.3060    0.6219    0.5062   -0.2491

   -0.4533    0.0538    0.3299   -0.8209   -0.0942

   -0.4521   -0.2924   -0.19

 
 
 
 
 
 
 
 


R

E 08    0.0598    0.8186

   -0.4487   -0.2829   -0.6785    0.0149   -0.5081

   -0.4330    0.8591   -0.0875    0.2570    0.0285

 
 
 
 
 
 
 
 

 

Coefficients of the PC obtained from the covariance matrix are the values of the 

eigenvector that corresponds to the largest eigenvalue of the covariance matrix. Then 

the PC is  

1 1 2 3 4 50.3712 0.4655 0.3382 0.4436 0.5783Y X X X X X     .  
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PC obtained from the covariance matrix shows that 
5X  has the highest and 

3X  the 

lowest contribution to the linear combination. Similarly the PC from the correlation 

matrix is              

1 1 2 3 4 50.4487 0.4533 0.4521 0.4487 0.4330Y X X X X X      .                    

Coefficients of this PC are almost equal to each other. Hence, carry no useful 

information about the contribution of the variables to the PC. This is because the 

correlation values between variables are very high. Never the less compared with 

example 1, they do not exhibit perfectness. 

Table 5.3: Correlation coefficient values between the PCs and random variables, 

obtained from the covariance and correlation matrices.  

  1X  2X  3X  4X    5X  

S matrix  
1 , iY X  0.9767 0.9955 0.9857 0.9790 0.9692 

         
1Z  2Z  3Z  4Z  5Z  

R matrix 
1 , iY Z  -0.9863 -0.9964 -0.9938 -0.9863 -0.9518 

 

The correlation between the variables and the PC is not directly related with the level 

of contribution. For example in the PC obtained from the S matrix the highest 

contributing variable 5X , turns out to have the lowest correlation with the PC.  

On the other hand, the correlation between the standardized variables iZ  and 1Y  are 

again almost all the same, confirming the previous comments. 
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Chapter 6 

CONCLUSION 

 

Fuzzy set theory provides a means to extract useful information where large volumes 

of data is concerned or generated. Areas where data is generated in vast volumes 

include business and banking, engineering, health science. Other sectors are rapidly 

growing in terms of data generation. There are situations where large data has to be 

divided into categories. Boundaries of such classifications are sometimes difficult to 

delineate as to whether a data value is a member of one class or the other. Fuzzy 

logic together with mathematical concepts provides a solution to the problem by 

introducing the fuzzy interval and fuzzy membership concepts. With the use of a fuzzy 

membership function a data value can be assigned with partial membership to 

neighboring classes, within the fuzzy interval between these classes 

. The fuzzy membership values assigned to a point must add up to 

1, i.e.  .  

In this thesis work, this very basic concept is built on to generate different fuzzy 

membership multivariate data sets as explained under chapters 3 and 5 with 

examples.    

 Generated multivariate data sets are then processed through the PCA concepts to 

assess the possibility of dimension reduction. PCA is a methodology that examines 

1 2
( ) and ( )X Xa a 

1 2
( ) ( ) 1X Xa a  
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the multivariate data via the covariance and/or the correlation matrices obtained from 

the data.  

 Example 1 under section 5.1.2, 4 sets of fuzzy membership data values were 

generated assuming linear membership functions. Each function is obtained from a 

different fuzzy membership interval. Using the same type of membership function 

resulted in extremely high correlation between the data sets, each represented by a 

different variable. As expected, the PCA could not distinguish between the variables 

as it is observed from equal coefficients being applied to every variable in the PC. 

Further, it is seen that almost all variation in the data was attributed to the first PC, 

rendering the remaining 3 PCs useless. Hence, becomes clear that application of 

PCA to such data is not appropriate. 

In example 2 of section 5.2.1, 5 different fuzzy membership functions were 

employed using a fixed fuzzy interval. Generated data sets are assigned to 5 

variables. High correlation between the variables still evident, but not to the extent to 

hamper the application of PCA concepts. The first PC was sufficient to represent the 

process generated by 5 variables. However, the coefficients attached to each variable 

showing its contribution to the PC were different as expected.  
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