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ABSTRACT

Markov chain, which was named after Andrew Markov is a mathematical system that
transfers a state to another state. Many real world systems contain uncertainty. This
study helps us to understand the basic idea of a Markov chain and how is been useful
in our daily lives. For some times there had been suspense on distinct predictions and
future existences. Also in different games there had been different expectations or
results involved. That is the reason why we need Markov chains to predict our
expectation for the future. In this thesis we specifically talk about Markov Chains and
how it has been processed, the gaming tactics which gives us a clue in a game that
requires expectation. Also, we gave some applications of Markov chains such as

Random walk, Games of chance, Queuing chain etc.

Keywords: Stochastic Process, Conditional Expectation, Markov chain, Random

Walk, Birth and Death Chains



Oz

Andrew Markov’dan sonra adlandirilan Markov zinciri durumlar arasi gegisleri ¢alisan
matematiksel bir modeldir. Gergek hayatta bircok olay belirsizlik icerir. Bu ¢alisma
Markov zincirinin temel fikrini anlamaya yardimci olmay1 ve gilinliik yasamdaki
kullaniminm1 belirtmeyi amaglamaktadir. Farkli oyunlarda farkli beklentiler veya
sonuglar yer almaktadir. Gelecek i¢in yapilacak tahminlerde Markov zincirleri 6nem
tasimaktadir. Bu tezde oOzellikle Markov Zincirlerinin tanim ve o6zellikleri, oyun
taktikleri, ayrica Rastgele yiiriiyiis, sans oyunu, kuyruk zinciri gibi Markov

zincirlerinin bazi uygulamalari ¢alisilmistir.

Anahtar Kelimeler: Stokastik Siireg, Kosullu Beklenti, Markov Zinciri, Rasgele

Yiiriiyiis, Dogum ve Oliim Zincirleri
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Chapter 1

INTRODUCTION

According to Alexander Volfovsky, August 17, 2007 in a deterministic world, it is
good to know that occasionally randomness can still occur. A stochastic process is the
exact opposite of a deterministic one, and is a random process that can have several
outcomes as time advances. This means that if we know an initial state for the process
and the function by which it is den, we can tell of likely outcomes of the process. One

of the most generally discussed stochastic processes is the Markov chain.

Markov Chains which also refers to Markov processes are defined as cycles of states
which transition from one to another, and have a certain probability for each transition.
They are used as a statistical model to represent and predict real world events. It can

be refers to stochastic process or random variable having Markov property.

Most of our study of probability has concerted on independent trials processes. The
results of these trials processes have their source from the theory of probability and

statistics.

We have observed that when a series of experiments forms an independent trials
process, the possible results for each experiment are the same and it occur with the
same probability. Further, the existence of outcomes of the preceding experiments

does not have any effects on our expectations for the outcomes of the next experiment.



In modern probability theory, Kwang Ho Jo said that the study of chance processes
gives an ideal of understanding the previous outcomes of a given experiments always
influenced expectations for future experiments. In principle, when we notice a
sequence of chance experiments, all of the previous outcomes could generate impact
on our predictions for the next experiment. For example, if Water Company charges
60 to 70tl per month for waters bill then, all the previous bills could generate impact

on our predictions for the next month charges.

According to Guy Leonard Kouemou EADS Deutschland GmbH in 1906, Andrey
Andreyevich Markov a Russian mathematician created the first theoretic results for
stochastic processes by use of the term called chain. He went further by generating the
type of chain process. In this process, the outcome generated from a given experiment
determined the result of the next experiment. This type of process is referred to Markov
chain. In the literature, different classes of Markov processes are taken as Markov
chains. Mostly, the term is used for a process with a discrete set of times, while the
time parameter is usually discrete and the state space of a Markov chain does not have

any generally agreed-on limitations.

However, many applications of Markov chains employed countable infinite state
spaces, which have more statistical analysis. Besides time and state-space parameters,
there are many other variations, extensions and generalizations. Most of our study
focuses on the discrete-time, discrete state-space case etCA change in the state of the
system is referred to transitions while the probabilities assigned to different state
changes are called transition probabilities. The process is described by a state space, a
transition matrix studying the probabilities of a specific transitions, and an initial state

or initial distribution through the state space. Without any doubt, we accept all likely
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states and transitions have been included in the definition of the process, so there is
always a succeeding state, and the process does not lay off. This will be discussed

further in Chapter three.

This study has four chapters in which are ordered as follows. Chapter 1 is the review
part of our study. Basic definitions and related concepts are presented in Chapter 2.
Markov chain definition with its states, examples and applications are given in Chapter

3. Finally, Chapter 4 consists of Conclusion.



Chapter 2

REVIEW OF PROBABILITY THEORY

In this part we shall think through some notations and basic part of probability theory.
Topics to be revised are;

(1) Probability space and o-fields

(2) Random variables and their distributions

(3) Conditional probability and independence

(4) Stochastic process

(5) Conditional expectation

2.1 Probability space and o-fields

The probability space will be explained by using the system language of measure
theory.

2.1.1 Definition of Sample space(Q)

This is the set of all possible result of a given random experiments e.g betting on
players to score randomly, the results can either be winning or losing.

2.1.2 Definition of Event space(¥F)

This is a collection of all possible events under a given consideration. Hence, every set
belonging to F is called an events. It can also be define as subsets of Q

For example, if sample space Q contains N elements, then the number of possible

events will be ¥i_, (7).



2.1.3 Definition of Probability measure(P)
Probability measure Pis defined as the function P: F — [0,1] such that the following
axioms are satisfied
(1)P(Q2) = 1 Infers that there is always an outcome from Q on every trial carry out.
(2)For two events E; and E, which are disjoint seti.e. E;, N E, = @ for all
y # zthenP(E; U E,) = P(E,) + P(E,).
Therefore, a probability space is a triplet (Q, F, P) in which the three component are
used to determine the outcome of a given experiment.
2.1.4 Definition of o-fields
We defined o-fields F on Q if it satisfies the following condition.

@ Qe F

(b) ifanevent T € F then T! € F (closed under complements)

(c) if T; e Ffori=1,2,..,then U;T; € F (closed under countable union)
Note that the o-fields F always containt least Q and @ which is called the trivial

o-field ,.

Example 2.1: Let Q = {1 ... .....4}, then the following are o-field on Q:
F={0,{1},{2,3,4},Q}.
F, ={0,{1,3},{2,4},Q }.
2.1.5 Definition of Borel set
We defined B(R) where R is the set of real numbers as the smallest o-field covering
all interval in R. It can also be defined as the smallest 6- algebra which can be derived

from an open and closed sets done by countable unions and complementations.



Note: The pair (©, F) is said to be measurable space and any events fitting to F are
said to be F-measurable. This implies that the events help to decide on whether they
happened or not, given the information of F. In other words, if one knows the
information of F, then one is able to state which events of F (= subsets of Q).

2.2 Random variables and Their Distributions

2.2.1 Definition of F-measurable

If Fis a o-field of subsent of Q , then a function Z: Q — R is F-measurable if
(ZeB) € F for all Borel set € B(R). If (Q,F,P) is a probability space then the
function Z is called a random variable.

2.2.2 Definition of Smallest o-field generated Z
The smallest o-field generated by random variable Z: ) — R consist of all sets of the

form (ZeB), where B is the borel set in R.

2.2.3 Definition of Distribution function of Z

Every random variable Z: 0 — R result to a probability measure P,(B) = P(Z € B)
on R which is defined on the o-field of Borel sets B(R). Therefore we call P, the
distribution of Z. Also the function F,;: R — [0,1] defined by F,(x) = P(Z < x) is
called the distribution function of Z. The distribution function have the following

properties.

The distribution function E, is non-decreasing right continuous and
Jim E@) =0, lim () =1
2.2.4 Definition of Borel measurable function
Afunction f: R — R issaid to be a Borel measurable function if F is arandom variable

on (R, B).



2.2.5 Definition of Density of Z

Assuming there exist a integrable function f: R — R such that for any close set a,b c
R,P(Z € [a,b]) = F(a) — F(b) = fabf(x)dx, then Z is said to be a random variable
with absolutely continuous distribution and f is called the density of Z.

2.2.6 Definition of Discrete Distribution

If there is a finite sequence of distinct real numbers x; x, .... such that for any Borel
set B C R, P(Z € B) = Yx,eg P(Z = x;) then Z is said to have discrete distribution

with value x; x; ...

Example 2.2: Assuming that Z has a continuous distribution with density f,, show that

:—sz(x) = f,(x) if f is continuous at x.

Solution: Since Z has a densityf, then the distribution function F,(x) can be written

asF,(x) = P(Z <x) = [*_£,()dy.

Therefore, if f, is continuous at x, then F, is differentiable at x and
d d

B0 =7, Ldy = f,(x).

2.2.7 Joint Distribution of Numerous Random Variable Z; ...,Z,

This is said to be a probability measure Py, ..., on R™ such that

Py,...z, (B) ={(Z, ....Z,) € B} for every Borel set B in R™. Suppose there is Borel

function F,...; :R™ — R such that

P{(Zy,...2) €B} = [, fz,--.z, (%1.,%3)dy, ....dy, for any Borel set B in R™,

then f7 ...z, is called the joint density of Z; ..., Z, . R™.



2.2.2 Definition of Indicator function

1, red

is a random variable and we
0, rgA

For any event A € F, the function I,(r) = {

call such random variable an indicator function.
The following are the properties of the Indicator Random Variable:
(@ Is(r) =0 andIg(r) = 1.
(b) Iye(r) =1—L(r).
() I4(r) <Ig(r)ifandonlyif A € B.
(d) Ina, () =1Ilila, (7).
(e) If A; are disjoint then Iy, 4,(r) = X La, (7).
2.3 Conditional Probability and Independence
2.3.1 Conditional Probability
Assuming events D, B € F such that P(B) # 0 then the conditional probability of an

event D given event B can be expressed by

P(BND)

P(DIB) = —5 g3

Example 2.3: If 60% of my classmate like chicken kebab and 45% like chicken kebab

and ham kebab. What is the percentage of those who like chicken also like ham kebab?

Solution

P(chicken kebab and ham kebab )
P(chicken kebab)

P(ram kebab | chicken kebab) =

0.6

=0.75

Therefore, 0.75 is the percentage of those who like chicken also ham kebab.



2.3.2 Definition of Independence of an events

An events D,B € F are said to independent if the existence of D does not affect the
probability of B. This implies P(D n B) = P(D)P(B) or events D and B are said to
be independent if P(D|B) = P(D) which is the same as P(B|D) = P(B) .

In general we conclude that an events D, ... D,, € F are independent if

P(D;, n Dy, N...D;,) = P(D;,)P(Dy,)... P(Dy,).

Example 2.4: Consider the experiment of rolling a 3 on a die and spinning a tail on a
coin. Rolling the 3 does not affect the probability of spinning the tail. If the events are
independent, then the probability that boths events will occur is the product of the
probabilities of each occurring i.e. P(D n C) = 0.5.

2.3.3 Definition of Independence of Two Random Variables

Two random variables J and Q are said to be independent if for any Borel sets D,B €
B(R) then the two events (J € D) and q € B are independent. In general we conclude
that random variable J; _J,are independent if for any Borel sets

D, . D, € B(R) then the events (J; € D;) and (J,, € D,) are also independent.

2.34 Definition of Independence of Two o-Fields

Two o-fields H, G < F are independent if P(D N B) = P(D)P(B) such that for all
De HandB € G.

2.35 Definition of Independence of Finite number of o-Fields

A finite number of o-fields 3, ..., H;,, contained in F is said to be independent for
any n events if D, € Hy,....,D,, € H,, are all independent. In general, we say an
infinite or finite family of o-fields is said to be independent if any finite number of

them are independent.



2.4 Stochastic Process

This section is essential for the understanding of stochastic process.

2.4.1 Stochastic Process

Assuming T is a subset of (—oo, ). A family of random variables {D;};c; defined
on Q is called a stochastic process. Here we represent (—oo, o) as the infinite past to

infinite future respectively in which are called Time.

Types of stochastic processes
(a) Discrete time process: A stochastic process is called a discrete time process if
and only if T is continuous and Q is discrete. This implies that, as T is

continuous, ) takes a discrete set of values.

Example 2.5: If D(t) represent the number of costumer received in kebab shop in the

interval of (0, t) then {D(t)} is a discrete time process since Q = {0,1,2,3 ... ... }
(b) Continuous time process: A stochastic process is said to be continuous if and
only if both T and Q are continuous or if T is an interval which has a positive

length.

Example 2.6

If D(t) represent the maximum temperature at a place in the interval (0, t), then we
say that D(t) is continuous.

2.4.2 Range of Random Variable

The range of random variable or possible value in stochastic process is referred to state

spaces of the process.
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2.4.2 Transition Process
A change between any given state spaces in stochastic process is called transition

process.

Example 2.7

Let D,,:n =1{0,1,2,3..}where the state space of D, is {0,1,2,3,4,5,6} which
signify the six types of transactions submitted to a data service where time n relates to
the number of transactions submitted.

2.4.3 Sample Path

A sample path is described as time ordered which show what happened to a process in
one instant. This can be either continuous or discrete.

2.4.4 Filtration

We defined a filtration as the increase in the family of o-fields that is if a sequence of

o-fields F, F,, ... on Q such that ¥, € F, € --- € F then we call it filtration.

Example 2.8

Let D = {the outcome of the first four tosses produce at least two tails} at
discrete time n = 4. Whenever the coin has been tossed four times, it is likely to
determine if D has occurred or not. It implies that D € F,. Nevertheless, atn = 3 itis
not always possible to determine if D has occurred or not. Assuming the outcome of
the first three tossed are heads, heads, tails, then the event D is unsure. This implies
that D ¢ F,. Assuming that we are able to get two tails at first three tossed, then we
say that D has already occurred no matter the outcome of the fourth toss. This does not

mean that D € F4

11



2.4.5 Definition of Sequence of Random Variables

We defined a sequence p; p, of random variables to be martingale with regard to

a filtration Fy F,, ... ..... if the following properties are satisfied:
(@) JiJ,. are adapted to a filtration F; F,, ...
(b) J, isintegrable foreachn =1,2,3 ...

(€) EJp41 |Fy) =] foreachn=1,2,3 ...

2.5 Conditional Expectation

Recall that the conditional probability of D given B

P(BND)
P(B)

P(D|B) =

Clearly, P(D|B) = P(D) if and only if D and B are independent. Given that

P(B) > 0, then the conditional distribution function of a random variable where

X€ERIS
P((X=x)NB
Fx(x|B) = ZE2502
Therefore the expectation
E(X|B) = E(XNB)
B ="

Is called the conditional expectation of X given B.
2.6 Conditioning on an Event

For any given integrable random variable p and any event B € F such that

P(B) # 0, the conditional expectation of p given B is defined as

1

E®IB) =35

J; pdP.

12



Example 2.9: Assuming three coins 15J, 25J and 60J are flipped. The outcome of
those coins that land tails up are added to get the total amount of p. Find the expected
total amount of p if and only if two coins have landed tails up.

Solution: Let B represent two coins that have landed tails up. We will find E(J|B).

Obviously, B = {TTH, THT,HTT} where T represent tails, H represent heads and
each having total probability of %

i.e{HHH,HHT,HTH, THH, TTH, THT, HTT, TTT}. Therefore, the corresponding
values of ] are
J(TTH) = 154 25 = 40.
J(THT) = 15 + 60 = 75.
J(HTT) =25+ 60 =80.
Then
(242e2)= o}

E(|B) = —— [, JdP =

P(B)

o lw| =

2.7 Conditioning on an Arbitrary Random Variable
Assuming p is an integrable random variable and 7 is an arbitrary random variable,
then the conditional expectation of p given t is assumed to be a random variable
E(J|7) if it satisfies the following properties below

(@) E(J|t) is o(t)-measurable.

(b) Forany D € (7).

J, EJIT)dP = [, pdP.

13



2.8 General Properties of Conditional Expectation
Letx,y €R, p,{ € Q, F,Pand G, H are sub c-algebra on Q then
(1) E(xp + y{|G) = xE(p|G) + yE({|G) for all x,y € R (linearity property).
) E(E(p|®) = E(p).
(3) If p = 0, then E(p|G) = 0 (Positivity property).
(4) E(E(p|G)|H) = E(p|G) if and only if HCG.

(5) E(p|G) = E(p) if and only if p is an independent of G.

14



Chapter 3

MARKOV CHAINS

3.1 Definition

A Markov chain is a family of stochastic processes in which the process is a discrete
time. The discrete time process is always characterized by the set called the State space

of the system where X,, denotes the state of the system at timen =0, 1, 2...

Many systems have the property that given the present state, the past states have no
influence on the future. This property is called the Markov property and the system
having this property is called a Markov chain. Since the system have Markov property
that is, a process is{X,},, = 0 called a Markov if

P(Xni1 € Al Xo X1, Xn) = P(Xn11€41X,).

The Conditional probabilities P(X,.; = y|X,, = x) are called the Transition
Probabilities of the chain. A Markov chain is said to have Stationary Transition
Probabilities if P(X,,.; = y|X, = x) is independent of n. Note that in all states of
Markov chain, it is possible to go from any state in more than one step to every other

state and you can only return to a state in an even number of steps.

15



3.2 Markov Chains Having Two States
For an example, consider a Markov chain having two chain states. Assume that a
Generator at the start of any particular day is either broken down or in operating
condition. Let X,, be random variable denoting the state of the Generator at time n and
let ,(0) be the probability that the generator is broken down initial. Then the
following are the stationary transition probabilities:

P(Xn41 =1|Xp = 0) =2 1)

P(Xni1 = 01X, =1) =¢q )

Where x is the probability that it will successfully repaired and in operating condition
at the start of the (n + 1)5t day when the generator is broken at the start of nth day.
Also q is the probability that it will fail causing it to be broken down at the start of
the (n + 1)5¢ day when the generator is in operating condition at the start of the nth
day. Since there are only two states which are 0 and 1, it follows that

P(Xpi1 =0|X,=0)=1—1x ©)

P(Xp41 =1|X, =1) = 1—¢q (4)
And (1) = P(X, = 1) = 1 — 1, (0) are called the initial distribution.

By applying matrix transition to (3) and (4) we have
P = (1 ; * 1 f q) Where sum of any row of the matrix is1.

Given the initial distribution and transition probabilities, we can find distribution of all
X,, whichare P(X, = 0)and P(X,, = 1).
We observe that

P(Xpn41 =0) =PXp =0,Xp11 =0) + P(Xy, = 1, X4, = 0) ®)
By applying multiplicative rule to equation (5) we get

P(Xp41 = 0]Xp = 0) P(Xp = 0) + P(Xpiq = 0]X;, = 1) P(Xp, = 1) (6)

16



By applying transition function which has been stated above we have
P(0,0) P(X,, = 0) + P(1,0)P(X,, = 1).
Recall that
P(X,=1)=1-P(X, = 0).
Then we have
(1 =2)P(Xy = 0) + q(1 — P(X, = 0)).
= (1-20PX,=0)+q—-qPX,=0).
= PXn+1=0)=0-x—-@PX,=0)+q.
Then for n = 0, substitute for n in equation (7) we have
PX;=0)=(1-x—-—q)P(X,=0) +¢q
Since my(0) = P(X, = 0) substitute it into equation (8) we have
PX;=0)= 1 —-x—-q)me(0) +q
Therefore for state 1 we have
P(X;=1)=1— P(X,; = 0)
From equation (7) when n =1 we have
PX,=0)=1—-x—q@)PX;=0)+¢q
By substituting equation (9) into (10) we have

1—x—q)((1—%—qme(0)+q) +q

(1—%—q)?m(0)+ (1 —x—q)g+q

By factorization we get (1 —x — q)%my(0) + q[1 + (1 —»x — q)]

Then for n times, apply induction we have
PXpn=0)=1-x—q)"m(0) +q[l+ A —2—q)(1—x—q)""]

= 1-x-qQ"m(0) + X5 (1 —» —q)’

Since the sequence in (12) is a geometric sequence then we can rewrite it as

1-(1-n-q)"
1-(1-»—q)

(1—x—q)"me(0) + ¢

17
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Hence by simplify (13) we have

PXn=0)=—T+1-x—)"(m0)-)  (14)
For

P(X,=1)=1-P(X, =0) (15)

Substitute (14) into (15) we have

L= [+ A== )" (mo(0) — )1

n+q

(1 —u—g)" (1-m(D) - L),

n+q n+q

2k (1 -x =) (m(D) - ) (16)

n+q
Assuming that » and g are neither equal to 0 or 1 then, 0< % + q < 2 .This implies
that |1 —» —q| < 1.

In this case, will can find the limit of P(X,, = 0) and P(X,, = 1) asn — oo. Therefore

lim P(X, = 0) = %qTq andlim P(X, = 1) :,:{Tq-
Also, since it is not specified whether the X,,, n > 0 then we can assume that it Satisfy
Markov Property and compute for Joint distribution of X, X;, X, ..., X;,. For example
take n = 2 and assume that X,, X; and X, each equal to 1 or 0.Then by applying
multiplicative rule, let

Xy =xpand X; = x; be Aand X, = x, be B.
Then we have P(A N B) = P(A)P(B|A) which implies
P(Xy = x0,X1 = x1, X5 = x3).
=P(Xo = %0, X1 = )P (X3 = x2|Xo = X0, X1 = x1) 17)

Apply Multiplicative rule to and Markov property to (17) we get

P(Xo = x0) P(X1 = x1|Xo = %) P(Xz = x2|X; = x1) (18)
Recall that P(X, = xo) = my(x,) therefore substitute it into equation (18) we get the

Joint Distribution table of X,, X; and X, which are
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Table 1: Joint distribution

X, X, X, P(Xo = X0, X; = X1, X, = X;)
1 1 1 (1= (0)(1 - q)°

1 1 0 (1 =m(0)(1 - q)q

1 0 1 (1 = m(0))xq

1 0 0 (1 —=me(0))q(1 —2)

0 1 1 mo(0)%(1 — q)

0 1 0 mo(0)%q

0 0 1 mo(0)(1 — #)x

0 0 0 o (0) (1 — 2)?

The function P(x,y) = P(X; = y|X, = x) where x,y €S is called the Transition
function of the Chain such that P(x,y) = 0, where x,y €S and Y, P(x,y) = 1 where

x,y €S .Here P(x,y) is the probability the chain is in state y at step n+1 provided that

it was in state X at time n.

The function y(x) = P(X, = x), X€S is called the initial distribution of the chain

such that my(x) = 0,x € S and Y, mo(x) = 1.

The Joint distribution of Xy, X3, X5 ..., X, can simply expressed in term of initial

distribution and transition function.

For P(Xo = X0, X1 = x1) = P(Xo = x0)P(X1 = x1|X¢ = Xo)

=10 (x0) P(x0, %1)-

Also P(Xo = xo, X1 = x1, X5 = x3) =10(x) P(x0, X1)P (X1, X2).
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Since X,,, x = 0 which has stationary transition probabilities and satisfies Markov
property. By induction it is easily seen that P( Xy, X1, X5 ..., X3)
= mo(x0) P(x0, %1)P(xq, X2) v oo P(Xn-1,Xn) (19)
3.3 Examples of Markov Chains
3.3.1 Random walk
Let &, &,, €3, E, ... beindependent integer valued random variables and let X, integer
valued random variables that is independent of the &;s, and set
Xp= Xo+E + &+ &+ &, + &, This set of sequence is called random walk.lt is
a Markov whose state space is the integers and whose transition function is
P(x,y)=f(y —x) (20)
To verify (20), let , denote the distribution of X,. Then P(Xy = xy....X,, = x3,)
= PXog=x0,E1 =%, — Xy e, En = Xpn — Xp1)-

P(Xo = x)P( &1 = x1 = x%0)P( &z = x3 = x1)... P(E = Xy — Xpo1).

o (x0) f(E1 =21 —x0)f(E2 = x3 — x1)... f(En = Xpp — K1)
= 1o (x0) P(x120)- .. P(Xn_1, Xp).

Thus (19) holds.

As a special case, consider a simple random walk in which f(1) = », f(—1) =q

and f(0) = r, where » + g + r = 1, then the transition function is given by

X, y=x+1,

_ _ ) q y=x-—1,
f(y x)—P(x;Y)— T, y:x’
0, elsewhere.

3.3.2 Ehrenfest chain
This is a simple model of the exchange of heat or gas molecules between two isolated

bodies.
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BOX1 BOX 2

Let X,, denote the number of molecules (or balls) in box 1 after the nt" trial. (Trials
are independent). The X,,,n = 0 is a Markov chain S ={0,1,2 ... ... ,d}. the transition

function of this Markov chain is given by

- d—x/d y =x+ 1 (from box 2 to box 1)
xX,y) =
y X/d y=x—1 (from box 1 to box 2)

A state m of a Markov chain is called an absorbing state if P(m,m)=1 or
equivalently if P(a,y) =0fory #m

3.3.3 Gambler’s Ruin Chain

Let p be the probability of winning 1 unit at any bet and ¢ be the probability of losing
1 unit at any bet. If the gamblers capital ever reach zero he is ruined and his capital

remains zero therefore, (absorbing state.)

Let X,, denote the gamblers capital at time n. this is a Markov chain in which zero is

an absorbing states and for x > 1.

D, y=x+1
P(x,y) =14, y=x-1
0, elsewhere

Such a chain is called a Gambler’s Ruin Chain on S ={0,1,2, ..... }.
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If S =1{0,1,2,...,d}, in this case 0 and d are both absorbing states holds for
x=12,..d.

3.3.4 Birth and Death Chain

The transition of a Birth and Death chain on S ={0,1,2, .....}oron S ={0,1,2, .....

IS given by
G y = x — 1 (corresponding to death)
_ T y=x
P(x,y) = e, y = x + 1 (corresponding to birth)
0, elsewhere

wherep, + q, + 1, = L.

d}

The Ehrenfest chain and Gambler’s ruin chain are the examples of Birth and Death

chains.

3.3.5 Queuing Chain

Consider a service facility such as checkout at supermarket. Let &,, denote the number

of new customers arriving during the n" period. We assume that £, &,, €3, &, ...are

independent integer valued random variables and exactly one customer will be served

during any given period. Let X, denote the number of customers present initially and

for n >1, let X,, denote the number of customers present at the end of the nt" period.

IfX,=0thenX,,; =& andif X, >1thenX,, ., =X, +E,41 — 1.
X,,,n = 0is aMarkov chainon S ={0,1,2, ..... } with
PO,y)=f(and P(x,y) = f(y—x+1), x > 1.

3.4 Computation with Transition Functions

Let X,,n>0 be a Markov chain on S having transition function P.

In this section we will show how various conditional probabilities can be expressed in

terms of P. We will also define the n- step transition function of the Markov chain. We

begin with the formula
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P(Xn+1 = Xn41 - Xnam = Xnaml Xo = X0, Xy = ) (21)

By definition of conditional probability
P (% X+ 1)P (st Xs2)- -« PCnsm—1, Xm)- (22)
Also (21) can be written as
P(Xps1 = V1, Xn42 = Vo, Xnam = Yl Xo = X0, -, X = X ). (23)
= PO,y1) P, y2) oo v P(Wm—1, Yim)- (24)
Note that, Pz (.) = P(.|B) where (.) €S..
If A, NA, = ¢, Pg(.) = (A; NA,|B) = P(A4|B) + P((A,|B).

But (4|B;UB;) # P(A,|B) + P(A4,|B).

Lemma 1 (Paul G. Hoel).

I If D; are disjoint and P(C|D;) = P for all i, then P(C| ;U D;) = P.

1. If ¢; are disjoint , then P(C| ;U D;) = X; P(C;|D).
Let Ay, A4,..., A1 be subset of S. It follows from (24) and lemma (1) that
P(Xn41 = Y1, - Xnim = YmlXo € Ag, ..., Xpq € Ap_1, X = X) (25)

= PO, y)P (1, y2)- - PWm-1, Ym)-
Let B; ... B,, be subsets of S. It follows from (25) and lemma (I1) that
P(Xps1 € Byyovos Xnom € BnlXo € Aqyevs Xpoq € Ay, Xy = X)

= Zylas'1 ZyzeBz---Zymp(x'yl)P(yl'yZ)---P Fm—-1,Ym)-

The m-step transition function P™(x, y), which gives the probability of going from x
toy in m-step is defined by

P™(x,y) = Xy, Zypy PG YDP (Y1, Y2) - P(Vim—1, V),

For m>2,
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1, x=y
0, elsewhere

Pl(x,y) = P(x,y) and P°(x,y) = {
Furthermore, P(X,1m = y|X,, = x) = P™(x,y) and for n+m step probability we
have

P™T(x,y) = Yzes P (x, 2)P™ (2,Y) (26)
P(Xy, =y) = Xy mo(x)P™(x,y), distribution of X;, while

P(Xpi1 =) = Xxy P(Xn, = x)P(x,), is the recursion between distribution of X,,

and X;,44.

Note: P.(A) = P(A|X, = x).
P(Xi#aX,#a,Xs=a)=PXy=xX; #a,X, #a,X; # a).
Starting at X, the chain will be in a at time 3.
3.4.1 Hitting Times
Let A c S. The hitting time T, of A is defined by T, = min{n > 0: X,,eA}.
If X,,eA forsomen >0andby T, = wif X, ¢ Aforalln > 0.
Hitting times play an important role in the theory of Markov chains. T, denotes the

hitting time of a point aeS.

An important equation involving hitting times is given by

P"(x,y) = Xm=1 Px(Ty = m) P"""(y, ) n=1 (27)
Let us verify equation (27). To do this, note that the events (T, = m,X, = y)
where 1 < m < nare disjointand (X, = y) = Up,_1(T, = m, X, = y) .

We have in effect decomposed the event ( X,, = y) according to the hitting time of y.
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We see from this decomposition that
P"(x,y) = B(Xn =)
= Ym=1P (Ty =m, X, =Yy)
=Y P (T, =m)P(X, =y|Xo=x,T, =m)
=3 P (T, =m)P(Xp=y|Xo =X # Y, . Xno1 V. X, =)

= Zm:lPx(Ty =m) Pn—m(y’y) '

Examplel: Show that if a is an absorbing state, then
P*'(x,a) =P(T,<n), n=>1

If a is an absorbing state, then P™* ™(a,a) = 1 for 1 < m < n then equation (27)

implies that
n
P™*(x,a) = Z P, (T, = m)P" ™(a,a)
m=1

=Yr_1P (T, =m)P(T, <n).
Observe that

P(T, =1) =P(x,y)

Px(Ty = 2) = Z?;typx X1=2zX,=y)

= Z?iyp(x;Z)P(Z,)’)-
And

P(Ty=n+1)=3,.,P(x,2)B, (T, =), n>1.
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3.4.2 Transition Matrix

Suppose that S is finite, say S = {0,1,2, ... ....., d} then
0 P(0,0)............ P(0,d)
1 P(1,0)...........p(1,d)
d_ P@0)........°Pdd _

fori,j=0,1...d, where

Z‘f:o P(x,y) =1,forall x € S.

Example 2: the transition matrix of the Gamblers ruin chain on {0,1,2,3} is

+q=1

R XO O

OO O
O OX ©

P is one-step transition matrix similarly, P™ is n-step transition matrix
Then (26) with m =n = 1 becomes
P*(x,y) = X, P(x,2)P(z,y) (28)
P™(x,y) = X, P"(x,2)P(z,y) (29)
It follows from (29) by induction that the n-step transition matrix P™ is the n‘* power
of P and the initial distribution m is
My = (19(0), (1), ... mo(d)
and for we have m,,
T, = (P(X, =0),...,P(X,, = d))

Also ,, = myP™ and m,,,.; = m,P.
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Example 3: Consider two state Markov having one-step transition matrix

1—x b4
P=( )
qg 1-gq
Where » +q > 0. Find P".

Firstly let my(0) = 1 in (14) then

P™(0,0) = Py(X, = 0) ——+ 1=—»n- q)"—K—Jrq
Also if we set my(1) = 0 in (16) then
P"(01) =Py(Xp =1) =—— (1 —x— q)"—— v
Similarly, for P™(1,0) and P™(1,1) we have
PM(10) =P(X, =0) = s -~ (1—x— "

PLY) = (X, = 1) = —q T

It follows that

I

3.5 Classification of States
Let X,,,n = 0 be Markov having state space S and transition function P then set

Cxy = Be(Ty < ).
Then {,,, denote that the probability that a markov chain starting at x will visited state
y in finite time.
¢y, Denote that the probability that a Markov chain starting at y will ever returnto y.
A state y is called recurrent state if {,,,, = 1, and Transient if {,,, < 1.
If y is recurrent state then a Markov chain starting at y returns to y with probability 1
but if y is a transient state then a Markov chain starting at y has a positive probability
that never return to y.

- qyy
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Therefore, 1 — {,,,, = P, (T, = o) > 0 implies probability of no return to y

If y is an absorbing state, then P,(T,, = 1) = P(y,y) = 1 and hence {,,,, = 1, thus an

absorbing state is necessarily recurrent.

Let 1,,(2), z € S, denote the indicator function of the {y} defined by

(1, z=y
13’(2)_{0, ZF+Yy

Let N(y) denote the number of times n > 1 that the chain is in state y.
Since 1,/ (X,) = 1 if the chain is in state y at time n and 1,,(X;,) = 0 otherwise, we

see that

NOY = D 1,0

implies number of visits to y. Therefore the

P(Ny)=1)= Px(Ty < oo) = (xy

P(NG)22) = ) > AT, =m)B,(Ty = n)

= (Z;)L:l PX(Ty = m))(Z%O:le(Ty = n))
= Cxyr Gyy-

Similarly we conclude that
PING) 2m) = $y ™, m2 1. (30)
Since P,(N(y) =m) = P,(N(y) =2 m) — B, (N(y) = m+ 1).
By (30) we have
Cey Syy™ = Loy Gy

= Cxy gyym_l(l - (yy)' m=1.
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Also
PINY)=0=1-ARN(»=1)
=1 Gy
We use the notation E,(.) = E(.|X, = x) as the expectation of random variables

defined in term of Markov chain starting at x. for example,

Ex(ly(Xn)) = 1P (X, =y) + 0P (X, # ¥) = P"(x,y).

= E(N®) = E (Z 1y<xn)>
n=1
=, (Z Ex(1y<xn))
n=1
= Z P™ (x, ).

Set

6(y) = E(N®)) = ) P (x,).
n=1

Then G(x,y) represent the expected number of visits to y starting at x.
The following theorem describes the fundamental difference between a Transient and

Recurrent state.
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Theorem1: (i) Lety be a transient state then
P(N(y) <o) =1

And
G(x,y) = % ,where xe(,
Sy

Which is finite for all xe(.
(if)Let y be a recurrent state then
P(N(y) <o) =1
And
G(x,y) = oo
Also
PN(y) =) =P(Ty <o) = ), xe€q.

If {x, =0thenG(x,y) =0, whileif {,, > 0then G(x,y) = .

Proof. (i) Ifyis in transient state then by definition 0 < {, < 1, then it follows from

(30) that
P(N() = ) = lim P(N(y) 2 m)
lim 3oy Gt =0

Here P, (N(y) = ) = 1

Since G (x,y) = Ex(N(y)) = Zim-1mP,(N(y) = m)

= 2%:1 m(xyq/rgl/_l( 1- (yy) (31)

= (xy(l - gyy) Z magt (32)
m—1
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Apply power series to (32), let ¢, = t then differentiate to have

d d
TGO RS

When m = 0 we have

We conclude that

This completes the proof of (i).

Now let y be a recurrent state then P,(N(y) = o) = Jliirio P,(N(y) = m)
lm Gy = Gy
In particular, P,(N(y) = o) = 1.
If a nonnegative random variables has positive of being infinite, then
G, y) =E,(N(»)) = oo.
If {,, =0, then P,(T,, = m) = 0 for all finite positive integers m, so (27) implies
that P*(T, =m) =0, n=1;thus G(x,y) = 0.

If {, > 0, then P,(N(y) = ) = {,, > 0 and hence G(x,y) = E,(N(y)) = o
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3.6.3 Absorption Probabilities

Let y be transient state, since

ZPn(x,y)= G(x,y) < oo, xX€EC(.
n=1

Then
lim P"(x,y) =0, x€(.
n—->0o

3.5.1 Transient and Recurrent Chain

A Markov chain is called a transient chain if all of its states are transient and a recurrent
chain if all of its states are recurrent.

3.6 Decomposition of the State Space

3.6.1 Definition

A non-empty set C of states is said to be closed if no inside of C leads to any state
outside of C, i.e., if {,, =0, where x € C Andy ¢ C. Equivalently, C is closed if
andonly if P*(x,y) =0 xeCy€éC,n=>1

If P(x,y) =0 x €C,y ¢ C,then C is closed. If C is closed, then a Markov chain
starting in C will with probability one stay in C for all time. If a is an absorbing state,
then {a} is closed.

3.6.2 Irreducible of a Close Set

A close set C is called irreducible if x leads to y for all choice of xand y in C.

Corollary 1: Let C be an irreducible closed set of recurrent states. Then {,,, = 1,
P,(N(y) = o) = 1and G(x,y) = oo for all choices of xand y in C.
An irreducible Markov chain is a chain whose state space is irreducible, that is, a chain

in which every state leads back to itself and also to every other state.
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Theorem 2: Let C be a finite irreducible closed set of state. Then every state in C is

recurrent.

Assuming a Markov chain have a finite number states, the theorem implies that for a
chain to be irreducible it must be recurrent. In a situation where the chain cannot be
irreducible then we tried to determined which states are recurrent and which are

transient.

Example 4: Consider a finite Markov chain having transition matrix
0 1 2 3 4 5

10 o0 0 o 07

1/4 1/2 1/4 0 0 0
o 1/5 2/5 /5 0 1/5
o o o /6 1/3 1/2
o o o0 1/2 o 1/2

L0 0 0 1/4 0 3/4

G W N O

Determine which states are recurrent and which are transient.

Solution: the following matrix shows which state leads to which other states.

For example P%(1,3) = P(1,2)P(2,3) > 0 and P?(2,0) = P(2,1)P(1,0) > 0

0 is an absorbing state, hence also a recurrent state. Also {3,4,5} is an irreducible
closed set. By theorem (2), 3,4, and 5 are recurrent states. State 1 and 2 both leads to
zero, but neither can be reached from zero. By Theorem (2) both 1 and 2 must be
transient.

Let S, denote the collection of transient states in S, and let S denote the collection of
recurrent states.

Hence S; = {1,2} and S; = {0,3,4,5}. the set S; can be decomposed into disjoint

irreducible closed set C; = {0} and C, = {3,4,5} irreducible hence Sy = C; U C,.
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3.6.3 Absorption Probabilities

Let C be closed irreducible recurrent set and {.(x) = P (T, < o) be the starting in x
absorbing probability. A chain starting at x is absorbed by the set C.

Clearly ¢.(x)=1,if xe€C; and {.(x)=0if {.(x)=0if x € C; where i # 1
implies that x recurrent not in C; .

What if x € {; then we can find {.(x) to be

= ZP(x,y) + Z P(x,y) ¢c(y), X € (r.

yec Yelr

This equation holds whether ; is finite or infinite.

Theorem 3: Suppose the set ¢, of transient states is finite and C be an irreducible

closed set of recurrent states. The system of equations.
fO) =2yec P(x,¥) + Lye g, PO 1) f () x € {r (33)
Has the unique solution f(x) = {.(x) X € {r (34)

Example 5: Consider the Markov chain discussed in the previous example.

Find (10 = ((0)(1) and 520 = {(O)(Z)

Solution: by apply equation (33) with transition matrix in example 4 we have
{10 = P(1,0) + P(1,1) {30 + P(1,2) {3

=%+§C10+%(20 (35)
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And (20 = P(2,1) {10 + P(2,2) {39 (36)

= §(10 +§ (20 - (37)

Solving (35) and (37), we get ;o = % and ¢,o = %

By similar methods, we conclude that

4

2
{3.45(1) = : and {g345(2) = :

Alternatively, since . {,.(x) =1 x € {r

Spasn(D=1- o) =1-2=2,
And

1 4
{345)(2) =1 = {pas(2) =1-c=_.

Note: Once a Markov chain starting at a transient state x enter an irreducible closed
set C of recurrent states. It visits every state in C. thus
$oy = Cc(x), x €,y €C.
From this relation it follows that
(13= (14 = G5 = {{3,4,5}(1) = g,

And

4
(23 = G24 = (15 = ({3,4,5}(2) = T

3.7 Birth and Death Chains

For an irreducible Markov chain either every state is recurrent or every state is
transient, so that as irreducible Markov chain is either a recurrent chain or a transient
chain. An irreducible Markov chain having only finitely many states is necessarily

recurrent. In the case state space is infinite, it is not so easy to identify { and (5.
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But for the birth and death chain, we are able to do so. Consider a Birth and Death
chain on the nonnegative integers or on the finite set {0,1, ... ....,d} , d < ..

The transition function is of the form

Qr, y=x-1
P(x,y) =1, y=x

P y=x+1

Where P, + 1, +q, =1 for x € {,qy =0,Prd =0ifd > oo then
P, >0Andg, >0for0 < x <d.

Setu(x) = P.(T, <T,)where a<x<band a,b €
Assume that u(a) = 1 and u(b) = 0 and if the birth and death chain start at y then by
taking one step it goes fromy — 1,y, or y + 1 with respective probabilities p,,, 5, or
qy . It follows that
u@) =quly-D+ nu@®@ +pyuly+1), a<y<b (38)

Sincer,, = 1 —p, — q,,, we write (38) as
u(y + 1) —u(y) =§—j(u(y) —u(y - 1)), a<y<b (39)

Setyo=1and y, = qq1 ...q,/ P1 .. Dy 0<y<d (40)

From (39), we see that

u(y +1) —u(y) = j— u®) —uly — 1)

_ (V_) (V_) [u(y — 1) — u(y — 2)]

Yy-1 Yy-2

= (V—y) <M> ....%[u(a +1) —u(a)]

Yy-1 Yy-2 y
= ];—y[u(a +1) —u(a)].

Consequently

u(y)—u(y+1)=);—Z[u(a)—u(a+1)], a<y<b (41)
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Hence by summing (41) on y =a,...........,b — 1 and recall that u(a) = 1and

u(b) = 0, then we conclude that

u(a)-u(a+1) 1
Yy Zy aVy (42)
By summing (42)on y =x,x+1,..,b—1 a<x<b
We obtain
ulx) = y xyy a<x<y
3’ a Yy

Therefore from definition of u(x), it follows that

P(T, <T,) = zig a<x<b (43)

Subtracting (43) from 1 we have

P(T, <T,)=1- Zy=ivy a<x<b
ZyaVy
P(T, <T,) = y”y a<x<b (44)
J’ay

Example 5: A gambler playing roulette makes a series of one dollar bets. He has
respective probabilities 130 and g of winning and losing each bet. The gambler decided

to quit playing as soon as his net winning reach 25 dollars or his net losses reach 10
dollars.
(a)Find the probability that when he quit playing he will have won 25 dollars

(b)Find his expected loss.

Solution
Since his respective probabilities of winning and losing each bet areli0 and g

respectively and he also decided to quit playing as soon as his net winning reach 25

dollars or his net losses reach 10 dollar therefore,
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Let X,, denote the capital of the gambler at time n with X, = $10

X, form a death-birth chain on {0, ... ... ...., 35} with birth and death rates
9
P, ==, 0<x< 35
10
Gx =5, 0<x< 35

Where 0 and 35 are absorbing states.

To solve (a) applied equation (44) we have

_ Zy=0¥” (10 19\ _ 10
P1o(T35 <Tp) = e Where y¥ = (E X ?) =<

Therefore we have

Zgz 2 10
P10(T35 < To) == 0(9)

23o(2)”
10\10_

- 21;35_1 — 0.047
9

Thus the gambler has probability 0.047 of winning 25 dollars.

Then for (b), his expected loss is 10 — 35(0.047) = $8.36.

In the reminder of this part, we consider a Birth and Death chain on the nonnegative
integers which is irreducible that is P, > 0 for x > 0 and g, > 0 for x > 1. We will
determine when such a chain is recurrent and when it is transient.

Let consider a special case of equation (43)

1

Pi(Ty<T,)=1—5= n>1 (45)
y=o¥y
Let the process start in state 1 so,
1<T,<T;.. (46)
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It follows from (46) that {T, < T,;}, n > 1 forms an expanding sequence of events.
Assuming that 4,, = {T, < T,,}, then the expanding sequence will be A4,, € A,;1
given that X, = 1

Then
lim Py {Ty < T} = lim P(4,) = P (1lim 4,) = P(Up 4,)
n—-oo n—-oo n—-oo

Since A,, is an expanding sequence,

lim P, {T, < T,} =P, (T, <T,) forsomen. 47
n—-oo

Then (46) implies that T,, > n and thus T,, = o as n — oo hence, the even
{T, < T,,} for some n > 1 occurs if and only if the event{T, < oo} occurs.
We rewrite (47) as
711_{210 Py(To <Ty) = P1(Ty < ) (48)

Hence by (45) and (48) we have

1
Z;o=o Yy

Pi(Ty < ©) =1-— (49)

We now show that the chain is recurrent < Y.3°_,y, = oo (irreducible)

(@) If the chain is recurrent, then P, (T, < o) = 1and hence (49) implies
Z;Ozo Yy =®

(b) If X5-o¥y = o, show that the chain is recurrent.

Since P(0,y) = 0 for y > 2 hence,

Py(Ty < ) =P(0,0) + P(0,1) P;(T, < ) = 1.

0 is a recurrent state, thus whole chain is recurrent, since the chain is irreducible.
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In conclusion an irreducible birth and death chainon {0, 1, 2, ... .... } is recurrent if and

only if

z q1 - qx

= 00,
- P1..Px
x=1

Example 6: Consider the birth and death chain on {0, 1, 2, ... .... } defined by

x+2 X
b= 2(x+1) and g, = 2D X 2

Determine whether this chain is recurrent or transient.

Solution

Since Z = X it follows that
x+2

Px

qq -y 1,2..x

2

Yy = D1 Dy - 3,4..(x+2) - (x+ 1D (x+2)

Thus

> =2 (i 7r)
Ve = x+1 x+2

We conclude that the chain is transient.
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Example 7: Consider a Markov chain on the nonnegative integers such that starting
from x, the chain goes to state x+1 with probability P, where 0 < p < 1 and goes to
state 0 with probability(1 — p).

(a) Show that this chain is irreducible.

(b)Find Py(Ty = n),n > 1.

(c)Show that the chain is recurrent.

Solution
(a)Since every state leads back to itself and also to every other state, (Vyx > 0),
the chain is irreducible.

(b)By applying

P(T,=n) = Z P(x,z) P,(T, =n—1)

Z#Y
Py(To =n) = X,20P(0,2) P,(To =n—1).

fn>1,forn=1 Py(T,=1)=P(0,0)=1-7.

Forn=2
P(Ty=2) = ) P(0,2) B,(Ty = 1)
zZ#0
=P(0,1) = P,(Ty =1) = P(1 — ).
For n=3

Po(Ty = 3) = ) P(0,2) P(Ty = 2)

z#0
=P(0,1) = P, (T, =2)
= P(0,1) P(1,2) P(2,0)

= P2(1 — x).
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By induction, for n we have
Py(To = 3) =X,20P(0,2) ,(To=n—1)
=P(0,1) P,(Ty =n—1)
=P"1(1—1x).
(c) Astateyisrecurrentify,, = 1.

Try O state.

Yoo = Po(Ty < 00) = Y71 Po(Ty = n)

::2ipw1—xy:u—x)E;P%1=1—x<1i%)=1

Since yoo = 1, 0 is recurrent, and since the chain is irreducible, then every state is

recurrent, thus the chain is recurrent.

Example 8: Consider the Markov Chain on {0,1, ...,5} having transition matrix

0 1 2 3 4 5

oft/2 1/2 o o 0 0]
1|1/3 2/3 o 0 0 0
2l o o 18 0 7/8 0
3{1/4 1/4 o 0 1/4 1/4
4o o 3/4 0 1/4 0
5o 15 0o 1/5 1/5 2/5]

(a) Determine which states are transient and which are recurrent

(b)Find yo 13(x), where x = 0, ...,5
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Solution
(a)C; = the recurrent states are 0,1,2,4.
C, = the transient states are 3and 5 .

(b)Recall that from (33)

Fx) = ZP(x, )+ z P(x,y)f(y) where x =0,1,...,5

yec yelr
C, = {0,1} is recurrent

When x = 0 then

Yi0,13(0) = z P(0,y) + z PO, y)vi0,3(y)
ve{0,1} Yy€{3,5}

= P(0,0) + P(0,1) = 1.

When x = 1 we have

Yio,3(1) = z P(1,y) + z P(Ly)vpu®)
v€e{0,1} Yy€{3,5}

=P(1,0)+P(1,1) = 1.
Therefore y,13(0) = yo,13(1) = 1.

When x = 2 then

ron@= ) P+ Y PYVan®)
y€{0,1} Y€(3,5}

=P(2,0) + P(2,1) = 0.

When x = 3 then we have

ron@®= ) PG+ ) PGV0n®)

yefo,1} y€{3,5}

= P(3,0) + P(3,1) + P(3,3)y{0,13(3) + P(3,5)¥1013(5) .
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Therefore

Yo (3) = 1/4 + 1/4 + 1/4 Y10,13(5).

When x = 4 then

Yi0,13(4) = z P(4,y)+ z P(4,y)v1013().
ve{o,1} Yv€e(3,5}

= P(4,0) + P(4,1) + P(4,3)y(0,13(3) + P(4,5)y1013(5) = 0.

When x = 5 then

Yi0,13(5) = z P(5,y) + z P(5,9)7q0,13().
ve{o,1} Yy€{3,5}

Y0,13(5) = 1/5 + 1/5 Yio13(3) + 2/5 Yi013(5) -

By collecting like terms in the above equation we have,

3/ Yo () =1/ + L Y0,13(3).
5 5 5
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Chapter 4

CONCLUSION

The Markov chain is very important stochastic model in probability theory. With the
good understanding of Markov chains, it can be practically applied in different stages
and areas of life. For example, if we make an attempt of taking a risk to gambling of
which we cannot determine the future outcome, then the proper understanding of

Markov chain is applicable.

There are other areas where Markov chain can be applied. For an example, a Markov
chain model is formulated to solve a problem on the "Genetics of Inbreeding".
Assuming two individuals are randomly mated then in the next generation, two of their
offspring of opposite sex are randomly mated. The process of brother and sister mating
or inbreeding continues each year. This process can be formulated as a finite discrete

time Markov chain.
Another example is a new state of our wardrobe which depends on the present
launched brands of clothes, if a cloth is torn out or old then it gets removed from the

wardrobe.

The Markov chain is an example of a stochastic process which is applied to our daily

lives. By acquiring and understanding the concept, we have and know more about the
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expectation and possible outcomes of future predictions. Therefore the knowledge of

the Markov chain cannot be ignored.
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