

A Multi-Set Artificial Immune System for Searching

Optima in Dynamic Environments

Jalil Shahabi

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

August 2012

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of

Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Ahmet Ünveren

 Supervisor

 Examining Committee

1. Asst. Prof. Dr. Adnan ACAN

2. Asst. Prof. Dr. Ahmet ÜNVEREN

3. Asst. Prof. Dr. Yıltan BİTİRİM

iii

ABSTRACT

Artificial Immune Systems (AIS) are computational methods that belong to the

computational intelligence family and are inspired by the biological immune system.

Many researchers developed immune based models to solve complex computational or

engineering problems by using fast exploration ability of the AIS.

The proposed method uses multi-set search mechanisms within AIS to solve the

dynamic optimization problems, i.e. moving peak benchmarks. In the moving peak

benchmark problems the optimum and environment changes in time. For this reason it is

difficult to find optimum. In this thesis distributed detection and fast exploration ability

of AIS are combined with multi-set search mechanisms to find optimum solutions of the

given dynamic optimization problems.

The given method was compared with different algorithms that solve dynamic

optimization problems and the results showed that the proposed method outperforms

almost all other methods.

Keywords: dynamic environments, optimization problems, artificial immune systems,

moving peaks benchmarks

iv

ÖZ

Yapay Bağışıklık Sistemleri (YBS) hesaplama yöntemleri olup yapay zeka ailesindendir

ve biyolojik bağışıklık sistemi ilham alınarak üretilmiş yöntemlerdir. Birçok araştırmacı

YBS hızlı keşfetmek yeteneğini kullanarak karmaşık hesaplama veya mühendislik

problemlerini çözmek için bağışıklık tabanlı modeller geliştirdi.

Önerilen yöntemde dinamik en iyileme problemlerini çözmek için YBS içinde çoklu-

grup arama mekanizmaları kullanıldı. Dinamik problemlere örnek olarak hareketli tepe

denektaşları verilebilir. Zaman içinde hareketli tepe denektaşları problemlerinde en iyi

ve çevre değişime uğrar. Bu nedenle, en iyiyi bulmak zordur. Bu tez çalışmasında

YBS’nin dağıtık algılama ve hızlı keşfetmek yeteneği çoklu-set arama mekanizmaları ile

birleştirilerek mevcut dinamik en iyileme problemlerinin en iyi çözümlerini bulmak için

kullanıldı.

Verilen yöntem dinamik en iyileme problemlerini çözen farklı algoritmalar ile

karşılaştırılmış ve elde edilen sonuçlar doğrultusunda önerilen yöntemin hemen hemen

tüm diğer yöntemlerden daha iyi performans gösterdiği ortaya konulmuştur.

Anahtar Kelimeler: dinamik ortamlar, en iyileme problemler, yapay bağışıklık

sistemler, hareketli tepe denektaşlar

v

DEDICATION

This thesis is dedicated to my lovely parents who always give opportunity to me to

following my dreams, and to my dearest brother Mahmoud who has supported me all the

way since the beginning of my studies.

FOR THOSE WHO WERE THERE

AND ARE NOT,

FOR THOSE WHO WERE THERE AND ARE,

FOR HIM, BUT MOST,

FOR HER

vi

ACKNOWLEDGMENT

I would like to thank Asst. Prof. Dr. Ahmet Ünveren for his continuous support and

guidance in the preparation of this study. Without his invaluable supervision, all my

efforts could have been short-sighted.

I would also like to thank all of my teachers specially Asst. Prof. Dr. Adnan Acan and

Assoc. Prof. Dr. Ekrem VAROĞLU who helped me during my education in Cyprus and

also all the members of staff at Department of Computer Engineering for the facilities

they provided that helped me achieve the results in this thesis.

And also I would like to thank of my dearest friend and my brother Daniyal Yazdani

which helped me a lot and never forgot me, and also thanks to my dear friend

Mohammad Azhari who supported and helped me a lot and was like a brother in the

foreign island.

I owe quite a lot to my family who allowed me to travel all the way from Iran to Cyprus

and supported me throughout my studies. I would like to dedicate this study to them as

an indication of their significance in this study as well as in my life. I Love them all.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGMENT ... vi

LIST OF TABLES .. xi

LIST OF FIGURES .. xiii

1 INTRODUCTION .. 1

1.1 Immune System .. 1

1.1.1 Natural Immune System ... 3

1.1.1.1 Primary Lymphoid Organs .. 5

1.1.1.1.1 Bone Marrow .. 6

1.1.1.2 Secondary Lymphoid Organs .. 7

1.1.1.2.1 Spleen .. 7

1.1.1.3 Immune’s Type .. 7

1.1.1.3.1 Innate Immunity .. 8

1.1.1.3.2 Adaptive Immunity ... 8

1.1.1.4 How the Iimmune System Works .. 8

1.1.1.4.1 Concepts of Basic Components in the Immune System 9

1.1.1.4.2 Immune System Processes .. 14

1.1.1.5 The Primary Mechanism of Protection in Immune System 18

viii

1.1.1.6 Immune Network Theory ... 20

1.1.2 Artificial Immune System (AIS) ... 21

1.1.2.1 Artificial Immune System Algorithms ... 22

1.1.2.1.1 B-Cell Algorithm (BCA) .. 23

1.1.2.1.2 Artificial Immune Network Algorithm (Ainet) 24

1.1.2.1.3 Clonal Selection Algorithm (CLONALG) 24

1.1.2.1.4 Negative Selection Algorithm (NSA) ... 26

1.1.2.2 Features of Artificial Immune Algorithms .. 27

1.1.2.2.1 Mutation .. 28

1.1.2.2.2 Adaptive Population Size .. 29

1.1.2.2.3 Secondary Response ... 29

1.1.2.2.4 Termination Criteria .. 29

1.1.2.3 Problem Environments ... 30

1.1.2.3.1 Dynamic Environment .. 30

2 DYNAMIC OPTIMIZATION PROBLEMS .. 32

2.1 Problem Description .. 32

2.1.1 The Moving Peaks Benchmark ... 33

2.1.2 Generalized Dynamic Benchmark Generator (GDBG) [41] 34

2.1.2.1 Dynamic Changes .. 34

2.1.2.2 Functions Definition .. 36

2.1.2.2.1 Rotation Peak Function ... 37

ix

2.1.2.2.2 Composition of Sphere's Function .. 38

2.1.2.2.3 Composition of Rastrigin’s Function .. 39

2.1.2.2.4 Composition of Griewank's Function ... 40

2.1.2.2.5 Composition of Ackley's Function .. 41

2.1.2.2.6 Hybrid Composition Function .. 42

2.2 Difficulties of Solving Dynamic Problems .. 43

2.2.1 Presenting Siversity Method ... 44

2.2.1.1 Mutation and Self-adaptation ... 44

2.2.1.2 Other Approaches .. 45

2.2.2 Diversity Maintenance Method ... 45

2.2.2.1 Dynamic Topology .. 45

2.2.2.2 Memory-Based ... 46

2.2.2.3 Other Approaches .. 46

2.2.3 Hybrid Method .. 46

3 A MULTI-SET ARTIFICIAL IMMUNE SYSTEM FOR SEARCHING OPTIMA IN

DYNAMIC ENVIRONMENT .. 47

3.1 The Proposed Algorithm .. 47

3.1.1 Solving the Potential Optimum Coverage Challenge 47

3.1.2 Environment Change .. 51

3.1.3 Mechanisms to Increase Performance .. 55

3.1.3.1 Active and Inactive Mechanisms ... 55

x

3.1.4 Graphical View on Proposed Algorithm ... 58

4 EXPERIMENTATION AND RESULTS ANALYSIS .. 64

4.1 Results of Moving Peaks Benchmark Problem .. 64

4.1.1 Effect of Number of TH Cells on Proposed Algorithm’s Performance 65

4.1.2 Compare with Other Algorithm .. 66

4.2 Results of Tests on the Generalized Dynamic Benchmark Generator (GDBG) 67

5 CONCLUSION ... 89

REFERENCES .. 91

xi

LIST OF TABLES

Table 4-1. Results of different TH Cell size .. 65

Table 4-2. Results of Offline error ± Standard error .. 66

Table 4-3. Average-best in Function 1 (10 peaks) ... 70

Table 4-4. Average-worst in Function 1 (10 peaks) .. 70

Table 4-5. Average-mean in Function 1 (10 peaks)... 71

Table 4-6. STD in function 1 (10 peaks) ... 71

Table 4-7. Average-best in Function 1 (50 peaks) ... 72

Table 4-8. Average-worst in Function 1 (50 peaks) .. 73

Table 4-9 Average-mean in Function 1 (50 peaks).. 73

Table 4-10. STD in Function 1 (50 peaks) .. 74

Table 4-11. Average-best in Function 2 .. 75

Table 4-12. Average-worst in Function 2 .. 76

Table 4-13. Average-mean in Function 2 .. 76

Table 4-14. STD in Function 2 .. 77

Table 4-15. Average-best in Function 3 .. 78

Table 4-16. Average-worst in Function 3 .. 78

Table 4-17. Average-mean in Function 3 .. 79

Table 4-18. STD in Function 3 .. 79

Table 4-19. Average-best in Function 4 .. 80

Table 4-20. Average-worst in Function 4 .. 81

Table 4-21. Average-mean in Function 4 .. 81

Table 4-22. STD in Function 4 .. 82

xii

Table 4-23. Average-best in Function 5 .. 83

Table 4-24. Average-worst in Function 5 .. 84

Table 4-25. Average-mean in Function 5 .. 84

Table 4-26. STD in Function 5 .. 85

Table 4-27. Average-best in Function 6 .. 86

Table 4-28. Average-worst in Function 6 .. 86

Table 4-29. Average-mean in Function 6 .. 87

Table 4-30. STD in Function 6 .. 87

xiii

LIST OF FIGURES

Figure 1-1. Close cooperation lymphatic system and circulatory system.......................... 3

Figure 1-2. Structure of the lymph node .. 4

Figure 1-3 Various organs of the immune system in human body 5

Figure 1-4. Multi-layered structure of the immune system to deal with external factors

and pathogenic ... 9

Figure 1-5. Mature the immature T-cells into mature helper T-cells and killer T-cell 12

Figure 1-6. Maturing B-cell to plasma cell ... 13

Figure 1-7. Antibody and Antigen's marker molecule to identify as foreign cell 14

Figure 1-8. Detection in immune system .. 15

Figure 1-9. Negative selection ... 16

Figure 1-10. Clone selection .. 17

Figure 1-11. Process to produce B-cell memory ... 18

Figure 1-12. The primary mechanism of defense in the immune system 19

Figure 1-13. Activation and suppression in antibody and antigen 21

Figure 1-14. AIS position in computational intelligence hierarchy 22

Figure 1-15. Pseudo-code of the basic B-cell algorithm ... 23

Figure 1-16 Pseudo-code of the basic Artificial immune network algorithm 24

Figure 1-17. Pseudo-code of Clonal selection algorithm .. 25

Figure 1-18. Pseudo-code of Negative selection algorithm .. 27

Figure 2-1. 3D perspective of moving peak benchmark ... 37

Figure 2-2. A 3D view of Composition of Sphere's function ... 38

Figure 2-3. 3D view of Rastrigin's function .. 39

xiv

Figure 2-4. 3D view of Griewank's function ... 40

Figure 2-5. 3D view of composition of Ackley's function .. 41

Figure 2-6. 3D view of Hybrid Composition function ... 42

Figure 3-1. Antibody activation pseudo code .. 49

Figure 3-2. Pseudo code TH Elimination Algorithm ... 50

Figure 3-3. Pseudo code antibody Elimination Algorithm .. 51

Figure 3-4. Pseudo code deal with Environment Change Algorithm 55

Figure 3-5. Pseudo-code activating-inactivating mechanism .. 58

Figure 3-6. 3D view of an environment ... 59

Figure 3-7. Finding peak by TH cells .. 59

Figure 3-8. Antibody set activating ... 61

Figure 3-9. Environment change ... 61

Figure 3-10. All of the peaks are found ... 62

Figure 3-11. Algorithm’s flowchart ... 63

Figure 4-1. Standard parameter setting .. 64

Figure 4-2. Procces of findig peaks by algorithm .. 67

Figure 4-3. Parameters setting for GDBG ... 69

file:///C:/Users/asus/Desktop/jury%20final%20thesis.docx%23_Toc332579655

1

Chapter 1

1 INTRODUCTION

1.1 Immune System

Artificial immune system algorithms are methods which have been inspired by

immunology theories and Biological observations of the complex mechanisms of living

organisms, natural immune defenses against pathogens [1].

These algorithms with characteristics such as dynamic regulation of population size,

search space exploration and extraction, and optimization capabilities by maintaining

multiple local optimal solutions, in solving many problems have been a point of interest

to many researchers, and many different versions of the basic algorithm have been

developed and applied for the solution of real world science and engineering problems

[2] .

On the other hand, there are some challenges related to this algorithm such as correlation

between the cost function and population size, proportion between accuracy and error in

the binary exponential range mode, evolution as a random mutation changes, getting

stuck of a local optimum and sometimes premature convergence and low convergence

rate [3].

2

In this thesis, the aim is to introduce a new algorithm based on artificial immune

systems. This algorithm is designed to solve optimization problem in dynamic

environments, particularly the moving peak benchmark problems that are described in

chapter 2.

The proposed algorithm used some mechanisms to rectify many problems which exist in

artificial immune system algorithms. These mechanisms were inspired by natural

immune system of human body to improve performance of artificial immune system

algorithms to solve optimization problems in dynamic environments. These mechanisms

and the problems that are tried to be solved are explained in chapter 1 and chapter 2.

By comparing the presented algorithm to other algorithms related to dynamic

optimization problems, one can say that this is one of the best algorithms in artificial

immune system which has been introduced. So far, the results show that this algorithm

has better performance than some well-known algorithms in the world of optimization

problems. All the results and experiments are shown in chapter 3.

In this chapter, we have a brief review of natural immune system and we will see how

immune system can face with new antigens and can improve itself to have a better and

faster response to previously seen antigens. You can find these definitions in section

1.1.1. Also, there is a quick look at artificial immune system, and some of the most

important algorithms that have been introduced in section 1.1.2 Artificial Immune

System (AIS)

3

1.1.1 Natural Immune System

Immune system is made of a complex structure of cells and blood vessels that have the

task of cleansing the body from pathogens. Organs in the body's immune system are

called lymphoid organs. Lymph is a Greek word that means clean and limpid flow.

Lymphatic vessels and lymph nodes are part of the blood circulatory system to carry

lymphocytes, and include a transparent flow of white blood cells and mainly lymph

which is showed in Figure 1-1.

Figure 1-1. Close cooperation lymphatic system and circulatory system [4]

Lymphocytes are moved throughout the body by lymphatic vessels and wash all tissues

of the body and return to the circulatory system. Lymph nodes mark the lymph vessel

network in order to create a confluence of immune cells to defend against aggressors.

The spleen which is located at the upper left of the abdomen is a place for immune cells

4

to confront antigens. Clumps of lymphoid tissue are located in many parts of body such

as bone marrow and thymus. Tonsils, adenoids, and appendix are part of the lymph

tissue too.

Immune cells and foreign molecules enter through the blood vessels or lymph vessels to

lymph nodes. All immune cells that are located in the immune systems are transferred to

the blood stream to look for external antigens. Details and structure of the lymph node

are shown in Figure 1-2.

Figure 1-2. Structure of the lymph node [4]

5

1.1.1.1 Primary Lymphoid Organs

In general, members of the immune system are divided into two groups: primary and

secondary lymphoid organs that each of them have their own task. General body’s

structure and various organs of the immune system are presented in Figure 1-3.

Figure 1-3 Various organs of the immune system in human body [4]

6

The primary lymphoid organs are where lymphocytes have the main evolution. The

members of lymphocytes from lymphoid stem cells are improved and then the mature

cells are activated and multiplied. In mammals, T cells in the thymus and B lymphocytes

in bone marrow and fetal liver are reaching to maturity. Birds have a special area to

produce the B-cells that is called bursa of Fabricius. Lymphocytes in primary lymphoid

organs, that overcome the antigens a person receives during the life, gain a set of

specific antigen receptors. In the primary lymphoid organs, cells with receptors for self-

antigens are destroyed, while the T cells in the thymus learn how to recognize their own

MHC
1
 molecules. When T cells try to distinguish between self and nonself cells, they

use a kind of protein that is called MHC [4].

1.1.1.1.1 Bone Marrow

Bone marrow is a soft, sponge-like material that exists within the bone. It contains

immature cells that are called stem cells and the production of blood cells is their task.

There are three types of blood cells: White blood cells which have immune task; Red

blood cells that carry oxygen to the organs and tissues and also collect wasted

production from them and Platelets have the task of blood clotting and wound repair.

Most of the stem cells are found in bone marrow but some of them that are called

Peripheral blood stem cell (PBSCs) are in the blood flow. With cell division, more cells

are produced and after that cells become mature and are converted to white and red

blood cells.

1 Major histocompatibility complex

7

Blood cells are formed in bone marrow. Bone marrow is located in bone cavity. In

children, a marrow of all bones are involved in cells production; but in adults, it is the

duty of active part of bone marrow which is called red marrow and is limited to the

bones of the body’s trunk. Despite the fact that the name of this type of bone marrow is

red, they make both the red and white blood cells.

1.1.1.2 Secondary Lymphoid Organs

After production of lymphocytes in primary lymphoid organs, they are stimulated by

antigen and immigrate to secondary organs to be distinguished; the spleen is one of the

most important members in this group.

1.1.1.2.1 Spleen

Spleen is a wide organ which is located near the stomach, but it is never part of the

digestive system and it is more related to the circulatory system.

In a healthy human body, about 10 million red blood cells are destroyed in seconds and

of course the red blood cells are needed to be replaced. To do this, three different parts

of body work together: bone marrow, liver and spleen. Red bloods cells are stored in the

spleen to work in emergency time; also worn-out blood cells are destroyed in spleen.

Some of the white blood cells that called lymphocytes are made in the spleen and bone

marrow. When a severe shortage of blood occurs suddenly, spleen releases large number

of red blood cells to fill the shortage [5].

1.1.1.3 Immune’s Type

Human immune system can protect the body against disease-causing agents such as

viruses, bacteria, fungi and other parasites. Immune system in living organisms are

divided into two categories: innate immunity and adaptive immunity.

8

1.1.1.3.1 Innate Immunity

Innate immune system was first described by Elie Metchnikoff a century ago. Innate

immunity is not faced directly to the invaders, but it fights indirectly with the pathogens

that are imported to the body. Innate immune has this feature to immediately deal with

pathogens. But in this situation they cannot have modification and correction by

generation and mutation [6].

1.1.1.3.2 Adaptive Immunity

Adaptive immune system deals with aggressors by modification of different sets of

receptor genes randomly, and with appearance of new invaders they become modified

and this mechanism allows the host to generate immunological memory.

Unlike Innate immune system, this system requires modification and reproduction to

deal with pathogens which is certainly a time consuming process. Artificial immune

systems that are used by researchers in computer science have been inspired by most of

these methods and strategies. The adaptive immune system is also called acquired

immunity [6].

1.1.1.4 How the Iimmune System Works

Immune system deals with pathogens by a multi-layer structure at several different

levels and with respect to innate and adaptive immunity, this structure is shown in

Figure 1-4.

9

Figure 1-4. Multi-layered structure of the immune system to deal with external factors

and pathogenic [7]

Before describing how immune system works in the body, it is needed to introduce and

explain the basic concept of immune system.

1.1.1.4.1 Concepts of Basic Components in the Immune System

1.1.1.4.1.1 Hematopoietic Stem Cell

Both red and white blood cells originate from bone marrow as stem cells. Specialized

name of these cells are Hematopoietic stem cells because they are source of all blood

cells. Stem cells in bone marrow do not have any characteristics of adult blood cells, but

they have the ability to divide. Typically when a cell is dividing, it splits into two

identical cells. But when a stem cell divides, it divides non-symmetrically. One of the

two cells produced is identical to the parent cell, and the other one separates from the

parent stem cell and becomes a different cell. On the other hand, for a hematopoietic

10

stem cell, an offspring is exactly identical to its parent and the other one convert to

another hematopoietic stem cell in a specific way [7] [8].

There are multipotent and pluripotent stem cells in bone marrows which are originated

from the two ancestral cells: myeloid and lymphoid. The myeloid acts as a common

precursor for granulocyte, monocyte, elytroid and megakaryocyte, while lymphoid cell

creates T-cells and B-cells.

In addition to self-renewing stem cells and their offspring produced by them, bone

marrow included plasma cells. The plasma cells are produced in secondary lymphoid

tissues during antigen stimulation and then migrate to the bone marrow. These cells may

continue living there and produce antibodies for years.

1.1.1.4.1.2 White Blood Cell
2

There are cells in the body's immune system which fight against pathogens and their

foreign substances. There are a variety of different white blood cell types, but all of them

are made by a multipotent cell in the bone marrow which is known as Hematopoietic

stem cell. White blood cells exist in the whole body including blood and lymphatic

system.

1.1.1.4.1.3 B-Cell

B-cells produce antibodies and release them in blood and lymph stream, which are

attached by other immune cells to the foreign antigen for identification and destruction

[4]. Each B-cell with a genetic program is designed to provide a specific surface receptor

2 Leukocyte

11

for a Specific antigen. B-cells are created from root cells in bone marrow and have their

early stages of evolution there. Finally after completion of evolution, the new cell would

be a healthy cell and does not react against the body's own cells and is removed from

bone marrow and enters the body to identify and deal with the antigens. After the B-cells

are activated, they are proliferated and matured into plasma cells.

1.1.1.4.1.4 T-Cell

T-cells are as guards for foreign invaders in the blood and lymph and they mark the

antigens, attack and destroy the pathogen. T lymphocytes as well as intermediate cells

are responsible for safety. They also work as coordinator and cooperator for all immune

responses. T cells with unique cell surface molecules that are called MHC will help to

identify the antigen parts [4].

There are several different types of T cells that have different functions such as helper T-

cells and killer T-cells. A group of T-cells through interaction with single-core

phagocyte help to destroy intracellular pathogens are called TH
3
. T cells interact with B

cells to help them divide, differentiate and to produce antibodies. Another batch of cells

is responsible for destroying those host cells that were infected by a virus or other

intracellular pathogens. This type of operation is called cytotoxicity and these types of

T-cells are called cytotoxicit. T-cells are produced in bone marrow and then evolve to

mature and migrate to the thymus, which is a member of the body's lymph nodes.

Symbolic forms of T-cells are shown in Figure 1-5.

3 T-cell helper

12

Figure 1-5. Mature the immature T-cells into mature helper T-cells and killer T-cell [4]

1.1.1.4.1.5 Plasma cell

After B-cells are activated, they are proliferated and matured into plasma cells. The

number of plasma cells in the blood is low; in fact it is less than 0.1% of the cells in the

lymph circulation. In normal conditions, Plasma cells are limited to secondary lymphoid

tissues and members, but there are plenty of them in the bone marrow too. Produced

antibodies by plasma cells belong to a specific group and immunoglobulin class. Most of

the plasma cells have a short life and only live for a few days. The death of these cells

occur duo to the apoptosis phenomenon. Maturing B-cells to plasma cells is shown in

Figure 1-6.

13

Figure 1-6. Maturing B-cell to plasma cell [4]

 1.1.1.4.1.6 Antibody

After B cells are stimulated by antigen or T cells, they turn into plasma cells. In this

stage, plasma cells make the large amounts of receptor molecules that are dischargeable.

These molecules are known as antibodies.

 Since antibodies are similar to the main receptor molecules, they connect to the antigens

that activate B-cells in the beginning. Antibodies react to antigens and try to destroy and

eliminate foreign invaders. Even other types of antibodies block the viruses to prevent

them from entering the cells. The marker molecules that are carried by antigens and

antibodies are shown in Figure 1-7.

14

1.1.1.4.1.7 Antigen

Antigen as a word means antibody generator, and at first was used to describe each

molecule that stimulates B-cells to produce a specific antibody. But today usage of these

words is much more widespread and covers every molecule that is identified specifically

by components of the immune system such as B-cells, T-cells or both.

Figure 1-7. Antibody and Antigen's marker molecule to identify as foreign cell [4]

1.1.1.4.2 Immune System Processes

There are several important processes in the immune system which are explained briefly

in this section.

1.1.1.4.2.1 Detection in Immune System

Immune cells can detect a pathogen or protein fragment when chemical bonds are

established between receptors on the surface of an immune cell and epitopes, and

15

strength of the bond between these two is called the affinity. The high affinity means

receptors of immune cell and epitopes have more similarity and vice versa.

Figure 1-8. Detection in immune system [7]

As can be seen in Figure 1-8, “the pathogens on the left have epitope structures that are

complementary to the receptor structures and so the receptors have higher affinities for

those epitopes than for the epitopes of the pathogens on the right, which are not

complementary” [7].

1.1.1.4.2.2 Self-Cells Detection

In the immune system, to prevent the killing of self-cells, the body tries to eliminate B-

cells and T-cells which detect self-cells as pathogens. This process occurs in the thymus.

For example if TH-cell can detect a self-cell, it will participate in clonal deletion or

negative selection and it will die in this process. This process is shown in Figure 1-9.

16

Figure 1-9. Negative selection [7]

1.1.1.4.2.3 Clonal Selection

The body tries to increase the diverse population of T-cells and B-cells and it does this

by using clonal selection process. In this process, somatic hyper mutation helps the

variation and also competition for pathogen epitopes helps the better selection. Immune

system selects a B-cell or T-cell with high affinity and clones it.

It tries to keep the population diversity by mutation. The immune cells with higher

affinity have more chance to get cloned to larger groups and vice versa. A sample clone

selection and hyper mutation is shown in Figure 1-10.

17

Figure 1-10. Clone selection [7]

1.1.1.4.2.4 Immunological Memory

In the immune system, the B-cells with higher affinity have more chance to proliferate.

Thus, they live more than other B-cells in the body, which in this case they can be

considered as a memory. These cells can respond to the pathogen faster than the original

B-cells that require a longer process to be produced. It can help the body to reach the

steady state very quickly.

 In the Figure 1-11, you can see the affinity maturation. Activated B-cells have a

proliferation process, and they produce mutated clones. The clones with highest affinity

will survive and become memory cells or plasma cells.

18

Figure 1-11. Process to produce B-cell memory [7]

1.1.1.5 The Primary Mechanism of Protection in Immune System

As discussed earlier, the human body is protected by immune cells in such way that all

immune cells response to antigens which usually are foreign molecules of bacteria or

other aggressor agents. The primary mechanism of defense in the immune system is

shown in Figure 1-12.

APCs
4
 like macrophages travel into the body and divide antigens to antigenic peptides

by devouring them. Peptide fragments are joined to the MHC
5
 protein and are exposed

on the cell surface. Other cells like T-cells and T lymphocytes which have receptor

molecules have the ability to detect and recognize various combinations of MHC and

peptides [9].

4 Antigen presenting cells
5 Major histocompatibility complex

19

Figure 1-12. The primary mechanism of defense in the immune system [10]

T-cells are activated by divided recognition and discharged lymphokines or chemical

signals and prepare other components of the immune system for action.

B-lymphocytes have receptor molecules on their surface too, which respond to signals.

Unlike T-cells, B-cells can identify some parts of free antigens without MHC molecules.

20

1.1.1.6 Immune Network Theory

Immune network theory for the first time was proposed in 1974 by Jerne [11]. The part

of the antigen that is detected by the antibody is epitope, and the part of antibody

molecules whose job is epitope detection called paratope.

Also the part of the antibody with the antigen characteristics is named idiotope. A model

of idiotopes which is located in the antibody polypeptide chains region is detected by

paratope. In each branch of antibody, there is a paratope and small collection of

idiotopes, that are called idiotype [12].

Immune system is defined as a complex network of paratopes that identify a set of

idiotopes and a set of idiotopes which are identified by paratopes. Therefore, each

element of network has the capability of identification and recognition at the same time.

This property creates an immune network in which antibody molecules are connected to

each other as free molecules or B-cell receptor molecules.

After an antibody identified an epitope or an idiotope, it can respond positive or negative

to this identification signal. The result of a positive response is cell activation, cell

proliferation and antibody secretion.

On the other hand, the negative response leads to tolerance or suppression in the cell.

Figure 1-13 shows the process of activation and suppression in antibodies chain.

21

Figure 1-13. Activation and suppression in antibody and antigen [1]

1.1.2 Artificial Immune System (AIS)

Artificial immune system is one of the branches of computer science that is inspired by

the immune system of organisms and is presented by different algorithms to solve

various problems in computer science. The immune system has different levels. At the

first level, it prevents foreign organisms or antigens from entering the body using skin

abilities, tears and similar strategies. The second level is the innate immune system

where all antigens are treated in the same general way. This level of the immune system

works very slowly and is not sufficient to deal with antigens. Adaptive immunity is the

next level and in which, for dealing each antigen an appropriate method is applied. This

immune level works very fast and can produce large numbers of immune cells to deal

with antigens.

Algorithms that are designed in artificial immune system are mostly modeled after the

adaptive immune system and these algorithms have been used to solve wide range of

computer problems. Artificial immune system algorithms are divided into several

Antigen

22

groups: negative selection, clonal selection, danger theory, immune network and B-cell

Algorithm. Each one of them is inspired by a different natural immune system. Up to

now, these algorithms are used to solve optimization problems, pattern recognition,

classification, clustering, network security and other issues of computer science and

have obtained good results compared to existing algorithms. The immune system can be

a parallel and distributed adaptive system that has been inspired by immunology of

natural processes .

1.1.2.1 Artificial Immune System Algorithms

Artificial immune system is one of subsets of methods that are inspired by biological

sciences, which itself is a subset of computational intelligence. A brief hierarchical view

of computational intelligence and its subsets are shown in Figure 1-14.

Figure 1-14. AIS position in computational intelligence hierarchy [13]

computational
intelligence

....
Adaptation of
the biological

methods

...
Artificial
immune
system

Negative
selection

Clonal
selection

Immune
network

Danger Theory

Evolutionary
Computation

Artificial neural
networks

.....

23

Various applications of artificial immune system are mentioned in many articles and

journals in which they are used to solve problems related to the hybrid structures and

algorithms with similar mechanisms to immune system [14] [15]. Some computational

algorithms based on principles of immune are clonal selection, immune network theory,

learning, self-organization, artificial life, cognitive models, multifactorial systems,

design and scheduling, pattern recognition, anomaly detection Immune engineering tools

and etc. In the following section, some of the most famous algorithms in immune system

are briefly explained.

1.1.2.1.1 B-Cell Algorithm (BCA)

The B-cell algorithm is one of naïve and basic algorithms in artificial immune system.

There are many researches and articles in which it has been tried to improve this

algorithm. The main idea of this algorithm is parallel search in such way that each

member of the population (each B-cell) searches its own neighborhood in the search area

[16]. The basic B-cell algorithm is shown in Figure 1-15.

B-cell algorithm

input : g(v) = function to be optimized

output: P = set of solutions for function

begin

 1. Create an initial population P of individuals in shape-space

2. For each v ϵ P, evaluate g(v) and create clone population C with n solutions

3. Select a random member of v’ϵ C and apply the contiguous region hypermutation operator

4. Evaluate g(v’); if g(v’) > g(v) then replace v by clone v’

5. Repeat steps 2-4 until stopping criterion is met

end

Figure 1-15. Pseudo-code of the basic B-cell algorithm [3]

24

1.1.2.1.2 Artificial Immune Network Algorithm (Ainet)

The immune network algorithm is one the most famous algorithm in AIS, and there are

many versions of this algorithm. The version given before is called the Optimization

Artificial Immune Network algorithm (opt-aiNet). Signaling information processing

properties and resource maintenance make fundamental of the immune network theory

which proposes an additional order of complexity between the cells and molecules under

selection. The purpose of the immune network process is preparing a set of distinct

pattern detectors for problems domain in such a way that cells similarity (low affinity)

means better performing in network [17]. The basic pseudo code of this algorithm is

shown in Figure 1-16.

Immune Network Algorithm

input : N = a set of random detectors, n = number of best

antibodies

output: M = set of generated detectors capable of finding solution

begin

 1. Create an initial random population B

2. For each solution in B

2.1 Determine inverse distance for solution in B to each member of N

2.2 Select n members of B with the highest affinity

2.3 Clone and mutate each n in proportion

2.4 Retain the highest affinity of n and place in a set M

2.5 Perform network dynamics in M to remove weak members of M

2.6 Generate b random elements and place in B

3 repeat
end

Figure 1-16 Pseudo-code of the basic Artificial immune network algorithm [3]

1.1.2.1.3 Clonal Selection Algorithm (CLONALG)

The main idea of clonal selection is inspired by the basic features of natural immune

system that response to an antigenic stimulus. The idea is to just select and duplicate

25

those cells that can recognize antigen [2]. Some of the most important features of this

algorithm are:

 Selection and proliferation of cells with the highest level of stimulation (high

affinity)

 Elimination of cells with the lowest level of stimulation (low affinity)

 Dependence evolution and selection of the cells, proportional to antigen stimulus

 Save the cells with highest level of stimulation for longer time as memory cell

The main difference between clonal selection and other evaluation algorithms is

mutation and how it is being done. The mutation rate is proportional to inverse of the

affinity. It means that cells with high affinity have low mutation rate and cells with low

affinity are mutated by a higher rate. In both groups of algorithms, the population should

be encoded using binary or real numbers similar to evolutionary algorithms, but in

clonal selection the binary coding is usually used. The general structure of the clonal

selection algorithm is shown in Figure 1-17.

Clonal selection Algorithm

1. Fitness evaluation: For each antibody xi in the population P compute its fitness f(xi)

2. Clonal selection: Choose a reference set Pa ⊂ P consisting of h antibodies with highest

fitness to the antigen

3. Somatic hypermutation.

 3.1 For each antibody xj ϵ Pa make mutated clones xcj,k , k = 1,…,c, compute their fitness

and place them in clonal pool C.

3.2 Choose a subset Pc ⊂ (P ∪C) containing |P| fitness antibodies.

 4. Apoptosis: Replace d worst antibodies in Pc by randomly generated solutions.

5. Set P = Pc

Figure 1-17. Pseudo-code of Clonal selection algorithm [18]

26

1.1.2.1.4 Negative Selection Algorithm (NSA)

Due to the success achieved by using other artificial immune systems algorithms,

researchers were attracted to another aspect of the immune system that does negative

selection in the process of the maturing the T-cells. In negative selection process,

immature and inappropriate T-cells that are attached to self-cells are eliminated. This

process helps the immune system to recognize self from non-self-antigens without any

mistakes. Since the process needs to introduce the detection of the specific harmful cells,

it allows the immune system to identify previously unseen harmful cells. This algorithm

includes 3 levels: self-detection, producing finders and investigating the occurrence of

abnormal events. In first level, self-cells are detected by similar methods to other

detection methods, and some patterns equal to these are created which are called self-

patterns. In second level, some random patterns are produced that have been compared

to the self-patterns which were produced in the first level. If a produced random pattern

matches with self-pattern, this pattern fails in the process of becoming a detector, so it

should be destroyed. Otherwise, it becomes a pattern detector and monitors specified

patterns which have been seen in the system before. Some of the important features of

negative selection algorithm are:

 Detection of previously unknown attacks

 Probable detection and adjustable

 The inherent distribution detection

 Local detection

 Unique set of detection

 Protection of self and non-self detectors sets

27

The general pseudo code of negative selection algorithm is shown in Figure 1-18.

Negative Selection Algorithm

input : S = set of self-cells

output: D = set of generated detectors

begin

 1. Define self as a set S of elements in shape–space ∑L

2. Generate a set D of detectors, such that each fails to match any element in S.

3. Monitor data δ ⊆ ∑L by continually matching the detectors in D against δ. If any detector

matches with δ, classify _ as a non-self, else as self.

end

Figure 1-18. Pseudo-code of Negative selection algorithm [3]

1.1.2.2 Features of Artificial Immune Algorithms

From the perspective of information processing, immune system is a parallel and

distributed adaptive system. Immune algorithm has been inspired by theoretical

immunology and several processes that occur in it. In general, Immune algorithms use

learning, memory and associative retrieval to solve problems and identify related

patterns. The immune algorithms have many properties and some of the most important

are [10]:

 Uniqueness: each individual has its own immune system independently

proportional to its own vulnerabilities and ability

 Recognition of foreigners: the immune system detects and destroy the (harmful)

molecules

 Anomaly detection: recognition and response to pathogens that the body has

never encountered before

 Distributed detection: cell distribution in the whole body

 Imperfect detection (noise tolerance)

 Reinforcement learning and memory: fast and powerful react to the pathogens

which was detected before

28

We can name versatile, feature extraction, dedicated, self-tolerance, resolution as other

properties. Some of the important characteristics in immune system are explained below.

1.1.2.2.1 Mutation

Mutation in the genetic algorithm is used to avoid premature convergence by lost or

unseen particle recovery solutions. In immune’s algorithm, mutation occurs randomly

depending on affinity rate between antibody and antigen. Population with high affinity

has lower rate of mutation, but on the other hand, population with low affinity has higher

rate of mutation [19]. This strategy tries to search near neighbors individually with

higher affinity which is opposite of what happened to individuals with lower affinity. In

this situation, the system tries to search in bigger space to probably find a better solution.

 The small amount of mutation rate in genetic algorithms is essential and successful and

creates diversity in the crossover. The mutation as the only mechanism in immune

system that can create diversity in population has a very essential rule. It should create a

new population in such way that can search domain space in two cases. In first scenario,

it should search near neighbors individually and cover local searches and this happens

by using a low rate of mutation. In second scenario, the system should search in a bigger

area in domain space which helps to escape from local optima and find the global

optimum. In this process it is necessary to protect the most qualified individual (the

elite) in cycle. This rate is decreased until it reaches zero and the process of retaining the

most qualified individual reaches to its maximum.

There are a lot of strategies for using mutation. Some of the algorithms use binary

encoding to present the population. In this case, bits filliping is the mutation technique,

29

but in various ways. Examples are single or multi point mutations. In the real value

string presentation, one or more values can change randomly or the order of the elements

is swapped. Additionally, some algorithms create numbers in different ways and are

randomly added to or subtracted from the original value [20].

1.1.2.2.2 Adaptive Population Size

In some algorithms, the population size depends on the selection strategy and its

calculated intervals can change. If the process of evolution is considered, the population

size should be proportional to the process. Boundaries of population size is set in such a

way that prevents the stability and keeps diversity of the population by selecting random

number of populations to eliminate and create new individuals.

1.1.2.2.3 Secondary Response

Some algorithm use memory to save optimality reports and relative results and when the

function is placed in a similar situation, the memory is retrieved for faster and better

response.

1.1.2.2.4 Termination Criteria

Termination criteria can be a condition or combination of many conditions that have

been considered on many programs and they cause the programs to stop. Some of the

most used conditions as termination criteria are:

 Desired accuracy

 Maximum amount of generation (iteration)

 The best individual in current generation remains and duplicate in the next

generations

 Population size

30

1.1.2.3 Problem Environments

There are 2 kinds of problems in computer science which are grouped based on their

problem spaces: static environment and dynamic environment. Most of the problems in

computer science are static problems. In static environments, domain space and problem

solutions stay unchanged. So the agent does not need to adapt to new situations. On the

other hand, dynamic environments are more complex and need some strategies to deal

with them. A brief review of dynamic environments is explained in below.

1.1.2.3.1 Dynamic Environment

Most real-world problems are changed dynamically over time. As example of these

cases it can be pointed to the problems of scheduling or routing that during time where

new tasks may be added or subtracted. Because of the characteristics of evolutionary

algorithms their advantages and essence have been derived from nature and is used

widely to solve optimization problems in uncertain environments. Normal optimization

algorithms that are designed for static optimization problems are not able to detect

environmental changes and cannot perform successfully. To have a suitable respond in

dynamic environments, environment change detection and response to this changes are

essential [21].

1.1.2.3.1.1 Detecting Changes in Dynamic Environments

One of the most common methods for detecting changes in dynamic environments is

using a point in the environment as a guard. In this case the value of the function at that

point is calculated in each cycle and is compared to the function value of the same point

in previous iteration. In this case, different values show changes in the environment

[22]. But according to the environmental changes that may occur only in the vicinity of

the guard, it sometimes may be unable to detect changes. Therefore instead of using a

31

fixed point in the environment, using several random points as guards is suggested.

Certainly accuracy of reorganization will depend on the number and position of the

guards [23].

There is another method which suggests monitor changes of the best value of the

function. In this method, the global optimum in each period is calculated and compared

with the previous period. In this case, difference between the values shows the changes

in the environment [24].

1.1.2.3.1.2 Response to Changes in Dynamic Environments

There are a lot of methods that suggest how to deal with the environment changes. To

deal with dynamic changes in the environment, one method is removing and replacing

all previous values with the new values and look at the new environment as new

problem. Some methods have proposed various random replacing such as reproducing

some part of the population randomly, initializing the best solutions randomly, and

reinitializing the whole of population. Between these methods, reinitializing 10% of the

population has good results [24].

Other mechanisms that have been discussed in [25] and [26] use a selection mechanism.

It means the whole or some part of the population is generated by the current population

which can consider different mechanisms based on elitism. Of other approaches that

have been used in various references that can be named are: mechanisms to create

diversity in the population [27], using of memory [27] [28], the combination of

diversification and memory [29], multi population [30] [31], immigration methods [31]

[32] and changes in the parameters of the algorithm [33].

32

Chapter 2

2 DYNAMIC OPTIMIZATION PROBLEMS

2.1 Problem Description

To evaluate an algorithm, the most important element is the problem or problems that

algorithm tries to solve it. Some of them are static and some of them are dynamic. But in

real world, most of the problems are dynamic. It means solution space, objective

function, decision variable, and constraint may change during the time. It makes the

problem more complex, so it needs different strategies to solve it. A part of these

problems are dynamic optimization problems (DOPs). Many researchers have tried to

propose some dynamic problems to test and compare their algorithms to each other.

Some of the most important test functions are: “the moving peaks benchmark (MPB)”

[34] [35], “the DF1 generator” [36], “the single and multi-objective dynamic test

problem generator by dynamically combining different objective functions of exiting

stationary multi-objective benchmark problems” [37], “exclusive-or (XOR) operator”

[38] [39] [31], “dynamic traveling salesman problem (DTSP)” [40] and dynamic multi

knapsack problem (DKP) , etc.

To evaluate proposed algorithm, 2 test environments were used and both of them are

based on moving peaks benchmark. There is a brief explanation of both of them in

section 2.1.1and 2.1.2.

33

2.1.1 The Moving Peaks Benchmark

In 1999, Jürgen Branke proposed a multidimensional fitness function which consists of

several peaks and they change during the time. This fitness function is called “The

Moving Peaks Benchmark” [35]. In this benchmark function, locations, heights, width of

peaks are changing over time. But these changes happened in 2 models: in one of them,

“the optimum shifts slightly” can be found by a local search but on the other one “the

height of the peaks changes such that a different peak becomes the maximum peak”

which in this case the algorithm should jump to reach to the new optimum. [35]. The

function’s formula with n dimensions and m peaks is:

 (⃗⃗) ((⃗⃗)

 (⃗⃗ () () ⃗⃗ ⃗())) (1)

Where { }, is time, ()a time constant, and P is peak’s shape.

Each peak has height (()), width (()), and location (⃗⃗⃗ ()) which all of the peaks are

initialized randomly. To change peaks, new coordinates of each peak is calculated by the

following formulas and for λ=0 the changing direction is random and for λ>0 direction

depends on the previous direction :

 ()

 () ()

 () ()

 ⃗⃗ ⃗() ⃗⃗ ⃗() ⃗⃗ ⃗()

(2)

Where and are initialized by the program it shows

the severity of height and width changes. ⃗⃗⃗ () is a shift vector and is a linear

combination of ⃗ that is random vector and normalized to length . It is computed by:

 ⃗⃗ ⃗()

| ⃗ ⃗⃗ ⃗()|
(() ⃗ ⃗⃗ ⃗())

(3)

34

2.1.2 Generalized Dynamic Benchmark Generator (GDBG) [41]

The GDBG is a test function based on moving peaks benchmark. This function is more

complicated than the original function. This function uses rotation method instead of

shifting methods to move peaks and change the environment peaks. The GDBG includes

6 different functions to create peaks and each of those function change in 6 different

scenarios [41]. In continue, it is tried to give a short review of this test functions and the

framework of dynamic changes.

2.1.2.1 Dynamic Changes

Dynamic optimization problems can be defined as:

 () (4)

Consider F as optimization function which is tried to solve and f is fitness function. t

represents the time and feasible solutions are represented as x. The solution distributions

are determined by system control that here is . For dynamic change, a new

environment can be gained by the formula:

 () (()) (5)

In this equation, is a deviation from the current system control’ parameters.

As said before, environment and peaks are changed in 6 different scenarios. These

scenarios are “small step change, large step change, random change, chaotic change,

recurrent change and recurrent change with noise” [41].

These six change methods are explained in following equations:

35

T1 (Small change step):

 ‖ ‖ (6)

T2 (Large change step):

 ‖ ‖(() ()) (7)

T3 (Random change):

 () (8)

T4 (Chaotic change):

 () (()) ((()) ‖ ‖⁄) (9)

T5 (Recurrent change):

 () ‖ ‖ ((

)) ⁄ (10)

T6 (Recurrent change with noisy):

 () ‖ ‖ ((

)) () ⁄ (11)

36

 “Where ‖ ‖ the change range of is , is a constant number that indicates

change severity of , is the minimum value of , (0, 1) is noisy

severity in recurrent with noisy change. (0,1) and (0,1) are constant values,

which are set to 0.04 and 0.1 in the GDBG system. A logistics function is used in the

chaotic change type, where A is a positive constant between (1.0, 4.0), if is a vector,

the initial values of the items in should be different within ‖ ‖ in chaotic change. P is

the period of recurrent change and recurrent change with noise, is the initial phase, r is

a random number in (-1,1), sign(x) returns 1 when x is greater than 0, returns -1 when x

is less than 0, otherwise, returns 0. N(0,1) denotes a normally distributed one

dimensional random number with mean zero and standard deviation one” [41].

2.1.2.2 Functions Definition

As said before, GDBG is based on moving peaks benchmark, but the problem space and

peaks are created by 5 basic functions. In all test functions some fixed parameters were

used that was defined by the competition manager. In some case duo to some reasons we

had to change them. Dimension that is showed by n are fixed in all functions and it

equals to 10. Just in rotation peak function, the algorithm was tested with 50 peaks also.

In all functions the range of search space is between -5 to 5 in each dimension (

[]). The original environment change frequency is 10,000 times of dimensions

() but in our test, we decrease the change frequency rate to

5,000 times of n. [41].

For environment changes step severity (α) is equal to 0.04 and maximum (αmax) value

would be 0.1. In chaotic scenario, the chaotic constant was considered A=3.67. Also in

37

recurrent change with noisy case, noisy severity is 0.8. The description of each function is

explained below:

2.1.2.2.1 Rotation Peak Function

This function is exactly same with moving peaks benchmark, but in this version, it uses

rotation method instead of shifting methods to move peaks. This is a multi-model

function that has the ability to scale. The function controls number of peaks artificially.

In our test program, this function is used in 2 situations, one for 10 peaks and another

one for 50 peaks. The width ranges from 1 to 10 ([]), and width severity is

equal to 0.5 (). The global optimum in each period is calculated by

bellow formulas:

 () ⃗⃗⃗⃗ (
 ()) ()

 ()

(12)

A 3D view of a sample of this function is shown in Figure 2-1.

Figure 2-1. 3D perspective of moving peak benchmark [41]

38

2.1.2.2.2 Composition of Sphere's Function

Sphere is one of the most famous functions in mathematics. This function is very

interesting in computer science and it has been used to evaluate many algorithms till

day. This function creates a round object in 3 dimensions. The function is:

 () ∑

 []

 (13)

In GDBG function the Sphere's function was used as a basic function to create the

environment while [] . This function has 10 local optimums. The global

optimum can be obtained from these formulas:

 () ⃗⃗⃗⃗ (
 ()) ()

 ()

(14)

The basic function is: f 1- f10 = Sphere's function [41]

A 3D map of this function is shown in Figure 2-2.

Figure 2-2. A 3D view of Composition of Sphere's function [41]

39

2.1.2.2.3 Composition of Rastrigin’s Function

Rastrigin function is a famous function that used as a mathematical optimization

function to evaluate algorithm performance and it is defined by:

 () ∑ (

 ())

 (16)

The domain space in this function is [] . This problem has a huge number of

local optima that used rotation method to move them. This function is multi-model

function and it is scalable. Global optimum is calculated by the below equation:

 () ⃗⃗⃗⃗ (
 ()) ()

 ()

(17)

The basic function is: f 1- f10 = Rastrigin’s function [41]

A 3D view of this function is shown in Figure 2-3.

Figure 2-3. 3D view of Rastrigin's function [41]

40

2.1.2.2.4 Composition of Griewank's Function

This function is especially used to test the convergence of optimization algorithms.

Griewank's function is defined by:

 ()

∑ ()

 ∏ (

√
)

 (18)

The domain space is [] and includes a massive number of local optima. Like

other function, this function uses rotation method to move peaks. Global optimum is

calculated by:

 () ⃗⃗⃗⃗ (
 ()) ()

 ()

(19)

The basic function is: f 1- f10 = Griewank's function [41]

You can see a 3D perspective of this function in GDBG function in Figure 2-4.

Figure 2-4. 3D view of Griewank's function

41

2.1.2.2.5 Composition of Ackley's Function

Another function that GDBG uses to create the environment is Ackley's function.

Ackley's function is defined by:

 () (√

∑

) (

∑ ()

) (20)

In this function [] and the environment contains a huge number of local

optima. The global optimum can be obtained of these formulas:

 () ⃗⃗⃗⃗ (
 ()) ()

 ()

(21)

The basic function is: f 1- f10 = Ackley's function [41]

Figure 2-5 shows a 3D view of a sample of this function.

Figure 2-5. 3D view of composition of Ackley's function [41]

42

2.1.2.2.6 Hybrid Composition Function

This function is combination of Ackley's function, Griewank's function, Rastrigin's

function, Sphere's function and also Weierstrass's function. Weierstrass's function is defined

by:

 () ∑(∑ [(())]

) ∑[()]

 (22)

The hybrid function uses different function properties and mixes them to create an

environment that includes massive number of local optima. The global optimum can be

get of the bellow formulas:

 () ⃗⃗⃗⃗ (
 ()) ()

 ()

(23)

The basic function is: “f1 - f2 =Sphere's function, f3 - f4 =Ackley's function, f5 - f6

=Griewank's function, f7 - f8 =Rastrigin's function and f9 - f10 =Weierstrass's function”

[41]. A 3D view of this function is shown in Figure 2-6.

Figure 2-6. 3D view of Hybrid Composition function [41]

43

2.2 Difficulties of Solving Dynamic Problems

Meta-heuristic methods for optimization can solve the problems in static environments

more easily than the problems in dynamic environments; these methods have some

challenges in dynamic environments that do not exist in static environments. The two

most important challenges are diversity loss and outdated memory.

In dynamic environments, the solution’s eligibility that was obtained by agents

 is changing by the environment change and it does not match with the values stored in

the memory. In fact, the fitness value that is stored in such a case is not correct and valid

to find the solutions. This phenomenon is called outdated memory. To solve this

problem, two solutions are suggested: re-evaluating memory and forgetting memory

[42]. In the forgetting memory method the saved location for each solution is replaced

with current location of that solution in the new environment. In the second method, the

stored position in memory can be re-evaluated in new environment.

Diversity loss also happens due to the intrinsic nature of meta-heuristic methods for

convergence. This issue is more important than the outdated memory. Due to premature

convergence, diversity in the environment is reduced and algorithms have the problem to

converge to an optimal level in new environment. This issue is created due to the

intrinsic nature of these methods to converge to the previous optimal positions and

closing the solutions to each other so much.

The easiest way to solve the above problem is re-initialization [43]. In this method, after

environment changes we look at the problem as a new problem. This method is very

44

simple but it is not suitable for solving many dynamic problems. Use of this method

only is suggested when major changes happen in the environment. It means the

difference between new environment and the previous environment is very high. But in

most real dynamic problems, changes in the environment are not very severe and there is

a connection between the new environment and previous environment. So using the

gained knowledge from previous environment we can increase the efficiency of

optimization process in the new environment. As a result of using re-initialization

method for solving such problems we lose all the gained knowledge from problem

space. To solve diversity loss problem many different methods have been presented that

can be divided into two general categories.

2.2.1 Presenting Siversity Method

The final goal of algorithms in this class is that first they allow the diversity loss to occur

and then they try to solve it. This group can also be divided into two subgroups:

2.2.1.1 Mutation and Self-adaptation

In this subgroup it is tried to create diversity in the new environment by using self-

adaptation and mutation. In [44], an adaptive mutation operator was presented as a

mutation factor which is multiplied in normal mutation rate and called Triggered Hyper-

mutation. In [45], a chaotic mutation to create diversity in the environment as an

adaptation has been used. Also another method is represented in [46] that is solved the

mutation step size problem in [44] by adaptation. Replacing the previous good solutions

after a change in the environment rather than adding a random solution is a strategy that

is presented in [47] to create diversity. A variable relocation method is presented in [48]

that relocates the solutions based on the fitness function values when environment

changes, it is done for each solution with different radius.

45

2.2.1.2 Other Approaches

Other methods for creating diversity in the environment after the changes in the

environment occurs are presented too. RPSO is a method to randomize the part of the

solution or whole of the solutions to detect changes in the environment [49]. An

algorithm called Population-Based Incremental Learning (PBIL) was presented in [50]

that used a customizable probability vector to produce solutions. This method uses the

vector to set learning rate after environment change.

This class of methods is suitable for environments with low or medium change, because

the mutation is a local search and is appropriate when the changes are small and local.

Some problems of these methods can be noted as unidentifiable changes in most

environments, not accurately measuring mutation step size and being inappropriate for

the environments with vast and quick changes.

2.2.2 Diversity Maintenance Method

In this method it is always tried to preserved diversity in the environment at all times

(before and after the change). Presented algorithms in this section can be divided into

three categories:

2.2.2.1 Dynamic Topology

In this group by limiting communication between solutions the speed of algorithm’s

convergence to the global optimum is reduced. Thus it maintains the diversity in the

environment. In [51] a neighborhood structure like grid for maintaining diversity that is

called FGPSO was presented, which provides higher performance than RPSO [49] in

dynamic environments with high dimensions. In HPSO [52] a hierarchical structure and

tree-like is proposed to maintain diversity.

46

2.2.2.2 Memory-Based

When a periodical or recurrent change in the environment occurs, the past optimal

solutions may be very useful for future use. Thus, memory-based methods try to keep

such information. Memory-based methods have been mostly proposed for evolutionary

methods such as GA, EDA, which have genetic nature.

2.2.2.3 Other Approaches

Other methods to maintain diversity in the environment after the discovery of changing

environment is presented too. In [53], a sentinel placement method is used to maintain

diversity. In this method, some sentinel series that are distributed in the search space

have been used to generate new population. These sentinels always exist in the

environment and are not removed so they can be used to identify changes in system. In

[54] random immigrant method has been suggested that in every generation, some

random solution is added to the population to maintain diversity. Another method to

maintain diversity based on fitness sharing is presented in [55].

2.2.3 Hybrid Method

This group includes combination of presenting diversity with diversity maintenance

method. So it maintains diversity during run time and also tries to create diversity when

environment changes.

47

Chapter 3

3 A MULTI-SET ARTIFICIAL IMMUNE SYSTEM FOR

SEARCHING OPTIMA IN DYNAMIC ENVIRONMENT

3.1 The Proposed Algorithm

In this chapter a new algorithm based on artificial immune system is proposed to

optimize the functions described in chapter 2. The proposed algorithm uses different

mechanism to solve dynamic environment challenges and increase the efficiency. In

continue of this section, various mechanisms that are used in the proposed algorithm will

be described.

3.1.1 Solving the Potential Optimum Coverage Challenge

As was said before, in a dynamic environment there are several peaks; each of them can

change global optimum after environment changes. As a result, each of the peaks is

considered a potential optimum. So the designed algorithm for optimization in dynamic

environments should monitor all the peaks so it can quickly detect the global optimum

after environment change has happened.

In the proposed algorithm multi-set mechanism is used to cover all peaks. The

mechanism used in this algorithm controls sets is inspired by THs
6
 and B-cells [4]

cooperation. THs try to help B-cells to identify antigens in the body and become mature

cells and convert them to antibodies. There are some sets that are called TH-cell and

many other sets that are called antibody. In TH-cell set the number of cells in the set is

6 T-cell helper [4]

48

more than the number of cells in antibody sets and their task is finding the peaks in

environment. At the beginning of the algorithm there is only a TH-cell in search space

and other sets are deactivated. That means their cells are not moving.

 At the beginning the TH cells are initialized randomly in the problem space and start to

search the environment. To search the environment, cells should be matured

proportional with their shapes (shape means position in this algorithm), so they use

different mutation rates. To do this, the algorithm uses the below formula as mutation

rate which is inspired of PSO movement strategy [56].

 () ()
 ()

 () (24)

Where T is time, is mutation rate for i
th

cell in j
th

 dimension. and are two

random number in [0,1]. shows the position of i
th

cell in j
th

 dimension. Pbest
7
 is the

best affinity value that each cell can catch during cloning process. Sbest
8
 is the highest

affinity value in each antibody set.

After a TH cell converged to a peak, it activates an antibody set and puts it in the peak

instead of itself. After antibody was activated and reached the peak that TH cell had

found before, covering and chasing of the peak after environment changes becomes the

task of that antibody. The antibody set finds the tip of peak where it is located by a local

search [57] [58].

7 Personal best
8 Set best

49

As mentioned, the numbers of cells in TH cells set are more than the number of cells in

each antibody sets. Therefore when an antibody set is replaced instead of a TH cells, the

cells with higher affinity are copied in antibody cells. For example, if the TH set has 10

cells and there are 6 cells in antibody set, top 6 cells from TH cells with higher affinity

are chosen and copied in antibody cells. Their mutation rate, position and affinity rate

(Pbest) be copied too. After antibody set is activated, the TH cells are randomly

initialized in the search space. So the local searching and chasing the top of peak are

antibody’s responsibility and TH cells start the global searching again to find other

peaks that are not covered by any antibodies sets. This process will continue until all the

peaks are covered by antibodies. If TH cells find a peak that it is not covered by any

antibody, put an antibody set there and active that set. When Euclidean distance between

the Sbest position in m
th

 and (m+n)
th

iteration is less than a threshold which is called

conv_limit, TH cells had found a peak and converged to it. The antibody activation

pseudo code is shown in Figure 3-1.

Antibody Activation Algorithm

If TH cells are converged then

list = sort cells in TH cells based on their Pbest_affinity_value in descending order

activate an antibody set

For counter=1 to antibody_set_size

 Antibody_cell_positioni (counter)= list_position(counter);

Antibody_cell_mutation_ratei (counter)= list_mutation_rate (counter);

Antibody_cell_Pbesti (counter)= list_Pbest (counter);

 Endfor

Sbestantibody = SbestTHcell;

Reinitialize TH cells;

Endif

Figure 3-1. Antibody activation pseudo code

50

If TH cells find a peak that was found before, without any activation the TH cells will

reinitialize again. In fact, a peak that is discovered before is covered by an antibody set.

So when the Euclidean distance between TH cell’s Sbest position and Sbest position of

antibody’s cells is less than a certain amount which is named rexcl, the TH cells

converged to a peak that was discovered before. The amount of rexcl determined is based

on the proposed algorithm in [59]. It was shown when the Euclidean distance in both

positions is less than the rexcl, they are converged to a peak [39]. The rexcl is defined by:

 (

⁄) (25)

 Where P is number of peaks and d is number of dimensions in search space. In each

cycle, Euclidean distance between location TH cell’s Sbest and all the Sbest of antibody

sets is calculated and if the value of this distance with any of the sets is less than rexcl,

TH cells are reinitialized. The pseudo code to maintain monopoly among TH cells set

and antibody sets is shown in Figure 3-2.

TH Elimination Algorithm

For each activated_antybody_set i

If Euclidian distance between SbestTH and Sbestantibody is less than rexcl then

 Reinitialize TH cells;

 Endif

 Endfor

Figure 3-2. Pseudo code TH Elimination Algorithm

Sometimes it is possible that the TH cells converge before reaching to a peak. This will

put an antibody set into the place and activates it. Thus, this antibody set may move

toward a peak that is already covered by another activated antibody set, so there will be

51

two activated antibody sets in a peak. Sometimes it may be that 2 covered peaks are too

close to each other and an antibody set leaves its own peak and moves toward the other

peak, hence covering that peak by two antibody sets. In this case, residents with more

than one set at a peak not only will improve the results, but also merit evaluation would

be superfluous. To solve this problem, Euclidean distance between all Sbest’s positions

of activated antibodies should be calculated. Thus if the distance between the Sbest of

two sets is less than rexcl, they are in the same peak. In such a case, the set who has the

worse affinity value is eliminated and the other one with higher affinity continues its

work. The pseudo code of above process is shown in Figure 3-3.

Antibody Elimination Algorithm

For each activated_antybody_set i

 For each activated_antybody_set j

If Euclidian distance between Sbestantibody i and Sbestantibody j is less than rexcl then

 If Affinity(Sbesti) < Affinity (Sbestj) then

 eliminate antibody set i;

 Else

 eliminate antibody set j;

 Endif

 Endif

 Endfor
Endfor

Figure 3-3. Pseudo code antibody Elimination Algorithm

3.1.2 Environment Change

One of the major challenges in dynamic environments is environment change detection

and adopting algorithms for the problems caused by it. As mentioned in Section 2.2 ,

after changing the environment, optimization algorithms face two serious problems,

diversity loss and outdated memory. Thus, algorithms that are designed to optimize

dynamic environments must be able to quickly recognize changes in the environment to

52

use the mechanisms to solve these two problems. The proposed algorithm for detecting

changes in the environment uses a point called Guard point. At the beginning of the

algorithm a random position in search space is selected as the guard point and its affinity

value will be saved. In each cycle of the proposed algorithm, the affinity value of the

guard point is calculated and compared with the previous value. If the obtained values in

current and previous iteration are equal, then the environment has not changed, but if

they were two different values, it shows that environment has changed.

It should be noted that using of guard point is only suitable for those dynamic

environments that change globally. But If there are only local changes then no changes

may occur in guard position. So in this situation, using of guard point cannot be suitable

for environment changes detection and to identify changes global optimum should be

used.

After changes were detected in the environment, the algorithm uses some mechanisms to

resolve the diversity loss and outdated memory problems. In the proposed algorithm

when a changed environment is detected, it first uses mechanisms to increase diversity

since diversity loss is happening in our algorithm. Before environment changes,

antibody cells are converged to the tip of peaks that they have covered. In this case, the

distance between the positions of antibody cells in each set is very close to each other

and also their mutation rate will be very close to zero. The distance between the Pbest

position and Sbest position are very close too.

53

In this situation, after a peak that is covered by an antibody set is moved the position of

the antibody’s cells and their Pbest remain around the peak position and cannot move to

the new peak position. The reason of creating this problem is because the current

mutation rate is determined based on the previous mutation rate, difference between

antibody Pbest position and other cells in that antibody set. Also difference between

cells Sbest position and other cells after changing the environment are close to zero. In

this case the variation is very low and the cells cannot adapt themselves to new

environment.

To solve this problem, the proposed algorithm uses a new mechanism on antibody sets.

In this mechanism, the position of all cells in each activated antibody set is changed after

environment change occurs. After the environment changes, the new position of peak is

within the spatial with a radius of severity of previous position. So to speed up finding

the new position of the peak, the cells should be randomly distributed with uniform

distribution around the Sbest within the spatial with a radius of severity of previous

position. Thus, antibody’s cells will expand in a space based on the need to find better

values. After changing, the new position of cell j in the antibody seti is determined by

following equation:

 (
 ()) (26)

Where D is the number of dimensions in problem space, Rand is a function that

produces a D-dimensional vector of random numbers with a uniform distribution in [-

1.1]. P determines how the cells are distributed in which radial around the Sbest based

54

on Severity. In fact, P × severity shows the maximum distance between the Sbest and

each cell in each dimension.

As mentioned before, the mutation rate after the environment change is close to zero. In

the proposed algorithm to improve the diversity the cells mutation rates are randomly

initialized based on severity after environment change is detected. Thus the mutation

rate and position of cells could be adjusted based on severity, and antibody sets can be

placed in a situation that can quickly find the location of new peaks in the new

environment. The mutation rate can be obtained by the following equation

Where Q is defined as the maximum mutation rate based on percentage of severity.

After the cells positions were determined based on activated antibody Sbest and severity,

the Pbest of each cell changes to its new position (). Then the new value

of Pbest affinity is calculated and the best one in each antibody set is considered as the

Sbest in that set. Thus the previous memory of cell in activated antibody sets is reset so

the outdated memory problem is solved.

After the environment change there is no need to increase diversity in TH cells because

when these cells are converging they will reinitialize automatically and their memory

should be updated after environment change occurs. Then the searching continues with

valid memory. To update the TH cells memory, the merits of each Pbest position in TH

cells are calculated and the best one will be considered as the Sbest. Pseudo-code of this

 (
 ()) (27)

55

mechanism that is used after identifying changes in the environment is shown in

Figure 3-4.

Deal with Environment Change Algorithm

For each activated_antybody_set i

 For each cell j in antybody_set i

Update Xi,j using Eq. 26

 Update MTrate i,j using Eq. 27

 Pbesti,j= Xi,j

 Evaluate Affinity(Pbesti,j);

 Endfor

 ()

Endfor

For each cell k in TH-cells
 Evaluate Affinity(Pbestk);

Endfor

 ()

Figure 3-4. Pseudo code deal with Environment Change Algorithm

3.1.3 Mechanisms to Increase Performance

In the proposed algorithm, two different mechanisms for increasing the efficiency is

used which are described in the following section.

3.1.3.1 Active and Inactive Mechanisms

After environment changes, each of the antibody sets try to find the peak that is resident

in them by local searching. Due to the current error value being determined based on the

result of a set tasks that has the best Sbest among the other sets, the local search results

of the best set that is near the highest peak is much more important. Therefore those of

other activated antibody sets in current environment do not have a role in determining

the results, but the local search is still important for them. In fact, if these sets do not

perform their local search after environmental change and several peaks movement, it is

56

possible that their peak is very far from them and they may lose it. Therefore the local

search is essential for the entire activated antibody sets in the environment change.

As noted before, the obtained result of each environment is determined by an antibody

set which is near the highest peak. So to improve the result this set should have

performed a more accurate local search. One of the ways that local search can be made

more precise is giving more opportunity to perform local search. But usually algorithms

in dynamic environments do not have much time to adapt themselves with the

environment because of frequency change in the environment that is determined based

on amount of evaluation. Therefore each of the sets can perform little iteration until the

next environment change. This can be a problem when there are a large number of

activated sets in the area. In such a case, in each cycle of the algorithm run it performs a

lot of fitness evaluation so each set can be executed very few times till the next

environment change.

In the proposed algorithm to increase efficiency and give more opportunity to those

antibody sets who are nearest to the highest peak, an activating-inactivating mechanism

is used for antibody sets. In this mechanism, antibody set can be in two different

situations: Activated or Deactivated. The activated antibody set is the set that its cells

exist in the search space and performs fitness evaluation to do the search. Also its cells

mature during each cycle of the algorithm. On the other hand the deactivated antibody

set is the set that its cells are in the search space but do not perform maturing process

and fitness evaluation.

57

In this mechanism, after each change in the environment, all the antibody sets are

activated and perform the optimization process. As discussed before, the activated sets

that are resident in non-optimal peaks must do local search after each change in the

environment to prevent increasing their distance from the peak that they have covered.

But after reaching the closest peak continuing the local searching to increase the

accuracy is not very useful and it does not affect the result.

In fact, with this mechanism, after an antibody set moves near to a non-optimized peak,

it’ll be deactivated and they stop to perform affinity evaluation till next environment

change. So this mechanism prevents a significant number of futile evaluations and uses

them to give more opportunity to the antibody set who resides in the global peak. This

causes the local searches around the global optimal peak to perform more and thus

improve efficiency and accuracy of the results obtained from the whole algorithm.

In the proposed algorithm to detect whether the antibody set is close enough to its peak

or not, their mutation rates are used. In fact, when a set is converging towards the target

position and gets near it the mutation rate of the cells decreases.

The proposed algorithm has a parameter called activated_boundary, if all cells mutation

rates be in range [-activated_boundary, activated_boundary], then that set is near

enough to its peak and it should be deactivated. It should be mentioned that in any

environment the set who has the best Sbest affinity value among all sets is not

deactivated. Also when environment change occurs, all the sets are activated again.

Pseudo-code related to activating-inactivating mechanism is shown in Figure 3-5.

58

Activating-Inactivating Algorithm

For each non activated_antybody_set i

 If all dimension of MTrate for each Antibody Set j is ϵ [-activated_boundary,

activated_boundary] then

activated [i]=False

 Endif

Endfor

Figure 3-5. Pseudo-code activating-inactivating mechanism

3.1.4 Graphical View on Proposed Algorithm

To better understand this algorithm and see how it works, here is a brief graphical view

of running the algorithm in the Moving Peaks Benchmark problem. Figure 3-6 shows a

3D view of sample environment in this problem. As shown in this figure, there are 10

peaks in each environment that one of them can be highest peak which is called global

optimum. As said before in problem description, the environment represents many

different dimensions that will be discussed in the next chapter but to apprehend the view

of the environment, the first two or three dimensions properties were used to create the

approximate view of the environment.

Figure 3-7 shows 2D view of the sample environment .In Figure 3-7 (a) TH cells the

best cell with highest affinity in this set is shown by star located in sidehill of a peak.

After some cloning and searching in the environment, they can be located in near to the

peak that is shown in Figure 3-7 (b).

59

Figure 3-6. 3D view of an environment

 (a) (b)

Figure 3-7. Finding peak by TH cells

60

After TH cells converged to a peak, they activate an antibody set and put that in the peak

instead of themselves and TH cells reinitialize randomly again. The blue point in

Figure 3-8 is representing an antibody set. After an antibody set was activated, finding

the top of the peak and converging to it is the task of antibody. At the same time TH

cells are trying to find another peak and active another antibody set. This process is

continuing until all of the peaks are found or the environment changed.

As is shown in Figure 3-9 after environment changes, antibody sets search in a bigger

space around themselves to find potential peaks. If all peaks were founded only the set

with highest affinity (global best) continues searching more accurately around the peak

to decrease error. Otherwise TH cells continue searching the whole environment to find

the remaining peaks and so on.

As can be seen in Figure 3-8 (a), 5 peaks were found. After environment change in

Figure 3-9 (b) with a local search by antibody sets those peaks are recognized again so

TH cells continue searching for the peaks left.

All of these processes are continued until all peaks are found or they reach to the

termination conditions. In the Figure 3-10 it is shown environments that all peaks inside

are found and covered by antibody sets. The flowchart of this algorithm is shown in

Figure 3-11.

61

Figure 3-8. Antibody set activating

(a) (b)

Figure 3-9. Environment change

62

Figure 3-10. All of the peaks are found

63

Start

TH-cells maturing

 TH-cells elimination

Antibody activation

Antibody elimination

Activating-Inactivating process

Deal with Environment Change

End

Compare new

affinity of Guard

point with old value

Randomly initialize TH-Cells

Evaluate Affinity

Sbest = arg max f(Celli)

Randomly initialize Guard point

Evaluate Guard point affinity

Figure 3-11. Algorithm’s flowchart

Check number of

environment

change

64

Chapter 4

4 EXPERIMENTATION AND RESULTS ANALYSIS

In this part we have a short view on the proposed algorithm performance and we’ll see

how it responds in different situations. In section 4.1 the results of this algorithm tested

on the moving peaks benchmark are shown. In section 4.2 the algorithm was tested on

generalized dynamic benchmark generator (GDBG) and we’ll see how it responds to

these problems.

4.1 Results of Moving Peaks Benchmark Problem

The proposed algorithm was written on Matlab. The computer that ran this test was an

Asus laptop with Intel Core
TM

 i7-Q720 (1.6GHz) CPU and 4GB RAM (DDR3 1066).

To perform this test, we used the standard scenario to initialize parameters. These

parameters are shown in Figure 4-1 [59].

Parameter Setting

Number of peaks P 10

Number of dimensions

d

5

Peak heights []

Peak widths []

Evaluations in each

environment change
 5000

Change severity s 1.0

Correlation coefficient

λ

0

Figure 4-1. Standard parameter setting

65

To evaluate performance of our algorithm we used offline error to compare our

algorithm with others and it is equal to average of best affinities at all times founded in

optimization process. In other words, offline error is equal to average of all current

errors and current error in time t is the deviation of the best founded individual by

algorithm in time t in current environment from optimum. Offline error is a positive

number and in the ideal case is equal to zero [60].

4.1.1 Effect of Number of TH Cells on Proposed Algorithm’s Performance

In this section, we have a brief review of effects of number of TH cells on proposed

algorithm’s performance. The performance result of different TH cell population size is

shown in Figure 4-1. As can be observed, the performance of the proposed algorithm

with 10 TH cells is better than others. When the number of cells is less than 10, the

performance of algorithm is decreased. In fact by reducing number of TH cells, we

reduce speed of convergence and so TH cells find the peak at a later time hence reducing

efficiency of the algorithm. On the other hand, by increasing the number of TH cells the

performance of algorithm is reduced too. When number of TH cells is increasing, in fact

number of evaluation in each environment change is increase so antibody cells have not

enough time to search in environment.

 Table 4-1. Results of different TH Cell size

Number of TH cells Offline error ± standard error

5 0.943 ± 0.0721

7 0.68702 ± 0.0692

10 0.59049 ± 0.0604

12 0.65267 ± 0.0712

15 0.71542 ± 0.0793

20 0.97163 ± 0.0976

30 1.32108 ± 0.1348

50 1.89049 ± 0.1461

66

4.1.2 Compare with Other Algorithm

To compare our result with other algorithms, standard scenario is used that is shown in

Figure 4-1. This scenario is mentioned as second scenario in [60]. There are many

algorithm such as differential evolution (DE) [61], Extremal optimization (EO) [62] and

Particle Swarm Optimization (PSO) which is used to solve this problem. Some of their

results are available in [60]. The results of this problem are shown in Table 4-2.

Table 4-2. Results of Offline error ± Standard error

 Authors Algorithm

Number
of

peaks

Number of
Evaluation

Offline error

± standard error

Bui & Branke [63] EA 50 2500 9.52±0.45

Blackwell & Branke [61] PSO 10 5000 2.16±0.06

Li & Branke [64] PSO 10 5000 1.93±0.06

Mendes & Mohais [65] DE 10 5000 1.75±0.032

Blackwell & Branke [66] PSO 10 5000 1.72±0.06

Moser & Hendtlass [67] EO 10 5000 0.66 ±0.2

Blackwell & Branke [66] mQSO 10 5000 1.85±0.08

Blackwell & Li [68] AmQSO 10 5000 1.51±0.10

Hashemi & Meybodi [69] CLPSO 10 5000 1.78±0.05

Changhe & Shengxiang [70] FMSO 10 5000 3.11±0.06

Hu & Eberhart [71] RPSO 10 5000 12.98±0.48

Blackwell & Branke [66] mCPSO 10 5000 2.08±0.07

Du & Li [72] SPSO 10 5000 2.51±0.09

Bird & Li [73] rSPSO 10 5000 1.50±0.08

Kamosi & Hashemi [74] mPSO 10 5000 1.61±0.12

Kamosi & Hashemi [75] HmPSO 10 5000 1.42±0.04

Liu& Yang& Wang [76] PSO-CP 10 5000 1.31±0.06

Lung & Dumitrescu [77] CESO 10 5000 1.38±0.02

Lung & Dumitrescu [78] ESCA 10 5000 1.54±0.02

Woldesenbet & Yen [79] RVDEA 10 5000 3.54±(-)

Nasiri, & Meybodi [80] SFA 10 5000 1.05±0.04

Rezazadeh & Meybodi [81] APSO 10 5000 1.31±0.03

Noroozi & Hashemi [82] CLDE 10 5000 1.64±0.03

Shahabi & Ünveren MDAIS
9
 10 5000 0.59049 ± 0.0604

9 Multi-set Dynamic Artificial Immune System

67

As you can see in Table 4-2, the proposed algorithm has the best performance among 25

algorithms. Only the performance of EO algorithm (Moser and Hendtlass [67]) is near to

our result. The process of advancing and finding peaks by the proposed algorithm is

shown in Figure 4-2.

Figure 4-2. Procces of findig peaks by algorithm

4.2 Results of Tests on the Generalized Dynamic Benchmark Generator

(GDBG)

To evaluate performance of algorithm in this problem, four formulas are used which are

introduced in the following [83]:

 () ∑

 ()

 (28)

68

 () ∑ ∑

 ()

()

 (29)

 () ∑

 ()

 (30)

 √

 ∑ ∑ (

 ())

 (31)

Where number of runs is 20, num_change is equal to number environment change and

 () is absolute function error value after reaching to maximum number of

evaluations and calculate by following formula [83]:

 () | (()) (
 ())| (32)

Where (()) the affinity is at best point it time t and (()) is equal to affinity

in global peak. For this problem, parameters were set according to Figure 4-3. It should

be mentioned that all of the other algorithms used in the following formula and because

there are 10 dimensions in this problem they have 10,000 evaluations before

environment change [83].

 (33)

But we used 50,000 evaluations in each environment. It means that our algorithm had

half opportunity to find the best solution compared to the others algorithms. This shows

that our algorithm can find solution at least two times faster than other algorithms.

69

 Parameter Setting

Number of peaks P 10

Number of dimensions

d

10

Search range

 []

Peak widths []

Peak height

 []

Evaluations in each

environment change
 10000*dimensions

height severity 5.0

Number of runs 20

Number of

environment change 60

Figure 4-3. Parameters setting for GDBG

To compare the results we show every function’s result in a different table, each table

belongs to a function that is described in section 2.1.2.2. Each function has 4 table which

each table shows one of , , and .

The algorithms that are compared with the proposed algorithm are: Dynamic Artificial

Immune (DAI) [84], The Differential Ant-Stigmergy (DAntS) [85], Clustering Particle

Swarm Optimizer (CPSO), Standard PSO (SPSO), Simple Genetic Algorithm (SGA)

[86], Self-Adaptive Differential Evolution (Self-ADE) [87] and Ensemble of Explicit

Memories (EEM) [88]. These tables display Author names, their corresponding

algorithm, number of evaluation in each environment change and errors in each change

instance. The lower error is representing the better performance. But to have a fair

comparison we should look at all results in a function and consider the overall

performance.

70

Table 4-3. Average-best in Function 1 (10 peaks)

Function 1

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.0048 0.0027 0.0052 0.0076 0.0052 0.0087

Korosec & Silc

[85] DAntS 100,000
4.17

e 13
3.80

e 13
3.80

e 13
6.57

e 13
5.56

e 13
7.90

e 13

 CPSO 100,000
1.054
e 7

5.214
e 8

4.306
e 8

9.721
e 7

2.561
e 7

4.325
e 6

Li & Yang [86] SGA 100,000
4.01
e 5

4.295
e 5

5.543
e 5

1.799
e 5

1.004
e 5

6.234
e 6

SPSO 100,000 0 0 0 0 0 0

Brest & Zamuda

[87] self-ADE 100,000 0 0 0 0 0 0

Yu & Suganthan

[88] EEM 100,000 0.0054 0.00445 0.00435 0.0057 0.01105 0.0104

Shahabi &

Ünveren
MDAIS 50,000 0 0 0 0 0 0

Table 4-4. Average-worst in Function 1 (10 peaks)

Function 1

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben &

Franc [84]
DAI 100,000 5.1786 46.1036 41.4286 37.0052 19.5234 71.4790

Korosec &

Silc [85] DAntS 100,000 5.51 38.5 39.7 9.17 20.9 47.1

 CPSO 100,000 1.244 27.12 28.15 3.239 21.72 26.55

Li & Yang

[86]

SGA 100,000 43.2 52.08 45.47 75.39 40.23 80.31

SPSO 100,000 31 48.23 43.28 72.77 35.77 78.92

Brest &

Zamuda [87] self-ADE 100,000 0.910466 32.1705 31.7827 0.919964 18.392 32.7662

Yu &

Suganthan

[88]
EEM 100,000 35.009 51.032 47.041 13.96 47.763 54.099

Shahabi &

Ünveren
MDAIS 50,000 1.11 6.4312 8.14 1.8553 3.3495 5.6402

71

Table 4-5. Average-mean in Function 1 (10 peaks)

Function 1

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben &

Franc [84]
DAI 100,000 0.1353 5.8667 4.2545 5.3563 4.4356 9.9407

Korosec &

Silc [85] DAntS 100,000 0.180 4.18 6.37 0.482 2.54 2.34

 CPSO 100,000 0.03514 2.718 4.131 0.09444 1.869 1.056

Li & Yang

[86]

SGA 100,000 5.609 10.08 13.13 21.22 7.899 29.25

SPSO 100,000 5.669 10.24 11.73 21.89 6.731 32.01

Brest &

Zamuda [87] self-ADE 100,000 0.028813 3.5874 2.99962 0.015333 2.17757 1.1457

Yu &

Suganthan

[88]
EEM 100,000 5.7109 10.658 10.87 1.5033 8.2954 8.232

Shahabi &

Ünveren
MDAIS 50,000 0.024193 1.7017 2.4409 0.08553 0.9174 0.8402

Table 4-6. STD in function 1 (10 peaks)

Function 1

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben &

Franc [84]
DAI 100,000 1.0061 10.2772 8.1828 8.9414 5.5545 15.8214

Korosec &

Silc [85] DAntS 100,000 1.25 9.07 10.7 1.95 4.80 8.66

 CPSO 100,000 0.4262 6.523 8.994 0.7855 4.491 4.805

Li & Yang

[86]

SGA 100,000 9.349 13.22 13.87 21.88 9.406 25.68

SPSO 100,000 7.729 12.62 13.59 20.15 8.75 25.63

Brest &

Zamuda [87] self-ADE 100,000 0.442537 7.83849 7.12954 0.288388 4.38812 5.72962

Yu &

Suganthan

[88]
EEM 100,000 9.6761 13.851 13.499 3.0008 13.102 14.96

Shahabi &

Ünveren
MDAIS 50,000 0.3734 4.203 5.7439 0.2937 2.3183 3.1321

72

As you can observe in function 1 with 10 peaks, the proposed algorithm has the best

results in most of the situations. Just in T4 (Chaotic change) case, the Self-ADE

algorithm has a better performance. Our result is also better than other algorithms and

has a very close performance to Self-ADE performance. In overall, we can say that our

algorithm has the best performance in function 1 with 10 peaks.

In continue, function 1 was used again as a measurement for performance. This time the

environment was including 50 peaks instead of 10 peaks. The results shown in

Table 4-7 implies that our algorithm still has the best performance among 8 algorithms

and just self-ADE algorithm has the nearest results to ours. The only difference is that

their number of evaluations is doubled.

Table 4-7. Average-best in Function 1 (50 peaks)

Function 1

50 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.0072 0.0040 0.0057 0.0118 0.0078 0.0104

Korosec & Silc

[85] DAntS 100,000
5.97

e 13
5.03

e 13
3.57

e 13
7.73

e 13
8.02

e 13
6.73

E 13

 CPSO 100,000
2.447
e 6

2.061
e 7

9.888
e 7

4.353
e 6

2.121
e 6

9.033
e 5

Li & Yang [86]
SGA 100,000

4.01
e 5

4.295
e 5

5.543
e 5

1.799
e 5

1.004
e 5

6.234
e 6

SPSO 100,000
1.43
e 4

1.435
e 4

2.528
e 4

4.217
e 4

5.458
e 4

0.001029

Brest & Zamuda

[87] self-ADE 100,000 0 0 0 0 0 0

Yu & Suganthan

[88] EEM 100,000 0.0063 0.00535 0.00505 0.00585 0.0197 0.0164

Shahabi &

Ünveren
MDAIS 50,000 0 0 0 0 0 0

73

Table 4-8. Average-worst in Function 1 (50 peaks)

Function 1

50 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 4.5776 29.9379 33.7780 37.9725 24.1907 62.4719

Korosec & Silc

[85] DAntS 100,000 7.67 29.1 31.0 5.58 11.6 35.1

 CPSO 100,000 4.922 22.08 25.65 1.974 9.606 22.08

Li & Yang [86]
SGA 100,000 40.16 44.75 47.84 70.65 28.03 78.24

SPSO 100,000 33.32 46.08 45.33 69.84 28.23 78.32

Brest & Zamuda

[87] self-ADE 100,000 3.92056 30.1958 27.6823 1.21212 9.08941 33.1204

Yu & Suganthan

[88] EEM 100,000 26.538 50.227 44.899 13.497 21.09 27.041

Shahabi &

Ünveren
MDAIS 50,000 3.5051 14.4249 10.3486 1.9921 0.7403 6.0172

Table 4-9 Average-mean in Function 1 (50 peaks)

Function 1

50 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.3644 4.7485 5.2531 2.6565 2.8641 6.8330

Korosec & Silc

[85] DAntS 100,000 0.442 4.86 8.42 0.509 1.18 2.07

 CPSO 100,000 0.2624 3.279 6.319 0.125 0.8481 1.482

Li & Yang [86]
SGA 100,000 7.614 11.3 15.24 17.93 5.293 34.93

SPSO 100,000 7.95 12.29 14.89 20.96 5.426 36.27

Brest &

Zamuda [87] self-ADE 100,000 0.172355 4.08618 4.29209 0.0877388 0.948359 1.76542

Yu &

Suganthan [88] EEM 100,000 5.7391 13.285 15.896 1.4109 2.2653 3.1577

Shahabi &

Ünveren
MDAIS 50,000 0.124 2.9001 2.1662 0.1024 0.2811 0.0901

74

Table 4-10. STD in Function 1 (50 peaks)

 Function 1

50 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.9275 6.7580 6.6830 5.9773 4.1579 11.8790

Korosec & Silc

[85] DAntS 100,000 1.39 7.00 9.56 1.09 2.18 5.97

 CPSO 100,000 0.9362 5.303 7.442 0.3859 1.779 4.393

Li & Yang [86]
SGA 100,000 9.754 11.26 13.04 19.04 6.186 26.54

SPSO 100,000 8.162 11.55 12.5 19.02 6.348 26.24

Brest & Zamuda

[87] self-ADE 100,000 0.763932 6.4546 6.74538 0.24613 1.76552 5.82652

Yu & Suganthan

[88] EEM 100,000 6.8424 12.944 13.365 2.4466 4.239 5.6002

Shahabi &

Ünveren
MDAIS 50,000 0.6123 4.754 5.103 0.3922 0.8261 0.312

As can be seen in Table 4-8, our algorithm still has the best results. These results of

average-worst show that our algorithm has less error than others even with half

evaluation size. Just in T4 (Chaotic change) the self-ADE algorithm is a little better.

In Table 4-9, the best results of average-mean belong to our algorithm. This table can be

considered as main parameter to compare the algorithms and proves that our algorithm

has a better performance than the original immune system algorithm and others

algorithms.

The STD errors that are shown in Table 4-10 implies that the proposed algorithm has

the best result for solving Function 1 even with 50 peaks.

75

In general, we can say that the proposed algorithm has better performance than others

for solving Function 1 in different situation, just in T4 (Chaotic change) there is an

algorithm which had better performance than ours with minor difference.

Following that, the results of Sphere's function are shown. This function which is tested

by 8 different algorithms was introduced in chapter 2. In Table 4-11 that shows average-

best is clear only those two algorithms have zero error for all conditions. These two

algorithms are self-ADE and our algorithm. These two algorithms may have the same

performance in finding global peak, but our algorithm has the same results with only

half number of evaluations.

Table 4-11. Average-best in Function 2 (10 peaks)

Function 2

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.0534 0.0678 0.0813 0.0596 0.1032 0.0582

Korosec & Silc

[85] DAntS 100,000
1.97

e 11
2.34

e 11
2.72

e 11
1.41

e 11
3.59

e 11
1.65

e 11

 CPSO 100,000
9.377
e 05

7.423
e 05

4.651
e 05

1.121
e 05

7.792
e 05

1.087
e 04

Li & Yang [86]
SGA 100,000

1.909
e 03

3.022
e 03

5.739
e 03

2.071
e 03

9.138
e 03

3.432
e 03

SPSO 100,000
1.016

e 013
0

4.334
e 014

7.523
e 014

0 0

Brest & Zamuda

[87] self-ADE 100,000 0 0 0 0 0 0

Yu & Suganthan

[88] EEM 100,000 0.1266 0.1383 0.13615 0.132 0.12985 0.1195

Shahabi &

Ünveren
MDAIS 50,000 0 0 0 0 0 0

76

Table 4-12. Average-worst in Function 2 (10 peaks)

Function 2

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.2102 68.0774 473.8170 14.0593 441.2040 51.9411

Korosec & Silc

[85] DAntS 100,000 33.9 403 356 16.5 433 249

 CPSO 100,000 19.26 144.1 158.3 10.18 320.7 26.08

Li & Yang [86]
SGA 100,000 150.5 565.5 543.6 124.8 511 289.4

SPSO 100,000 272.3 561 539.4 279.3 515.6 541.6

Brest &

Zamuda [87] self-ADE 100,000 15.4426 435.019 468.43 10.6608 459.147 49.5327

Yu & Suganthan

[88] EEM 100,000 38.758 45.346 29.778 32.751 34.247 35.26

Shahabi &

Ünveren
MDAIS 50,000 20.1 35.0502 10.414 38.6683 27.942 19.31

Table 4-13. Average-mean in Function 2 (10 peaks)

Function 2

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.0984 8.1209 17.9979 1.0652 101.3840 6.5192

Korosec & Silc

[85] DAntS 100,000 3.30 25.6 18.9 1.45 49.6 2.11

 CPSO 100,000 1.247 10.1 10.27 0.5664 25.14 1.987

Li & Yang [86]
SGA 100,000 33.05 182.9 128.5 32.85 191.7 43.25

SPSO 100,000 45.79 186.9 135.8 53.57 186.5 73.34

Brest & Zamuda

[87] self-ADE 100,000 0.963039 43.0004 50.1906 0.793141 67.0523 3.36653

Yu & Suganthan

[88] EEM 100,000 6.2147 7.2236 4.9885 4.2067 3.5058 3.478

Shahabi &

Ünveren
MDAIS 50,000 0.8253 6.3629 1.904 3.7801 1.651 1.2217

77

Table 4-14. STD in Function 2 (10 peaks)

Function 2

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.0291 14.3832 62.2259 2.8269 134.5180 13.8172

Korosec & Silc

[85] DAntS 100,000 8.78 83.2 67.8 3.83 112 5.29

 CPSO 100,000 4.178 35.06 33.45 2.137 64.25 5.217

Li & Yang [86]
SGA 100,000 53.75 218.9 188.7 35.12 200.6 69.84

SPSO 100,000 59.34 212.7 185.4 60.58 198.1 99.96

Brest & Zamuda

[87] self-ADE 100,000 3.08329 114.944 124.015 2.53425 130.146 12.9738

Yu & Suganthan

[88] EEM 100,000 9.6292 11.024 8.245 7.5828 7.3318 7.5956

Shahabi &

Ünveren
MDAIS 50,000 2.1943 7.0383 1.2047 2.3425 6.254 3.127

As can be seen in Table 4-12, the best result in average-worst belongs to the proposed

algorithm. In this test, our algorithm had some bad answer in T1 (Small change step) and

T4 (Chaotic change). These bad results also had effect on the other results and as shown

in Table 4-13 (average-mean) and Table 4-14 (STD) the best performance in T1 and T4

belong to DAI and CPSO. We think that the results can improve with the whole number

of evaluations. But these results are still very good and acceptable.

In the third function (Rastrigin’s function) our algorithm could not find best results of

average-best. As shown in Table 4-15, the best results in this table belong to self-ADE.

Our algorithm is in the second place in best performance. It still has very good results

and they are very close to the best results.

78

Table 4-15. Average-best in Function 3 (10 peaks)

Function 3

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben &

Franc [84]
DAI 100,000 674.0810 943.8250 943.781 727.1850 907.9080 691.9480

Korosec &

Silc [85] DAntS 100,000
3.39

e 11
43.4 1.38

4.51
e 11

3.08
4.21

e 11

 CPSO 100,000 0.003947 126.2 42.89
7.909

e 005
228.5 4.356

Li & Yang

[86]

SGA 100,000 0.009432 0.3146 2.045 0.5873 36.15 0.075

SPSO 100,000 1.427 211.4 20.9 3.82 13.59 3.782

Brest &

Zamuda [87] self-ADE 100,000 0
9.70434

e 8
3.13019

e 10
0

5.35102
e 10

8.17124
e 14

Yu &

Suganthan

[88]
EEM 100,000 0.1996 0.17025 0.17975 0.20085 0.16635 0.1431

Shahabi &

Ünveren
MDAIS 50,000

6.734
e 12

3.1431
e 6

9.2384
e 08

5.7098
e 8

7.1948
e 10

3.770
e 9

Table 4-16. Average-worst in Function 3 (10 peaks)

Function 3

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 1103.66 1270.5 1240.51 1644.55 1202.09 1834.17

Korosec & Silc

[85] DAntS 100,000 435 988 937 1170 923 1470

 CPSO 100,000 711.2 1008 966.1 1204 974.2 1424

Li & Yang

[86]

SGA 100,000 786.1 1036 991.7 1286 970.5 1380

SPSO 100,000 864.1 1068 1024 1396 990.2 1509

Brest &

Zamuda [87] self-ADE 100,000 238.417 938.858 944.695 922.236 874.852 1226.38

Yu &

Suganthan [88] EEM 100,000 512.53 504.83 501.49 555.05 507.77 506.33

Shahabi &

Ünveren
MDAIS 50,000 354.32 463.71 315.44 477.05 409.48 315.71

79

Table 4-17. Average-mean in Function 3 (10 peaks)

Function 3

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 810.83 1078.7500 1073.43 1031.53 1023.9 1186.9

Korosec & Silc

[85] DAntS 100,000 15.7 824 688 435 697 626

 CPSO 100,000 137.5 855.1 765.9 430.6 859.7 753

Li & Yang [86]
SGA 100,000 158.1 638.7 573.9 419.5 741.9 491.7

SPSO 100,000 553.6 900.8 827.1 709 829.1 803.5

Brest &

Zamuda [87] self-ADE 100,000 11.3927 558.497 572.105 65.7409 475.768 243.27

Yu &

Suganthan [88] EEM 100,000 151.98 140.47 136.67 164.96 95.123 107.54

Shahabi &

Ünveren
MDAIS 50,000 93.62 75.131 90.715 154.9 77.34 81.911

Table 4-18. STD in Function 3 (10 peaks)

Function 3

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 66.1085 64.1245 64.9950 274.7490 57.8713 292.2960

Korosec & Silc

[85] DAntS 100,000 67.1 204 298 441 315 460

 CPSO 100,000 221.6 161 235.8 432.2 121.5 361.7

Li & Yang [86]
SGA 100,000 264.5 399.6 399.8 444.2 278.8 464.3

SPSO 100,000 298.1 148.8 212.6 385.8 186.7 375

Brest & Zamuda

[87] self-ADE 100,000 58.1106 384.621 386.09 208.925 379.89 384.98

Yu & Suganthan

[88] EEM 100,000 190.71 182.71 183.86 216.4 151.82 158.36

Shahabi &

Ünveren
MDAIS 50,000 79.22 104.1 157.6 172.82 103.46 94.61

80

On the other hand, the proposed algorithm has best performance in the average-worst

results that are shown in Table 4-16. To compare with other algorithms, our results are

much better than other algorithms and in some cases our errors are half or even third of

the other results.

In Table 4-17 that presents the average-mean results, the best performance again

belongs to our algorithm.

In the STD errors, the ADI algorithm has the best performance. The proposed algorithm

only gained the best results in T4 (Chaotic change) and T6 (Recurrent change with

noisy).

Table 4-19. Average-best in Function 4 (10 peaks)

Function 4

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.0679 0.1222 0.0864 0.0543 0.1497 0.0618

Korosec & Silc

[85] DAntS 100,000
2.01

e 11
2.95

e 11
2.87

e 11
1.85

e 11
5.89

e 11
2.09

e 11

 CPSO 100,000
6.36
e 5

 1.868
e 4

1.03
e 4

9.346
e 6

4.07
e 3

8.616
e 5

Li & Yang [86]
SGA 100,000

2.697
e 3

3.439
e 3

 7.537
e 3

1.855
e 3

4.842
e 2

3.322
e 3

SPSO 100,000 0 0 0 0.3056 0 0

Brest & Zamuda

[87] self-ADE 100,000 0 0 0 0 0 0

Yu & Suganthan

[88] EEM 100,000 0.13325 0.1386 0.13335 0.13045 0.13 0.1118

Shahabi &

Ünveren
MDAIS 50,000 0 0 0 0 0 0

81

Table 4-20. Average-worst in Function 4 (10 peaks)

Function 4

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 26.0705 586.2790 580.6420 51.9689 562.5500 336.7740

Korosec & Silc

[85] DAntS 100,000 57.6 505 540 18.8 528 39.7

 CPSO 100,000 29.38 459.8 389.4 14.62 481 63.06

Li & Yang [86]
SGA 100,000 296.5 643.3 624.3 376.2 590.9 595.3

SPSO 100,000 376.3 656.1 612.9 460.3 576.1 684.4

Brest &

Zamuda [87] self-ADE 100,000 19.623 475.7 544.92 16.6057 510.193 28.4483

Yu &

Suganthan [88] EEM 100,000 37.581 47.009 36.414 34.924 31.496 35.28

Shahabi &

Ünveren
MDAIS 50,000 20.15 23.6 27.41 23.19 26.88 18.73

Table 4-21. Average-mean in Function 4 (10 peaks)

Function 4

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 1.4227 122.4410 98.6688 4.2632 304.5660 12.6334

Korosec & Silc

[85] DAntS 100,000 5.60 65.6 53.6 1.85 108 2.98

 CPSO 100,000 2.677 37.15 36.67 0.7926 67.17 4.881

Li & Yang [86]
SGA 100,000 4.881 272.9 230.1 52.76 335.5 57.38

SPSO 100,000 55.05 289.7 223.6 73.85 285 98.15

Brest &

Zamuda [87] self-ADE 100,000 1.48568 49.5044 51.9448 1.50584 69.4395 2.35478

Yu & Suganthan

[88] EEM 100,000 6.601 8.1906 7.1991 5.0355 3.121 3.5162

Shahabi &

Ünveren
MDAIS 50,000 3.054 6.601 4.117 2.571 2.39 2.491

82

Table 4-22. STD in Function 4 (10 peaks)

Function 4

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 4.5459 201.6270 196.6950 9.7255 203.2430 55.8386

Korosec & Silc

[85] DAntS 100,000 26.5 160 140 4.22 178 7.59

 CPSO 100,000 7.055 99.43 97.18 2.775 130.3 15.39

Li & Yang [86]
SGA 100,000 80.15 270.7 251.2 96.98 223.7 116.6

SPSO 100,000 92.64 263 245.1 104.8 228.1 148.4

Brest &

Zamuda [87] self-ADE 100,000 4.47652 135.248 141.78 4.10062 144.041 5.78252

Yu & Suganthan

[88] EEM 100,000 10.032 11.923 10.145 8.3325 6.6867 7.3484

Shahabi &

Ünveren
MDAIS 50,000 4.775 9.631 6.71 7.84 4.311 4.27

The proposed algorithm shows a good performance to find global optimum peaks in

function 4 (Griewank's function). As shown in Table 4-19, Self-ADE and the proposed

algorithm have the best performances in this error measurement. Additionally, The

CPSO has a close performance too.

The results of average-worst are shown in Table 4-20. In this case, our algorithm finds

better solution than others and in worst case it has the best performance at least in 4 of 6

different situations.

As can be seen in Table 4-21, DAI algorithm has the best performance in T1. IN T4, the

best result belongs to CPSO algorithm and self-ADE is the best in T6. In other cases the

best performance in average-mean belongs to our algorithm.

83

In general we can say that the proposed algorithm had a very successful performance in

function 4. The results that are shown in Table 4-22 can support this statement. In this

table, the proposed algorithm has less errors than other algorithms in T2 (Large change

step), T3 (Random change), T5 (Recurrent change) and T6 (Recurrent change with

noisy).

There is a similar situation in average-best results in function 5 (Ackley's function) with

function 4. According to Table 4-23, the only algorithm that has zero errors in all

situations is our algorithm. Also the SPSO algorithm has a close performance and it has

the same results in 5 of 6 situations but we should note that it has twice the number of

evaluations in each environment changes.

Table 4-23. Average-best in Function 5 (10 peaks)

Function 5

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.2511 0.4368 0.3469 0.2172 11.5370 0.3173

Korosec & Silc

[85] DAntS 100,000
3.22

e 11
3.74

e 11
3.86

e 11
2.69

e 11
5.99

e 11
2.85

e 11

 CPSO 100,000
1.584
e 4

3.224
e 4

 3.337
e 4

4.85
e 6

1.377
e 4

 2.077
e 4

Li & Yang [86]
SGA 100,000

6.832
e 3

7.609
e 3

5.71
e 3

3.871
e 3

8.463
e 3

5.129
e 3

SPSO 100,000
5.857

e 007
0 0 0 0 0

Brest & Zamuda

[87] self-ADE 100,000
4.10338

e 14
4.16556

e 14
4.15668

e 14
4.08562

e 14
4.24549

e 14
4.08562

e 14
Yu & Suganthan

[88] EEM 100,000 0.20075 0.18235 0.19615 0.2484 0.2035 0.184

Shahabi &

Ünveren
MDAIS 50,000 0 0 0 0 0 0

84

Table 4-24. Average-worst in Function 5 (10 peaks)

Function 5

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 1728.1 705.152 786.275 1375.1 1927.64 1910.64

Korosec & Silc

[85] DAntS 100,000 17.1 22.2 16.0 8.10 29.0 8.75

 CPSO 100,000 25.41 31.76 27.77 26.66 63.2 42.54

Li & Yang [86]
SGA 100,000 80.54 82.92 75.17 89.64 64.14 89.61

SPSO 100,000 554.7 500.4 360.5 740 94.04 945

Brest & Zamuda

[87] self-ADE 100,000 4.89413 9.6899 10.1371 4.75098 9.28981 4.78684

Yu & Suganthan

[88] EEM 100,000 44.887 54.133 36.438 39.928 55.669 56.092

Shahabi &

Ünveren
MDAIS 50,000 7.94 6.53 7.71 6.36 5.48 4.66

Table 4-25. Average-mean in Function 5 (10 peaks)

Function 5

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben &

Franc [84]
DAI 100,000 40.8943 34.4531 34.942 120.637 943.2230 480.337

Korosec &

Silc [85] DAntS 100,000 0.955 0.990 0.949 0.392 2.30 0.467

 CPSO 100,000 1.855 2.879 3.403 1.095 7.986 4.053

Li & Yang

[86]

SGA 100,000 27.99 29.57 25.4 33.96 24.42 31.77

SPSO 100,000 62.22 58.85 44.51 91.95 29.03 116.9

Brest &

Zamuda [87] self-ADE 100,000 0.159877 0.333918 0.357925 0.108105 0.409275 0.229676

Yu &

Suganthan

[88]
EEM 100,000 7.9042 10.091 7.2867 6.2507 8.2195 7.9011

Shahabi &

Ünveren
MDAIS 50,000 0.5133 0.1982 0.285 0.344 0.204 0.1752

85

Table 4-26. STD in Function 5 (10 peaks)

Function 5

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 480.337 119.896 115.025 293.542 633.318 610.802

Korosec & Silc

[85] DAntS 100,000 3.43 4.05 3.31 1.61 6.36 1.73

 CPSO 100,000 5.181 6.787 6.448 4.865 13.81 8.371

Li & Yang [86]
SGA 100,000 24.23 25.31 21.92 30.98 19.39 30.97

SPSO 100,000 104 99.23 149.7 22.24 193.1 152.7

Brest & Zamuda

[87] self-ADE 100,000 1.02554 1.64364 1.83299 0.826746 1.90991 0.935494

Yu & Suganthan

[88] EEM 100,000 11.287 13.28 10.201 10.116 13.016 12.911

Shahabi &

Ünveren
MDAIS 50,000 1.294 1.381 0.632 1.106 0.927 0.719

In average-worst results that are shown in Table 4-24, the lowest errors in most of the

situations belong to proposed algorithm. The Self-ADE algorithm is better than our

algorithm just in T1(Small change step) and T4 (Chaotic change). The same situation

has happened in average-mean and STD results that can be seen in Table 4-25 and

Table 4-26. In function 5 (Ackley's function), again our algorithm has better

performance than other 7 algorithms, even it achieved these results by half of

evaluations that other algorithms had.

Finally the last function that we used to compare the proposed algorithm with other

algorithm is Hybrid Composition function. The results of this function are shown at

below.

86

Table 4-27. Average-best in Function 6 (10 peaks)

Function 6

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 0.1003 0.2871 0.2873 0.1074 38.4149 0.1442

Korosec & Silc

[85] DAntS 100,000
2.36

e 11
3.58

e 11
3.69

e 11
2.55

e 11
6.37

e 11
2.56

e 11

 CPSO 100,000
1.693
e 4

1.26
e 4

 6.566
e 4

1.28
e 5

1.835
e 3

2.852
e 4

Li & Yang [86]
SGA 100,000 0.01314

4.445
e 3

 9.612
e 3

0.1484
9.385
e 3

5.041
e 3

SPSO 100,000 1.457
9.832
e 14

9.699
e 14

4.941
e 12

0 0

Brest & Zamuda

[87] self-ADE 100,000 0 0 0 0 0 0

Yu & Suganthan

[88] EEM 100,000 0.1493 0.14815 0.15235 0.15565 0.1404 0.12375

Shahabi &

Ünveren
MDAIS 50,000 0 0 0 0 0 0

Table 4-28. Average-worst in Function 6 (10 peaks)

Function 6

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 418.3680 937.339 1018.53 906.233 1101.5 1324.42

Korosec & Silc

[85] DAntS 100,000 48.3 554 529 81.6 499 249

 CPSO 100,000 37.79 258.5 504.8 131.8 628.8 265.7

Li & Yang [86]
SGA 100,000 247.2 824.8 783.6 309.6 785 530.1

SPSO 100,000 546.3 842.4 806.1 682.1 817.1 748.6

Brest & Zamuda

[87] self-ADE 100,000 32.7204 51.8665 84.519 38.7914 191.895 45.0354

Yu & Suganthan

[88] EEM 100,000 94.921 73.431 58.111 50.242 100.68 84.709

Shahabi &

Ünveren
MDAIS 50,000 24.631 37.105 32.774 34.05 70.637 31.829

87

Table 4-29. Average-mean in Function 6 (10 peaks)

Function 6

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 20.4434 391.196 456.441 83.9698 845.862 482.207

Korosec & Silc

[85] DAntS 100,000 8.87 37.0 26.7 9.74 37.9 13.3

 CPSO 100,000 6.725 21.57 27.13 9.27 71.57 23.67

Li & Yang [86]
SGA 100,000 39.41 138.6 98.51 53.53 170.1 52.1

SPSO 100,000 71.15 158.7 140.3 120.7 162.8 113.8

Brest &

Zamuda [87] self-ADE 100,000 6.22948 10.3083 10.954 6.78734 14.9455 7.8028

Yu &

Suganthan [88] EEM 100,000 17.303 18.732 16.005 11.753 26.311 24.558

Shahabi &

Ünveren
MDAIS 50,000 4.992 12.636 9.430 5.918 8.044 6.337

Table 4-30. STD in Function 6 (10 peaks)

Function 6

10 peaks error :

Authors Algorithm
Num of

Evaluation
T1 T2 T3 T4 T5 T6

Zuben & Franc

[84]
DAI 100,000 79.323 395.435 405.038 220.177 251.208 434.421

Korosec & Silc

[85] DAntS 100,000 13.3 122 98.4 22.0 118 57.4

 CPSO 100,000 9.974 63.51 83.98 24.23 160.3 51.55

Li & Yang [86]
SGA 100,000 65.84 254.3 208.8 100.2 274.6 87.99

SPSO 100,000 118.1 260.8 240.7 173.3 275 164.6

Brest & Zamuda

[87] self-ADE 100,000 164.6 13.2307 23.2974 10.1702 45.208 10.9555

Yu & Suganthan

[88] EEM 100,000 22.801 19.006 17.397 13.594 29.318 26.794

Shahabi &

Ünveren
MDAIS 50,000 7.5112 11.807 15.674 9.871 24.683 9.284

88

As can be seen in Table 4-27, the best results belong to the Self-ADE and the proposed

algorithm. Only these two algorithms could have the lowest possible error in average-

best error and it is equal to zero in all six situations.

In average-worst results that are shown in Table 4-28, the absolute winner is our

algorithm. In this error measurement, our algorithm can decrease the original artificial

immune system algorithm error between 15 to 40 times and only with half of evaluation

size. It can easily show the power and speed of our algorithm. This situation repeats in

average-mean table. The results that can be seen in Table 4-29 shows in the function 5,

the proposed algorithm can find peaks easier and faster than other algorithms in different

situations.

In the last table, the results of STD errors are shown. Also in this case our algorithm can

get the best results. If we have a look at all of the results in all problems in different

situations, we see that our algorithm has the best performance in most of situations. It

could improve the original artificial immune algorithm. In general we can claim that our

algorithm has one of the best algorithms in the world and in many tests that have been

done it has the best performance in general.

89

Chapter 5

5 CONCLUSION

In this thesis, we introduced a powerful algorithm to solve optimization problem in

dynamic environments. This algorithm was inspired by artificial immune system

algorithms and was upgraded by multi-set techniques to improve its performance.

This algorithm designed for problem solving that have many potential solutions but at

same time only one of them is the best solution. For example moving peak benchmark

that has many peaks at same time only one is the highest and it is the global optimum.

This algorithm tries to find the best solution among the all solution by finding all of the

possible solution and searching the near spaces. It also tries to find the best new solution

after each environment change by monitoring the previous solution.

This algorithm was tested by two different problems. In the first problem it was

compared with 24 algorithms and it had the best performance among them. In second

problem which includes 6 different functions and 6 environment change methods, the

proposed algorithm showed really good performance and it had the best performance in

general.

In the proposed algorithm there we tried not to use any initial knowledge of the problem

space as much as possible, but like other algorithms it needed shift severity. For the

90

future, we can suggest adding some online learning algorithms or adaptive mechanism to

improve the algorithm in such a way that it does not need any initial information about

problem space.

91

REFERENCES

[1] L. N. DeCastro, J. Timmis, Artificial Immune Systems: A New Computational

Intelligence Approach. London: Springer, 2002.

[2] U. Aickelin, D. Dasgupta, "ARTIFICIAL IMMUNE SYSTEMS," in Search

Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques, Edmund K. Burke and Graham Kendall, Eds., ch. 13.

[3] J. Timmis , T. Stibor , E. Clark , and A. Hone , "Theoretical Advances in Artificial

Immune Systems," Theoretical Computer Science, vol. 403, pp. 11-32, August

2008.

[4] J. Kelly, Understanding the Immune System How It Works.: National Institute of

Allergy and Infectious Diseases, 2007.

[5] P. Delves, S. Martin, I. Roitt, and D. Burton, Essential Immunology, 11th ed.:

Blackwell Publishing, 2006.

[6] D. Kitamura, How the Immune System Recognizes Self and Nonself

Immunoreceptors and Their Signaling. Japan: Springer, 2008.

[7] S. A. Hofmeyr, "An Interpretative Introduction to the Immune System," in In

Design Principles for the Immune System and Other Distributed Autonomous

Systems, I. Cohen and L. Segel, Eds.: Oxford University Press, 2000.

92

[8] W. R. Clark, In Defense of Self:How the Immune System Works in Managing

Health and Desease.: Oxford University Press, 2007.

[9] G. J. V. Nossal, "Life, Death and the Immune System," Scientific American, vol.

269, pp. 21-30, 1993.

[10] F. J. Von, L. N. De Castro Zuben, "Artificial Immune Systems: Part I - Basic

Theory and Applications," School of Computing and Electrical Engineering, State

University of Campinas, Brazil, Technical Report TR – DCA 01/99, 1999.

[11] A. S. Perelson, "Immune Network Theory," Immunol Rev, pp. 5–36, August 1989.

[12] G. M. Edelman, N. K. Jerne, Clonal Selection in a Lymphocyte Network: Cellular

Selection and Regulation in the Immune Response. New York: Raven Press, 1974.

[13] F. J. Benini, H. Varela, "The Immune Recmitment Mechanism: A Selective

Evolutionary Mechanism," in 4th International Conference on Genetic Algorithms,

San Diego, CA, July 1991, pp. 520- 526.

[14] Carlos A. Coello Coello,F. Fabio, R. Maurizio,.

[15] Carlos A. Coello Coello, N. C. Cort´es, "Hybridizing a Genetic Algorithm with an

Artificial Immune System for Global Optimization," , February 17, 2004.

[16] T.Krzystof , W.T.Stawomir, "Immune-based algorithms for dynamic optimization,"

Elsevier, vol. 179, pp. 1495-1515, November 2009.

[17] B. Jason, Clever Algorithms: Nature-Inspired Programming Recipes.: LuLu, 2011.

93

[18] K. trojanowski, S. T. Wierzchon, "Immune-based algorithms fo dynamic

optimization," information Sciences, vol. 179, pp. 1495-1515, 2009.

[19] CARLOS A. COELLO COELLO, N. C. CORT´ES, "Solving Multiobjective

Optimization Problems Using an Artificial Immune System," Genetic Programming

and Evolvable Machines. Springer, vol. 6, pp. 163–190, 2005.

[20] J.Timmis , L.N. De Castro, "Artificial Immune Systems: A Novel Paradigm to

Pattern Recognition," in Artificial Neural Networks in Pattern Recognition, C. Fyfe,

Ed.: University of Paisley, 2002, pp. 67-84.

[21] Carlos A. Coello Coello, S.C. Esquivel, V.S.Areagon, "A T-cell algorithm for

solving dynamic optimization problems," Information Sciences, pp. 3614-3637,

April 2011.

[22] G.Dozier,A. Carlisle, "Adapting Particle Swarm Optimization to Dynamic

Environments,"" in International Conference on Artificial Intelligence, Las

Vegas,USA, 2000, pp. 429-434.

[23] G.Dozier, A.Carlisle, "Tracking Changing Extrema with Adaptive Particle Swarm

Optimizer," in 2002 World Automation Congress, Orlando, FL, USA, 2002, pp.

265-270.

[24] R. C.Eberhart, H.Xiaohui, "Adaptive Particle Swarm Optimization: Detection and

Response to Dynamic Systems," in IEEE Congress on Evolutionary Computation,

Honolulu, Hawaii, USA, 2002, pp. 1666-1670.

94

[25] A. P. Engelbrecht, F. V. Bergh, "A Cooperative Approach to Particle Swarm

Optimization," IEEE Transactions on Evolutionary Computation, vol. 8, pp. 225-

239, 2004.

[26] D. B Fogel, T. Michalewicz, T. Back, Evolutionary Computation 1 - Basic

Algorithms and Operators. Bristol, UK: Institute of Physics (IoP) Publishing, 2000.

[27] H. Richter, "Memory Design for Constrained Dynamic Optimization Problems," in

Applications of Evolutionary Computation, 2010, pp. 552–561.

[28] S. Richter, H. Yang, "Learning Behavior in Abstract Memory Schemes for

Dynamic Optimization Problems," Soft Computing-A Fusion of Foundations,

Methodologies and Applications, vol. 13, pp. 1163–1173, 2009.

[29] H. Cheng, and F. Wang, S. Yang, "Genetic Algorithms With Immigrants and

Memory Schemes for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc

Networks," IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 40, 2010.

[30] B. Wang, and Y. Wang, C. Hu, "Multi-Swarm Particle Swarm Optimiser with

Cauchy Mutation for Dynamic Optimisation Problems," International Journal of

Innovative Computing and Applications, vol. 2, pp. 123–132, 2009.

[31] X. Yao, S. Yang, "Population-Based Incremental Learning With Associative

Memory for Dynamic Environments," IEEE Transactions on Evolutionary

Computation, vol. 12, pp. 542-561, 2008.

95

[32] K. Tang, T. Chen, X. Yao, X. Yu, "Empirical Analysis of Evolutionary Algorithms

with Immigrants Schemes for Dynamic Optimization," Memetic Computing, vol. 1,

pp. 3-24, 2009.

[33] J. J. Grefenstette, H.G. Cobb, "Genetic Algorithms for Tracking Changing

Environments," in Proceedings of the 5th International Conference on Genetic

Algorithms, 1993, pp. 523-530.

[34] J. Branke, "Memory enhanced evolutionary algorithms for changing optimization

problems," in IEEE Congress on Evolutionary Computation, vol. 3, 1999, pp.

1875–1882.

[35] Jürgen Branke. (1999, December) The Moving Peaks Benchmark. [Online].

http://people.aifb.kit.edu/jbr/MovPeaks/movpeaks/

[36] R. W. Morrison , K. A. De Jong, "A test problem generator for non-stationary

environments," in Evol. Comput, 1999, pp. 2047-2053.

[37] Y. Jin , B. Sendhoff, "Constructing dynamic optimization test problems using the

multiobjective optimization concept," in EvoWorkshop 2004, 2004, pp. 526-536.

[38] S. Yang, "Non-stationary problem optimization using the primal-dual genetic

algorithm," in IEEE Congr. on Evol. Comput, 2003, pp. 2246-2253.

[39] S. Yang, X. Yao, "Experimental study on population-based incremental learning

algorithms for dynamic optimization problems," in Soft Comput, 2005, pp. 815-834.

http://people.aifb.kit.edu/jbr/MovPeaks/movpeaks/

96

[40] C. Li, M. Yang, L. Kang, "A new approach to solving dynamic TSP," in Simulated

Evolution and Learning, 2006, pp. 236-243.

[41] C. Li, Sh. Yang, D. A. Pelta, "Benchmark Generator for the IEEE WCCI-2012

Competition on Evolutionary Computation for Dynamic Optimization Problems," ,

2011.

[42] A. Carlisle , G. Dozier, "Adapting particle swarm optimization to dynamic

environments," in The International Conference on Artificial Intelligence, 2000.

[43] K. Krishnakumar, "Micro genetic algorithms for stationary and nonstationary

function optimization," in Proceedings of SPIE International Conference

Adaptative Systems, 1989, pp. 289-296.

[44] H. G. Cobb, "An investigation into the use of hypermutation as an adaptive operator

in genetic algorithms having continuous, time-dependent nonstationary

environments," NRL Memorandum Report, vol. 6760, pp. 523-529, 1990.

[45] T. Nanayakkara, K. Watanabe, K. Izumi, "Evolving in dynamic environments

through adaptive chaotic mutation," Proc. of the 4th Internat. Symposium on

ArtiJficial Life and Robotic, vol. 2, pp. 520-523, 1999.

[46] F. Vavak, K. Jukes, T. Fogarty, "Performance of a genetic algorithm with variable

local search range relative to frequency of the environmental changes," in Genetic

Programming, 1998, pp. 22-25.

[47] E. L. Yu, P. N. Suganthan, "Evolutionary programming with ensemble of explicit

97

memories for dynamic optimization," in Evolutionary Computation, 2009. CEC '09.

IEEE Congress, 2009, pp. 431-438.

[48] Y. G. Woldesenbet , G. G. Yen, "Dynamic evolutionary algorithm with variable

relocation," IEEE Transactions on Evolutionary Computation, vol. 13, pp. 500-513,

2009.

[49] X. Hu, R. C. Eberhart, "Adaptive particle swarm optimization: detection and

response to dynamic systems," IEEE Congress on Evolutionary

Computation,CEC2002, pp. 1666-1670, 2002.

[50] S. Yang , X. Yao, "Experimental study on population-based incremental learning

algorithms for dynamic optimization problem," Soft Computing-A Fusion of

Foundations, Methodologies and Applications, vol. 9, pp. 815-834, 2005.

[51] J. Kennedy , R. Mendes, "Population structure and particle swarm performance," ,

2002, pp. 1671-1676.

[52] S. Janson , M. Middendorf, "A hierarchical particle swarm optimizer for dynamic

optimization problems," in Applications of evolutionary computing, 2004, pp. 513-

524.

[53] R.W.Morrison, "Designing evolutionary algorithms for dynamic environments,"

Springer-Verlag New York Inc, 2004.

[54] J. Grefenstette, "Genetic algorithms for changing environments," Parallel Problem

Solving from Nature, vol. 2, pp. 137-144, 1992.

98

[55] H. Andersen, "An investigation into genetic algorithms, and the relationship

between speciation and the tracking of optima in dynamic functions," in Honours

thesis. Brisbane, Australia: Queensland University of Technology, 1991.

[56] J. Kennedy, R. Eberhart, "Particle Swarm Optimization," IEEE International

Conference on Neural Networks, vol. 4, pp. 1942-1948, November 1995.

[57] K. Liaskos, "Hybridizing Evolutionary Testing with Artificial Immune Systems and

Local Search," in IEEE International Conference on Software Testing Verification

and Validation Workshop, 2008, pp. 211 - 220.

[58] R. Javadzadeh, Z. Afsahi, M.R. Meybodi, "Improved Artificial Immune System

Algorithm with Local Search," in World Academy of Science, Engineering and

Technology, 2009, pp. 654-657.

[59] T. Blackwell ,J. Branke, "Multiswarms, exclusion, and anti-convergence in

dynamic environments," IEEE Transactions on Evolutionary Computation, vol. 10,

pp. 459-472, 2006.

[60] The Moving Peaks Benchmark. [Online]. http://people.aifb.kit.edu/jbr/MovPeaks/

[61] T. Blackwell, J. Branke, "Multi-swarm optimization in dynamic environments,"

Applications of Evolutionary Computing,Springer, vol. 3005, pp. 489-500, 2004.

[62] S.Boettcher, A.G.Percus, "Extremal optimization: Methods derived from Co-

Evolution," in Proceedings of the Genetic and Evolutionary Computation

Conference, 1999, pp. 825-832.

http://people.aifb.kit.edu/jbr/MovPeaks/

99

[63] L.T.Bui, J. Branke, H. A. Abbass, "Multiobjective optimization for dynamic

environments," in Congress on Evolutionary Computation, IEEE 2005, pp. 2349 –

2356.

[64] X. Li, J. Branke, T. Blackwell, "Particle Swarm with Speciation and Adaptation in a

Dynamic Environment," in Proceedings of Genetic and Evolutionary Computation

Conference, 2006.

[65] R. Mendes, A. Mohais, "DynDE: a differential evolution for dynamic optimization

problems," in IEEE Congress on Evolutionary Computation, 2005, pp. 2808-2815.

[66] T. Blackwell, J. Branke, "Multi-swarms, Exclusion and Anti-Convergence in

Dynamic Environments," in IEEE Transactions on Evolutionary Computation,

2006, pp. 51-58.

[67] I. Moser, T. Hendtlass, "A Simple and Efficient Multi-Component Algorithm for

Solving Dynamic Function Optimisation Problems," in IEEE CEC, 2007.

[68] T. Blackwell, J. Branke, X. Li, "Particle swarms for dynamic optimization

problems," in Swarm Intelligence, 2008, pp. 193-217.

[69] A. Hashemi, M. Meybodi, "Cellular Pso: A Pso for Dynamic Environments," in

Advances in Computation and Intelligence, 2009, pp. 422-433.

[70] L. Changhe, Y. Shengxiang, "Fast Multi-Swarm Optimization for Dynamic

Optimization Problems Natural Computation," in Fourth International Conference

on Natural Computation, 2008, pp. 624-628.

100

[71] X. Hu, R. C. Eberhart, "Adaptive particle swarm optimization: detection and

response to dynamic systems," in IEEE Congress on Evolutionary Computation,

2002, pp. 1666-1670.

[72] W. Du, B. Li, "Multi-strategy ensemble particle swarm optimization for dynamic

optimization Information Sciences," in Information Sciences, vol. 178, 2008, pp.

3096-3109.

[73] S. Bird, X. Li, "Using regression to improve local convergence," in IEEE Congress

on Evolutionary Computation, 2007, pp. 592-599.

[74] M. Kamosi, A. Hashemi, M. Meybodi, "A New Particle Swarm Optimization

Algorithm for Dynamic Environments," in Swarm, Evolutionary, and Memetic

Computing, 2010, pp. 129-138.

[75] M. Kamosi, A. B. Hashemi, M. R. Meybodi, "A Hibernating Multi-Swarm

Optimization Algorithm for Dynamic Environments," in Proceedings of World

Congress on Nature and Biologically Inspired Computing(NaBIC2010),

Kitakyushu, Japan, 2010, pp. 370-376.

[76] L. Liu, S. Yang, D. Wang, "Particle Swarm Optimization With Composite Particles

in Dynamic Environments ," IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 40, pp. 1634-1648, 2010.

[77] R. I. Lung, D. Dumitrescu, "A collaborative model for tracking optima in dynamic

environments," in 2007 Congr. Evol. Comput, 2007, pp. 564–567.

101

[78] R. I. Lung, D. Dumitrescu, "Evolutionary swarm cooperative optimization in

dynamic environments," in Natural Comput, 2010, pp. 83–94.

[79] Y. G. Woldesenbet, G. G. Yen, "Dynamic evolutionary algorithm with variable

relocation," IEEE Transactions on Evolutionary Computation, vol. 13, pp. 500-513,

2009.

[80] B. Nasiri , M. R. Meybodi, "Speciation based Firefly Algorithm for Optimization in

Dynamic Environments," International Journal of Artificial Intelligence, vol. 8, pp.

118-132, 2012.

[81] I. Rezazadeh,M. R Meybodi, A. Naebi, "Adaptive Particle Swarm Optimization

Algorithm for Dynamic Environments," Lecture Notes in Computer Science, vol.

6728, pp. 120-129, 2011.

[82] N. Noroozi,A. B. Hashemi, M. R. Meybodi, "CellularDE: A Cellular Based

Differential Evolution for Dynamic Optimization Problems," Adaptive and Natural

Computing Algorithms, Lecture Notes in Computer Science, Springer, vol. 6593,

pp. 340-349.

[83] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer, P. N.

Suganthan, "Benchmark Generator for CEC'2009 Competition on Dynamic

Optimization," 2008.

[84] F.O. de Franc, F.J. Von Zuben, "A Dynamic Artificial Immune Algorithm Applied

to Challenging Benchmarking Problems," in IEEE Congress on Evolutionary

102

Computation, 2009.

[85] P. Korosec, J. Silc, "The Differential Ant-Stigmergy Algorithm Applied to

Dynamic Optimization Problems," in IEEE Congress on Evolutionary Computation

(CEC 2009), 2009.

[86] C. Li, S. Yang, "A Clustering Particle Swarm Optimizer for Dynamic

Optimization," in IEEE Congress on Evolutionary Computation (CEC 2009), 2009.

[87] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, V. Zumer, "Dynamic

Optimization using Self-Adaptive Differential Evolution," in IEEE Congress on

Evolutionary Computation (CEC 2009), 2009.

[88] E. L. Yu, P. N. Suganthan, "Evolutionary Programming with Ensemble of Explicit

Memories for Dynamic Optimization," in IEEE Congress on Evolutionary

Computation (CEC 2009), 2009.

