

Concentric Tabu Search Algorithm for Solving

Traveling Salesman Problem (TSP)

Zeravan Arif Ali

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University

January 2016

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Cem Tanova

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

 Prof. Dr. Işık Aybay

Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Ahmet Ünveren

 Supervisor

Examining Committee

1. Asst. Prof. Dr. Adnan Acan

2. Asst. Prof. Dr. Mehmet Bodur

3. Asst. Prof. Dr. Ahmet Ünveren

http://cmpe.emu.edu.tr/iAybay/
http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/unveren/

iii

ABSTRACT

In this research one of the local search algorithms called the Concentric tabu search

(CTS) is used to solve the traveling salesman problem (TSP). One of the well known

NP-hard problems in combinatorial optimization is the TSP Problem and it is one of

the most competently studied problems in the area of combinatorial optimization.

Two different implementations of the Concentric tabu search (CTS): ring moves

(RM) and all moves (AM) are used and compared with the traditional tabu search.

For searching global optimal solutions for given TSP problems, Concentric tabu

search was hybridized with Genetic Algorithm.

Computational experiments showed that Concentric tabu search gives better

performance than the traditional tabu search and also improves the execution of the

Genetic Algorithm (GA) for the solutions of TSP problems.

Keywords: Concentric Tabu Search, Tabu Search, Genetic Algorithm, Traveling

Salesman Problem.

iv

ÖZ

Bu araştırmada yerel arama algoritmalarından biri olan Ortak Merkezli tabu arama

(OMTA) yöntemi seyyar satıcı problemini (TSP) çözmek için kullanılmıştır. NP-Zor

problemlerinden biri olan TSP için en iyi çözümlerin bulunması ile ilgili literatürde

pekçok çalışmalar bulunmaktadır. Ortak Merkezli tabu algoritması için iki farklı

yöntem bulunmaktadır : Halka Hamle (HH) ve Tüm Hamle (TH), bu çalışmada bu

iki yöntem geleneksel tabu arama ile TSP çözümleri üzerinden karşılaştırılmıştır.

Ayrıca OMTA Genetik Algoritma ile birleştirilerek TSP problemlerine en iyi

çözümler bulunmaya çalışılmıştır.

Yapılan deneyler ile OMTA geleneksel TS yönteminden daha iyi sonuçlar verdiği

gösterilmiştir. Ayrıca Genetik Algoritma ile kullanıldığında TSP problemlerinin

çözümünde Genetik Algoritma sonuçlarını iyleştirdiği gözlemlenmiştir.

Anahtar Kelimeler: Ortak Merkezli Tabu Arama, Tabu Arama, Genetik Algoritma,

Seyyar Satıcı Problemini.

v

To Roj

vi

ACKWNOLEDGMENT

My heartily thanks goes to my supervisor Asst. Prof. Dr. Ahmet Ünveren for his

guidance, support, and patience trough out the duration of this research and for

leading me to success. Without his efforts and time, this thesis would have been

outright failure. I greatly appreciate it.

In the same vein, I would like to express my appreciations and gratitude to my lovely

friends, Sharam, Muhammed, Qutaibah, Yazan, Sajad, and Kamal for their help. In

addition, I really thank all those who have supported me to achieve my goals.

Finally, my profound gratitude to my dear family for the care, faith, continuous

helps, and encourage given to me throughout my study.

http://cmpe.emu.edu.tr/unveren/

vii

TABLE OF CONTENTS

ABSTRACT ... III

ÖZ .. IV

ACKWNOLEDGMENT .. VI

LIST OF FIGURES .. X

LIST OF TABLES ... XI

1 INTRODUCTION ... 1

2 LOCAL SEARCH ALGORITHMS AND CONCENTRIC TABU SEARCH 4

2.1 TABU SEARCH .. 4

2.1.1 Tabu Search Parameters... 6

2.1.1.1 Short Term Memory ... 6

2.1.1.2 Long Term Memory ... 6

2.1.1.3 Move .. 6

2.1.1.4 Tabu List (TL) .. 6

2.1.1.5 Aspiration Criteria .. 7

2.1.1.6 Stopping Criterion .. 7

2.2 CONCENTRIC TABU SEARCH (CTS) .. 7

2.2.1 Moves in Concentric Tabu Search (CTS) .. 8

2.2.1.1 Ring Moves (RM) .. 8

2.2.1.2 All Moves (AM) ... 9

2.3 GENETIC ALGORITHM (GA) ... 9

2.3.1 Genetic Algorithm Parameters... 11

2.3.1.1 Representation .. 11

2.3.1.2 Evaluation/Fitness Function ... 11

viii

2.3.1.3 Population .. 12

2.3.1.4 Selection Operation .. 12

2.3.1.4.1 Tournament Selection Mechanism ... 12

2.3.1.5 Crossover ... 13

2.3.1.5.1 Ordered Crossover .. 13

2.3.1.6 Mutation ... 14

2.3.1.6.1 Reverse Sequence Mutation ... 15

2.3.1.7 Termination Condition for Genetic Algorithm 15

3 TRAVELING SALESMAN PROBLEM .. 16

3.1 TRAVELLING SALESMAN PROBLEM (TSP) .. 16

3.1.1 Definition ... 17

3.2 RELATED WORKS FOR TSP ... 21

4 CONCENTRIC TABU SEARCH FOR SOLVING TRAVELING SALESMAN

PROBLEM ... 23

4.2 CONCENTRIC TABU SEARCH ALGORITHMS FOR TSP .. 23

4.1.1 Finding initial/center solution .. 23

4.1.2 Calculation of the fitness value .. 23

4.1.3 Algorithms Description ... 24

5 EXPERIMENTAL RESULTS ... 31

5.1.3 TSP PROBLEMS ... 31

5.2 RESULTS FOR TSP .. 31

5.2.1 Result for Tabu Search (TS) .. 32

5.2.2 Result for Genetic Algorithm (GA) ... 33

5.2.3 Result for Concentric Tabu Search Algorithm (CTS) 34

5.2.4 Result for Genetic Concentric Tabu Search Algorithm (GCTS) 36

ix

6 CONCLUSION .. 39

REFERENCES ... 40

x

LIST OF FIGURES

Figure 1: Tabu Search FlowChart .. 5

Figure 2: Genetic Algorithm Flowchart ... 10

Figure 3: Steps of the Tournament Selection Mechanism ... 12

Figure 4: Ordered Crossover .. 14

Figure 5: Reverse Sequence Mutation ... 15

Figure 6: Sample for locations of the given placement of the cities in the map 17

Figure 7: Sample tour with edge distances for Ten Cities ... 18

Figure 8: Example of symmetric TSP .. 19

Figure 9: Distance matrix for figure 8.. 19

Figure 10: Example of Asymmetric TSP ... 20

Figure 11: Distance matrix for figure 10.. 20

Figure 12: Concentric Tabu Search Principle .. 24

Figure 13: Ring Move Algorithm Flowchart ... 25

Figure 14: Exchange Pairs Example between Two Solutions 26

Figure 15: All Move Algorithm Flowchart .. 27

Figure 16: Genetic Concentric Tabu Search Algorithm Flowchart 29

Figure 17: Results of TS, CTS (RM), and CTS (AM) for TSP 36

Figure 18: Results of the GCTS (RM) and GCTS (AM) for TSP 38

xi

LIST OF TABLES

Table 1: Distance Matrix for ten cities ... 18

Table 2: Result of the Tabu Search Algorithm .. 32

Table 3: Result of the Genetic Algorithm .. 33

Table 4: Result of the Concentric Tabu Search (Ring Move) Algorithm 34

Table 5: Result of the Concentric Tabu Search (All Move) Algorithm 35

Table 6: Result of the Genetic Concentric Tabu Search Algorithm 37

1

Chapter 1

INTRODUCTION

The Traveling Salesman Problem (TSP) is one of the most well-known and

significant combinatorial optimization problems (COP). The study of TSP is to

search the minimal path to visit all cities in a given list only once a time and return to

the first city. On other hand to its simple definition, solving the TSP is difficult since

it is NP-complete problem and not proximal to any constant [7]. TSP can be solved

with ease when there is minimum cities number, although, solving it will be very

hard for big problems, required a large amount of calculating estimate time. Based on

the framework of the cost matrix associated to the TSPs can be categorized into

asymmetric and symmetric [4].

Tabu search (TS) algorithm explores the search space by manipulating moves to a

solution in a way that fashion new solutions while trying to avoid reversing these

moves for a confirmed number of iterations [3]. TS is a meta-heuristic algorithm,

which can be applied for works out combinatorial optimization. TS has found its

usefulness in a number of applications such as traveling salesman problem,

scheduling, graph coloring, knapsack problems, etc. TS is now a reputable

optimization technique and has gained high effectiveness in solving a broad range of

optimization problems. Several works mentioned that TS provides best solutions to

the given combinatorial optimization problem. Consequently, Tabu Search extremely

used to find good solutions in particular, for large combinatorial problems [2].

2

Concentric tabu search (CTS) algorithm was proposed by Drezner [1] in 2002. The

idea is to force the search to regions of the search space that are far away from the

initial solution hoping to find a better local optimum [1]. As a variable neighborhood

search approach, Concentric Tabu Search falls in the general framework of tabu

search. Ring moves and All moves are two different types of the CTS which are

suggested for solving combinatorial problems. In the former, search is undertaken in

rings surrounding the center solution which is the starting solution, this continues

from one ring (circle) to a larger one, and continues, until the search reaches a

predefined radius [2]. In the latter, the rule of the search is allowed to proceed to a

lower hamming distance solution under certain conditions.

Genetic Algorithm exists within evolutionary algorithm class based on natural

evolution which is based on the percept of the survival of the fittest. Genetic

algorithm is best heuristic algorithms that have been employed more frequently to

deal with the travelling salesman problem (TSP) problems [5]. GA start with a

population of different solutions to the problem, a fitness function is used for

calculating individual fitness, and then a new generation will be created during the

selection process, crossover and then mutation. Genetic algorithm and after finds a

fitter solution the algorithm then terminate. While the algorithm continues with new

population whenever the termination condition is not met [6].

Since the simple genetic algorithm convergence speed is relatively slow. A satisfied

local search technique required to enhance the quality of genetic algorithm

individuals before inserting them into the population and improve the local search

ability [9].

3

In this research, Concentric tabu is hybridized with the genetic algorithm in order to

maintain a balance between intensification and diversification during the search

process [9].

The experimental evaluations are implemented using several benchmark problems

available on TSPLIB [21], the library of TSP instances. They are tested on the local

and global search algorithms and the results obtained are presented. It is noticed that

computational results show that the Concentric tabu search gives promising results.

Moreover, integration between CTS and GA is adequate and effective compared to

implementation of the genetic algorithm alone.

The remaining part of this research is organized as follows: in Chapter 2, general

gives a description of Tabu Search, Concentric Tabu Search, and Genetic Algorithm.

Traveling Salesman Problem will be detailed in Chapter 3. Furthermore, the

Concentric Tabu Search (Ring Moves), Concentric Tabu Search (All Moves), and

Genetic algorithm with Concentric Tabu Search will be outlined in Chapter 4. While,

obtained experimental results will be discussed in Chapter 5. Finally, the research

will end with a conclusion and recommendations for the future works in Chapter 6.

4

Chapter 2

LOCAL SEARCH ALGORITHMS AND CONCENTRIC

TABU SEARCH

Local Search algorithms are among accepted technique of approximate algorithms

for solving combinatorial problems. The search proceed from a solution to its

neighbors by implementing small move to the solution in order to discover better

solutions in the search space. In this work the CTS is used as a local search

procedure. Furthermore, a combination of local search algorithm represented by

Concentric Tabu Search Algorithm and an evolutionary algorithm that is Genetic

Algorithm are presented. It’s noticed that without using local search algorithms in

optimization problems, there is a less possible for the other algorithms to find the

optimal solution.

2.1 Tabu Search

The Tabu Search (TS) was proposed by Fred Glover [2] in 1988. It was introduced as

one of the most efficacious local procedures for solving combinatorial optimization

in a number of areas such as traveling salesman problem (TSP). It is usually obtained

by altering one solution to get the next (better solution) according to some

neighborhood structure. Likewise, TS has a faster execution speed than other local

search procedures because it does not revisit already seen solutions, considering

them tabu. This is possible because each move is recorded to avoid revisiting already

seen solutions.

5

No

Yes

Begin

Initial Solution

Termination

Criteria Satisfied?

Evaluate solutions

Generate a set of neighbor solutions

Select the best admissible solution

End

Update tabu list

Final Solution

Tabu search procedure begins from a starting solution, and at every step to hopefully

enhance the objective criterion value such a move to a neighboring solution is

chosen. This is convenient to a local improvement procedure except for the fact that

a move to a solution worse than the current solution may be acquires [8]. Figure 1

shows the flowchart of the tabu search.

 Figure 1: Tabu Search FlowChart

6

2.1.1 Tabu Search Parameters

In the following parts, we will describe in details the elements of the Tabu Search

algorithm:

2.1.1.1 Short Term Memory

Record a set of solutions latterly investigated to be discouraged in order to prevent

revisiting an already seen solution. If hidden solutions show up on the tabu list, it

cannot be returned until it reaches a termination point. It is used to prevent a search

from becoming trapped in local minima.

2.1.1.2 Long Term Memory

This memory keeps characteristics of better solutions which will be employed in:

 Intensification: attaching preference to certain characteristics of a group of more

promising solutions.

 Diversification: discouraging the characteristics of choices solutions so as to

diversify the search to other regions of search space.

2.1.1.3 Move

Tabu search moves from one solution to another, been an improvement heuristic in

search of a more promising solution. The technique of transitioning from one

solution to another is predefined by a set of rules which is known as a move. The

neighborhood of the current solution is the series of whole solutions that can be

achieved from the solution using a pre-specified move.

2.1.1.4 Tabu List (TL)

To prevent revisiting already seen solutions, TS employs a tabu list in which tabu

moves or characteristics are listed. Moreover, the word tabu is coined from this list

of prohibited moves. Tabu lists with short length may not stop cycling outcomes in

7

information loss while on other hand, tabu lists with long length may overmuch

expand neighborhood so that moves are fixed to some reach. In essence, if the tabu

list is too short it leads to deteriorating the search results. In contrast, if the size of

tabu list is too long this means it cannot effectively prevent cycling.

Intensification of the search used to decrease the tabu list size whereas diversification

tries to increase the size of the tabu list and penalize the frequent move.

2.1.1.5 Aspiration Criteria

Tabu constraints are subject to an important omission. In a situation where a tabu

move has a sufficiently better assessment where it can be evaluated to a solution

better than any seen yet, then its tabu categorization may be overruled. Aspiration

criterion is the rule that allows such an exception to exist [2].

Aspiration criterion which is frequently used is reverting to a solution better than the

last found solution so far.

2.1.1.6 Stopping Criterion

 Some prompt stopping conditions are:

 A given number of fixed iterations.

 A given amount of Processor time.

 No feasible moves into the locality of the current found solution.

 Evidence can be given than an objective functions output is feasible.

2.2 Concentric Tabu Search (CTS)

Concentric tabu search (CTS) was proposed by Drezner [1] in 2002. The underlining

idea is to push the search to parts of the solution space which are far away from the

center solution with the hope of finding a better local optimum. For example, the

distance (Hamming) between two solutions is the number of different variables with

8

different values [2]. The TSP seeks the best permutation of assigning between cities.

For the TSP, the hamming distance use to find the number of cities that are assigned

to different sites between best found solution and its neighbor. Furthermore, fitness

value of tour that is assigned to cities (or the total length of the tour).

The fundamental principle of the Concentric tabu search includes: A starting solution

called the center solution of the search space. The neighborhood of every individual

solution is defined in similar way as in standard tabu search [2]. In the specific case

of the TSP, the neighborhood consists of all possible exchanges among cities. The

search is performed in rings (circles) around the starting solution. If a solution which

is better than the best found solution is detected, it replaces the starting solution and

the search continues with that solution. Otherwise, the search makes a start by

calculating solutions which are farther away from the starting solution. For any

problem there is a fixed number of iteration, and once it is reached, the algorithm

terminates [1].

2.2.1 Moves in Concentric Tabu Search (CTS)

Two different types of CTS are proposed, these are: ring moves and all moves.

2.2.1.1 Ring Moves (RM)

The search is executed in rings (circles) around the starting solution, proceeding from

smaller ring (circle) to a larger one, and this continues, until a pre-specified radius is

reached. Randomly solution is selected which is a starting (center) solution. We keep

three solutions, the first one contains the center solution and the other will fill under

the specific condition, their aim is to forcing the search away from the center

solution. Details are discussed in chapter 4.

9

2.2.1.2 All Moves (AM)

In this approach, the concept of RM is replaced by another technique. A list of the

best seen solutions is preserved (a list contains only the starting solution at the

beginning). A set of members, whose surrounding solutions were not tested, is

flagged. The iteration stops whenever there is no member in the list is flagged. See

more details in chapter 4.

2.3 Genetic Algorithm (GA)

Genetic Algorithm (GA) was first proposed by the American Scientist John Holland

in 1975 [5]. In artificial intelligence, GA is a search heuristic that imitates the

survival of the fittest. It is one of the evolutionary search approaches which can give

optimal or near to optimal solutions to combinatorial optimization.

The underlining principle of GA is to produce a random initial population of

solutions to the problem, called Chromosomes, and then enhances this population of

solutions after some iterations known as Generations. Throughout every generation,

the quality of each chromosome is calculated, by applying some measurements of

quality (fitness). To produce the next generation of chromosomes, offspring are

inspired by either modifying a chromosome using a mutation operation or mixing of

two chromosomes from present generation that is using a cross over operation or

doing both operations. A new set of solutions (generation) is created by selection

operation, based on the quality values of some of the offspring and parents, and

refusing other individuals so as to maintain a fixed size of the population. Fitter

individuals have better chances of been selected for reproduction. After so many

iterations, the GA converges to the fitter chromosome, that hopefully contains the

10

optimum or near to optimum solution [6]. Figure 2 illustrates the flowchart of the

Genetic Algorithm.

Figure 2: Genetic Algorithm Flowchart

No

Begin

Initialization

Termination

Criteria Reached?

Selection

Evaluation

CrossOver

Mutation

End

Yes

11

2.3.1 Genetic Algorithm Parameters

In the following parts, we will describe in details the components of the Genetic

algorithm:

2.3.1.1 Representation

Chromosome representation is the simile between the real world and the evolutionary

algorithms nature. This is shown in the connection between genotype and phenotype,

where the encoding of the individuals within the evolutionary algorithms is called

genotype while the phenotype is the feature of an individual resulting from its

interactions with the environment. In order to obtain the minimal tour for a

predefined list of m cities using GAs, the path representation is more natural for TSP

[9]. For instance, suppose {1,2,3,4,5} are labels of nodes in a five nodes instance,

then a tour {4-3-2-1-5-4} may be represented as (4,3,2,1,5).

2.3.1.2 Evaluation/Fitness Function

Also known as the fitness function is a measure of a solution’s quality. The use of

evaluation function is to evaluate if an individual solution is good, then what is the

level of goodness? The length of tour is the quality of an individual solution in the

TSP. The fitness quality is calculated during the creation of an individual as shown in

equation 2.1. After each individual is created its quality is evaluated [10].

Fitness chromosome =
1

∑ 𝑡𝑖𝑛
𝑖=1

 Eq. 2.1

Where,

n = total numbers of cities.

t = distance between two cities.

12

2.3.1.3 Population

The generated set of individuals in a given generation of an optimization problem

which contains a fixed number solution is known as the population. The initial

population for TSP is formed by random permutation of the cities.

2.3.1.4 Selection Operation

This is the technique used to choose the chromosome whose fitness value is good or

better in order for the fitter individuals be parents of the next generation [10].

Consequently, the high quality individuals get a better chance to be parents as

compared to individuals with low quality.

2.3.1.4.1 Tournament Selection Mechanism

In the Tournament selection technique a set of chromosomes (k) are selected for

which more qualitative individuals are selected as parent. The number of

chromosomes in the tournament is equal or less than the size of the population [11].

Figure 3 shows the steps of the tournament selection.

Figure 3: Steps of the Tournament Selection Mechanism

Individuals having the best fitness functions out of the k tournament contestants have

better chances of being selected. This type of selection gives definite chances for not

already chosen individuals to be chosen.

Step 1: Randomly picking a point within the population,

Step 2: Choose as many individuals as outlined by the size of the tour =k,

Step 3: Arrange the individuals according to fitness,

Step 4: Select the fittest two to be parents.

13

2.3.1.5 Crossover

New chromosomes are recombined so as to determine the parents for the next

generation after the completion the evaluation process. The most effective step for

this procedure is called crossover [11]. If there is no recombination, parents and

offspring are same. If there is recombination, offspring bringing about better parts

than that of parent chromosome. If the rate of crossover is exact, then offspring are

all brought about by using crossover operation. On the other hand, where there is

none, all new individuals are created from exact copies of individuals from the old

generation [10]. Crossover operation, tries to generate new chromosomes in order to

obtain better parts from old individuals and perhaps the new individuals will have

better quality. Ordered crossover operation is applied in this work to a pair of

chromosomes.

2.3.1.5.1 Ordered Crossover

Two crossover points are randomly selected in this operation on two randomly

selected parents. The genes of the selected parents between the cut points are

transferred to the offspring. The genes which are not filled in an offspring are

obtained from the other parent starting from the second crossover point and

transferred to the offspring in the order they emerge.

As shown in Figure 4 below, in offspring C1, since genes C, D, and E are obtained

from P1, we obtain genes B, G, F, and A from P2. Starting from the second crossover

point, which are to say that for the sixth gene, we copy genes B and G as the sixth

and seventh genes respectively. We then turn around and copy genes F and A as the

first and second genes respectively.

14

 P1

 P2

 C1

 C2

 C1

 C2

 Figure 4: Ordered Crossover

2.3.1.6 Mutation

This operation allows new individuals to be generated by choosing individuals with

better fitness value from the population. After crossover is performed, mutation

operation is done. During this process, an individual in the current population is

randomly taken, switched and mutated [15].

If there is no mutation, it means there is no change in offspring taking place after

crossover. If mutation operation is performed, a part of the individual is changed. If

mutation rate is exact, whole individual is mutated; while if there is none, nothing is

mutated [10]. Mutation operation is applied to avoid plunging genetic algorithm into

local minima, but it should occur rarely, because then GA will in effect shift to

random search. Increasing mutation rate leads to gains in average option. It also leads

to considerable improvement in result with very little cost. Nevertheless, it should

happen less repeatedly. In this work, reverse Order mutation is applied to the pair of

chromosomes.

A B C D E F G

C B G E F D A

? ? C D E ? ?

? ? G E F ? ?

F A C D E B G

C D G E F A B

15

2.3.1.6.1 Reverse Sequence Mutation

In this approach, we select a series of X restricted by two randomly chosen points y

and z, where y<z. Like crossover operation the gene order in the sequence will be

reversed. Figure 5 below shows an example implementation of this operation [15].

 P

 C

 Figure 5: Reverse Sequence Mutation

2.3.1.7 Termination Condition for Genetic Algorithm

Due to the fact that GA is a non-deterministic search approach, this makes it hard to

properly determine the convergence of the algorithm. Moreover, the fitness of a

population may stay fixed for a number of iterations since a better individual is not

created. This implies the application of typical termination criteria becomes

questionable. A prevalent used technique is to end the GA after a fixed number of

iterations and then compare the fitness of the fittest individuals of the population

with the problem determination. If no adequate individuals are found, the Algorithm

might perhaps be restarted or a different search technique is used.

1 2 3 4 5 6

1 5 4 3 2 6

16

Chapter 3

TRAVELING SALESMAN PROBLEM

3.1 Travelling Salesman Problem (TSP)

The TSP is the most famous combinatorial optimization. It is about finding the path

of a salesperson who gets started from a location (initial location), visits a specific

number of other locations and reverts back to the same starting point in such a

fashion that the overall distance covered is minimum and every location is visited

precisely once [13].

The idea of TSP originated from the Swiss mathematician Euler. TSP originated

from his work ‘Studied the Knight’s tour Problem’ which he conducted in 1766. A

significant amount of work was conducted in the 18
th

 century after Euler, by

Hamilton W. from Ireland and Penyngton T. from Britain respectively. Their study

was about finding paths and circuits on the graph of the dodecahedral, favoring many

conditions. A vast majority of the works on TSP were done from 1800 to 1900.

Consequently, Lawler, Shmoys, Lenstr, Kan and Rinnoy didn`t say anything

regarding TSP. Then, M. Flood presented results relevant with TSP in the year 1940.

After that Fulkerson, Dantzig, and Johnson found an approach for working out TSP

in the year 1950. They showed the performance of the technique by working out a

forty-nine city problem. Nonetheless, it seems noticeable, in the middle of 1960’s

that the TSP was not able to be worked out in polynomial time by using LP.

Consequentially, this category of problems became common as NP-hard (Non-

17

Polynomial Hard) problems. Considerable advancement took place in the late 1970s

and early 1980s, when Padberg, Grötschen, Rinaldi and others achieved to work out

a TSP example with up to two thousand three hundred and ninety two (2392) cities,

applying branch-and-bound cutting planes techniques.

Later, TSP turns into an attractive combinatorial optimization problem and a lot of

findings applied it as standard yardstick problem for heuristics. This problem is

highly important for many experimental areas like operational research (OR) and

computer science (CS). TSPLIB is the library of benchmark model examples for the

traveling salesman problem which was published in 1991. After that, the library is

used to compare available results on it with the outcomes of algorithms done by

researchers. Accordingly, benchmark problems available in TSPLIB are used in this

thesis. Results are compared as well.

3.1.1 Definition

The traveling salesman problem is defined as:

TSP = (G, f, t): G = (V, E) an entire graph,

Where, f is a function (V x V) → Z, t ∈ Z,

 The graph G is outlines a traveling salesman’s travel cost that doesn’t override t.

Figure 6 shows a TSP instance for initial cities.

Figure 6: Sample for locations of the given placement of the cities in the map

1

3

2

4 9

6

10

8

5

7

18

The distance between cities is calculated by using the Euclidean Distance as follows:

x = (x1, x2, x3… xn),

y = (y1, y2, y3… yn).

Dxy = √(𝑥 − 𝑦)2 (Eq. 3.1)

{ Dxy is the distance between coordinate x and coordinate y,

 x are locations of the city on coordinate x,

 y are location of the city on coordinate y,

 Table 1: Distance Matrix for ten cities

0 107 241 190 124 80 316 76 152 157

107 0 148 137 88 127 336 183 134 95

241 148 0 374 171 259 509 317 217 232

190 137 374 0 202 234 222 192 248 42

124 88 171 202 0 61 392 202 46 160

80 127 259 234 61 0 386 141 72 167

316 336 509 222 392 386 0 233 438 254

76 183 317 192 202 141 233 0 213 188

152 134 217 248 46 72 438 213 0 206

157 95 232 42 160 167 254 188 206 0

The above distance matrix is used to calculate the length of a tour. The mentioned

matrix sample is for TSP instance with 10 cities. Figure 7 shows a possible tour in a

TSP with ten cities.

Figure 7: Sample tour with edge distances for Ten Cities

1

3

2

4 9

6

10

8

5

7

80 127 336

254

206

76

317

171

202

248

19

To calculate the tour length, assume P = {p1, p2, p3… pn} as a feasible tour for n

cities:

L = (∑ 𝐷𝑐𝑖 𝑐𝑖+1 𝑛−1
𝑖=1) + 𝐷𝑐𝑖+1 𝑐1 (Eq. 3.2)

The problem mystery in finding a lower or minimal path transcend through all points

once. E.g. the Path1 {1, 6, 2, 7, 10, 9, 4, 5, 3, 8, 1} transcending all the points by

calculating the distance between cities and sum of those based on the distance

matrix. Path1 cost is 2017.

TSP is categorized into two classes Symmetric TSP and Asymmetric TSP according

to the types of graph and arrangement of distances.

 Symmetric Traveling Salesman Problem: in STSP, the distance

between two points is always the same in both directions and the cost of moving

from point a to point b is equal to the cost of moving from point b to point a.

Figure 8 and figure 9 below show an instance and the distance matrix regarding

symmetric.

 Figure 8: Example of symmetric TSP Figure 9: Distance matrix for figure 8

30

1

4

2

3

12

20

34 42
35

 1

 2

 3

 4

0

12

34

30

12

0

35

42

34

35

0

20

30

42

20

0

1 2 3 4

20

 Asymmetric Traveling Salesman Problem: in ASTSP, the distance

between two points is not the same or paths may not found in both directions.

That is the cost of moving from point a to point b is not equal to the cost of

moving from point b to point a. Figure 10 and figure 11 below show an instance

and the distance matrix regarding asymmetric.

Figure 10: Example of Asymmetric TSP Figure 11: Distance matrix for figure 10

The Symmetric traveling salesman problem samples from TSPLIB are taken and

applied in this work. There are different techniques used for solving the traveling

salesman problem. Practically, these techniques are divided into two groups: exact

and approximation algorithms.

 Exact algorithms: are approaches which use mathematical techniques such

as Lagrangian Relaxation, Branch and Bound, Integer Linear Programming etc.

 Approximation algorithms: are approaches which use heuristics and

insistent progresses in the problem solving process. These are classified into two

Constructive heuristics and Improvement heuristics such as Greedy, Heuristics,

Nearest Neighborhood, Tabu Search, Evolutionary Algorithms, Ant Colony

optimization, etc.

4

6

3

7

4

8

5

1

4

2

3

5
5

1 2 3 4 5

0

0

0

 0

0

0

4

0

6

0

8

3

0

5

0

4

0

0

5

0

7 0 0 0 0 1

 2

 3

 4

 5

21

3.2 Related Works for TSP

Since TSP is a field of combinatorial optimization and an NP-complete problem,

there is no precise approach to solve this problem and obtain good results. A lot of

algorithms are used to solve travelling salesman problem. Some of them have

optimal solutions, while another’s have the near to optimal solutions. There are

different heuristics methods which are used to explore the solution space for TSP.

 A. Arananayakgi [14] the work proposed a solution to the travelling problem using

genetic algorithm GA operators to minimize the overall distance and time. It is done

by generating the fittest criteria using selection operation, crossover operation and

mutation operation. The purpose of the proposed approach is to create fitter solutions

in acceptable time. Consequently a new crossover approach, the Sequential

Constructive Crossover method is used.

Krishna, Ravindra , Gajendra [17] defined a rewarding method for working out the

traveling problem. They used an enhanced heuristic algorithm Ant Colony

Optimization. This work studies the precocious convergence and stagnation

prevention by using initial ants’ distribution strategy and effective heuristic

parameter updating according toentropy.

 Thamilselvan, Balasubramanie [18] deals with TSP. both Genetic Algorithms and

Tabu Search were tested separately and results were compared. After that, the two

algorithms were combined together and the resulting performance was compared.

22

Fiechter [19] for solving the TSP a parallel tabu search was described. The memory

concept was used as a work as well as a new approach of move. The outcome argues

the efficiency of the algorithm in obtaining a near optimal solution to huge problems.

For working out traveling salesman problem, the researchers applied different

approaches and various local search algorithms. Furthermore, local search techniques

usually adapted to enhance the outcomes in most works. This has been done by

reason of the response of local search algorithm in combinatorial optimization

problems.

23

Chapter 4

CONCENTRIC TABU SEARCH FOR SOLVING

TRAVELING SALESMAN PROBLEM

4.2 Concentric Tabu Search Algorithms for TSP

This chapter gives an insight to the proposed work for solving the travelling

salesman problem by Concentric Tabu Search algorithm. Furthermore, a combination

of local search algorithm represented by Concentric Tabu Search Algorithm and an

evolutionary algorithm that is Genetic Algorithm are presented.

4.1.1 Finding initial/center solution

To implement a Meta heuristic Concentric Tabu Search algorithm basically we need

to have an initial or center solution and it can be generated randomly. Throughout

using Concentric Tabu Search algorithm for traveling salesman problem, selecting

the initial feasible solution is one of the significant steps for obtaining an acceptable

solution. CTS algorithm depends on the selecting of the initial solution. The

Concentric Tabu Search moves in the direction of the selected original solution

considering the neighborhood of the center solution to improve the search.

4.1.2 Calculation of the fitness value

Euclidean Distance formulation was described in Eq. 3.1 and Eq. 3.2. The distances

between cities are calculated to obtain the tour length that salesman travelled.

Distance matrix created by providing node coordination and by applying Euclidean

formulation and the calculation of the total distance is extremely easy.

24

4.1 Algorithms Description

This section illustrates the two various types of CTS that explained in the previous

sections. Details below discuss how the algorithms are implemented to the travelling

salesman problem. The figure 12 illustrates the principle of Concentric tabu search

while the figure 13 show the flowchart of the Ring Move algorithm for TSP.

Figure 12: Concentric Tabu Search Principle

The figure above shows that the search is performed in rings around the starting

solution. If a solution which is better than the best found solution is detected, it

replaces the starting solution and the search continues with that solution. Otherwise,

the search makes a start by calculating solutions which are farther away from the

starting solution. For any problem there is a fixed number of iteration, and it is

reached, the algorithm terminates.

25

Figure 13: Ring Move Algorithm Flowchart

Yes

No

 No

Yes

No

Yes

No

No

Yes

Yes

Begin

P < ITER

P=0, Sol0=Center Sol. (S0),

Best Found Sol. (BSF) is set to the Sol0,

Best Fitness (BestF) is Fitness of Center Sol. (SoloF)

Evaluate each of the Sol0 pair exchanges (neighbors)

If the fitness of the neighbor

is better than BestF

NF=1,

Best Found Sol. (BSF) is set to the neighbor solution,

Best Fitness (BestF) is the fitness of neighbor solution.

If HD is P OR P+1 OR

P+2

Sol1= neighbor solution OR Sol2= neighbor solution

IF NF=1
NF=0,

Set Sol0 to BSF

Sol0=Sol1, Sol1=Sol2,

Sol2= [],

BSF=Sol0,

Stop

P=P+1

Calculate the Hamming Distance (HD) between the BSF and

neighbor solution

Is there Exchanging?

26

 As it can be seen in Figure 13 there is a center solution randomly selected as a

starting solution and it is the best found solution following that we have while loop

which iterates through the Concentric tabu search, furthermore, there are three

solutions which are Sol0, Sol1, and Sol2. Sot0 set to the center solution and the rest are

empty.

The pair exchanges (neighborhood) are evaluated by swapping cities. For example

TSP instances for 5 cities (1, 2, 3, 4, 5). S0 (center solution) may be {2, 4, 5, 3, 1}

and has a fitness value (total sum of the tour). Figure 14 shows the exchanges pairs

of the center solution.

Figure 14: Exchange Pairs Example between Two Solutions

If the fitness of an exchanged solution (neighborhood) is less than the fitness of the

center (S0), the exchanged solution will be the best solution and the remaining

neighbors are comparing to the best solution. If the hamming distance of an

exchanged solution is P, it is ignored and the rest of exchanges are evaluated. On the

other hand, if the hamming distance is P+1 or P+2, Sol1 or Sol2 are updated when

needed. It is noteworthy that the original Sol0 is still used for the rest of the pair

exchanges. Whenever the new best found solution found by examining all the

neighbors of Sol0, the center solution is set to the best found solution and the loop

will continue. Once all solutions in Sol0 are exhausted, move Sol1 to Sol0, Sol2 to

Sol1, and clear Sol2. Contrarily increase the counter, whenever stopping condition not

met, return to the loop. The figure 15 illustrates the flowchart of the All Move

algorithm for TSP.

1 2 3 4 5

2 1 3 4 5

27

Figure 15: All Move Algorithm Flowchart

Yes

Yes

No

No

Yes

Yes

No

Yes

No

No

Begin

P < ITER

P=0, Flag=1,

Set BestList to Center Sol. (S0),

Best Found Sol. (BSF) is set to the BestList,

Best Fitness (BestF) is Fitness of BSF

Evaluate each of the Sol0 pair exchanges (neighbors)

If the fitness of the neighbor is

better than BestF

NF=1,

Best Found Sol. (BSF) is set to the neighbor solution,

Best Fitness (BestF) is the fitness of neighbor solution.

If the fitness of the neighbor is better

than BestList Fitness for appropriate HD

Flag=1,

Set neighbor solution to HD in BestList

IF NF=1
NF=0, Flag=1

Set BestList to BSF

Stop

P=P+1

Calculate the Hamming Distance (HD) between the BSF and

neighbor solution

Flag=1

Is there Exchanging?

No

Yes

28

Figure 13 describes the steps of the All Move algorithm. As we can see there are no

lists like in the Ring Move algorithm. A different technique is applied. Here, the list

of best encountered solutions is only containing the center solution at the beginning

and it is flagged. In the loop a flagged solution is checked, if it does not exist, then

the algorithm will terminate with the current solution. Otherwise the flagged solution

will be taken for exchanging pair wise and its flag is changed to zero. Like the Ring

Move, a comparison between the fitness of the center solution and fitness of

exchanged pairs is done, whenever the fitness of the neighborhood is better, the best

one is updated and the remaining are evaluated in the same manner. Assuming that

the exchanged one is fitter than the best encountered solution for the appropriate P, it

replaces it and flagged. Where a new best found solution is found by examining all

the neighbors of the selected solution, the center solution is set to the new best found

solution and the loop is continued until stopping condition met. AM algorithm allows

moves to a ring with smaller P; if they improve the best encountered value of the

objective function for that P. Figure 16 shows flowchart of Genetic Concentric Tabu

Search Algorithm.

29

Figure 16: Genetic Concentric Tabu Search Algorithm Flowchart

In this algorithm, tournament selection is used as an operator for the selection.

Tournament selection has been described in Chapter 2. Furthermore, ordered

crossover has been used as discussed in section 2.4.1.5.1. Finally, reverse ordered

mutation has been applied as a mutation operator and it’s explained in Chapter 2.

Pending the procedure, randomly generate the initial population. Consequently,

Yes

No

Yes

Begin

Initialization

Termination

Criteria Reached?

Selection

Evaluation

CrossOver

Mutation

Concentric Tabu applied to

best individual found by

GA

End

30

every individual in the population is evaluated. Whenever the termination rule is not

met, individuals are selected for crossover and mutation operation. Fitter individual

in the population is passed to local search (CTS) and new population is created.

This is the Genetic Concentric tabu search algorithm heuristic which is an

incorporation of Genetic algorithm GA and Concentric Tabu Search CTS techniques

which are explained in Chapter 2. Moreover, local search algorithm, CTS is applied

to the best individual found by Genetic algorithm to preserve a balance between both

exploitation and exploration during the search process. GA improve whole the

population and the purpose of CTS is to improve on best solution. In combinatorial

optimization, the requirement for local search techniques is significant in order to get

better results, considering there is no guarantee for optimal solution without a local

search algorithm. As a result, the local search algorithm by generating limited moves

over the given solutions scheme obtain better solution than the given solution.

Accordingly it’s noticed that without using local search algorithms in optimization

problems, it is less possible for the EA to get the optimal solution.

31

Chapter 5

EXPERIMENTAL RESULTS

5.1 TSP Problems

Computational results for the TSP are explained in this chapter. Experiments are

obtained by using fifteen symmetric TSP benchmark problems which are as follows:

kroE100, kroD100, kroC100, kroB100, kroA100, kroA150, kroA200, KroB150,

kroB200, Berlin52, Bays29, Eil101, Lin105, Ch150, and Rat195. These are

accessible from TSPLIB. Furthermore, each problem is tested ten times to know the

capability of algorithms.

 The structure and contents of the above symmetric are not different. The name of the

problem is given in the first line of the problem description file, like Rat195. The

type of the problem is given in the second line which is TSP. the next line give a

comment of the problem followed by the information regarding the dimension line.

For the problem which was mentioned above the dimension is 195. Later edge

weight type is set, that is for example EUC_2D. Finally, the coordinates of cities are

presented followed by EOF.

5.2 Results for TSP

Computational results are evaluated according to the components of algorithms

which are discussed in the following parts.

32

5.2.1 Result for Tabu Search (TS)

Table 2 below describes the results obtained for 15 problems available in the

TSPLIB. Each problem was solved ten times. Results for all problems have been

done by local search algorithm using tabu search.

 Table 2: Result of the Tabu Search Algorithm

Problem Optimal Best Worst STDEV Error Average Time

Avg.
1 KroA100 21282 29381 36567 2202 0.3805 31222 16.78

2 kroA150 26524 40887 46841 1672 0.5415 42860 20.11

3 kroA200 29368 51884 59385 2636 1.4379 55661 25.03

4 kroB100 22141 30095 33181 1687 0.3078 30445 16.20

5 kroB150 26130 39668 46965 2414.2

62

0.5181

02

43885 18.81

6
6 kroB200 29437 51390 57162 2132 1.4147 54448 24.72

7 kroC100 20749 29333 32511 1021 0.4137 31181 17.70

8 kroD100 21294 29054 32114 964 0.3644 30752 17.65

9 kroE100 22068 30381 34419 1266 0.3766 31935 17.88

10 Bays29 2020 2043 2088 11 0.0113 2068 9.24

11 Berlin52 7542 8175 9513 455 0.0839 8854 8.728

12 Eil101 629 764 831 19 0.2146 791 10.66

13 Lin105 14379 20302 26371 1838 0.4119 22627 10.15

14 Ch150 6528 9435 10069 182 0.4453 9924 12.36

15 Rat195 2323 3686 4257 185 0.5867 3958 14.76

Table 2 illustrates the outcomes of the tabu search technique. In the second column

of the table above, name of the problem is given, followed by its optimal solution.

The third column gives the best solution obtained by applying tabu search algorithm.

Next column is the worst solution obtained during ten times run of the algorithm.

Fifth column shows the standard deviation which is a measure of how wide values

are dispersed from the average value while next column is a percentage of excess of

the best solution and average solution over the optimal solution of ten runs. The

column coming after that is the average solution over the best sol., while the last

column is average of time of execution (in second) by the algorithm.

33

5.2.2 Result for Genetic Algorithm (GA)

Table 3 below describes the results obtained for 15 problems available in the

TSPLIB. The experiments were executed ten times for each problem. Initial

population was generating randomly. Population size is 200, crossover probability is

1.0 (i.e., 100%), mutation probability is 0.01 (i.e., 1%), and 3000 generations was set

as the termination criterion.

 Table 3: Result of the Genetic Algorithm

Problem Optimal Best Worst STDEV Error Average Time

Avg.
1 KroA100 21282 22562 25045 925 0.0601 23722 161.3

2 kroA150 26524 29232 31833 834 0.1020 30328 829.7

3 kroA200 29368 41052 47364 1872 0.3978 42721 2536

4 kroB100 22141 23698 25193 513 0.0703 24242 185.8

5 kroB150 26130 29770 31827 702 0.1393 30981 744.7

6 kroB200 29437 39704 45110 1644 0.3487 41543 2481

7 kroC100 20749 22706 24661 683 0.0943 23667 183.6

8 kroD100 21294 23164 24599 577 0.0772 23516 187

9 kroE100 22068 23532 26142 738 0.0663 24442 191.2

10 Bays29 2020 2020 2182 46 0 2096 2.529

11 Berlin52 7542 7544 8534 331 0.0002 8116 22.8

12 Eil101 629 685 743 18 0.0893 708 184.2

13 Lin105 14379 14632 16591 512 0.0195 15672 221.7

14 Ch150 6528 7313 7911 193 0.1251 7654 191

15 Rat195 2323 3134 3402 91 0.3418 3238 2305

Table 3 gives the results of fifteen symmetric instances available on TSPLIB of size

from 29 to 200. The goodness of the solution is precise to the total of runs. Only one

problem, Bays29 of size 29 could be solved exactly at least once in ten runs within

reasonable time using genetic algorithm. In table 3, the column ‘Problem’ refers to

the problem name in TSP library; the column “Optimal” indicates the optimal

solution available in TSP library; the columns ‘Best’, ‘Worst’, ‘STDEVP’ and

‘Average’ present the best one, worst one, standard deviation and average of tour

lengths of ten runs, respectively; the column ‘Error’ shows the percentage of excess;

the column ‘Time Avg.’ indicates the average running time in seconds.

34

5.2.3 Result for Concentric Tabu Search Algorithm (CTS)

In order to assess the efficacy of the proposed algorithm, fifteen traveling problems

instances are deliberated. Evaluating the advantages of the algorithm and its

performance we compared to the tabu search algorithm regarding to the tested

problems. Initial solution is generated randomly; iteration size is 4000 for all

experiments. The experiments illustrate that the proposed algorithm is more efficient

in its ability of finding good solutions this is evident in its results. Table 4 and Table

5 below; summarize the results obtained for 15 problems available in the TSPLIB.

The experiments were performed ten times for each problem. As can be seen from

the outcomes presented below the propose algorithm quality is better compared to

tabu search. Furthermore, the Ring Move algorithm is relatively better than the All

Move algorithm as it shown in results.

 Table 4: Result of the Concentric Tabu Search (Ring Move) Algorithm

Problem Optimal Best Worst STDEV Error Average Time

Avg.
1 KroA100 21282 27585 31717 1239 0.296 30191 14.9

2 kroA150 26524 38270 44442 1486 0.442 41304 28.9

3 kroA200 29368 46265 53987 2127 0.575 50483 47.9

4 kroB100 22141 28106 33102 1246 0.269 31001 24.8

5 kroB150 26130 37853 45283 2394 0.448 41373 28.3

6 kroB200 29437 46679 54573 2161 0.585 51283 84.8

7 kroC100 20749 27250 32711 1521 0.313 29728 14.1

8 kroD100 21294 27087 32197 1353 0.272 30495 21.8

9 kroE100 22068 28991 31219 706 0.313 30065 24.9

10 Bays29 2020 2152 2387 80 0.065 2304 2.61

11 Berlin52 7542 8034 9440 420 0.065 8860 5.62

12 Eil101 629 715 808 29 0.136 752 13.1

13 Lin105 14379 20170 24536 1128 0.402 21840 14.2

14 Ch150 6528 9397 10054 203 0.439 9801 27.6

15 Rat195 2323 3504 3924 142 0.508 3697 44.3

Table 4 prove that the suggested algorithm is more efficacious compared to the tabu

search algorithm. As we can see the results of the proposed algorithm are better.

35

 Table 5: Result of the Concentric Tabu Search (All Move) Algorithm

Problem Optimal Best Worst STDEV Error Average Time

Avg.
1 KroA100 21282 28491 31963 1150 0.3387 30409 15.38

2 kroA150 26524 38604 45761 1978 0.4554 41922 29.61

3 kroA200 29368 50915 57566 2277 0.7336 54754 25.33

4 kroB100 22141 27833 32938 1560 0.2570 30421 15.29

5 kroB150 26130 38865 44606 1918 0.4873 42010 29.73

6 kroB200 29437 49200 53712 1298 0.6713 51278 24.72

7 kroC100 20749 27678 31880 1546 0.3339 29916 15.09

8 kroD100 21294 28802 30328 569 0.3525 29615 15.47

9 kroE100 22068 27673 32122 1216 0.2539 30503 15.36

10 Bays29 2020 2036 2102 21 0.0079 2072 1.667

11 Berlin52 7542 8026 9195 331 0.0641 8547 3.302

12 Eil101 629 754 828 22 0.1987 784 9.042

13 Lin105 14379 20402 26282 1671 0.4188 21570 8.615

14 Ch150 6528 9007 10045 296 0.3797 9742 16.15

15 Rat195 2323 3507 3952 149 0.5096 3707 24.18

Table 5 gives the results of fifteen symmetric problems of size from 29 to 200. All

problems have better results compared to the tabu search algorithm. Only the results

of problems: kroB100 of size 100, kroE100 of size 100, Berlin52 of size 52, Bays29

of size 29, and Ch150 of size 150 could be solved better than the previous version of

Concentric tabu search (Ring Move) algorithm as well as tabu search algorithm.

Considering the result, outcome of the experiment is sensitive to the total of cities in

the problem and total of iterations. Figure 15 illustrates how problems by using

proposed algorithm and tabu search are converging to the optimal solution for the

tested instances.

36

Figure 17: Results of TS, CTS (RM), and CTS (AM) for TSP

5.2.4 Result for Genetic Concentric Tabu Search Algorithm (GCTS)

In order to assess the proposed algorithm (GCTS), again the previous fifteen

examples are considered. Control parameters are same as the parameters applied in

traditional genetic algorithm and Concentric tabu algorithm. Local sarch algorithm

applied only each fifty iteration to evolutionary process to keep the efficiency use of

the hybrid algorithm and to reduce the computation time spent by local search

algorithm. Ten runs were carried out to check the results obtained by GCTS. The

result of the proposed algorithm was measured against the benchmark optimal

solution, it can be noticed below in table 6 and in figure 16 that GCTS obtained

better solution compaired to the other algorithms. Reported results show the effect of

Concentric tabu local search algorithm with the genetic as a Metaheuristic algorithm.

By combining the two, reaching the optimal or near-optimal solution became higher

in the instances of the TSP problems considered.

37

 Table 6: Result of the Genetic Concentric Tabu Search Algorithm

Problem Optimal GCTS (RM) Time

Avg.

GCTS(AM) Time

Avg.
1 KroA100 21282 21727 85.83 22096 72.95

2 kroA150 26524 28100 118.2 28089 101.6

3
3 kroA200 29368 31217 296.1 31371 278.9

2
4 kroB100 22141 22236 72.15 22179 52.15

5 kroB150 26130 27418 147.6 27496 137.6

3
6 kroB200 29437 31463 276 31679 177.7

3
7 kroC100 20749 21159 42.86 21203 73.27

8 kroD100 21294 21934 72.83 22349 62.11

9 kroE100 22068 22913 32.8 22327 27.92

10 Bays29 2020 2020 11.3 2020 10.24

11 Berlin52 7542 7542 26.6 7542 32.24

12 Eil101 629 632 51.58 635 35.72

13 Lin105 14379 14828 27.23 14818 26.97

14 Ch150 6528 6879 67.76 6893 33.90

15 Rat195 2323 2568 118.7 2564 97.38

Table 6 gives the results obtained by executing the GCTS algorithm on fifteen

symmetric instances with cities between 29 to 200. It’s worth mentioning that all

problems have optimal or nearest to optimal solution. Instances: Bays29 and

Berlin52 could be solved completely. Third column show the result of applying the

first version (Ring Move) of Concentric tabu while the fifth column illustrate the

results of applying the second version (All Move) of Concentric tabu search

algorithm. The column “Time Avg.” refers to the average running time in minutes.

Figure 16 shows how the problems by using hybrid algorithm are converging to the

optimal solution.

38

Figure 18: Results of the GCTS (RM) and GCTS (AM) for TSP

39

Chapter 6

CONCLUSION

In this research, Concentric Tabu Search Algorithm (CTS) has been proposed for

work out the TSP as a cornerstone for heuristics designed for combinatorial

optimization. Similarly, the CTS algorithm was compared to the traditional tabu

search algorithm wherein the performance of CTS indicates its superiority over the

traditional tabu search techniques. To enhance performance, CTS was combined with

genetic algorithm in order to produce higher quality solutions. Consequentially, it

can deduced that local search techniques cooperate with global search techniques to

enhance the search space better in order to find more efficient solutions, considering

that number of iterations have an effective role in finding optimal solution.

Finally, future work should try to enhance the efficiency of the proposed algorithm in

minimizing time, especially for GCTS. In addition to this, further tests of the

algorithm on more convoluted problems are needed to give a more accurate

estimation of characteristic of the proposed algorithm.

40

REFERENCES

[1] Zvi, D. (2005). The extended concentric tabu for the quadratic assignment

problem. European Journal of Operational Research, 160, 416-422.

[2] Zvi, D. (2008). Tabu Search and Hybrid Genetic Algorithms for Quadratic

Assignment Problems. European Journal of Operational Research, 35, 90-107.

[3] Wassim, J. (2008). Local Search Techniques: Focus on Tabu Search.

[4] Sumanta, B. (2012). Tabu Search Implementation on Traveling Salesman

Problem and Its Variations: A Literature Survey. American Journal of

Operations Research, 2, 163-173.

[5] Christopher, M., & Gary, G. (2004), A Hybrid Evolutionary Algorithm for

Traveling Salesman Problem. International Conference on Evolutionary

Computation, 2, 1473-1478.

[6] Shubhra, S., Sanghamitra, B., & Sankar, K. (2004). New Operators of Genetic

Algorithms for Traveling Salesman Problem. International Conference on

Pattern Recognition, 2, 497-500.

[7] Chetan, C., Shah, S., & Mahesh, P. (2011). Comparison of Parents Selection

Methods of Genetic Algorithm for TSP. International Conference on Computer

Communication and Networks, 1, 102-105.

41

[8] Zvi, D. (2002). A New Heuristic for the Quadratic Assignment Problem. Journal

of Applied Mathematics and Decision Sciences, 6, 163-173.

[9] Saloni, G., & Poonam, P. (2013). Solving travelling Salesman Problem Using

Genetic Algorithm. International Journal of Advanced Research in Computer

Science and Software Engineering, 3, 376-380.

[10] Fred, G., James, K., & Manuel, L. (1995). Genetic Algorithms and Tabu Search:

Hybrids for optimization. American Journal of Operations Research, 22, 111-

134.

[11] Bajeh, A. & Abolarinwa, K. (2011). Optimization: A Comparative Study of

Genetic and Tabu Search Algorithms. International Journal of Computer

Applications, 31, 43-48.

[12] Guohui, Z., Liang, G., & Yang, S. (2010). A genetic Algorithm and Tabu Search

for Multi Objective Flexible Job Shop Scheduling Problems. International

Conference on Computing, Control and Industrial Engineering, 1, 251-254.

[13] David, L., Robert, E., Vasek, C., & William J. (2006). The Traveling Salesman

Problem: A Computational Study. Princeton University Press.

[14] Arananayakgi, A. (2014). Reduce Total Distance and Time Using Genetic

Algorithm. International Journal of Computer Science and Engineering

Technology, 5, 815-819.

42

[15] Otman, A., & Jaafar, A. (2010). A comparative Study of Adaptive Crossover

Operators for Genetic Algorithms to Resolve the Traveling Salesman Problem.

International Journal of Computer Applications, 31, 49-57.

[16] Alexandar, S. (2005). On the history of Combinatorial Optimization (Till 1960).

American Journal of Mathematics, 12, 1-68.

[17] Zar, H., May, K. (2011). An Ant Colony Optimization Algorithm for Solving

Traveling Salesman Problem. International Conference on Information

Communication and Management, 16, 54-59.

[18] Thamilselvan, R., & Balasubramanie, P. (2009). Integrating Genetic Algorithm,

Tabu Search Approach for Job Shop Scheduling, International Journal of

Computer Science and Information Security, 2, 42-53.

[19] Fiechter, C. (1994). A Parallel Tabu Search Algorithm for Large Travelling

Salesman Problem. International Journal of Discrete Applied Mathematics, 51,

243-267.

[20] Lionardo, Z. (2006). The Traveling Salesman Problem: A Comprehensive

Survey. European Journal of Operational Research, 59, 231-247.

[21] http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.

