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ABSTRACT 

Markov chain, which was named after Andrew Markov is a mathematical system that 

transfers a state to another state. Many real world systems contain uncertainty. This 

study helps us to understand the basic idea of a Markov chain and how is been useful 

in our daily lives. For some times there had been suspense on distinct predictions and 

future existences. Also in different games there had been different expectations or 

results involved. That is the reason why we need Markov chains to predict our 

expectation for the future. In this thesis we specifically talk about Markov Chains and 

how it has been processed, the gaming tactics which gives us a clue in a game that 

requires expectation. Also, we gave some applications of Markov chains such as 

Random walk, Games of chance, Queuing chain etc. 

Keywords: Stochastic Process, Conditional Expectation, Markov chain, Random 

Walk, Birth and Death Chains 
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ÖZ 

Andrew Markov’dan sonra adlandırılan Markov zinciri durumlar arası geçişleri çalışan 

matematiksel bir modeldir. Gerçek hayatta birçok olay belirsizlik içerir. Bu çalışma 

Markov zincirinin temel fikrini anlamaya yardımcı olmayı ve günlük yaşamdaki 

kullanımını belirtmeyi amaçlamaktadır. Farklı oyunlarda farklı beklentiler veya 

sonuçlar yer almaktadır. Gelecek için yapılacak tahminlerde Markov zincirleri önem 

taşımaktadır. Bu tezde özellikle Markov Zincirlerinin tanım ve özellikleri, oyun 

taktikleri, ayrıca Rastgele yürüyüş, şans oyunu, kuyruk zinciri gibi Markov 

zincirlerinin bazı uygulamaları çalışılmıştır. 

Anahtar Kelimeler: Stokastik Süreç, Koşullu Beklenti,  Markov Zinciri, Rasgele 

Yürüyüş, Doğum ve Ölüm Zincirleri 
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Chapter 1 

INTRODUCTION 

According to Alexander Volfovsky, August 17, 2007 in a deterministic world, it is 

good to know that occasionally randomness can still occur. A stochastic process is the 

exact opposite of a deterministic one, and is a random process that can have several 

outcomes as time advances. This means that if we know an initial state for the process 

and the function by which it is den, we can tell of likely outcomes of the process. One 

of the most generally discussed stochastic processes is the Markov chain. 

Markov Chains which also refers to Markov processes are defined as cycles of states 

which transition from one to another, and have a certain probability for each transition. 

They are used as a statistical model to represent and predict real world events. It can 

be refers to stochastic process or random variable having Markov property. 

Most of our study of probability has concerted on independent trials processes. The 

results of these trials processes have their source from the theory of probability and 

statistics. 

We have observed that when a series of experiments forms an independent trials 

process, the possible results for each experiment are the same and it occur with the 

same probability. Further, the existence of outcomes of the preceding experiments 

does not have any effects on our expectations for the outcomes of the next experiment. 
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In modern probability theory, Kwang Ho Jo said that the study of chance processes 

gives an ideal of understanding the previous outcomes of a given experiments always 

influenced expectations for future experiments. In principle, when we notice a 

sequence of chance experiments, all of the previous outcomes could generate impact 

on our predictions for the next experiment. For example, if Water Company charges 

60 to 70tl per month for waters bill then, all the previous bills could generate impact 

on our predictions for the next month charges. 

According to Guy Leonard Kouemou EADS Deutschland GmbH in 1906, Andrey 

Andreyevich Markov a Russian mathematician created the first theoretic results for 

stochastic processes by use of the term called chain. He went further by generating the 

type of chain process. In this process, the outcome generated from a given experiment 

determined the result of the next experiment. This type of process is referred to Markov 

chain. In the literature, different classes of Markov processes are taken as Markov 

chains. Mostly, the term is used for a process with a discrete set of times, while the 

time parameter is usually discrete and the state space of a Markov chain does not have 

any generally agreed-on limitations. 

However, many applications of Markov chains employed countable infinite state 

spaces, which have more statistical analysis. Besides time and state-space parameters, 

there are many other variations, extensions and generalizations. Most of our study 

focuses on the discrete-time, discrete state-space case etcA change in the state of the 

system is referred to transitions while the probabilities assigned to different state 

changes are called transition probabilities. The process is described by a state space, a 

transition matrix studying the probabilities of a specific transitions, and an initial state 

or initial distribution through the state space. Without any doubt, we accept all likely 
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states and transitions have been included in the definition of the process, so there is 

always a succeeding state, and the process does not lay off. This will be discussed 

further in Chapter three. 

This study has four chapters in which are ordered as follows. Chapter 1 is the review 

part of our study.  Basic definitions and related concepts are presented in Chapter 2. 

Markov chain definition with its states, examples and applications are given in Chapter 

3. Finally, Chapter 4 consists of Conclusion. 
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Chapter 2 

REVIEW OF PROBABILITY THEORY 

In this part we shall think through some notations and basic part of probability theory. 

Topics to be revised are; 

(1) Probability space and 𝜎-fields 

(2) Random variables and their distributions 

(3) Conditional probability and independence 

(4) Stochastic process  

(5) Conditional expectation  

2.1 Probability space and σ-fields 

The probability space will be explained by using the system language of measure 

theory. 

2.1.1 Definition of Sample space(𝛀)  

This is the set of all possible result of a given random experiments e.g betting on 

players to score randomly, the results can either be winning or losing.  

2.1.2 Definition of Event space(𝓕) 

This is a collection of all possible events under a given consideration. Hence, every set 

belonging to 𝓕 is called an events. It can also be define as subsets of Ω 

 For example, if sample space Ω contains N elements, then the number of possible 

events will be ∑ (𝑁
𝐾
)𝑁

𝑘=1 . 
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2.1.3 Definition of Probability measure(𝐏)   

Probability measure Pis defined as the function P: ℱ → [0,1] such that the following 

axioms are satisfied 

 (1)𝑃(Ω) = 1 Infers that there is always an outcome from Ω on every trial carry out. 

 (2)For two events 𝐸1 and 𝐸2 which are disjoint set i.e. 𝐸𝑦 ∩ 𝐸𝑧 = ∅ for all           

𝑦 ≠ 𝑧 then 𝑃(𝐸1 ∪ 𝐸2 ) = 𝑃(𝐸1 ) + 𝑃(𝐸2).   

Therefore, a probability space is a triplet (Ω, ℱ, P) in which the three component are 

used to determine the outcome of a given experiment.  

2.1.4 Definition of σ-fields  

We defined σ-fields ℱ on Ω if it satisfies the following condition. 

(a) Ω ∈  ℱ 

(b) if an event 𝑇 ∈ ℱ then 𝑇| ∈  ℱ (closed under complements) 

(c) if  𝑇𝑖 ∈ ℱ for 𝑖 = 1,2, … ., then ⋃ 𝑇𝑖𝑖 ∈  ℱ ( closed under countable union) 

Note that the σ-fields ℱ always containt least Ω and ∅ which is called the trivial 

 σ-field ℱ𝑜. 

Example 2.1: Let Ω = {1…… . .4}, then the following are σ-field on Ω: 

                                          ℱ1 = {∅, {1}, {2,3,4}, Ω }. 

                                         ℱ2 = {∅, {1,3}, {2,4}, Ω }. 

2.1.5 Definition of Borel set 

We defined 𝐵(𝑅) where 𝑅 is the set of real numbers as the smallest σ-field covering 

all interval in 𝑅. It can also be defined as the smallest σ- algebra which can be derived 

from an open and closed sets done by countable unions and complementations. 
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Note: The pair (Ω, ℱ) is said to be measurable space and any events fitting to ℱ  are 

said to be ℱ-measurable. This implies that the events help to decide on whether they 

happened or not, given the information of  ℱ . In other words, if one knows the 

information of ℱ, then one is able to state which events of  ℱ (= subsets of Ω).  

2.2 Random variables and Their Distributions  

2.2.1 Definition of 𝓕-measurable 

If ℱ  is a σ-field of subsent of  Ω , then a function 𝑍: Ω ⟶ R is ℱ -measurable if 

(𝑍𝜖𝐵) 𝜖 ℱ  for all Borel set  𝜖  𝐵(𝑅) . If (Ω,ℱ, P )  is a probability space then the 

function 𝑍 is called a random variable.  

2.2.2 Definition of Smallest σ-field generated Z 

The smallest σ-field generated by random variable 𝑍: Ω ⟶ R consist of all sets of the 

form (𝑍𝜖𝐵), where 𝐵 is the borel set in 𝑅. 

2.2.3 Definition of Distribution function of 𝒁 

Every random variable 𝑍: Ω ⟶ R result to a probability measure 𝑃𝑧(𝐵) = 𝑃(𝑍 ∈ 𝐵) 

on R which is defined on the σ-field of Borel sets 𝐵(𝑅). Therefore we call 𝑃𝑧  the 

distribution of 𝑍 . Also the function 𝐹𝑧: 𝑅 ⟶ [0,1] defined by 𝐹𝑧(𝑥) = 𝑃(𝑍 ≤ 𝑥) is 

called the distribution function of  𝑍 . The distribution function have the following 

properties. 

The distribution function 𝐹𝑧 is non-decreasing right continuous and     

                               lim
𝑥⟶−∞

𝐹𝑧(𝑥) = 0, lim
𝑥⟶∞

𝐹𝑧(𝑥) = 1   

2.2.4 Definition of Borel measurable function 

A function 𝑓: 𝑅 → 𝑅 is said to be a Borel measurable function if 𝐹 is a random variable 

on (𝑅, 𝐵).  
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2.2.5 Definition of Density of 𝒁 

Assuming there exist a integrable function 𝑓: 𝑅 → 𝑅 such that for any close set 𝑎, 𝑏 ⊂

 𝑅, 𝑃(𝑍 ∈ [𝑎, 𝑏]) = 𝐹(𝑎) − 𝐹(𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, then 𝑍 is said to be a random variable 

with absolutely continuous distribution and 𝑓 is called the density of 𝑍.  

2.2.6 Definition of Discrete Distribution  

If there is a finite sequence of distinct real numbers 𝑥1,𝑥2, …. such that for any Borel 

set 𝐵 ⊂ 𝑅,  𝑃(𝑍 ∈ 𝐵) = ∑ 𝑃(𝑍 = 𝑥𝑖𝑥𝑖∈𝐵 ) then 𝑍 is said to have discrete distribution 

with value  𝑥1,𝑥2, …..      

Example 2.2: Assuming that 𝑍 has a continuous distribution with density 𝑓𝑧, show that 

𝑑

𝑑𝑥
𝐹𝑧(𝑥) = 𝑓𝑧(𝑥) if 𝑓 is continuous at 𝑥. 

Solution: Since 𝑍 has a density𝑓𝑧 then the distribution function 𝐹𝑧(𝑥) can be written 

as 𝐹𝑧(𝑥) = 𝑃(𝑍 ≤ 𝑥) = ∫ 𝑓𝑧(𝑦)𝑑𝑦
𝑥

−∞
. 

Therefore, if  𝑓𝑧 is continuous at 𝑥, then 𝐹𝑧 is differentiable at 𝑥 and  

 
𝑑

𝑑𝑥
𝐹𝑧(𝑥) =

𝑑

𝑑𝑥
∫ 𝑓𝑧(𝑦)𝑑𝑦 =

𝑥

−∞
𝑓𝑧(𝑥).  

2.2.7 Joint Distribution of Numerous Random Variable 𝒁𝟏, … , 𝒁𝒏 

This is said to be a probability measure 𝑃𝑍1
. . .𝑍𝑛

 on 𝑅𝑛  such that 

 𝑃𝑍1
. . .𝑍𝑛

 (𝐵) = {(𝑍1, … . 𝑍𝑛) ∈ 𝐵} for every Borel set B in 𝑅𝑛. Suppose there is Borel 

function 𝐹𝑍1
. . .𝑍𝑛

 : 𝑅𝑛 → 𝑅 such that  

𝑃{(𝑍1, … . 𝑍𝑛) ∈ 𝐵} = ∫   𝑓𝑍1
. . .𝑍𝑛

  (
𝐵

𝑥1…,,𝑥𝑛)𝑑𝑥1
… . 𝑑𝑥𝑛

 for any Borel set 𝐵 in  𝑅𝑛 , 

then  𝑓𝑍1
. . .𝑍𝑛

  is called the joint density of  𝑍1 … , 𝑍𝑛 . 𝑅𝑛. 
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2.2.2 Definition of Indicator function 

For any event 𝐴 𝜖 ℱ, the function 𝐼𝐴(𝑟) = {
1,     𝑟 ∈ 𝐴
0,   𝑟 ∉ 𝐴

  is a random variable and we 

call such random variable an indicator function. 

The following are the properties of the Indicator Random Variable: 

(a)  𝐼∅(𝑟) = 0  and 𝐼Ω(𝑟) = 1. 

(b)  𝐼𝐴𝑐(𝑟) = 1 − 𝐼𝐴(𝑟). 

(c)  𝐼𝐴(𝑟) ≤ 𝐼𝐵(𝑟) if and only if 𝐴 ⊆ 𝐵. 

(d)  𝐼⋂ 𝐴𝑖𝑖
(𝑟) = ∏ 𝐼𝐴𝑖𝑖 (𝑟). 

(e) If 𝐴𝑖 are disjoint then 𝐼⋃ 𝐴𝑖𝑖
(𝑟) = ∑ 𝐼𝐴𝑖𝑖 (𝑟). 

2.3 Conditional Probability and Independence 

2.3.1 Conditional Probability 

Assuming events 𝐷, B ∈ ℱ such that 𝑃(𝐵) ≠ 0 then the conditional probability of an 

event 𝐷 given event B can be expressed by  

𝑃(𝐷|𝐵) =
𝑃(𝐵 ∩ 𝐷)

𝑃(𝐵)
 

Example 2.3: If 60% of my classmate like chicken kebab and 45%  like chicken kebab 

and ham kebab. What is the percentage of those who like chicken also like ham kebab?  

Solution    

𝑃(ram kebab | chicken kebab) =
𝑃(chicken kebab and ham kebab )

𝑃(chicken kebab)
 

 

               =
0.45

0.6
= 0.75 

Therefore, 0.75  is the percentage of those who like chicken also ham kebab. 
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2.3.2 Definition of Independence of an events 

An events 𝐷,B ∈ ℱ are said to independent if the existence of 𝐷 does not affect the 

probability of 𝐵. This implies 𝑃(𝐷 ∩ 𝐵) = 𝑃(𝐷)𝑃(𝐵) or events 𝐷 and B are said to 

be independent if 𝑃(𝐷|𝐵) = 𝑃(𝐷) which is the same as  𝑃(𝐵|𝐷) = 𝑃(𝐵) . 

 In general we conclude that an events 𝐷1 … 𝐷𝑛 ∈ ℱ are independent if  

𝑃(𝐷𝑖1 ∩ 𝐷𝑖2 ∩. . . 𝐷𝑖𝑘) = 𝑃(𝐷𝑖1)𝑃(𝐷𝑖2). . . 𝑃(𝐷𝑖𝑘). 

Example 2.4: Consider the experiment of rolling a 3 on a die and spinning a tail on a 

coin. Rolling the 3 does not affect the probability of spinning the tail. If the events are 

independent, then the probability that boths events will occur is the product of the 

probabilities of each occurring i.e. 𝑃(𝐷 ∩ 𝐶) = 0.5. 

2.3.3 Definition of Independence of Two Random Variables 

Two random variables 𝐽 and 𝑄 are said to be independent if for any Borel sets   𝐷,𝐵 ∈

𝐵(𝑅) then the two events (𝐽 ∈ 𝐷) and 𝑞 ∈ 𝐵 are independent. In general we conclude 

that random variable 𝐽1,…,𝐽𝑛are independent if for any Borel sets 

 𝐷1,…,𝐷𝑛 ∈ 𝐵(𝑅) then the events (𝐽1 ∈ 𝐷1) and (𝐽𝑛 ∈ 𝐷𝑛) are also independent. 

2.34 Definition of Independence of Two σ-Fields 

Two σ-fields ℋ,𝐺 ⊆ ℱ are independent if 𝑃(𝐷 ∩ 𝐵) = 𝑃(𝐷)𝑃(𝐵) such that for all 

𝐷 ∈  ℋ and 𝐵 ∈  𝐺. 

2.35 Definition of Independence of Finite number of σ-Fields 

 A finite number of σ-fields ℋ1, … ,ℋ𝑛 contained in ℱ is said to be independent for 

any  𝑛  events if 𝐷1 ∈ ℋ1, … . , 𝐷𝑛 ∈ ℋ𝑛  are all independent. In general, we say an 

infinite or finite family of σ-fields is said to be independent if any finite number of 

them are independent. 
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2.4 Stochastic Process  

This section is essential for the understanding of stochastic process. 

2.4.1 Stochastic Process 

Assuming T is a subset of (−∞,∞). A family of random variables {𝐷𝑡}𝑡∈𝑇 defined 

on Ω is called a stochastic process. Here we represent (−∞,∞) as the infinite past to 

infinite future respectively in which are called Time.  

Types of stochastic processes 

(a) Discrete time process: A stochastic process is called a discrete time process if 

and only if T is continuous and Ω  is discrete. This implies that, as T is 

continuous,Ω takes a discrete set of values. 

Example 2.5: If  𝐷(𝑡) represent the number of costumer received in kebab shop in the 

interval of (0, 𝑡) then {𝐷(𝑡)} is a discrete time process since Ω = {0,1,2,3…… } 

(b) Continuous time process: A stochastic process is said to be continuous if and 

only if both T and Ω are continuous or if T is an interval which has a positive 

length. 

Example 2.6 

If 𝐷(𝑡) represent the maximum temperature at a place in the interval (0, 𝑡), then we 

say that 𝐷(𝑡) is continuous.  

2.4.2 Range of Random Variable 

The range of random variable or possible value in stochastic process is referred to state 

spaces of the process.  
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2.4.2 Transition Process   

A change between any given state spaces in stochastic process is called transition 

process. 

Example 2.7  

Let 𝐷𝑛: 𝑛 = {0, 1, 2, 3… } where the state space of 𝐷𝑛  is {0, 1, 2, 3, 4, 5, 6}  which 

signify the six types of transactions submitted to a data service where time 𝑛 relates to 

the number of transactions submitted.  

2.4.3 Sample Path 

A sample path is described as time ordered which show what happened to a process in 

one instant. This can be either continuous or discrete. 

2.4.4 Filtration 

We defined a filtration as the increase in the family of σ-fields that is if a sequence of 

σ-fields 𝓕1,𝓕2, …. on Ω such that 𝓕1 ⊆ 𝓕2 ⊆ ⋯ ⊆ ℱ then we call it filtration.  

Example 2.8 

 Let 𝐷 = {𝑡ℎ𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑓𝑜𝑢𝑟 𝑡𝑜𝑠𝑠𝑒𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑡𝑎𝑖𝑙𝑠}  at 

discrete time 𝑛 = 4. Whenever the coin has been tossed four times, it is likely to 

determine if 𝐷 has occurred or not. It implies that 𝐷 ∈ 𝓕4. Nevertheless, at 𝑛 = 3 it is 

not always possible to determine if 𝐷 has occurred or not. Assuming the outcome of 

the first three tossed are heads, heads, tails, then the event 𝐷 is unsure. This implies 

that 𝐷 ∉ 𝓕4. Assuming that we are able to get two tails at first three tossed, then we 

say that 𝐷 has already occurred no matter the outcome of the fourth toss. This does not 

mean that 𝐷 ∈ 𝓕3. 
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2.4.5 Definition of Sequence of Random Variables 

We defined a sequence 𝑝1,𝑝2,……… of random variables to be martingale with regard to 

a filtration 𝓕1,𝓕2, …… .. if the following properties are satisfied: 

(a)   𝐽1,𝐽2,… are adapted to a filtration  𝓕1,𝓕2, … 

(b)  𝐽𝑛 is integrable  for each 𝑛 = 1, 2, 3… 

(c) 𝐸(𝐽𝑛+1 |𝓕𝑛) = 𝐽  for each 𝑛 = 1, 2, 3… 

2.5 Conditional Expectation  

Recall that the conditional probability of  𝐷 given B   

𝑃(𝐷|𝐵) =
𝑃(𝐵∩𝐷)

𝑃(𝐵)
. 

Clearly, 𝑃(𝐷|𝐵) = 𝑃(𝐷) if and only if 𝐷 𝑎𝑛𝑑 𝐵 are independent. Given that  

𝑃(𝐵) > 0, then the conditional distribution function of a random variable where 

 𝑥 ∈ 𝑅 is 

                                                    𝐹𝑋(𝑥|𝐵) =
𝑃((𝑋≤𝑥)∩𝐵)

𝑃(𝐵)
 . 

Therefore the expectation  

𝐸(𝑋|𝐵) =
𝐸(𝑋 ∩ 𝐵)

𝑃(𝐵)
 . 

Is called the conditional expectation of X given B. 

2.6 Conditioning on an Event 

 For any given integrable random variable 𝑝 and any event 𝐵 ∈  ℱ such that 

 𝑃(𝐵) ≠ 0,  the conditional expectation of 𝑝 given 𝐵 is defined as 

𝐸(𝑝|𝐵) =
1

𝑃(𝐵) 
∫ 𝑝𝑑𝑃
𝐵

. 
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Example 2.9: Assuming three coins 15J, 25J and 60J are flipped. The outcome of 

those coins that land tails up are added to get the total amount of 𝑝. Find the expected 

total amount of 𝑝 if and only if two coins have landed tails up. 

Solution: Let 𝐵 represent two coins that have landed tails up. We will find 𝐸(𝐽|𝐵).  

Obviously, 𝐵 = {𝑇𝑇𝐻, 𝑇𝐻𝑇,𝐻𝑇𝑇}  where T represent tails, H represent heads and 

each having total probability of 
1

8
 

i.e.{𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻, 𝑇𝐻𝐻, 𝑇𝑇𝐻, 𝑇𝐻𝑇, 𝐻𝑇𝑇, 𝑇𝑇𝑇}. Therefore, the corresponding 

values of 𝐽 are 

𝐽(𝑇𝑇𝐻) = 15 + 25 = 40 . 

                                               𝐽(𝑇𝐻𝑇) = 15 + 60 = 75. 

                                                𝐽(𝐻𝑇𝑇) = 25 + 60 = 80 . 

Then  

                             𝐸(𝐽|𝐵) =
1

𝑃(𝐵) 
∫ 𝐽𝑑𝑃 =

1
3

8
𝐵

(
40

8
+

75

8
+

85

8
) = 66

2

3
. 

2.7 Conditioning on an Arbitrary Random Variable 

Assuming 𝑝 is an integrable random variable and 𝜏 is an arbitrary random variable, 

then the conditional expectation of 𝑝  given  𝜏  is assumed to be a random variable 

𝐸(𝐽|𝜏) if it satisfies the following properties below 

(a) 𝐸(𝐽|𝜏) is 𝜎(𝜏)-measurable. 

(b) For any 𝐷 ∈ 𝜎(𝜏). 

∫ 𝐸(𝐽|𝜏)𝑑𝑃 =
𝐷

∫ 𝑝𝑑𝑃
𝐷

. 
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2.8 General Properties of Conditional Expectation  

Let 𝑥, 𝑦 ∈ 𝑅,  𝑝, 𝜁 ∈  Ω, ℱ, P and G, H are sub σ-algebra on Ω then 

(1) 𝐸(𝑥𝑝 + 𝑦𝜁|G) = 𝑥𝐸(𝑝|G) + 𝑦𝐸(𝜁|G) for all 𝑥, 𝑦 ∈ 𝑅 (linearity property). 

(2) 𝐸(𝐸(𝑝|G)) = 𝐸(𝑝). 

(3) If 𝑝 ≥ 0, then 𝐸(𝑝|G)  ≥ 0 (Positivity property). 

(4) 𝐸(𝐸(𝑝|G)|𝐻) = 𝐸(𝑝|G) if and only if H⊂G. 

(5) 𝐸(𝑝|G) =  𝐸(𝑝) if and only if 𝑝 is an independent of G. 
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  Chapter 3 

MARKOV CHAINS 

3.1 Definition 

A Markov chain is a family of stochastic processes in which the process is a discrete 

time. The discrete time process is always characterized by the set called the State space 

of the system where 𝑋𝑛 denotes the state of the system at time n = 0, 1, 2...   

Many systems have the property that given the present state, the past states have no 

influence on the future. This property is called the Markov property and the system 

having this property is called a Markov chain. Since the system have Markov property 

that is, a process is{𝑋𝑛}𝑛
∞ = 0  called a Markov if 

 𝑃(𝑋𝑛+1 𝜖 𝐴| 𝑋0,𝑋1,…….,   𝑋𝑛,) = 𝑃(𝑋𝑛+1𝜖𝐴|𝑋𝑛 ). 

The Conditional probabilities 𝑃(𝑋𝑛+1 = 𝑦|𝑋𝑛  = 𝑥) are called the Transition 

Probabilities of the chain. A Markov chain is said to have Stationary Transition 

Probabilities if 𝑃(𝑋𝑛+1 = 𝑦|𝑋𝑛  = 𝑥) is independent of n. Note that in all states of 

Markov chain, it is possible to go from any state in more than one step to every other 

state and you can only return to a state in an even number  of steps. 
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3.2 Markov Chains Having Two States 

For an example, consider a Markov chain having two chain states. Assume that a 

Generator at the start of any particular day is either broken down or in operating 

condition. Let 𝑋𝑛 be random variable denoting the state of the Generator at time n and 

let  𝜋0(0)  be the probability that the generator is broken down initial. Then the 

following are the stationary transition probabilities: 

                                             𝑃(𝑋𝑛+1 = 1|𝑋𝑛 =   0) = 𝜘  (1)                                                                                                                            

                                           𝑃(𝑋𝑛+1 = 0|𝑋𝑛  = 1)  = 𝑞                                                  (2)   

Where 𝜘 is the probability that it will successfully repaired and in operating condition 

at the start of the (𝑛 + 1)𝑠𝑡 day when the generator is broken at the start of nth day. 

Also 𝑞 is the probability that it will fail causing it to be broken down at the start of 

the (𝑛 + 1)𝑠𝑡  day when the generator is in operating condition at the start of the nth 

day. Since there are only two states which are 0 and 1, it follows that 

                                             𝑃(𝑋𝑛+1 = 0 |𝑋𝑛 = 0) = 1 − 𝜘    (3)                                                                                                                            

                                             𝑃(𝑋𝑛+1 = 1 |𝑋𝑛  = 1)  =  1 − 𝑞                                    (4)     

And 𝜋0(1) = 𝑃(𝑋0 = 1) = 1 − 𝜋0(0) are called the initial distribution.                  

By applying matrix transition to (3) and (4) we have 

                                   𝑃 = (
1 − 𝜘 𝜘

𝑞 1 − 𝑞
) Where sum of any row of the matrix is1. 

Given the initial distribution and transition probabilities, we can find distribution of all 

𝑋𝑛  which are 𝑃(𝑋𝑛 = 0) and 𝑃(𝑋𝑛 = 1). 

 We observe that 

         𝑃(𝑋𝑛+1 = 0) = 𝑃(𝑋𝑛 = 0, 𝑋𝑛+1 = 0) + 𝑃(𝑋𝑛 = 1, 𝑋𝑛+1 = 0)                        (5) 

By applying multiplicative rule to equation (5) we get 

   𝑃(𝑋𝑛+1 = 0|𝑋𝑛 = 0) 𝑃(𝑋𝑛 = 0) + 𝑃(𝑋𝑛+1 = 0|𝑋𝑛 = 1) 𝑃(𝑋𝑛 = 1)                  (6) 
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By applying transition function which has been stated above we have                                                                                 

                                   𝑃(0,0) 𝑃(𝑋𝑛 = 0) + 𝑃(1,0)𝑃(𝑋𝑛 = 1). 

Recall that 

                                                𝑃(𝑋𝑛 = 1) = 1 − 𝑃(𝑋𝑛 = 0). 

Then we have   

                                             (1 − 𝜘)𝑃(𝑋𝑛 = 0) + 𝑞(1 − 𝑃(𝑋𝑛 = 0)). 

                                       =    (1 − 𝜘)𝑃(𝑋𝑛 = 0) + 𝑞 − 𝑞 𝑃(𝑋𝑛 = 0). 

                                      =    𝑃(𝑋𝑛+1 = 0) = (1 − 𝜘 − 𝑞)𝑃(𝑋𝑛 = 0) + 𝑞.                (7) 

Then for n = 0, substitute for n in equation (7) we have                                                                                                      

                                                  𝑃(𝑋1 = 0) = (1 − 𝜘 − 𝑞)𝑃(𝑋0 = 0) + 𝑞                     (8) 

Since 𝜋0(0) = 𝑃(𝑋0 = 0) substitute it into equation (8) we have                                  

                                           𝑃(𝑋1 = 0) = (1 − 𝜘 − 𝑞)𝜋0(0) + 𝑞                              (9) 

Therefore for state 1 we have                                                                   

                                             𝑃(𝑋1 = 1) = 1 − 𝑃(𝑋1 = 0) 

From equation (7) when n = 1 we have 

                                        𝑃(𝑋2 = 0) = (1 − 𝜘 − 𝑞)𝑃(𝑋1 = 0) + 𝑞                       (10) 

By substituting equation (9) into (10) we have 

                                            =   (1 − 𝜘 − 𝑞)((1 − 𝜘 − 𝑞)𝜋0(0) + 𝑞) + 𝑞 

                                            =    (1 − 𝜘 − 𝑞)2𝜋0(0) + (1 − 𝜘 − 𝑞)𝑞 + 𝑞 

By factorization we get  (1 − 𝜘 − 𝑞)2𝜋0(0) + 𝑞[1 + (1 − 𝜘 − 𝑞)]                       (11) 

 Then for n times, apply induction we have 

  𝑃(𝑋𝑛 = 0) = (1 − 𝜘 − 𝑞)𝑛𝜋0(0) + 𝑞[1 + (1 − 𝜘 − 𝑞)(1 − 𝜘 − 𝑞)𝑛−1] 

                                       =    (1 − 𝜘 − 𝑞)𝑛𝜋0(0) + ∑ (1 − 𝜘 − 𝑞)𝑗𝑛−1
𝑗=0                   (12)   

Since the sequence in (12) is a geometric sequence then we can rewrite it as 

                                           (1 − 𝜘 − 𝑞)𝑛𝜋0(0) + 𝑞[
1−(1−𝜘−𝑞)𝑛

1−(1−𝜘−𝑞)
]                            (13) 
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Hence by simplify (13) we have 

                                          𝑃(𝑋𝑛 = 0) =
𝑞

𝜘+𝑞
+ (1 − 𝜘 − 𝑞)𝑛(𝜋0(0) −

𝑞

𝜘+𝑞
)         (14) 

For                         

                                          𝑃(𝑋𝑛 = 1) = 1 − 𝑃(𝑋𝑛 = 0)                                        (15) 

Substitute (14) into (15) we have 

                                          1 − [
𝑞

𝜘+𝑞
+ (1 − 𝜘 − 𝑞)𝑛 (𝜋0(0) −

𝑞

𝜘+𝑞
)]. 

                                          =      
𝜘

𝜘+𝑞
+ (1 − 𝜘 − 𝑞)𝑛 (1 − 𝜋0(1) −

𝑞

𝜘+𝑞
). 

                                          =    
𝜘

𝜘+𝑞
+ (1 − 𝜘 − 𝑞)𝑛 (𝜋0(1) −

𝜘

𝜘+𝑞
)                        (16) 

Assuming that 𝜘 and 𝑞 are neither equal to 0 or 1 then, 0< 𝜘 + 𝑞 < 2 .This implies 

that |1 − 𝜘 − 𝑞| < 1.                                                                                                       

In this case, will can find the limit of 𝑃(𝑋𝑛 = 0) and 𝑃(𝑋𝑛 = 1) as 𝑛 → ∞.  Therefore 

lim
𝑛→∞

𝑃(𝑋𝑛 = 0) =
𝑞

𝜘+𝑞
  and lim

𝑛→∞
𝑃(𝑋𝑛 = 1) =

𝜘

𝜘+𝑞
. 

Also, since it is not specified whether the 𝑋𝑛, 𝑛 ≥ 0 then we can assume that it Satisfy 

Markov Property and compute for Joint distribution of 𝑋0, 𝑋1, 𝑋2 … ,𝑋𝑛. For example 

take n = 2 and assume that 𝑋0, 𝑋1  and 𝑋2  each equal to 1 or 0.Then by applying 

multiplicative rule, let   

                                       𝑋0 = 𝑥0 and 𝑋1 = 𝑥1 be 𝐴 and 𝑋2 = 𝑥2 be 𝐵. 

Then we have   𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) which implies 

                                     𝑃(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, 𝑋2 = 𝑥2). 

               =𝑃(𝑋0 = 𝑥0, 𝑋1 = 𝑥1)𝑃(𝑋2 = 𝑥2|𝑋0 = 𝑥0, 𝑋1 = 𝑥1)               (17) 

Apply Multiplicative rule to and Markov property to (17) we get 

                            𝑃(𝑋0 = 𝑥0) 𝑃(𝑋1 = 𝑥1|𝑋0 = 𝑥0) 𝑃(𝑋2 = 𝑥2|𝑋1 = 𝑥1)              (18)   

Recall that 𝑃(𝑋0 = 𝑥0) = 𝜋0(𝑥0) therefore substitute it into equation (18) we get the    

Joint Distribution table of   𝑋0, 𝑋1 and 𝑋2 which are 
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       Table 1: Joint distribution  
X0 X1 X2 P(X0 = x0, X1 = x1, X2 = x2) 

1 1 1 (1 − 𝜋0(0))(1 − 𝑞)2 

1 1 0 (1 − 𝜋0(0))(1 − 𝑞)𝑞 

1 0 1 (1 − 𝜋0(0))𝜘𝑞 

1 0 0 (1 − 𝜋0(0))𝑞(1 − 𝜘) 

0 1 1 𝜋0(0)𝜘(1 − 𝑞) 

0 1 0 𝜋0(0)𝜘𝑞 

0 0 1 𝜋0(0)(1 − 𝜘)𝜘 

0 0 0 𝜋0(0)(1 − 𝜘)2 

 

The function 𝑃(𝑥, 𝑦) = 𝑃(𝑋1 = 𝑦|𝑋0 = 𝑥)  where 𝑥, 𝑦 ∈S is called the Transition 

function of the Chain such that 𝑃(𝑥, 𝑦) ≥ 0, where 𝑥, 𝑦 ∈S and ∑ 𝑃(𝑥, 𝑦) = 1𝑦  where 

𝑥, 𝑦 ∈S .Here 𝑃(𝑥, 𝑦) is the probability the chain is in state 𝑦 at step n+1 provided that 

it was in state 𝑋 at time n. 

The function 𝜋0(𝑥) = 𝑃(𝑋0 = 𝑥), x∈S is called the initial distribution of the chain 

such that  𝜋0(𝑥) ≥ 0, 𝑥 ∈ S  and ∑ 𝜋0(𝑥) = 1𝑥 .  

The Joint distribution of  𝑋0, 𝑋1, 𝑋2 … ,𝑋𝑛  can simply expressed in term of initial 

distribution and transition function. 

For 𝑃(𝑋0 = 𝑥0, 𝑋1 = 𝑥1) =  𝑃(𝑋0 = 𝑥0)𝑃(𝑋1 = 𝑥1|𝑋0 = 𝑥0)   

                                            = 𝜋0(𝑥0) 𝑃(𝑥0, 𝑥1). 

Also  𝑃(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, 𝑋2 = 𝑥2) = 𝜋0(𝑥0) 𝑃(𝑥0, 𝑥1)𝑃(𝑥1, 𝑥2). 
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Since 𝑋𝑛, 𝑥 ≥ 0  which has stationary transition probabilities and satisfies Markov 

property. By induction it is easily seen that 𝑃( 𝑋0, 𝑋1, 𝑋2 … ,𝑋𝑛) 

                                    =  𝜋0(𝑥0) 𝑃(𝑥0, 𝑥1)𝑃(𝑥1, 𝑥2)……𝑃(𝑋𝑛−1, 𝑋𝑛)                   (19) 

3.3 Examples of Markov Chains 

3.3.1 Random walk 

 Let ℰ1, ℰ2, ℰ3, ℰ4 … be independent integer valued random variables and let 𝑋0 integer 

valued random variables that is independent of the  ℰ𝑖
′𝑠, and set  

𝑋𝑛 =  𝑋0 + ℰ1 + ℰ2 + ℰ3 + ℰ4 + ℰ𝑛. This set of sequence is called random walk.It is 

a Markov whose state space is the integers and whose transition function is  

                                        𝑃(𝑥, 𝑦)= 𝑓(𝑦 − 𝑥)             (20) 

To verify (20), let 𝜋0 denote the distribution of 𝑋0. Then 𝑃(𝑋0 = 𝑥0….𝑋𝑛 = 𝑥𝑛) 

                                =  𝑃(𝑋0 = 𝑥0, ℰ1 = 𝑥1 − 𝑥0, … . , ℰ𝑛 = 𝑋𝑛 − 𝑋𝑛−1). 

        =  𝑃(𝑋0 = 𝑥0)𝑃( ℰ1 = 𝑥1 − 𝑥0)𝑃( ℰ2 = 𝑥2 − 𝑥1). . . 𝑃(ℰ𝑛 = 𝑋𝑛 − 𝑋𝑛−1). 

        =  𝜋0(𝑥0) 𝑓( ℰ1 = 𝑥1 − 𝑥0)𝑓( ℰ2 = 𝑥2 − 𝑥1). . . 𝑓(ℰ𝑛 = 𝑋𝑛 − 𝑋𝑛−1).         

                                       =  𝜋0(𝑥0) 𝑃( 𝑥1𝑥0). . . 𝑃(𝑋𝑛−1, 𝑋𝑛).        

Thus (19) holds.  

As a special case, consider a simple random walk in which 𝑓(1) = 𝜘, 𝑓(−1) = 𝑞  

and 𝑓(0) = 𝑟, where 𝜘 + 𝑞 + 𝑟 = 1, then the transition function is given by 

𝑓(𝑦 − 𝑥) = 𝑃(𝑥, 𝑦) = {

𝜘,               𝑦 = 𝑥 + 1,
𝑞,               𝑦 = 𝑥 − 1,
𝑟,                       𝑦 = 𝑥,
 0,               elsewhere.

 

3.3.2 Ehrenfest chain  

This is a simple model of the exchange of heat or gas molecules between two isolated 

bodies. 
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Let 𝑋𝑛 denote the number of molecules (or balls) in box 1 after the 𝑛𝑡ℎ trial. (Trials 

are independent). The 𝑋𝑛, 𝑛 ≥ 0 is a Markov chain S ={0,1,2…… , 𝑑}. the transition 

function of this Markov chain is given by 

𝑃(𝑥, 𝑦) = {
𝑑 − 𝑥

𝑑⁄      𝑦 = 𝑥 + 1 (𝑓𝑟𝑜𝑚 𝑏𝑜𝑥 2 𝑡𝑜 𝑏𝑜𝑥 1)

𝑥
𝑑   ⁄    𝑦 = 𝑥 − 1        (𝑓𝑟𝑜𝑚 𝑏𝑜𝑥 1 𝑡𝑜 𝑏𝑜𝑥 2)

 

A state m of a Markov chain is called an absorbing state if 𝑃(𝑚,𝑚) = 1  or 

equivalently if 𝑃(𝑎, 𝑦) = 0 for 𝑦 ≠ 𝑚 

3.3.3 Gambler’s Ruin Chain 

 Let p be the probability of winning 1 unit at any bet and q be the probability of losing 

1 unit at any bet. If the gamblers capital ever reach zero he is ruined and his capital 

remains zero therefore, (absorbing state.) 

Let 𝑋𝑛 denote the gamblers capital at time n. this is a Markov chain in which zero is 

an absorbing states and for x ≥ 1. 

𝑃(𝑥, 𝑦) = {
𝑝,                  𝑦 = 𝑥 + 1
𝑞,                  𝑦 = 𝑥 − 1
0,                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Such a chain is called a Gambler’s Ruin Chain on S ={0,1,2, … . . }. 

X 

                            

d-x 

       

BOX 1 BOX 2 
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If  S, = {0,1,2, … , 𝑑}, in this case 0 and d are both absorbing states holds for 

 𝑥 = 1,2, …𝑑. 

3.3.4 Birth and Death Chain 

 The transition of a Birth and Death chain on S ={0,1,2, … . . } or on S ={0,1,2,… . . 𝑑} 

is given by  

𝑃(𝑥, 𝑦) = {

𝑞𝑥,               𝑦 = 𝑥 − 1 (𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑑𝑒𝑎𝑡ℎ)
𝑟𝑥,                  𝑦 = 𝑥         

𝑝𝑥,                𝑦 = 𝑥 + 1 (𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑏𝑖𝑟𝑡ℎ)

0,                                                                      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

𝑤ℎ𝑒𝑟𝑒 𝑝𝑥 + 𝑞𝑥 + 𝑟𝑥 = 1. 

The Ehrenfest chain and Gambler’s ruin chain are the examples of Birth and Death 

chains. 

3.3.5 Queuing Chain  

Consider a service facility such as checkout at supermarket. Let ℰ𝑛 denote the number 

of new customers arriving during the 𝑛𝑡ℎ period. We assume that ℰ1, ℰ2, ℰ3, ℰ4 …are 

independent integer valued random variables and exactly one customer will be served 

during any given period. Let 𝑋0 denote the number of customers present initially and 

for n ≥1, let 𝑋𝑛 denote the number of customers present at the end of the 𝑛𝑡ℎ period. 

If 𝑋𝑛 = 0 then 𝑋𝑛+1 = ℰ𝑛+1 and if 𝑋𝑛 ≥ 1 then 𝑋𝑛+1 = 𝑋𝑛 + ℰ𝑛+1 − 1. 

𝑋𝑛, 𝑛 ≥ 0 is a Markov chain on S ={0,1,2, … . . } with 

𝑃(0, 𝑦) = 𝑓(𝑦) and 𝑃(𝑥, 𝑦) = 𝑓(𝑦 − 𝑥 + 1), 𝑥 ≥ 1. 

3.4 Computation with Transition Functions 

Let 𝑋𝑛, 𝑛 ≥ 0  be a Markov chain on S having transition function P.                                         

In this section we will show how various conditional probabilities can be expressed in 

terms of P. We will also define the n- step transition function of the Markov chain. We 

begin with the formula        
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 𝑃(𝑋𝑛+1 = 𝑥𝑛+1 … ,𝑋𝑛+𝑚 = 𝑥𝑛+𝑚| 𝑋0 = 𝑥0, . . . , 𝑋𝑛 = 𝑥𝑛) .                                 (21) 

 

By definition of conditional probability 

                                 𝑃(𝑥𝑛,𝑥𝑛+1)𝑃(𝑥𝑛+1, 𝑥𝑛+2). . . 𝑃(𝑥𝑛+𝑚−1, 𝑥𝑛+𝑚).                     (22) 

Also (21) can be written as 

𝑃(𝑋𝑛+1 = 𝑦1, 𝑋𝑛+2 = 𝑦2, . . . , 𝑋𝑛+𝑚 = 𝑦𝑚| 𝑋0 = 𝑥0, . . , 𝑋𝑛 = 𝑥𝑛 ).                        (23)                            

                                 =  𝑃(𝑥, 𝑦1) 𝑃(𝑦1, 𝑦2)…… . . 𝑃(𝑦𝑚−1, 𝑦𝑚).                              (24)  

Note that, 𝑃𝐵(. ) = 𝑃(. |𝐵) where (. ) 𝜖 S . 

If 𝐴1 ∩ 𝐴2 = 𝜙, 𝑃𝐵(. ) = (𝐴1 ∩ 𝐴2|𝐵) = 𝑃(𝐴1|𝐵) + 𝑃((𝐴2|𝐵). 

But (𝐴|𝐵1⋃𝐵2) ≠ 𝑃(𝐴1|𝐵) + 𝑃(𝐴2|𝐵). 

Lemma 1 (Paul G. Hoel). 

I. If 𝐷𝑖 are disjoint and 𝑃(𝐶|𝐷𝑖) = 𝑃 for all i, then 𝑃(𝐶| ∪𝑖 𝐷𝑖) = 𝑃. 

II. If 𝐶𝑖 are disjoint , then 𝑃(𝐶| ∪𝑖 𝐷𝑖) = ∑ 𝑃(𝐶𝑖|𝐷)𝑖 . 

Let 𝐴0, 𝐴1, . . . , 𝐴𝑛−1 be subset of S. It follows from (24) and lemma (I) that 

𝑃(𝑋𝑛+1 = 𝑦1,. . . 𝑋𝑛+𝑚 = 𝑦𝑚|𝑋0 ∈ 𝐴0, . . . , 𝑋𝑛−1 ∈ 𝐴𝑛−1, 𝑋𝑛 = 𝑥)                          (25) 

= 𝑃(𝑥, 𝑦1)𝑃(𝑦1, 𝑦2). . . 𝑃(𝑦𝑚−1, 𝑦𝑚). 

Let 𝐵1 . . . 𝐵𝑚 be subsets of S. It follows from (25) and lemma (II) that 

𝑃(𝑋𝑛+1 ∈  𝐵1, . . . , 𝑋𝑛+𝑚 ∈ 𝐵𝑚|𝑋0 ∈ 𝐴1, . . . , 𝑋𝑛−1 ∈ 𝐴𝑛−1, 𝑋𝑛 = 𝑥) 

            = ∑ ∑ . . . ∑ 𝑃(𝑥, 𝑦1𝑦𝑚𝑦2∈𝐵2𝑦1∈𝐵1
)𝑃(𝑦1, 𝑦2). . . 𝑃 (𝑦𝑚−1, 𝑦𝑚).  

 

The m-step transition function 𝑃𝑚(𝑥, 𝑦), which gives the probability of going from x 

to y in m-step is defined by  

𝑃𝑚(𝑥, 𝑦) = ∑ . . .𝑦1
∑ 𝑃(𝑥, 𝑦1)𝑃(𝑦1𝑦𝑚−1

, 𝑦2). . . 𝑃(𝑦𝑚−1, 𝑦𝑚),  

For m≥2, 
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𝑃1(𝑥, 𝑦) = 𝑃(𝑥, 𝑦) 𝑎nd 𝑃0(𝑥, 𝑦) = {
1,    𝑥 = 𝑦

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

Furthermore, 𝑃(𝑋𝑛+𝑚 = 𝑦|𝑋𝑛 = 𝑥) = 𝑃𝑚(𝑥, 𝑦)  and for n+m step probability we 

have 

                                    𝑃𝑛+𝑚(𝑥, 𝑦) = ∑ 𝑃𝑛(𝑥, 𝑧)𝑃𝑚
𝑧∈S (𝑧, 𝑦)                                 (26) 

𝑃(𝑋𝑛 = 𝑦) = ∑ 𝜋0(𝑥)𝑃𝑛(𝑥, 𝑦),𝑥,𝑦  distribution of 𝑋𝑛  while 

𝑃(𝑋𝑛+1 = 𝑦) = ∑ 𝑃(𝑋𝑛 = 𝑥)𝑃(𝑥, 𝑦),𝑥,𝑦  is the recursion between distribution of 𝑋𝑛 

and 𝑋𝑛+1. 

Note: 𝑃𝑥(𝐴) = 𝑃(𝐴|𝑋0 = 𝑥).  

𝑃𝑥(𝑋1 ≠ 𝑎, 𝑋2 ≠ 𝑎, 𝑋3 = 𝑎) = 𝑃(𝑋0 = 𝑥, 𝑋1 ≠ 𝑎, 𝑋2 ≠ 𝑎, 𝑋3 ≠ 𝑎). 

Starting at X, the chain will be in a at time 3. 

3.4.1 Hitting Times  

Let 𝐴 ⊂ 𝑆. The hitting time 𝑇𝐴 of A is defined by 𝑇𝐴 = 𝑚𝑖𝑛{𝑛 > 0: 𝑋𝑛𝜖𝐴}.  

If 𝑋𝑛𝜖𝐴 for some 𝑛 > 0 and by 𝑇𝐴 = ∞ if 𝑋𝑛 ∉ 𝐴 for all 𝑛 > 0. 

Hitting times play an important role in the theory of Markov chains.  𝑇𝑎 denotes the 

hitting time of a point 𝑎𝜖S. 

An important equation involving hitting times is given by  

𝑃𝑛(𝑥, 𝑦) = ∑ 𝑃𝑥(𝑇𝑦𝑚=1 = 𝑚) 𝑃𝑛−𝑚(𝑦, 𝑦)              𝑛 ≥ 1                                      (27) 

Let us verify equation (27). To do this, note that the events (𝑇𝑦 = 𝑚,𝑋𝑛 = 𝑦) 

where 1 ≤ 𝑚 ≤ 𝑛 are disjoint and (𝑋𝑛 = 𝑦) = ⋃ (𝑇𝑦 = 𝑚, 𝑋𝑛 = 𝑦) 𝑛
𝑚−1 . 

We have in effect decomposed the event ( 𝑋𝑛 = 𝑦) according to the hitting time of 𝑦. 
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We see from this decomposition that  

                    𝑃𝑛(𝑥, 𝑦) = 𝑃𝑥(𝑋𝑛 = 𝑦) 

                   = ∑ 𝑃𝑥
𝑛
𝑚=1 (𝑇𝑦 = 𝑚,𝑋𝑛 = 𝑦)  

                  = ∑ 𝑃𝑥
𝑛
𝑚=1 (𝑇𝑦 = 𝑚)𝑃(𝑋𝑛 = 𝑦|𝑋0 = 𝑥, 𝑇𝑦 = 𝑚 )    

                  = ∑ 𝑃𝑥
𝑛
𝑚=1 (𝑇𝑦 = 𝑚)𝑃(𝑋𝑛 = 𝑦|𝑋0 = 𝑥, 𝑋1 ≠ 𝑦,…𝑋𝑚−1 ≠ 𝑦, 𝑋𝑦 = 𝑦 )    

                   = ∑ 𝑃𝑥(𝑇𝑦𝑚=1 = 𝑚) 𝑃𝑛−𝑚(𝑦, 𝑦) .                                                       

Example1: Show that if a is an absorbing state, then   

  𝑃𝑛(𝑥, 𝑎) = 𝑃𝑥(𝑇𝑎 ≤ 𝑛) ,  𝑛 ≥ 1             

If a is an absorbing state, then  𝑃𝑛−𝑚(𝑎, 𝑎) = 1 for 1 ≤ 𝑚 ≤ 𝑛 then equation (27) 

implies that 

𝑃𝑛(𝑥, 𝑎) = ∑ 𝑃𝑥

𝑛

𝑚=1

(𝑇𝑎 = 𝑚)𝑃𝑛−𝑚(𝑎, 𝑎) 

                                          = ∑ 𝑃𝑥
𝑛
𝑚=1 (𝑇𝑎 = 𝑚)𝑃𝑥(𝑇𝑎 ≤ 𝑛). 

Observe that  

                                           𝑃𝑥(𝑇𝑦 = 1) = 𝑃(𝑥, 𝑦) 

                                            𝑃𝑥(𝑇𝑦 = 2) = ∑ 𝑃𝑥
𝑛
𝑧≠𝑦 (𝑋1 = 𝑧, 𝑋2 = 𝑦) 

                                           = ∑ 𝑃𝑛
𝑧≠𝑦 (𝑥, 𝑧)𝑃(𝑧, 𝑦). 

And  

                                    𝑃𝑥(𝑇𝑦 = 𝑛 + 1) = ∑ 𝑃(𝑥, 𝑧)𝑃𝑧𝑧≠𝑦 (𝑇𝑛 = 𝑦),        𝑛 ≥ 1 . 
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3.4.2 Transition Matrix 

Suppose that S is finite, say S = {0,1,2, …… . . , 𝑑} then 

                       

                      0      𝑃(0,0)………….𝑃(0, 𝑑)             

1 𝑃(1,0)………….𝑃(1, 𝑑)  

        …….. 

                      d     𝑃(𝑑, 0)………….𝑃(𝑑, 𝑑) 

  for i, j = 0, 1. . . d, where 

                                         ∑ 𝑃(𝑥, 𝑦) = 1,𝑑
𝑦=0  for all 𝑥 ∈ S. 

Example 2: the transition matrix of the Gamblers ruin chain on {0,1,2,3} is  

                                       

0
 1
2
3

[

1
𝑞
0
0

0
0
𝑞
0

0
𝜘
0
0

0
0
𝜘
1

]   𝜘 + 𝑞 = 1                

P is one-step transition matrix similarly, 𝑃𝑛 is n-step transition matrix 

Then  (26) with m = n = 1 becomes 

                                        𝑃2(𝑥, 𝑦) =  ∑ 𝑃(𝑥, 𝑧)𝑃(𝑧, 𝑦)𝑧                                       (28)

                                   𝑃 𝑛+1(𝑥, 𝑦) =  ∑ 𝑃𝑛(𝑥, 𝑧)𝑃(𝑧, 𝑦)𝑧                                     (29)                                  

It follows from (29) by induction that the n-step transition matrix 𝑃𝑛 is the 𝑛𝑡ℎ power 

of 𝑃 and the initial distribution 𝜋0 is  

                                    𝜋0 = (𝜋0(0), 𝜋0(1), . . . 𝜋0(𝑑) 

and for we have 𝜋𝑛                            

         𝜋𝑛 = (𝑃(𝑋𝑛 = 0), . . . , 𝑃(𝑋𝑛 = 𝑑)) 

Also 𝜋𝑛 = 𝜋0𝑃
𝑛 and 𝜋𝑛+1 = 𝜋𝑛𝑃. 
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Example 3: Consider two state Markov having one-step transition matrix  

                                   𝑃 = (
1 − 𝜘 𝜘

𝑞 1 − 𝑞
) 

Where 𝜘 + q > 0.  Find 𝑃𝑛. 

Firstly let  𝜋0(0) = 1 in (14) then 

                         𝑃𝑛(0,0) = 𝑃0(𝑋𝑛 = 0) =
𝑞

𝜘+𝑞
+ (1 − 𝜘 − 𝑞)𝑛 −

𝜘

𝜘+𝑞
 

Also if we set  𝜋0(1) = 0 in (16) then                                  

                                   𝑃𝑛(0,1) = 𝑃0(𝑋𝑛 = 1) =
𝜘

𝜘+𝑞
− (1 − 𝜘 − 𝑞)𝑛 𝜘

𝜘+𝑞
 

Similarly, for   𝑃𝑛(1,0)  and 𝑃𝑛(1,1) we have  

                                   𝑃𝑛(1,0) = 𝑃1(𝑋𝑛 = 0) =
𝑞

𝜘+𝑞
− (1 − 𝜘 − 𝑞)𝑛 𝑞

𝜘+𝑞
 

                                  𝑃𝑛(1,1) = 𝑃1(𝑋𝑛 = 1) =
𝜘

𝜘+𝑞
+ (1 − 𝜘 − 𝑞)𝑛 𝑞

𝜘+𝑞
 

It follows that                                  

                          𝑃𝑛 =
1

𝜘+𝑞
[
𝑞 𝜘
𝑞 𝜘] +

(1−𝜘−𝑞)𝑛

𝜘+𝑞
[

𝜘 −𝜘
−𝑞 𝑞 ].                                        

3.5 Classification of States 

Let  𝑋𝑛, 𝑛 ≥ 0 be Markov having state space S  and transition function 𝑃 then set  

                                      𝜁𝑥𝑦 = 𝑃𝑥(𝑇𝑦 < ∞). 

Then 𝜁𝑥𝑦 denote that the probability that a markov chain starting at 𝑥 will visited state 

𝑦 in finite time. 

𝜁𝑦𝑦 Denote that the probability that a Markov chain starting at y will ever return to y. 

A state y is called recurrent state if 𝜁𝑦𝑦 = 1, and Transient if 𝜁𝑦𝑦 < 1. 

If y is recurrent state then a Markov chain starting at y returns to y with probability 1 

but if y is a transient state then a Markov chain starting at y has a positive probability 

1 − 𝜁𝑦𝑦 that never return to y. 
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Therefore, 1 − 𝜁𝑦𝑦 = 𝑃𝑦(𝑇𝑦 = ∞) > 0 implies probability of no return to y 

If y is an absorbing state, then 𝑃𝑦(𝑇𝑦 = 1) = 𝑃(𝑦, 𝑦) = 1 and hence 𝜁𝑦𝑦 = 1, thus an 

absorbing state is necessarily recurrent. 

Let 1𝑦(𝑧), 𝑧 ∈ S, denote the indicator function of the {𝑦} defined by  

                                                1𝑦(𝑧) = {
1,      𝑧 = 𝑦
0,     𝑧 ≠ 𝑦

 

Let 𝑁(𝑦) denote the number of times 𝑛 ≥ 1  that the chain is in state y.  

Since 1𝑦(𝑋𝑛) = 1 if the chain is in state 𝑦 at time 𝑛 and 1𝑦(𝑋𝑛) = 0 otherwise, we 

see that 

𝑁(𝑦) = ∑ 1𝑦(𝑋𝑛

∞

𝑛=1

) 

implies number of visits to y. Therefore the 

                             𝑃𝑥(𝑁(𝑦) ≥ 1) = 𝑃𝑥(𝑇𝑦 < ∞) = 𝜁𝑥𝑦 

𝑃𝑥(𝑁(𝑦) ≥ 2) = ∑ ∑ 𝑃𝑥(𝑇𝑦 = 𝑚)𝑃𝑦(𝑇𝑦 = 𝑛)

∞

𝑛=1

∞

𝑚=1

 

                                    = (∑ 𝑃𝑥(𝑇𝑦 = 𝑚)∞
𝑚=1 )(∑ 𝑃𝑦(𝑇𝑦 = 𝑛)∞

𝑛=1 ) 

                                    =  𝜁𝑥𝑦, 𝜁𝑦𝑦. 

Similarly we conclude that 

                                    𝑃𝑥(𝑁(𝑦) ≥ 𝑚) =  𝜁𝑥𝑦 𝜁𝑦𝑦
𝑚−1,            𝑚 ≥ 1.                    (30) 

Since 𝑃𝑥(𝑁(𝑦) = 𝑚) = 𝑃𝑥(𝑁(𝑦) ≥ 𝑚) − 𝑃𝑥(𝑁(𝑦) ≥ 𝑚 + 1). 

By (30) we have 

 𝜁𝑥𝑦  𝜁𝑦𝑦
𝑚−1 −  𝜁𝑥𝑦 𝜁𝑦𝑦

𝑚 

                                                  =  𝜁𝑥𝑦 𝜁𝑦𝑦
𝑚−1(1 −  𝜁𝑦𝑦),        𝑚 ≥ 1 .    
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Also 

                                                    𝑃𝑥(𝑁(𝑦) = 0) = 1 − 𝑃𝑥(𝑁(𝑦) ≥ 1) 

                                                   = 1 −  𝜁𝑥𝑦. 

We use the notation  𝐸𝑥(. ) = 𝐸(. |𝑋0 = 𝑥) as the expectation of random variables 

defined in term of Markov chain starting at x. for example,  

                                        𝐸𝑥(𝐼𝑦(𝑋𝑛)) = 1𝑃𝑥(𝑋𝑛 = 𝑦) + 0𝑃𝑥(𝑋𝑛 ≠ 𝑦) = 𝑃𝑛(𝑥, 𝑦).       

                        = 𝐸𝑥(𝑁(𝑦)) = 𝐸𝑥 (∑ 𝐼𝑦(𝑋𝑛)

∞

𝑛=1

) 

       = 𝐸𝑥 (∑ 𝐸𝑥(𝐼𝑦(𝑋𝑛)

∞

𝑛=1

) 

                                                              = ∑ 𝑃𝑛

∞

𝑛=1

(𝑥, 𝑦). 

Set  

  𝐺(𝑥, 𝑦) = 𝐸𝑥(𝑁(𝑦)) = ∑ 𝑃𝑛

∞

𝑛=1

(𝑥, 𝑦). 

Then  𝐺(𝑥, 𝑦) represent the expected number of visits to y starting at x.                    

The following theorem describes the fundamental difference between a Transient and 

Recurrent state.  
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Theorem1: (i) Let y be a transient state then 

𝑃𝑥(𝑁(𝑦) < ∞) = 1 

And 

                                                   𝐺(𝑥, 𝑦) =
 𝜁𝑥𝑦

1− 𝜁𝑦
 , 𝑤here  𝑥𝜖𝜁, 

Which is finite for all 𝑥𝜖𝜁. 

                    (ii)Let y be a recurrent state then 

𝑃𝑥(𝑁(𝑦) < ∞) = 1 

And 

                                                     𝐺(𝑥, 𝑦) = ∞ 

Also                                                    

                                                    𝑃𝑥(𝑁(𝑦) = ∞) = 𝑃𝑥(𝑇𝑦 < ∞) =   𝜁𝑥𝑦,  𝑥𝜖𝜁. 

If  𝜁𝑥𝑦 = 0 then 𝐺(𝑥, 𝑦) = 0 , while if  𝜁𝑥𝑦 > 0 then  𝐺(𝑥, 𝑦) = ∞. 

Proof. (i)  If y is in transient state then by definition  0 ≤ 𝜁𝑥𝑦 < 1, then it follows from 

(30) that 

                                                     𝑃𝑥(𝑁(𝑦) = ∞) = lim
𝑚→∞

𝑃𝑥(𝑁(𝑦) ≥ 𝑚) 

                                                     lim
𝑚→∞

 𝜁𝑥𝑦𝜁𝑦𝑦
𝑚−1 = 0 

Here 𝑃𝑥(𝑁(𝑦) = ∞) = 1   

Since 𝐺(𝑥, 𝑦) = 𝐸𝑥(𝑁(𝑦)) = ∑ 𝑚𝑃𝑥(
∞
𝑚=1 𝑁(𝑦) = 𝑚) 

                                                    = ∑ 𝑚𝜁𝑥𝑦𝜁𝑦𝑦
𝑚−1(∞

𝑚=1 1 − 𝜁𝑦𝑦)                                        (31)                         

                                                    =  𝜁𝑥𝑦(1 −  𝜁𝑦𝑦) ∑ 𝑚

∞

𝑚−1

𝜁𝑦𝑦
𝑚−1                                        (32) 
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Apply power series to (32), let  𝜁𝑦𝑦 = 𝑡 then differentiate to have 

                                                                     = ∑
𝑑

𝑑𝑡
∞
𝑚=1 (𝑡𝑚) =

𝑑

𝑑𝑡
∑ 𝑡𝑚∞

𝑚=1 .   

When m = 0 we have 

                        =
𝑑

𝑑𝑡
(

1

1 − 𝑡
− 1) 

                                                                          =
𝑑

𝑑𝑡
(

𝑡

1−𝑡
) =

1

(1−𝑡)2
 

We conclude that    

𝐺(𝑥, 𝑦) =
 𝜁𝑥𝑦

1 −  𝜁𝑦𝑦
 

This completes the proof of (i). 

Now let y be a recurrent state then  𝑃𝑥(𝑁(𝑦) = ∞) = lim
𝑚→∞

𝑃𝑥(𝑁(𝑦) ≥ 𝑚)   

lim
𝑚→∞

 𝜁𝑥𝑦 =  𝜁𝑥𝑦. 

In particular, 𝑃𝑦(𝑁(𝑦) = ∞) = 1. 

 If a nonnegative random variables has positive of being infinite, then 

 𝐺(𝑦, 𝑦) = 𝐸𝑦(𝑁(𝑦)) = ∞. 

If  𝜁𝑥𝑦 = 0 , then 𝑃𝑥(𝑇𝑦 = 𝑚) = 0 for all finite positive integers m, so (27) implies 

that 𝑃𝑛(𝑇𝑦 = 𝑚) = 0,   𝑛 ≥ 1; thus 𝐺(𝑥, 𝑦) = 0.   

If 𝜁𝑥𝑦 > 0, then 𝑃𝑥(𝑁(𝑦) = ∞) = 𝜁𝑥𝑦 > 0 and hence 𝐺(𝑥, 𝑦) = 𝐸𝑥(𝑁(𝑦)) = ∞ 
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3.6.3 Absorption Probabilities 

Let y be transient state, since 

∑ 𝑃𝑛

∞

𝑛=1

(𝑥, 𝑦) =  𝐺(𝑥, 𝑦) < ∞,            𝑥 ∈ 𝜁 . 

Then                         

                                     lim
𝑛→∞

𝑃𝑛(𝑥, 𝑦) = 0,                              𝑥 ∈ 𝜁 . 

3.5.1 Transient and Recurrent Chain  

A Markov chain is called a transient chain if all of its states are transient and a recurrent 

chain if all of its states are recurrent. 

3.6 Decomposition of the State Space  

3.6.1 Definition 

 A non-empty set C of states is said to be closed if no inside of C leads to any state 

outside of C, i.e., if  𝜁𝑥𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒   𝑥 ∈ 𝐶 And 𝑦 ∉ 𝐶. Equivalently, C is closed if 

and only if 𝑃𝑛(𝑥, 𝑦) = 0    𝑥 ∈ 𝐶,𝑦 ∉ 𝐶, 𝑛 ≥ 1     

If P(𝑥, 𝑦) = 0   𝑥 ∈ 𝐶,𝑦 ∉ 𝐶, then C is closed. If C is closed, then a Markov chain 

starting in C will with probability one stay in C for all time. If 𝑎 is an absorbing state, 

then {𝑎} is closed. 

3.6.2 Irreducible of a Close Set 

 A close set C is called irreducible if x leads to y for all choice of x and y in C. 

Corollary 1: Let C be an irreducible closed set of recurrent states. Then 𝜁𝑥𝑦 = 1, 

𝑃𝑥(𝑁(𝑦) = ∞) = 1 and 𝐺(𝑥, 𝑦) = ∞ for all choices of x and y in C. 

An irreducible Markov chain is a chain whose state space is irreducible, that is, a chain 

in which every state leads back to itself and also to every other state. 
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Theorem 2: Let C be a finite irreducible closed set of state. Then every state in C is 

recurrent. 

Assuming a Markov chain have a finite number states, the theorem implies that for a 

chain to be irreducible it must be recurrent. In a situation where the chain cannot be 

irreducible then we tried to determined which states are recurrent and which are 

transient. 

Example 4: Consider a finite Markov chain having transition matrix 

       0        1        2         3        4         5 

0
1
2
3
4
5 [

 
 
 
 
 

1
1/4
0
0
0
0

0
1/2
1/5
0
0
0

0
1/4
2/5
0
0
0

0
0

1/5
1/6
1/2
1/4

0
0
0

1/3
0
0

0
0

1/5
1/2
1/2
3/4]

 
 
 
 
 

                                           

Determine which states are recurrent and which are transient. 

Solution: the following matrix shows which state leads to which other states.              

For example 𝑃2(1,3) = 𝑃(1,2)𝑃(2,3) > 0 and 𝑃2(2,0) = 𝑃(2,1)𝑃(1,0) > 0 

0 is an absorbing state, hence also a recurrent state. Also {3,4,5} is an irreducible 

closed set. By theorem (2), 3,4, 𝑎𝑛𝑑 5 are recurrent states. State 1 and 2 both leads to 

zero, but neither can be reached from zero. By Theorem (2) both 1 and 2 must be 

transient. 

Let S𝑇 denote the collection of transient states in S, and let S𝑅 denote the collection of 

recurrent states. 

Hence S𝑇 = {1,2}  and S𝑅 = {0,3,4,5}.  the set S𝑇  can be decomposed into disjoint 

irreducible closed set 𝐶1 = {0} and 𝐶2 = {3,4,5} irreducible hence S𝑅 = 𝐶1 ∪ 𝐶2. 
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3.6.3 Absorption Probabilities 

Let C be closed irreducible recurrent set and  𝜁𝑐(𝑥) = 𝑃𝑥(𝑇𝑐 < ∞) be the starting in x 

absorbing probability. A chain starting at x is absorbed by the set C. 

Clearly  𝜁𝑐(𝑥) = 1,  if  𝑥 ∈ 𝐶1   and  𝜁𝑐(𝑥) = 0  if  𝜁𝑐(𝑥) = 0  if 𝑥 ∈ 𝐶𝑖  where 𝑖 ≠ 1 

implies that x recurrent not in 𝐶1. 

What if 𝑥 ∈  𝜁𝑇 then we can find  𝜁𝑐(𝑥) to be 

= ∑ 𝑃(𝑥, 𝑦) +

𝑦∈𝐶

∑ 𝑃(𝑥, 𝑦) 𝜁𝑐(𝑦)

𝑦∈ 𝜁𝑇

,           𝑥 ∈  𝜁𝑇 . 

This equation holds whether  𝜁𝑇 is finite or infinite. 

Theorem 3: Suppose the set  𝜁𝑇 of transient states is finite and C be an irreducible 

closed set of recurrent states. The system of equations. 

𝑓(𝑥) = ∑ 𝑃(𝑥, 𝑦) +𝑦∈𝐶 ∑ 𝑃(𝑥, 𝑦)𝑓(𝑦)                       𝑥 ∈  𝜁𝑇                           𝑦∈ 𝜁𝑇
     (33) 

Has the unique solution  𝑓(𝑥) =  𝜁𝑐(𝑥)                                 𝑥 ∈  𝜁𝑇                            (34) 

Example 5: Consider the Markov chain discussed in the previous example.  

Find  𝜁10 =  𝜁(0)(1) and  𝜁20 =  𝜁(0)(2) 

Solution: by apply equation (33) with transition matrix in example 4 we have 

 𝜁10 = 𝑃(1,0) + 𝑃(1,1) 𝜁10 + 𝑃(1,2) 𝜁20 

                                            =
1

4
+

1

2
 𝜁10 +

1

4
 𝜁20                                                      (35) 



35 

 

And                                    𝜁20 = 𝑃(2,1) 𝜁10 + 𝑃(2,2) 𝜁20                                     (36) 

                                            =  
1

5
𝜁10 +

2

5
 𝜁20 .                                                          (37) 

 

Solving (35) and (37), we get  𝜁10 =
3

5
 and 𝜁20 =

1

5
. 

By similar methods, we conclude that  

                                           𝜁{3,4,5}(1) =
2

5
 and  𝜁{3,4,5}(2) =

4

5
 

Alternatively, since ∑  𝜁𝑐𝑖
(𝑥) = 1    𝑥 ∈  𝜁𝑇 

 𝜁{3,4,5}(1) = 1 −  𝜁{0}(1) = 1 −
3

5
=

2

5
, 

And 

                                       𝜁{3,4,5}(2) = 1 −  𝜁{3,4,5}(2) = 1 −
1

5
=

4

5
. 

Note: Once a Markov chain starting at a transient state x enter an irreducible closed 

set C of recurrent states. It visits every state in C. thus 

                                         𝜁𝑥𝑦 =  𝜁𝑐(𝑥) , 𝑥 ∈ 𝜁𝑇 , 𝑦 ∈ 𝐶. 

From this relation it follows that  

                                       𝜁13 =  𝜁14 =  𝜁15 =  𝜁{3,4,5}(1) =
2

5
, 

 And                                

 𝜁23 =  𝜁24 =  𝜁15 =  𝜁{3,4,5}(2) =
4

5
 . 

 3.7 Birth and Death Chains 

For an irreducible Markov chain either every state is recurrent or every state is 

transient, so that as irreducible Markov chain is either a recurrent chain or a transient 

chain. An irreducible Markov chain having only finitely many states is necessarily 

recurrent. In the case state space is infinite, it is not so easy to identify  𝜁𝑅 and 𝜁𝑇 .   
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But for the birth and death chain, we are able to do so. Consider a Birth and Death 

chain on the nonnegative integers or on the finite set {0,1, …… . , 𝑑} , 𝑑 < ∞ .     

The transition function is of the form  

                               𝑃(𝑥, 𝑦) = {

𝑞𝑥,            𝑦 = 𝑥 − 1
𝑟𝑥,                 𝑦 = 𝑥

𝑃𝑥,         𝑦 = 𝑥 + 1
  

 Where 𝑃𝑥 + 𝑟𝑥 + 𝑞𝑥 = 1  for  𝑥 ∈ 𝜁, 𝑞0 = 0, 𝑃𝑟𝑑 = 0 if 𝑑 ≥ ∞ then 

                                       𝑃𝑥 > 0 And 𝑞𝑥 > 0 for 0 < 𝑥 < 𝑑. 

Set 𝑢(𝑥) =  𝑃𝑥(𝑇𝑎 < 𝑇𝑏) where   𝑎 < 𝑥 < 𝑏 and  𝑎, 𝑏 ∈ 𝜁     

Assume that 𝑢(𝑎) = 1 and 𝑢(𝑏) = 0  and if the birth and death chain start at y then by 

taking one step it goes from 𝑦 − 1, 𝑦,  or 𝑦 + 1 with respective probabilities 𝑝𝑦, 𝑟𝑦 or 

𝑞𝑦 . It follows that 

𝑢(𝑦) = 𝑞𝑦𝑢(𝑦 − 1) + 𝑟𝑦𝑢(𝑦) + 𝑝𝑦𝑢(𝑦 + 1),         𝑎 < 𝑦 <  𝑏                             (38) 

Since 𝑟𝑦 = 1 − 𝑝𝑦 − 𝑞𝑦, we write (38) as 

𝑢(𝑦 + 1) − 𝑢(𝑦) =
𝑞𝑦

𝑝𝑦
(𝑢(𝑦) − 𝑢(𝑦 − 1)),               𝑎 < 𝑦 <  𝑏                            (39) 

Set 𝛾0 = 1 and  𝛾𝑦 = 𝑞1 … . 𝑞𝑦/ 𝑝1 …𝑝𝑦 ,                  0 < 𝑦 <  𝑑                            (40) 

From (39), we see that 

                                             𝑢(𝑦 + 1) − 𝑢(𝑦) =
𝛾𝑦

𝛾𝑦−1
(𝑢(𝑦) − 𝑢(𝑦 − 1))   

                                             = (
𝛾𝑦

𝛾𝑦−1
) (

𝛾𝑦−1

𝛾𝑦−2
) [ 𝑢(𝑦 − 1) − 𝑢(𝑦 − 2)] 

                                            = (
𝛾𝑦

𝛾𝑦−1
) (

𝛾𝑦−1

𝛾𝑦−2
)………… .

𝛾𝑎+1

𝛾𝑦
[ 𝑢(𝑎 + 1) − 𝑢(𝑎)] 

                                             =
𝛾𝑦

𝛾𝑎
[ 𝑢(𝑎 + 1) − 𝑢(𝑎)]. 

Consequently 

 𝑢(𝑦) − 𝑢(𝑦 + 1) =
𝛾𝑦

𝛾𝑎
[ 𝑢(𝑎) − 𝑢(𝑎 + 1)],                𝑎 ≤ 𝑦 <  𝑏                         (41) 
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Hence by summing (41) on 𝑦 = 𝑎,……… . . , 𝑏 − 1  and recall that 𝑢(𝑎) = 1 and 

𝑢(𝑏) = 0, then we conclude that 

                                              
  𝑢(𝑎)−𝑢(𝑎+1)

𝛾𝑦
=

1

∑ 𝛾𝑦
𝑏−1
𝑦=𝑎

                                                 (42)                            

By summing (42) on  𝑦 = 𝑥, 𝑥 + 1,… , 𝑏 − 1                           𝑎 < 𝑥 <  𝑏     

We obtain 

                                                 𝑢(𝑥) =
∑ 𝛾𝑦

𝑏−1
𝑦=𝑥

∑ 𝛾𝑦
𝑏−1
𝑦=𝑎

                           𝑎 < 𝑥 <  𝑦   

Therefore from definition of 𝑢(𝑥), it follows that 

                                            𝑃𝑥(𝑇𝑎 < 𝑇𝑏) =
∑ 𝛾𝑦

𝑏−1
𝑦=𝑥

∑ 𝛾𝑦
𝑏−1
𝑦=𝑎

                   𝑎 < 𝑥 <  𝑏             (43) 

Subtracting (43) from 1 we have 

                                           𝑃𝑥(𝑇𝑏 < 𝑇𝑎) = 1 −
∑ 𝛾𝑦

𝑏−1
𝑦=𝑥

∑ 𝛾𝑦
𝑏−1
𝑦=𝑎

             𝑎 < 𝑥 <  𝑏      

                                          𝑃𝑥(𝑇𝑏 < 𝑇𝑎) =
∑ 𝛾𝑦

𝑥−1
𝑦=𝑎

∑ 𝛾𝑦
𝑏−1
𝑦=𝑎

                      𝑎 < 𝑥 <  𝑏            (44) 

Example 5: A gambler playing roulette makes a series of one dollar bets. He has 

respective probabilities 
9

10
 and 

10

19
 of winning and losing each bet. The gambler decided 

to quit playing as soon as his net winning reach 25 dollars or his net losses reach 10 

dollars. 

(a) Find the probability that when he quit playing he will have won 25 dollars 

(b) Find his expected loss. 

Solution 

Since his respective probabilities of winning and losing each bet are
9

10
 and 

10

19
 

respectively and  he also decided to quit playing as soon as his net winning reach 25 

dollars or his net losses reach 10 dollar therefore, 
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Let 𝑋𝑛 denote the capital of the gambler at time n with 𝑋0 = $10 

𝑋𝑛 form a death-birth chain on {0, ……… . , 35} with birth and death rates 

                                                𝑃𝑥 =
9

10
 ,                   0 < 𝑥 <  35  

                                                 𝑞𝑥 =
10

19
 ,                   0 < 𝑥 <  35     

Where 0 𝑎𝑛𝑑 35 are absorbing states. 

To solve (a) applied equation (44) we have 

   𝑃10(𝑇35 < 𝑇0) =
∑ 𝛾𝑦9

𝑦=0

∑ 𝛾𝑦34
𝑦=0

       Where 𝛾𝑦 = (
10

19
×

19

9
) =

10

9
. 

Therefore we have 

                                  𝑃10(𝑇35 < 𝑇0) =
∑ (

10

9
)
10

9
𝑦=0

∑ (
10

9
)
35

34
𝑦=0

 

                                                       =
(
10

9
)
10

−1

(
10

9
)
35

−1
= 0.047 

Thus the gambler has probability 0.047 of winning 25 dollars. 

Then for (b), his expected loss is 10 − 35(0.047) = $8.36. 

In the reminder of this part, we consider a Birth and Death chain on the nonnegative 

integers which is irreducible that is 𝑃𝑥 > 0 for  𝑥 > 0 and 𝑞𝑥 > 0 for 𝑥 ≥ 1. We will 

determine when such a chain is recurrent and when it is transient. 

Let consider a special case of equation (43) 

                           𝑃1(𝑇0 < 𝑇𝑛) = 1 −
1

∑ 𝛾𝑦
𝑛−1
𝑦=0

                       𝑛 > 1                            (45) 

Let the process start in state 1 so, 

                                            1 ≤ 𝑇2 < 𝑇3. ..                                                                (46)  
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It follows from (46) that {𝑇0 < 𝑇𝑛},   𝑛 > 1  forms an expanding sequence of events. 

Assuming that 𝐴𝑛 =  {𝑇0 < 𝑇𝑛} , then the expanding sequence will be 𝐴𝑛 ⊂ 𝐴𝑛+1 

given that 𝑋0 = 1 

Then  

                       lim
𝑛→∞

𝑃1 {𝑇0 < 𝑇𝑛} = lim
𝑛→∞

𝑃(𝐴𝑛) = 𝑃 ( lim
𝑛→∞

𝐴𝑛) = 𝑃(⋃ 𝐴𝑛𝑛 ) 

Since 𝐴𝑛 is an expanding sequence, 

                       lim
𝑛→∞

𝑃1 {𝑇0 < 𝑇𝑛} = 𝑃1(𝑇0 < 𝑇𝑛)     for some n.                               (47)  

Then (46) implies that 𝑇𝑛 ≥ 𝑛   and thus 𝑇𝑛 → ∞ as 𝑛 → ∞ hence, the even   

{𝑇0 < 𝑇𝑛} for some 𝑛 > 1 occurs if and only if the event{𝑇0 < ∞} occurs. 

We rewrite (47) as 

                                lim
                                             𝑛→∞

𝑃1(𝑇0 < 𝑇𝑛) = 𝑃1(𝑇0 < ∞)                                                  (48) 

Hence by (45) and (48) we have 

                                                        𝑃1(𝑇0 < ∞) = 1 −
1

∑ 𝛾𝑦
∞
𝑦=0

                                (49) 

We now show that the chain is recurrent ⟺ ∑ 𝛾𝑦
∞
𝑦=0 = ∞ (irreducible) 

(a)  If  the chain is recurrent, then  𝑃1(𝑇0 < ∞) = 1and hence (49) implies 

                                                                ∑ 𝛾𝑦
∞
𝑦=0 = ∞   

(b)  If   ∑ 𝛾𝑦
∞
𝑦=0 = ∞, show that the chain is recurrent. 

Since 𝑃(0, 𝑦) = 0 for  𝑦 ≥ 2 hence, 

 𝑃0(𝑇0 < ∞) =P(0,0) + 𝑃(0,1)  𝑃1(𝑇0 < ∞) = 1. 

0 is a recurrent state, thus whole chain is recurrent, since the chain is irreducible. 

 

 

 

 



40 

 

 

 

In conclusion an irreducible birth and death chain on {0, 1, 2, …… . } is recurrent if and 

only if 

∑
𝑞1 …𝑞𝑥

𝑝1...𝑝𝑥

∞

𝑥=1

= ∞ . 

Example 6: Consider the birth and death chain on {0, 1, 2, …… . } defined by 

𝑃𝑥 =
𝑥+2

2(𝑥+1)
  and  𝑞𝑥 =

𝑥

2(𝑥+1)
  𝑥 ≥ 0. 

Determine whether this chain is recurrent or transient. 

Solution 

Since 
𝑞𝑥

𝑝𝑥
=

𝑥

𝑥+2
, it follows that 

                                    𝛾𝑦 = ∑
𝑞1 … . 𝑞𝑥

𝑝1…𝑝𝑥

∞

𝑥=1

=
1, 2…𝑥

3, 4… (𝑥 + 2)
=

2

(𝑥 + 1)(𝑥 + 2)
 

                                          = 2 (
1

𝑥+1
−

1

𝑥+2
). 

Thus 

∑ 𝛾𝑥 = 2 ∑ (
1

𝑥 + 1
−

1

𝑥 + 2
)

∞

𝑥=1

∞

𝑥=1

 

                                         = 2 (
1

2
−

1

3
+

1

3
−

1

4
+

1

4
−

1

5
+ ⋯)       

                                         = 2
1

2
= 1. 

We conclude that the chain is transient. 
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Example 7: Consider a Markov chain on the nonnegative integers such that starting 

from x, the chain goes to state x+1 with probability P, where 0 < 𝑝 < 1 and goes to 

state 0 with probability(1 − 𝑝). 

(a) Show that this chain is irreducible. 

(b) Find 𝑃0(𝑇0 = 𝑛),𝑛 ≥ 1. 

(c) Show that the chain is recurrent.  

Solution 

(a) Since every state leads back to itself and also to every other state, (𝛾𝑦𝑥 > 0),   

the chain is irreducible. 

(b) By applying 

𝑃𝑥(𝑇𝑦 = 𝑛) = ∑ 𝑃(𝑥, 𝑧)

𝑧≠𝑦

𝑃𝑧(𝑇𝑦 = 𝑛 − 1) 

 𝑃0(𝑇0 = 𝑛) = ∑ 𝑃(0, 𝑧)𝑧≠0  𝑃𝑧(𝑇0 = 𝑛 − 1). 

If 𝑛 ≥ 1  , for 𝑛 = 1    𝑃0(𝑇0 = 1) = 𝑃(0,0) = 1 − 𝜘. 

For 𝑛 = 2 

 𝑃0(𝑇0 = 2) = ∑𝑃(0, 𝑧)

𝑧≠0

 𝑃𝑧(𝑇0 = 1) 

                                            = 𝑃(0,1) =  𝑃1(𝑇0 = 1) = 𝑃(1 − 𝜘). 

For  𝑛 = 3 

 𝑃0(𝑇0 = 3) = ∑𝑃(0, 𝑧)

𝑧≠0

 𝑃𝑧(𝑇0 = 2) 

                                                          = 𝑃(0,1) =  𝑃1(𝑇0 = 2) 

                                                          = 𝑃(0,1) 𝑃(1,2) 𝑃(2,0) 

                                                           = 𝑃2(1 − 𝜘). 
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By induction, for n we have 

  𝑃0(𝑇0 = 3) = ∑ 𝑃(0, 𝑧)𝑧≠0  𝑃𝑧(𝑇0 = 𝑛 − 1)     

                                                     = 𝑃(0,1) 𝑃1(𝑇0 = 𝑛 − 1) 

= 𝑃𝑛−1(1 − 𝜘) . 

(c)       A state y is recurrent if 𝛾𝑦𝑦 = 1. 

Try 0 state. 

                       𝛾00 = 𝑃0(𝑇0 < ∞) = ∑  𝑃0(𝑇0 = 𝑛) ∞
𝑛=1     

= ∑ 𝑃𝑛(1 − 𝜘) = (1 − 𝜘) ∑ 𝑃𝑛−1 = 1 − 𝜘 (
1

1 − 𝜘
)

∞

𝑛=1

∞

𝑛=1

= 1. 

Since 𝛾00 = 1, 0 is recurrent, and since the chain is irreducible, then every state is 

recurrent, thus the chain is recurrent.  

Example 8: Consider the Markov Chain on {0,1, … ,5} having transition matrix 

                                         0         1         2         3        4         5   

0
1
2
3
4
5 [

 
 
 
 
 
1/2
1/3
0

1/4
0
0

1/2
2/3
0

1/4
0

1/5

0
0

1/8
0

3/4
0

0
0
0
0
0

1/5

0
0

7/8
1/4
1/4
1/5

0
0
0

1/4
0

2/5]
 
 
 
 
 

 

(a) Determine which states are transient and which are recurrent 

(b) Find 𝛾{0,1}(𝑥), where 𝑥 = 0,… ,5 
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Solution 

(a) 𝐶1 = the recurrent states are 0,1,2,4. 

𝐶2 =  the transient states are 3 and 5 . 

(b) Recall that from (33) 

𝑓(𝑥) = ∑ 𝑃(𝑥, 𝑦) +

𝑦∈𝐶

∑ 𝑃(𝑥, 𝑦)𝑓(𝑦)  𝑤ℎ𝑒𝑟𝑒   𝑥 = 0,1, … ,5                                      

𝑦∈ 𝜁𝑇

 

𝐶1 = {0,1} is recurrent  

When 𝑥 = 0 then 

𝛾{0,1}(0) = ∑ 𝑃(0, 𝑦) +

𝑦∈{0,1}

∑ 𝑃(0, 𝑦)𝛾{0,1}(𝑦)                                     

𝑦∈{3,5}

 

                         = 𝑃(0,0) + 𝑃(0,1) = 1. 

When 𝑥 = 1 we have 

𝛾{0,1}(1) = ∑ 𝑃(1, 𝑦) +

𝑦∈{0,1}

∑ 𝑃(1, 𝑦)𝛾{0,1}(𝑦)                                     

𝑦∈{3,5}

 

                        = 𝑃(1,0) + 𝑃(1,1) = 1. 

Therefore 𝛾{0,1}(0) = 𝛾{0,1}(1) = 1.        

When 𝑥 = 2 then 

𝛾{0,1}(2) = ∑ 𝑃(2, 𝑦) +

𝑦∈{0,1}

∑ 𝑃(2, 𝑦)𝛾{0,1}(𝑦)                                     

𝑦∈{3,5}

 

                                = 𝑃(2,0) + 𝑃(2,1) = 0. 

When 𝑥 = 3 then we have 

𝛾{0,1}(3) = ∑ 𝑃(3, 𝑦) +

𝑦∈{0,1}

∑ 𝑃(3, 𝑦)𝛾{0,1}(𝑦)                                     

𝑦∈{3,5}

 

                         = 𝑃(3,0) + 𝑃(3,1) + 𝑃(3,3)𝛾{0,1}(3) + 𝑃(3,5)𝛾{0,1}(5) .   
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Therefore 

          𝛾{0,1}(3) = 1
4⁄ + 1

4⁄ + 1
4⁄ 𝛾{0,1}(5). 

 When 𝑥 = 4 then  

𝛾{0,1}(4) = ∑ 𝑃(4, 𝑦) +

𝑦∈{0,1}

∑ 𝑃(4, 𝑦)𝛾{0,1}(𝑦).                                     

𝑦∈{3,5}

 

                        = 𝑃(4,0) + 𝑃(4,1) + 𝑃(4,3)𝛾{0,1}(3) + 𝑃(4,5)𝛾{0,1}(5) = 0 .   

When 𝑥 = 5 then 

𝛾{0,1}(5) = ∑ 𝑃(5, 𝑦) +

𝑦∈{0,1}

∑ 𝑃(5, 𝑦)𝛾{0,1}(𝑦).                                     

𝑦∈{3,5}

 

           𝛾{0,1}(5) = 1
5⁄ + 1

5⁄ 𝛾{0,1}(3) + 2
5⁄ 𝛾{0,1}(5) .       

By collecting like terms in the above equation we have, 

           3 5⁄ 𝛾{0,1}(5) = 1
5⁄ + 1

5⁄ 𝛾{0,1}(3). 
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Chapter 4 

CONCLUSION 

The Markov chain is very important stochastic model in probability theory. With the 

good understanding of Markov chains, it can be practically applied in different stages 

and areas of life. For example, if we make an attempt of taking a risk to gambling of 

which we cannot determine the future outcome, then the proper understanding of 

Markov chain is applicable. 

 

There are other areas where Markov chain can be applied. For an example, a Markov 

chain model is formulated to solve a problem on the "Genetics of Inbreeding". 

Assuming two individuals are randomly mated then in the next generation, two of their 

offspring of opposite sex are randomly mated. The process of brother and sister mating 

or inbreeding continues each year. This process can be formulated as a finite discrete 

time Markov chain. 

 

Another example is a new state of our wardrobe which depends on the present 

launched brands of clothes, if a cloth is torn out or old then it gets removed from the 

wardrobe. 

 

The Markov chain is an example of a stochastic process which is applied to our daily 

lives. By acquiring and understanding the concept, we have and know more about the 
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expectation and possible outcomes of future predictions. Therefore the knowledge of 

the Markov chain cannot be ignored. 
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