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ABSTRACT 

Generally LTI filters are appropriate to denoise a signal that have low-frequency band. 

On the other hand, total variation denoising is appropriate to filter a signal having 

sparse representation. Some signals cannot be classified as having specific frequency 

band, or having sparse representation, such as the signal comprised in biomedical 

applications (near infrared spectroscopic imaging and nano-particle biosensing). This 

thesis introduces a new approach for denoising signals based on low-pass filtering 

combined with total variation  denoising, assuming that the noisy observation is near 

infrared spectroscopic time series measurement, which can be modelled as a sum of 

two components, one of them low frequency and the other sparse or sparse derivative. 

The problem is formulated in terms of an optimization problem, and the cost function 

of the optimization problem is convex. As a consequence, two iterative algorithms are 

presented; the first one is derived using the majorization-minimization technique, and 

models the signals as consisted of low frequency and sparse derivative components. 

On the other hand, the second algorithm is derived using alternative direction method 

of multipliers, and models the signals as consisted of low frequency, sparse and sparse 

derivative components. In view of the above, simulation algorithms based on existing 

noisy observations are developed for validation and verification of the proposed 

approach. The simulation results show that the proposed approach for denoising 

signals recovers the signals well. Furthermore, it was found that the proposed approach 

is better in terms of run time. 

Keywords: NIRS, low-pass filter, total variation denoising, sparse derivative. 
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ÖZ 

LTI filtereler genellikle düşük frekans bandında olan sinyallerin gürültüden 

temizlenmesi için uygundur. Diğer yandan, toplam değişim gürültü giderme, seyrek 

temsiliyeti olan sinyalleri filtreleme için uygundur. Bazı sinyaller, yalnız belirli bir 

frekans bandına sahip, veya yalnız seyrek temsiliyeti olan sinyal diye tanımlanamaz. 

Buna örnek, biomedikal uygulamalarda karşılaşılan (yakın kızılötesi spektroskopik 

görüntüleme ve nano-parçacık bio-algılama) sinyallerdir. Bu tez, düşük-frekans 

geçirgen filtereleme ve toplam değişim gürültü gidermenin, sinyallerin gürültü 

giderilmesi için birarada kullanıldığı bir çalışmaya dayanmaktadır. Gürültülü verinin 

yakın kızılötesi spektroskopik zaman-dizisi ölçümlerinden elde edildiği 

varsayılmaktadır. Bu veri, biri düşük frekans içerikli, diğeri ise seyrek veya seyrek 

türevi olan iki sinyalin toplamı olarak modellenebilir. Problem, bir eniyileştirme 

problemi olarak düzenlenip, maliyet işlevi konvekstir. Problemin çözümü için iki tane 

algoritma incelenmiştir. Birincisi büyükleme-en aza indirgeme yöntemine dayanıp 

sinyali, düşük frekans içerikli ve seyrek türevli bileşenlerden oluşan sinyal olarak 

modellemektedir. İkinci algoritma ise sinyali düşük frekans içerikli ve seyrek ek olarak 

seyrek bir bileşenden oluşan sinyal olarak modeller, ve.Bu algoritmalar, önerilen 

yaklaşımı doğrulamak üzere, gerçek gözlemlerle elde edilmiş gürültülü sinyal 

uygulanmıştır. Benzetim sonuçları algoritmaların, sinyallerin gürültüden 

temizlenmesinde başarılı olduklarını göstermiştir. Buna ek olarak, önerilen yöntemin 

hesaplama zamanı olarak diğer yöntemlere göre daha iyi olduğu bulunmuştur.  

Anahtar Kelimeler: NIRS, alçak geçiş filtresi, toplam varyasyon filtreler, seyrek 

türevi. 
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Chapter 1 

INTRODUCTION 

This chapter presents a brief overview of linear time-invariant (LTI) filters and sparse 

representation, the objective and the organization of the thesis. 

1.1 Linear Time-Invariant Filters and sparse representation 

Linear time-invariant (LTI) filters are a particularly important class of filters, which 

are vastly applied in signal processing and telecommunication systems in many 

applications, where they can be used in biomedical signal processing, radar, noise 

reduction, video processing and audio processing. The output of LTI filters can be 

written as linear combination of the input signal. Also the coefficients of LTI filters do 

not change with time. Most important, the principle of superposition is used to define 

the linearity property, which states that the filter response is closed under additivity 

property and scaling property. Also the time invariance property leads to the 

coefficients and frequency response of the filters being fixed. The LTI filters can be 

described by difference equations with unique impulse responses. Also the frequency 

response of LTI filters can be obtained from the impulse response. Consequently filter 

response specification can be described as low-pass filter, which passes low 

frequencies, high-pass filter which passes high frequencies, band-pass filter and band-

stop filter.  The Nyquist sampling theorem is used in order to avoid overlapping, and 

when the signal is perfectly bandlimited. Otherwise there will be aliasing [1]. 

Lately, the concept of sparsity and sparse representation is an active research area in 

signal denoising and reconstruction. It enhances the possibility of describing a signal 
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of interest with a restricted number of non-zero parameters or components, and 

numerous algorithms have been derived in order to solve convex optimization 

problems to estimate sparse signals [2]. The 
1
-norm is special in sparsity, because it 

has a convex proxy for it, which promotes sparsity in many sparse signal estimation 

and reconstruction problems [3]. Total variation denoising is unlike conventional low-

pass filtering, which leads to an optimization problem, and the cost function of the 

optimization problem is convex and has unique minimizer. 

 

Finally, signals may arise in many applications that cannot be categorized as having 

known frequency band or known transform. Consequently, linear time-invariant filters 

are used to estimate and filter signals when the frequency band is known. On the other 

hand, sparsity-based denoising is used when the signal of interest has a known 

transform. Interestingly, it is convenient to jointly use LTI filters and total variation 

denoising to filter a wider class of signals arising in many applications [4]. 

1.2 Research Aims and Objectives 

The aim of this research study is to analyze the denoising problem introduced in [5]. 

The thesis discusses the methods of low-pass filtering combined with total variation 

denoising. In achieving this aim, the major objectives of the research can be stated as: 

investigating the theoretical and mathematical formulation, implementing the 

algorithms, verifying the optimality condition of setting the regularization parameter 

and observing the effect on the convergence behavior of the algorithms, making 

comparison between two algorithms and check the uses of each one. 

1.3 Structure of the Thesis 

The remaining chapters of the thesis are organized as follows. Chapter 2 illustrates the 

related work about linear time-invariant filters and TV denoising. Chapter 3 reviews 
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notation and background about TV denoising, FLSA, and the MM procedure. The 

problem formulations are presented in chapter 4. Chapter 5 presents the solution for 

the optimization problem, implementation of the algorithms, and design of the 

discrete-time filters. Chapter 6 illustrates the experiment results with synthetic and real 

data. Finally, chapter 7 concludes the thesis and future work. 
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Chapter 2 

LITERATURE REVIEW 

In this chapter, related research about linear time-invariant filters and sparsity-based 

denoising are presented. 

 

The authors in [6] worked on least-squares polynomial approximation combined with 

total variation denoising, in order to estimate a time-series signal and an approximately 

piecewise constant signal individually. Least-squares polynomial approximation was 

used for smoothing signals that are well approximated by a polynomial, while total 

variation denoising was used to estimate piecewise constant signals. Consequently, 

they presented an algorithm based on alternative direction method of multipliers, 

which need the user to specify three parameters: the degree of the polynomial, the size 

of the window, and the regularization parameter. The new approach [5] described in 

this thesis replaced the least-squares polynomial approximation with linear time-

invariant filters. Interestingly, the advantages of the new approach described in this 

thesis can be noticed as we do not have to specify a lot of parameters. In addition, the 

new approach can be applied to more general signals that have low frequency 

component, and sparse or sparse-derivative component. On the other hand, the 

proposed algorithms described in this thesis converge faster than the algorithms 

described in the cited references. Furthermore, the propped methods described in this 

thesis provide the optimality condition in order to set the regularization parameter. 
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The research in [7] is related to this work, where they proposed an approach for 

recovering a signal assumed to be a piecewise smooth signal. They combined 

Tikhonov 2  regularization and total variation denoising. The authors addressed the 

problem of reconstruction of a signal that arises in many applications, and which can 

be modeled as comprising two components, one of which is a piecewise constant 

signal, and the other a smooth signal. They proposed an algorithms based on Tikhonov 

method, which provide an optimal solution with desirable properties. As a 

consequence, they used total variation denoising for the piecewise constant 

component, and 2 -norm for smooth component. In addition, the proposed methods 

are applicable for 1D signals and images. A notable difference is using linear time-

invariant filters instead of Tikhonov regularization, which gives a suitable way to 

specify the frequency response. Also the new approach described in [5] used 

compound regularization in order to promote specific properties of the signals. 

Furthermore, the new approach presented fast algorithms for computational efficiency. 

 

Many papers in image processing model the image as having two components. In [8], 

[9] the authors conducted various experiments in image decomposition problem, where 

they modeled the image as composed of structural and textural parts. They applied 

sparse representation approaches. However, the proposed approach described in this 

work utilizes sparsity for only one component. 

 

Many problems of image denoising have been addressed in [10], [11] which are based 

on wavelet methods. Typically, analyzed signal has various scales by using scaled 

version wavelets. Clearly, there are several distinct differences between the proposed 

approach and other wavelet based approaches. First, the low-pass filter in that approach 
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is interlay decoupled from the sparse signal description. In contrast, the determination 

of the low-pass sub-band in wavelet domain denoising is based on the specific wavelet 

transform used. According to the proposed approach the properties of the low-pass 

component in the signal model determines how the low-pass filter design is to be. In 

addition, the complications that couple the appointing of a proper wavelet could be 

avoided through the proposed method. Furthermore, another thing that could be 

avoided by the proposed approach is the ‘pseudo-Gibbs’ phenomenon, since this 

approach is based on total variation denoising. 

 

The problem of estimating a noisy data that can be modeled as comprising two 

components and separated by discontinuities, has attracted many researchers [12], 

[13]. Typically, in [14] the authors address the problem of recovered an image from a 

blurred and noisy image. Due to this model, and in order to prohibit edges from 

blurring, they avoid filtering with discontinuities. In contrast with the new approach, 

they model the low-pass component with two sided discontinuities. 
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Chapter 3 

PRELIMINARIES 

This chapter presents the NIRS data, notation, total variation denoising, FLSA, and the 

majorization-minimization procedure.  

3.1 Near Infrared Spectroscopy 

NIRS is a technique that uses near infrared light in order to measure the changes in the 

blood flow to the brain [15]. It is assumed here that the noisy data can be modeled as  

 ( ) ( ) ( ) ( )y n f n x n w n     (1) 

where f is a low-pass signal, x is a sparse and/or sparse derivative signal, and w is 

instrumental noise (approximately stationary white Gaussian noise). To filter the 

signals which are modeled in (1), an optimization approach is presented that combines 

LTI and sparsity-based denoising to extract a low-pass and a sparse signal from a single 

noisy additive mixture. Here, first the sparse or sparse-derivative component x is 

recovered by using two algorithms. If x were a sparse-derivative signal it is extracted 

using LPF/TVD algorithm which uses the majorization-minimization (MM) principle. 

If x were a sparse or sparse-derivative signal it is derived using the LPF/CSD algorithm 

which uses the alternate direction method of multipliers (ADMM). 

3.2 Notation 

Vectors are represented by lower case bold (e.g., x), while matrices are represented by 

upper case bold (e.g., H). The N-point signal x is represented by the vector  

 (0),  ...,  ( 1)
T

x x x N   
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The first order difference matrix D is denoted as  

 

1 1

1 1
:   

1 1

D

 
 


 
 
 

 

  (2) 

where  D x  is the first-order difference of an N-point signal, and D is of size

( 1) .N N    

The soft-threshold function is defined as 

 
          

soft ( ,T) :
0                          

x T x x x T
x

x T

  
 



  

this is the usual soft-threshold function on the real line, generalized here to the complex 

plane, the notation soft ( ,T)x refers to the soft-threshold function operated element-

wise to x for T > 0. 

3.3 Total Variation Denoising 

TVD is an approach to recover a signal x from a noisy data y, where x is a sparse or 

sparse derivative signal vector. Consequently, it is more efficient to formulate the 

problem in terms of 1  norm in order to promote sparsity. This leads to the constrained 

optimization problem  

 
1

2 2

2

arg min     

such that    .N

X
Dx

y x 
  (3) 

problem (3) is equivalent, for suitable  , to the unconstrained optimization problem 

 
2

2  1

1
arg min  

2


X
y x Dx

 
  

 
  (4) 

the solution to the unconstrained optimization problem (4) is denoted as 
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2

2  1

1
tvd ( , ) : arg min  

2
 

 
   

 X
y y x Dx   (5) 

there is no explicit solution to (4), but a fast algorithm to compute the exact solution 

has been developed. Increasing the parameter   has the effect of making the solution 

x more nearly piecewise constant. Instead of the first order difference, other 

approximation of derivative can be used for sparse derivative denoising. 

3.4 Fused Lasso Signal Approximator 

FLSA is used when the signal x and the derivative of x are sparse. Then the denoising 

problem is more appropriately formulated as  

 
2

0 12 1  1

1
arg min  

2
 

X
y x x Dx

 
   

 
  (6) 

specifically, in equation (6) there are two regularizers in order to promote sparsity in 

the coefficients and in their difference. The solution to (6) is given by   

 1 0soft (tvd ( , ), ) x y   (7) 

hence, it is not necessary to have a separate algorithm for (6). It suffices to have an 

algorithm for TVD problem (5). 

3.5 Majorization-Minimization Procedure 

The MM approach is used to solve optimization minimization problems that are 

difficult to minimize. It involves obtaining a sequence 1kx   by minimizing G ( )k x  

such that   

 1 arg min  G ( )k k
x

x x    (8) 
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The majorizer G ( )k x  is convex, and it should satisfy G ( ) (x)k Fx   and

G ( ) ( )k k kFx x . It is suitable to use a quadratic majorizer for the 1 -norm because it 

is easy to minimize. Consequently, the majorizer can be written as  

 

 

1

1 1

1 1

2 2

T

k k

k kdiag

  

 

x x x x

x

  (9) 

with equality when 
kx = x . Therefore, the left-hand-side of (9) is a majorizer of 

 1
x

and we will use it as G ( )k x in the MM procedure. Equation (9) is a direct consequence 

of 
2( ) 0kx x  . 
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Chapter 4 

PROBLEM FORMULATION 

The problem considered is that of filtering noisy data ( )y n  that arises from a noisy 

additive mixture. Most important, this class of noisy data has significant signal 

processing applications. Consequently, the noisy data ( )y n can be modeled as a 

mathematical equation 

 ,y f x w     (10) 

 filtering noisy data (n)y  means obtaining the following estimates 

 
ˆ .

ˆ .

x x

f f




  (11) 

suppose that estimate x̂  of x is given, then it is easy to estimate f as 

 ˆ ˆ: LPF( )f y x   (12) 

it is assumed that LPF is a specified low-pass filter. Thus, the problem will be to find 

the estimate x̂ . Using (12) in (11) gives  

 ˆLPF( ) .y x f    (13) 

using (10) in (13) gives  

 ˆLPF( ) .y x y x w      (14) 

in order to get an equation which contains just noisy data x̂ , and w , using (11) in (14) 

gives  

 ˆ ˆLPF( ) .y x y x w      (15) 

rewrite (15) as 
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 ˆ ˆ( ) LPF( ) .y x y x w      (16) 

it is clear in equation (16) that a high-pass filter is applied to the term ˆ( )y x . 

Consequently, by using that assumption makes the frequency response zero phase. 

Hence, the proposed approach will be effective and efficient. As is well known, the 

high-pass filter can be formulated as HPF : 1 LPF  . Also, we use this form to update 

equation (16) as 

 ˆHPF( ) w .y x    (17) 

in the previous equation, note that it does not contain the unknown signals f and x, but 

it has x̂ . Therefore, it can be used to find the estimate x̂  . However, to make this 

equation useful we define the high-pass filter matrix by bold-face H; hence, updating 

equation (17) to be H ˆ( ) .y x w   

 

Specifically, the total variation denoising will provide the exact solution to x; hence, x 

has a sparse or approximately sparse derivative. Furthermore, in order to formulate the 

total variation filter as minimizing a particular cost function, the 1 norm can be used 

in an effective way with first-order difference to give the sparse solution. More 

generally, this is the basis of total variation denoising. As a result, the output of the 

total variation filter will provide the solution x to the constrained optimization problem  

 
1

2 2

2

  arg min   

such that    ( ) .N

X
Dx

H y - x

  (18) 

however, for a suitable regularization parameter , the unconstrained optimization 

problem is equivalent to the constrained optimization problem in (18)    

 
2

2  1

1
arg min  ( ) .

2


 
 

 X
H y - x Dx   (19) 
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Specifically, the unconstrained optimization problem is easier to solve than the 

constrained optimization problem. Recently, a fast algorithm has been developed to 

solve this type of optimization problem. In chapter 5 section 1, we derive an algorithm 

using the majorization-minimization approach in order to solve the unconstrained 

optimization problem (19). Also we describe an approach to choose a suitable 

regularization parameter .   

However, the high-pass filter matrix H will be defined as  

 1  H A B   (20) 

where matrix A and matrix B are banded; hence, the fact that these matrices are banded 

leads to computational efficiency of the algorithm. On the other hand, the high-pass 

filter matrix H is not banded because the inverse of A is not banded. In chapter 5 

section 2, we present the design of the high-pass filter matrix H. In addition, in order 

to estimate f in (12) the low-pass filter matrix -1
L = I - A  B is used.  
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Chapter 5 

ALGORITHMS AND DESIGN OF LTI FILTERS 

This chapter firstly implements the LPF/TVD and LPF/CSD algorithms and describes 

the design of different types of LTI filters. 

5.1 LPF/TVD Algorithm 

The optimization problem (19) is used to find the solution to total variation denoising. 

However, the cost function of the optimization problem is convex and non-

differentiable. Many algorithms are developed for this type of problem (19) such as in 

[16]. Consequently, in this section an algorithm is derived to solve (19) by applying 

the majorization-minimization approach [17]. 

Typically, in order to make the solution to (19) unique, a constant should be added. 

Also the variables should be changed to facilitate use of majorization-minimization as 

follows  

 x = Su   (21) 

where S is a matrix having a size of ( 1).N N ×  Note that the form of S is 

 

0

1 0

1 1 0
:

1 1 1 0

1 1 1 1

 
 
 
 

  
 
 
 
 

S   (22) 
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Also, note that S represents a cumulative sum. Hence, if the size of D  is ( -1)N × N  

and the size of S is ( 1)N N × , then  

 DS = I   (23) 

where I represents an identity matrix of size ( -1) ( -1)N N . Therefore, matrix S can 

be defined as the discrete anti-derivative. Note that, 

 Dx = DSu = u   (24) 

the matrix B which is given in chapter 3 can be formulated as  

 1
B = B D   (25) 

where 
1B  is a banded matrix to make the algorithm effective and computationally 

efficient.  

now, in order to minimize the cost function with respect to u instead of x, by using 

(21) in (19) gives 

 
2

2  1

1
arg min  ( ) ( ) .

2
F 

u
u H y - Su u

 
  

 
  (26) 

in this case, the output of the optimization problem (26) is the optimal solution u; then 

the solution to equation (19) is unique and can be obtained by (21), by applying the 

majorization-minimization in order to minimize (26). Consequently, the cost function

( )F u in (26) needs a majorizer ( )kG u to solve problem (26) directly. However, the 

idea is that we can use equation (9) to find a majorizer to ( )F u as 

 
2

2  1

1
( )  ( )

2 2 2

T

k k kG
 

  -1
u H y - Su u Λ u u    

where  kΛ  is a diagonal matrix and can be defined as the following 
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(1)

(2)
( ( ) ).

( )

k

k

k k

k

diag N

N

 
 
  
 
 
  

u

u
Λ u

u

  

note that, by using (20), (23), and (25), HS can be written as  

 
1 1 1

1 1HS A BS A B DS A B
       

hence, the majorizer ( )kG u can be simplified as 

 
2

1 1 1

2

1
( )

2 2

T

k kG C
     

1
u A By A B u u Λ u   

where C is a constant which represents the term
 1ku . Therefore, the majorization-

minimization approach produces a sequence of 1ku   according to  

 
1 arg min  ( )k kG 

u
u u   (27) 

specifically, the solution to (27) can be given as  

 
1 1 1 1

1 1 1 1( ( ) ) ( ) .T T T T

k k   

  u B AA B Λ B AA By   (28) 

note that if the value of ku  goes to zero, then the entries of 
1

kΛ


 will go to infinity. In 

other words, there is a numerical problem. Consequently, to avoid this issue it is useful 

to use the matrix inverse lemma, which is described in [18]. Therefore, using this 

lemma to rewrite equation (28), we get 

 

1

1 1 1
1 1 1 1 1 1

banded

1 1
( ( ) ) .T T T T T

k k k k k 
 

B AA B Λ Λ Λ B AA B Λ B B Λ



  
 
    
 
 

 

 (29) 

note that A , 1B , and kΛ  are banded matrices, so the result of the indicated matrix is 

banded, which makes the algorithm effective. Also, it is clear that no division by zero 
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happens in (29). Finally, using (29), the majorization-minimization approach can be 

derived as 

 

1

1

1

1 1 1 1 1

1
( )

diag( )

( ) .

T T

k k

T T T

k k k k















    

b B AA By

Λ u

u Λ b B AA B Λ B B Λ b

  

Now, Table 1 shows algorithm 1 to solve the LPF/TVD problem (19), and also 

algorithm 1 based on the update equation (29). Interestingly, when x is obtained, then 

the low-pass signal f is obtained by using the low-pass filter -1
L = I - A  B  to ( )y x  

in equation (12). 

Table 1: LPF/TVD algorithm 

Algorithm 1: to solve problem (19) 

Input: 
NRy  , 0    

Output: 
NRx,f    

1. 
1

1(1 ) ( )T T b B AA By   

2.  u D y   

3.  repeat  

4. diag( )Λ u   

5. 1 1

T T Q AA B ΛB   

6. 1

1 1

T    u Λ b B Q B Λb   

7. Until convergence  

8. x Su   

9. 
1( )  ( )f y x A B y x
      
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10.  return x,f   

 

Furthermore, the computational cost of each iteration is ( )O dN , where the order of the 

high-pass filter H is d . However, algorithm 1 is programmed in MATLAB by using 

LAPACK [19], in order to derive an efficient and accurate implementation for solving 

banded linear systems.  

5.1.1 Optimality Condition 

The solution *
u  is minimizer of ( )F u  in (26) if and only if it satisfies certain 

conditions, using proposition 1.3 of  [20]. Then the sub-gradient of F is given by  

 
*( ) ( ) sign{ }T TF    u H H x y D Dx   

Thus, 

 ( ) sign{ }T T H H y x D Dx   

multiplying both side by T
S , and noting that T T S D I , and T H H H , we get  

 ( ) sign{ }T  S H y x Dx   

define g, as the cumulative sum of the residual   

 ( ),     T  g S H y x u Dx   (30) 

then u must satisfy  

 
(n) sign(u(n)).      for u(n) 0

           (n)         for u(n)=0

g

g





 


  (31) 

5.1.2 Setting the Regularization Parameter 

Suppose the noisy data just consists of the noise only such that y w . Then x =0, and 

from optimality condition (30), 
Tg S Hw  and u=0. Then (31) is used to obtain the 
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optimal   as max( ) max( )T  g S Hw . To avoid distortion of x, we choose the 

minimal value as follows  

 max( )T  S Hw   (32) 

which assumes availability of the noise signal w. Start- and end-transients should be 

omitted when using (32). In practice, the noise is not known, but its statistics may be 

known and an approximate maximum value precomputed.  

5.2 LPF/CSD Algorithm 

Unlike TVD, the signal is modeled to be sparse or having a sparse derivative 

component. In this case, the cost function of the optimization problem contains linear 

combination of two regularizers (one for 1  and the other for total variation 

regularizers). Also the compound regularization encourages piecewise smooth solution 

and sparse solution. In this section, an algorithm is derived using the alternating 

direction method of multipliers (ADMM) to solve the unconstrained optimization 

problem  

 
2

0 12 1  1

1
arg min  ( )

2
 

 
  

 X
H y - x x Dx   (33) 

the optimization problem (33) is defined as the LPF/CSD problem. Many algorithms 

are given for solving problems containing compound regularization, where the images 

are sparse and have sparse derivatives. However, problems of the form (33) have been 

addressed in [21], as the fused lasso signal approximator. 

At this point, if the majorization-minimization (MM) approach is used to solve 

problem (33), then the computational cost for each iteration is ( )O dN , where N is the 

length of the signal x. Then this leads to the solution of not banded system of equations, 
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so it is not sufficient to use MM approach. Consequently, an iterative algorithm based 

on ADMM [22] has been derived to solve (33). 

The ADMM is based on decomposing the objective function in (33) by applying 

variable splitting as in [23]. Then, the variable splitting will split x into variable, say x 

and v, in order to serve as the argument of 
1

Dx , and then minimize the constrained 

optimization problem subject to the condition that the two variables should be equal. 

At this point, problem (33) is equivalent to the constrained optimization problem  

 

2

0 12 1  1,

1
arg min  )

2

such that 

 
 

  
 X V

Hy - Hx v Dv

v = x

    (34) 

now, using ADMM, problem (34) can be minimized with respect to x and v by an 

iterative algorithm: 

 
2 2

2 2
arg min  ) 

X
x Hy - Hx v - x - d    (35a) 

            2

0 11  1 2
arg min  0.5  

V
v v Dv v - x -d     (35b) 

 ( )  d d v x   (35c) 

 Go to  (35a)   (35d) 

note that, each iteration consists of two minimization problems with respect to x and 

v. The ADMM algorithm produces a sequence of ,x v , and d . Also, the parameter   

is specified as a positive scalar, which affects the speed of convergence, but not the 

solution to which the algorithm converges. Also the algorithm (35) requires to initialize 

the variables d  and v to all-zero vectors the same size as y. In line (35a), while the cost 

function is convex quadratic, then x has the explicit solution  

 
1( ) ( ( ))T T    x H H I H Hy v d   (36) 

equation (20) is used to simplify T
H Hy as 
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1 1 1( ) ( )T T T T   H Hy A B A By B AA By   (37) 

however, the matrix inverse lemma can be used in order to avoid high computational 

cost as follows: 

 
1 11

( ) ( )T T T T 


      H H I I B AA BB B   (38) 

line (35a) can be implemented by using (37) and (38) in (36) compactly as  

 
11

( ) ( )T T



  g B AA By v d    (39) 

 
1( )T T T   x g B AA BB Bg   (40) 

notice that the term 11
( )T T



 
 
 

B AA By  in (39) can be precomputed, because y   does 

not change during algorithm (35). In line (35b), the solution for the minimization 

problem can be computed using (7) as 

 1 0soft (tvd ( , ), )    v x d   (41) 

It has been shown that, the LPF/CSD can be implemented by ADMM (35). Note that, 

the algorithm (35) can be computed efficiently because all matrices are banded. The 

complete algorithm is listed in table 2. 

 

Table 2: LPF/CSD algorithm 

Algorithm 2: to solve problem(33) 

Input: 
NRy  , 0 0  , 1 0  , 0    

Output: 
NRx,f    

1. 0v   

2. 0d   
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3. 
1(1 ) ( )T T b B AA By   

4.  repeat  

5.   g b v d   

6. 
1( )T T T   x g B AA BB Bg   

7. 1 0soft(tvd( , ), )    v x d   

8.   d d v x   

9. Until convergence 

10. 
1( ) ( )f y x A B y x
      

11.  return x,f   

 

5.3 Design of LTI Filters 

In this chapter, in order to use the method described in chapters 4 and 5, section 1.1 

and 1.2, discrete-time filters can be completely designed and implemented. 

Specifically, we are interested in designing zero-phase non-causal recursive high-pass 

filters. The difference equation of a discrete-time filter is  

 ( ) ( ) ( ) ( )
k k

a k y n k b k x n k      (42) 

where ( )x n  is the input signal and ( )y n  is the output signal. Consequently the transfer 

function of the discrete-time filter can be written as (e ) ( ) ( )jw jw jwH B e A e . 

Interestingly, the proposed algorithms described in chapter 5 are aimed at filtering 

finite-length signals, and sparsity-based denoising problems are usually used with 

finite-length signals. So the designed LTI filters will use finite-length signals. 

Consequently, the difference equation for finite length signals is 
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 Ay Bx   (43) 

using (43) the output of the discrete-time filter is given by 

 
1  y A B x   (44) 

note that in (44), A and B are banded matrices; A must be square and invertible also B 

need not to be square and invertible. Moreover, there is no need for start-transient and 

end-transient because the initial states of the filter are not specified. So they are defined 

to be zero. 

5.3.1 Zero-Phase Filters  

An important property of zero-phase filters is that the phase response is specified to be 

zero, otherwise there will be distortion in the phase, and equation (16) assumed that 

the filter is zero-phase. In particular, the zero-phase condition is satisfied when its 

impulse response is symmetric, or when the frequency response is real-valued. Another 

important property of zero-phase that leads to specific properties of A and B, is that 

the symmetry property leads to the same filter behavior in backward direction as in 

forwards direction. Hence, H is applied to a reversed version of signal x or applied 

directly to the signal x. Assume J is the reversal matrix, the following condition should 

be satisfied  

 JHJ H   (45) 

where H is a rectangular matrix and J is a square matrix. Note that if matrices A and 

B satisfy the conditions  

 




JAJ A

JBJ B
  (46) 

then 1H A B  satisfies condition (45). Moreover the filter matrices A and B used in 

the LPF/TVD algorithm should satisfy (46). Now, to make it clear here an example 

about recursive zero-phase filters will illustrate condition (46).  
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Example: consider a zero phase non-causal nd2 -order Butterworth filter. The input and 

output of the LTI system are described as  

 1 0 1( 1) (n) ( 1) ( 1) 2 (n) x( 1)a y n a y a y n x n x n            (47) 

from the previous discussion, the output signal can be implemented by using 

1  y A B x  , where matrix B has the form 

 

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

  
 

 
 
   
 

  
   

B   (48) 

note that, the dimension of B is ( 2)N N  . In this example 
1  B Dand of dimension

( 2) ( 1)N N    . Moreover, A has the form  

 

0 1

1 0 1

1 0 1

1 0 1

1 0

a a

a a a

a a a

a a a

a a

 
 
 
 
 
 
  

A   (49) 

note that, the dimension of A is ( 2) ( 2)N N   . Consequently, equation (46) is easily 

verified. Furthermore, the output y is a vector of size ( 2)N  . The corresponding 

transfer function ( )H z of the difference equation (47) can be obtained as  

 
   

1 1

1 0 1

1 1

1 0 1

( ) ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) 2

a zy z a y z a z y z zx z x z z x z

y z a z a a z x z z z

 

 

     

     
  

 
1

1

1 0 1

( ) 2
( )

( )

y z z z
H z

x z a z a a z





  
 

 
  (50) 
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Now, the filter must be low-pass and described by ( ) 1 ( )L z H z  , such that at the 

Nyquist frequency  , the low-pass filter will have zero gain. In order to have unity 

gain c of the system (47), this can be found by setting ( 1)c H    

 
1

1

1 0 1 0 1

( 1) 2 ( 1) 4
( 1)

( 1) ( 1) 2
c H

a a a a a





    
   

    
  (51) 

consequently, in order to have unity gain for the high-pass filter (47), equation (51) 

should satisfy 0 12 4a a  . Moreover, the corresponding frequency response of the 

high-pass filter can be obtained by setting jz e  such that  

 
1 0 1 0 1

e 2 e 2 (e e )
(e ) =

e e (e e )

j j j j
j

j j j j
H

a a a a a

   


   

 

 

    


   
  

using cos
2

j je e 




   and 0
1

4

2

a
a


  then  

 
0 0

2 2cos
(e )

( 4)cos

j c

c

H
a a

 






 
  

specifically, in this example the cut-off frequency can be set such that the frequency 

response equals 0.5, then the coefficient 0a  can be obtained as  

 

0 0

0 0

0

2 2cos1

2 ( 4)cos

( 4)cos 4 4cos

4

1 cos

c

c

c c

c

a a

a a

a





 






 

   




  

now, in order to find the coefficients of the frequency response (e )jH  , the cut-off 

frequency can be set to 0.1c  . Then 0a  and 1a  can be found as 

0

4
2.05

1 cos 0.1
a


 


 and 0

1

4
0.975

2

a
a


   .  

hence, the transfer function becomes  
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1

1

2
( )

0.975 2.05 00.975

z z
H z

z z





  

  

  

the poles of the transfer function can be obtained from the roots of the denominator of 

(z)H  

 
1

2

0.975 2.05 00.975 0

0.975 2.05 0.975 0

z z

z z

   

  
  

 

2 22.05 2.05 4 0.975

2 0.975

0.725 and 1.38

z

z z

  




 

  

similarly, the zeros of the transfer function are the roots of the numerator which can be 

solved as  

 

1

2

2 0

2 1 0

(z 1)(z 1) 0

1

z z

z z

z

   

  

  



  

there is a second-order zero located at z=1. The filter will not pass a constant signal 

and a ramp signal. So when the input signal is a linear combination of the form 

0 1( )x n k k n   then the output is zero. Consequently, the nd2  order high-pass filter is 

illustrated in Figure 1. 
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(a) 

 
(b) 



28 

 

 
 (c) 

Figure 1: Second order high-pass filter (a) HPF frequency response (b) HPF impulse 

response (c) HPF pole-zero diagram. 

 

 

5.3.2 Zero-Phase Higher-Order High-Pass Filter 

The transfer function of a higher-order high-pass filter is given by  

 
1

1 1

( z 2 z )
(z)

( z 2 ) (z 2 z )

d

d d
H

z 



 

  


     
  (52) 

therefore, the 2d-order zero of the filter (z)H is located at z=1. Then (e )jH 
=0 at

=0. Interestingly, the transfer function (52) can be rewritten as 

 

1

1 1

(z 2 z )
(z) 1

( z 2 ) (z 2 z )

d

d d
H

z







 

 
 

     
  

in addition, the frequency response (e )jH  of the transfer function (52) can be 

obtained as follows 
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( e 2 e )
(e )

( e 2 e ) (e 2 e )

(2 (e e ))

(2 (e e )) (2 (e e ))

(2 2cos )

(2 2cos ) (2 2cos )

j j d
j

j j d j j d

j j d

j j d j j d

d

d d

H
 



   

 

   







  



 



 

  


     

 


    




  

   

note that, the transfer function (52) represents a zero-phase high-pass Butterworth 

filter.   Now, if we want to find 
c , so specify (e )jH  =0.5 as follows  

 
(1 cos )1

2 (1 cos ) (1 cos )

d

c

d d

c c



  




  
  

the previous equation can be used to find as follows  

 

2(1 cos ) (1 cos ) (1 cos )

1 cos

1 cos

d d d

c c c

d

c

c

   






    

 
  

 

  

note that, the output of the filter (52) can be defined as 1  y A B x ; hence, the matrix 

B is banded and has size of ( 2d)N N  ; also matrix A is symmetric square and has 

size of ( 2d) ( 2d)N N   , note that the bandwidth of matrices A and B is 2d+1. In 

addition, the length of the output is 2dN  . 

Example: Consider d=2 and c =0.1π, then obtain α 46.29 10  . Also the matrix B 

can be obtained from 

 
1 2 2 1 2(z) ( z 2 z ) 4 6 4B z z z z             

then matrix B has the form  

 
( 4)

1 4 6 4 1

1 4 6 4 1
 

1 4 6 4 1

N N 

  
 

 
 
 
 

  

B   
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Hence, the bandwidth of B is 5, and 
1B is of the size ( 4) ( 1)N N   with nonzero 

elements in each row [-1, 3, -3, 1]. Matrix A is square symmetric banded, with 

bandwidth equal to 5, and has the form  

 

0 1 2

1 0 2

( 4) ( 4)

2 1

2 1 0

N N

a a a

a a a

a a

a a a

  

 
 
 
 
 
 

A   

where 0 16.0038,  3.9975a a   , and 2 1.0006a  . The results of the fourth-order 

high-pass filter are shown in Figure 2. 

 
(a) 
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(b) 

 
(c) 

Figure 2: Fourth-order non-causal high-pass filter (52) with d=2 (a) frequency 

response of the filter (b) impulse response (c) pole-zero diagram. 
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5.3.3 Low-Pass Filter 

The LPF/TVD algorithm provides an estimate x, of the sparse-derivative component 

and calls for the high-pass filter -1
H = A B . The algorithm does not use a low-pass 

filter. But, to obtain an estimate f of the low-pass component, recall that we need the 

low-pass filter denoted above as LPF 1 HPF  . A low-pass filter of this form is 

trivially performed by subtracting the high-pass filter output from its input. However, 

note that for the high-pass filter the matrices B and H are rectangular. Consequently, 

the output of the high-pass filter is shorter than its input by 2d samples (d at the 

beginning and d at the end). Hence, to implement the low-pass filter, the input signal 

should likewise be truncated so that the subtraction involves vectors of equal length. 

Consequently, the low-pass filter can be expressed as LPF(x) TRUNC(x) HPF(x) 

, where TRUNC(x) denotes the symmetric truncation of x by 2d sample. The low-pass 

filter matrix L is therefore given by  1

d

 L I A B  where dI  is of size ( 2 ) .N d N 

the low-pass filter transfer function of filter (52) is given by  

 

1

1 1

(z 2 z )
(z)

( z 2 ) (z 2 z )

d

d d
L

z







 

 


     
  (56) 

Example: We use high-pass filter illustrated in Figure 2 to implement the low-pass 

filter shown in Figure 3 with d=2 and cut-off frequency equal 0.1π. The filter output is

1

2

 y I x A Bx . 
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(a) 

 

 
(b) 
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(c) 

Figure 3: Fourth-order non-causal low-pass filter (52) with d=2 (a) frequency 

response of the filter (b) impulse response (c) pole-zero diagram. 
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Chapter 6 

SIMULATION AND RESULTS 

In this chapter we introduce examples and results in order to illustrate the LPF/TVD 

and LPF/CSD problems in chapter 5. 

6.1 Example 1 of LPF/TVD Problem 

In this section we introduce test signal in order to apply algorithm 1, the test signal 

contains two step discontinuities, sinusoidal signal, and white Gaussian noise ( 0.3 

), so we have to specify H and  , with 
c 0.044   and fourth-order high-pass filter 

(52), the algorithm was run for 30 iterations. Using (32) to set the regularization 

parameter as 0.8  , the output of algorithm 1 is illustrated in Figure 4. The 

optimality condition (31) is illustrated in Figure 4(e) as a scatter plot. Each point 

represents a pair (g(n), u(n)), where g(n) and u(n) denote the n-th time samples of 

signals g and u. Note that (31) means that if each pair (u, g) lies on the graph of the 

step function indicated as a dashed line in Figure 4 (e), then the computed x does 

minimize the objective function in (19). It is seen that most of the points lie on the line, 

which reflects the sparsity of Dx . 
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(a) 

 
(b) 

 
(c) 
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(d) 

 

 
(e) 

Figure 4: Results of example 1 (a) Noisy data (b) sparse-derivative signal x and low-

pass signal f (c) sum of two component (d) cost function history (e) the scatter plot of 

condition(31) is satisfied. Algorithm parameter d=2, ,c 0.044  0.8 .   
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The scatter plot in Figure 4(e) illustrates the optimality condition (31), and it is clear 

from the plot that 0.8  . Now to show the effect of the regularization parameter we 

choose 0.4  ; this will increase the root-mean-square error to 0.091 and change the 

fluctuation of the output signal. Figure 5 illustrates the output of low-pass filtering and 

total variation denoising when 0.4  . 

 
(a) 

 
(b) 

Figure 5: Results of example 1 (a) sparse-derivative signal x and low-pass signal f (b) 

sum of two component. Algorithm parameter d=2, ,c 0.044  0.4  . 
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6.2 Example 2 of LPF/TVD Problem 

This example used brain signal measured for 304 seconds by keeping the NIRS 

equipment on back of the head and subjecting it to motion artefacts, with channels that 

have specific particular source and detector pair. The measurements of NIRS data are 

very sensitive to subject motion artefacts, which make shift in the baseline value at 

approximately 80 seconds. In order to apply algorithm 1, we have to specify  =1.2 

with cut-off frequency 0.04c  , and the number of iterations equal to 30 iterations.  

Figure 6 shows the output of the LPF/TVD algorithm 1 for this example. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 6: Results of example 2 (a) NIRS time series (b) TVD component (c) Data 

with TVD component subtracted (d) cost function history (e) optimality condition. 

Algorithm parameter d=1, ,c 0.04   1.2 .   
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Note that in Figure 6.b the TVD component illustrates the discontinuities present in 

the NIRS time series data. When 1.2   the RMSE=0.354 which satisfies the 

optimality condition. 

6.3 Example 3 of LPF/CSD Problem   

In this example we used the same data in example 2, in order to filter the data which is 

sparse and has sparse derivative. Consequently, algorithm 2 is used instead of using 

algorithm 1 to solve the LPF/CSD problem (33) with 0 0  . Also we have to specify a 

parameter   which affects the overall convergence speed. The vectors d and v are 

initialized to zero vectors of the same size of y. In this example 1.2  . Figure 7 shows 

the output of algorithm 2.  

 
(a) 

 
(b) 

Figure 7: Results of example 3 (a) NIRS time series (b) TVD component for 

LPF/CSD. 
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6.4 Comparison between LPF/TVD and LPF/CSD Algorithms 

For comparison between algorithm 1 and 2, we have to apply both of them to the same 

noisy data. The output of each algorithm is illustrated in Figure 8. It is shown that the 

outputs of the two algorithms are the same, but for algorithm 2 we have to specify  ; 

this value will not change the solution, it will change the overall convergence. From 

Figure 8(c) it is observed that LPF/TVD requires less number of iterations and there is 

no requirement for the specification of the parameter   compared to LPF/CSD 

algorithm. It is also observed that for LPF/CSD algorithm for u = 0.05 initial 

convergence is very poor but final convergence is good compared to u = 0.5, and for u 

= 0.5 initial convergence is good but final convergence is poor compared to u = 0.05. 

 
(a) 

 
(b) 
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(c) 

Figure 8: Result of comparison between LPF/TVD and LPF/CSD algorithms (a) 

TVD component for LPF/TVD (b) TVD component for LPF/CSD (c) convergence 

behaver for algorithms. 

 

6.5 Example 4 of LPF/TVD Problem   

To illustrate simultaneous low-pass filtering and total variation denoising for an 

image, we apply algorithm 1 to a noisy image. We use the second order high-pass 

filter, and the parameter   was set to 1.5; also we add noise with 25  . Figure 9 

illustrates the use of algorithm 1 on the Barbara picture. 

 
Figure 9: Denoising using LPF/TVD algorithm. Algorithm parameter d=1, 1.5   
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6.6 Example 5 of LPF/CSD Problem   

To illustrate simultaneous low-pass filtering and total variation denoising for image, 

we apply algorithm 2 to the noisy image. We use the second-order high-pass filter, and 

the parameter   was set to 1.8; also we add noise with 25  . Figure 10 illustrates 

the use of algorithm 2 on the Barbara picture. 

 
Figure 10: Denoising using LPF/CSD algorithm. Algorithm parameter d=1, 1.8   

 

6.7 Comparison between LPF/TVD, LPF/CSD, and K-VSD 

Algorithms 

In order to compare the Peak Signal-to-Noise Ratio (PSNR) of Algorithms 1, 2 and K-

SVD, we apply all of them to the Barbara picture. Table 3 summarizes the results of 

the implementations on the Barbara picture. 

Table 3: Comparison between algorithms 

Algorithm PSNR (dB) 

LPF/TVD 26.9 

LPF/CSD 27.5 

K-SVD 29.6 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

Generally, LTI filtering is suitable to denoise low-frequency signals and total variation 

denoising is suitable to filter sparse represented signals. By using LTI filters the 

proposed Near-infrared spectroscopy (NIRS) measured signals are not recovered well. 

So to recover these types of signals both total variation de-noising and linear time-

invariant filtering are effectively combined. In order to filter this type of signals one 

optimization approach and two algorithms namely LPF/TVD and LPF/CSD are 

developed. The first one is developed according to the majorization minimization 

technique, and the second one is developed according to the alternating direction 

method of multipliers. First algorithm is a special case of the second algorithm. So 

instead of the first one second algorithm can also be used; but the first algorithm 

converges faster than the second one and also it doesn’t require a step size parameter, 

whereas second algorithm does. Here for enhanced sparsity total variation denoising 

and 
1
- norm are used.  

 

The proposed algorithms and problem formulation can be used in many fields such as 

biology, audio signal processing etc. Also, it can be extended in several ways 

depending on signal classification. Reweighted 1  minimization [24] or p  pseudo-

norm can be used instead of 1  norm. In addition, the low-pass filter can be replaced 

by a notch filter or band-pass filter depending on specific signals. 
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