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ABSTRACT 

One of the structural systems in Cyprus is slab-column frame buildings with wide 

beams and rectangular columns. In this study 4-, 6- and 8-story buildings with regular 

plan of mid-rise wide-beam buildings in Famagusta, Cyprus were defined. Fragility 

curves were employed as one of the important seismic assessment tools and 

constructed using incremental dynamic analysis (IDA) method. In this study, a set of 

earthquake records were chosen to represent the soil properties and strike-slip type of 

faulting in this region which also have a good correlation with Turkish design 

spectrum. These records were scaled to ten different levels of peak ground 

acceleration (PGA) from PGA=0.1 to PGA=1.0g. The Park & Ang damage index and 

log-normal cumulative distribution function were used as proper damage index and 

probability function, respectively. Based on IDA curves, two damage levels including; 

immediate occupancy (IO) and collapse prevention (CP) were obtained for this type 

of building and they were compared with criteria which are suggested by FEMA 356. 

Also, the effects of P-delta and aftershock were evaluated.  

Since the nonlinear time history analysis is time consuming, requires complex 

calculations and powerful computers, for rapid evaluation of damage the artificial 

neural network (ANN) was used as an efficient tool. In this study, using the results of 

numerical simulations, 600 data were generated and applied to a multi-layer perceptron 

(MLP) neural network in order to predict the imposed damage of these sample 

buildings. In training process, ten different activation functions were examined to find 

the best kernel function. Also the optimum hidden layer neurons were calculated by 

using minimum test error method. In this network, 70 %, 15 % and 15 % of all data 

were used for training, validating and testing process, respectively. Based on obtained 
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results from ANN, the fragility curves were drawn and compared with the obtained 

curves from IDA. This application of network also is able to predict the top 

displacement and the base shear force of sample buildings. 

Another application of ANN was used for classification of global imposed damage 

based on Park & Ang investigation. For this aim, two networks include; multi-class 

support vector machine (M-SVM) and combination of MLP neural network with M-

SVM (MM-SVM) were applied and the label of each actual class was compared with 

predicted class. The results showed that the ANNs are able to predict and classify the 

damages with high accuracy and also they can be used as an appropriate and reliable 

alternative tool for rapid seismic evaluation of structural systems. 

Finally, an existing model of R/C wide-beam building (test model) was considered 

and the obtained fragility curves from classical method and ANN were compared and 

discussed.  

Keywords: aftershock effect, artificial neural network, damage classification, 

damage prediction, fragility curve, incremental dynamic analysis, Park & Ang damage 

index, R/C wide-beam buildings, seismic behavior.   
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ÖZ 

Kıbrıs genelinde betonarme yapı sistemleri arasında döşeme kalınlığında geniş 

kirişlerin dikdörtgen kolonlar tarafından taşındığı sistemler de bulunmaktadır. Bu 

çalışmada bu özelliklere sahip 4, 6 ve 8 katlı binalar Gazimağusa şehrinde bulunan 

yapı özelliklerini taşıyacak şekilde oluşturulmuştur. Bu yapılar için kırılganlık eğrileri, 

artımsal dinamik analiz (ADA) yöntemi kullanılarak oluşturuldu. Bu amaçla 

Gazimağusa bölgesinin zemin koşullarını da dikkate alan ve Türk Deprem 

Yönetmeliği tasarım spektrumuna uyumlu yan atımsal deprem kayıtları kullanılmıştır. 

Tasarım spektrumuna uyumlu deprem kayıtları en büyük yer ivmesi 0.1g den 1.0g’ye 

kadar on farklı seviyede ölçeklendirilerek kullanılmıştır. Çalışma kapsamında Park ve 

Ang hasar endeksi ve log-normal yığılımlı olasılık dağılımı kullanılarak kırılganlık 

eğrileri elde edildi. Oluşturulan ADA eğrilerinden “hemen kullanım” ve “göçme 

öncesi” hasar durumları bu yapılar için belirlenmiş ve FEMA356 kriterleri ile de 

karşılaştırılmıştır. İkinci mertebe moment etkisi ve artcı şoklar da bu çalışma 

kapsamında değerlendiridi. 

 Linear olmayan dinamik analizlerin oldukca zaman aldığı ve güçlü bilgisayar  

gerektirmesinden ötürü, özellikle deprem dayanımının hızlı belirlenmesi (ön 

değerlendirme) çalışmalarında etkili olacak Yapay Sinir Ağları (YSA) yöntemi bu 

çalışma kapsamında etkili bir araç olarak kullanılmıştır. Bu bağlamda, nümerik 

similasyon yapılarak oluşturulan 600 veri çok-katmanlı algılayıcı (MLP) sinir ağları 

algoritmasına uyarlanarak örnek olarak oluşturulan yapıların hasar durumları tahmin 

edildi. YSA alıştırma aşamasında on değişik aktivasyon fonksiyonu incelenip en iyi 

çekirdek fonksiyon bulundu. Buna ilaveten optimum saklı sinir hüçreleri en az hata 

oluşturulacak şekilde hesaplandı. Bu ağda, toplam verilerin  %70’i alıştırma, %15’i 
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doğrulama ve %15’i ise test aşamalarında kullanıldı. YSA analizinden elde edilen 

sonuçlarara göre kırılganlık eğrileri çizildi ve ADA analizleri sonucunda elde edilen 

eğrilerle karşılaştırıldı. Bu uygulama ayrıca örnek yapılarda en büyük deplasmanın ve 

taban kesme kuvvetinin belirlenmesinde de kullanıldı. 

 YSA ayrıca Park ve Ang global hasar sınıflandırılması uygulamaları için de 

kullanıldı. Bu amaçla çoklu-sınıf destek vektör mekanizması (M-SVM) ve MLP sinir 

ağı ile kombine M-SVM (MM-SVM) uygulanıp her bir hasar sınıfı tahmin edilen hasar 

sınfı ile karşılaştırıldı. Analiz sonuçları göstermiştir ki YSA yöntemi hasar 

durumlarının belirlenmesinde ve sınıflandırılmasında yüksek doğruluk oranı ile 

kullanılabilir. Ayrıca YSA ile belirlenen hasar düzeyleri hızlı deprem 

değerlendirilmesi amacı ile farklı yapı sistemleri için de kullanılabilir. 

 Son olarak Gazimağusa bölgesinde mevcut bir yapı (kullanılan örnek 

yapılardan farklı) çalışma kapsamında incelenip YSA algoritması ile elde edilen 

sonuçlar ADA analiz sonuçları ile karşılaştırılıp sonuçlar tartışıldı. 

 

Anahtar Kelimeler: Artcı şok, Yapay Sinir Ağları, hasar sınıflandırılması, hasar 

tespiti, kırılganlık eğrileri, artımsal dinamik analiz, Park ve Ang hasar endeksi, 

Betonarme geniş-kirişli yapılar, deprem davranışı. 
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Chapter 1  

                             INTRODUCTION 

1.1 Background 

 The natural disasters such as earthquake and strong winds may lead to catastrophic 

results, such as, earthquakes on January 26, 2001 in India (20,005 killed, 166,836 

injured, 339,000 buildings destroyed), February 24, 2003 in china (263 killed, 4,000 

injured, 10,000 buildings destroyed), May 1, 2003 in eastern of Turkey (176 killed, 

521 injured), May 21, 2003 in northern Algeria (2,266 killed, 10,261 injured) and 

February 24, 2004 in Morocco (628 killed, 926 injured) (USGS, 2014). Engineering 

measures have been taken to reduce the risks of earthquakes and damages caused by 

them including evaluation and identification of the behavior of materials particularly 

concrete and steel, improvement in analysis and design of buildings, control and more 

precise monitoring of the implementation and better workmenship.   

Generally, the seismic behavior of buildings are commonly impressed by three 

factors including; lateral load acting,  geometry of buildings and  the properties of 

materials in linear and nonlinear states which are used in construction. Therefore, the 

identification of these aspects to predict the structure responses are significant. On the 

other hand, the accurate determination of earthquake loads are difficult, therefore this 

factor is one of the major uncertainties to identify seismic response of buildings. 

Similarly, geometries of buildings are different from each other and it is very difficult 

to have an exact model. Also the material properties in construction are depending on 
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manufacturing processes and there is a confusion in selecting appropriate material 

properties. However, these uncertainties can be decreased by collecting data 

throughtout proper engineering knowledge. In the last decades, engineers tried to 

improve the numerical and experimental methods in order to achieve the more realistic 

seismic responses of buildings. Indeed, these results can be used in two ways; seismic 

vulnerability assessment and retrofitting of existing buildings that were designed and 

constructed based on previous codes and still in use, improve design codes to reach 

more reliable design and construction for new buildings. 

1.2 Objectives of the study 

The primary goal of this study is to evaluate the vulnerability of existing reinforced 

concrete (R/C) wide-beam buildings which are built in the Mediterranean area and is 

also available in North Cyprus. Since this type of buildings were built in the last few 

decades and also still in use, their seismic behavior should be considered seriously. 

For this purpose, the fragility curves were selected as an efficient tool and by 

considering the real behavior of construction material, selecting a set of ground motion 

record which has most correlation with design spectrum and using nonlinear time 

history analysis, behavior of these buildings type were evaluated. In addition, 

incremental dynamic analysis (IDA) curves were applied in order to find the damage 

criteria for this type of buildings and the obtained results were compared with 

suggested criteria based on FEMA 356 (2000). In the meantime, the P-Delta and also 

aftershocks effects were discussed.  

 Another aim of this study is to apply the artificial neural network (ANN) as an 

alternative and rapid evaluation method with function approximation operation as a 

fast, efficient and accurate tool to predict the amount of imposed damages and drive 

the fragility curves. Also this method can be used as an alternative method instead of 
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FEMA 154 (2002) with more accuracy, time saving ability and high efficient. This 

model of network also can be able to predict another response of buildings such as the 

top displacement and the base shear force. Furthermore, it was applied to determine 

the effective ground motion parameters.  

Another model of ANN with clustering and classification capability was selected 

in order to classify the global damage of buildings to three classes that includes; 

Repairable (Economic), Beyond Repair (Not Economic) and Loss of Building 

(Collapse). These networks can create a compatibility model for similar buildings with 

additional data beyond whatever is previously used in order to predict and classify the 

amount of imposed damage due to earthquake in minimum time and high precision 

and then drive the fragility curves with establishing a good relation between the 

structural and ground motion parameters as input parameters and damage values as 

output parameters of network.  

1.3 Overview of the thesis 

This thesis is composed of seven chapters. The first chapter describes the 

introduction. It briefly discusses about the problem statements, aims and scopes and 

includes; background, objectives of the study and overview of the thesis. Chapter two 

concerns with literature review. This review includes the application of fragility curves 

for seismic evaluation of R/C buildings and the extensive usage of ANN in several 

fields of civil engineering in order to solve the different problems with prediction and 

classification approach. Chapter three illustrates the method and requirements that 

were carried out in this research. The analysis and results for obtaining the fragility 

curves based on IDA and ANN are explained and presented in chapters four and five, 

respectively. Chapter six discusses about obtained results throughout the thesis, 

comparison between obtained fragility curves based on classical method (IDA) and 
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computational method (ANN) and finally an existing R/C wide-beam building (case 

study) is evaluated. Lastly, the conclusion of this study is presented in chapter seven.  

It comes together with the appendices which consist of Matlab codes and reference 

links. 
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Chapter 2  

                       LITERATURE REVIEW  

The significance of danger for buildings caused by earthquakes worldwide is being 

increasingly perceived as a result of poor quality materials, imprecision in construction 

and failed supervision. Due to the improvement in structural engineering, such as the 

study of a building’s seismic behavior and observation of a building’s damage, radical 

changes can now be observed in this field. It is important to evaluate existing structures 

in order to determine some ways for improving the seismic resistance of vulnerable 

buildings. In recent years, several different methods of retrofitting have been 

developed to upgrade the seismic performance of existing undamaged buildings before 

being subjected to an earthquake (Elnashai and Sarno, 2008). For instance, retrofitting 

can be conducted by adding new structural elements (such as structural walls or steel 

braces) or by increasing the strength of weak structural elements by using concrete 

and/or steel jackets, fiber-reinforced polymer sheets, etc. (Durucan and Dicleli, 2010; 

Obaidat et al., 2011; Promis and Ferrier, 2012). Fragility curves are one of the useful 

tools for evaluating the seismic vulnerability of buildings. These curves indicate the 

estimation of the damage probability as a function of the ground motion indices. Ozel 

et al. (2011) used fragility analysis to investigate the seismic reliability of mid-rise R/C 

building retrofitted with eccentric steel braces. To increase the seismic reliability of 

existing buildings, D-, K-, and V-type eccentric braces were used, and the fragility 

curves were compared before and after retrofits. Buratti et al. (2010) investigated 

seismic fragility curves for R/C frame structures considering the uncertainties in both 
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structural parameters and seismic excitation. The fragility curves obtained by different 

methods were compared, using the results from a full Monte Carlo simulation as the 

reference solution. A seismic fragility assessment of typical low- and mid-rise R/C 

buildings in Turkey was conducted by Erberik (2008). The damage was estimated by 

using the generated fragility curves. The estimated damage distribution seemed to be 

comparable to the actual damage data. Kappos (2010) provided a methodology for the 

derivation of capacity curves and fragility curves in terms of peak ground acceleration 

(PGA) and spectral displacement (SD) for various types of R/C buildings in Greece. 

Mwafy (2012) developed analytical fragility curves for modern high-rise buildings in 

the United Arabic Emirates (UAE), and the significance of assessing the seismic risk 

of this type of buildings under the effects of anticipated seismic scenarios was 

emphasized. The vulnerability assessment analysis of some existing typical R/C school 

buildings in Albania was performed by Baballeku et al. (2008). Pushover analyses 

were performed to provide their respective capacity curves, and the probable damage 

levels of the buildings were assessed by using the fragility curves.  

Nowadays, one of the popular computational models which have been applied 

widely in different fields of science is ANN. Recently, ANNs are used in different 

fields of civil engineering, such as, traffic management and transportation systems, 

damage prediction of structures, thermo-graphic inspection of electrical installations 

within buildings, forecast water pressure in pipes, etc., in order to solve complex 

relationships by considering effective indices and establishing a good relationship 

between input and output parameters. Moreover, these networks can be applied in 

damage classification problems. 

 For confined reinforced concrete columns containing fiber-reinforced polymer, a 

combined ANN (CANN) was presented by Köroglu et al. (2012). The network can 
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estimate the flexural capacities with high accuracy. Tesfamariam and Liu (2010) used 

eight different neural networks for classification of reinforced concrete buildings to 

three classes; damaged, life safety (LS) and immediate occupancy (IO). The obtained 

results showed that the performance of classification depends on the characteristics of 

database. A MLP neural network was employed in order to evaluate the effective 

design parameters of R/C buildings under earthquake by Araslan (2010). He 

considered 256 buildings between 4 and 7 story with change in quality of R/C structure 

materials and load-bearing system to obtain the buildings capacity. The results showed 

that among eight considered parameters, short column formation and shear wall ratio 

have the most effect on buildings performance. On the other hands, transverse 

reinforcement and compressive strength of concrete were identified as the least 

significant parameters. Two different neural networks; a back-propagation neural 

network (BPNN) and a fuzzy neural network (FNN) were used in order to measure the 

pressure on a large gymnasium roof by Fu et al. (2007).They showed that BPNN can 

be applied as effective tool for the design and analysis of wind effects on large roof 

structures. Gonzalez and Zapico (2008) suggested a method for seismic damage 

identification of steel moment-frame buildings using a multi-layer perceptron (MLP) 

neural network. The obtained results from MLP were accepted with minimum error of 

test and train data. In order to evaluate the damage level of beams, a neural network 

with back-propagation algorithm was used by Li and Yang (2008). They showed that 

the obtained results of this network were having enough efficiency. 

The first classification algorithm was presented by Fisher (1936). In this algorithm, 

minimizing the classification error of train data was evaluated as an optimization 

criterion. This method has been used in many classification algorithms, yet there are 

some problems encountered mainly the generalization properties of the classifiers, 
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which are not directly involved in the cost function. Also for doing the training process, 

determining the structure of network was not easy. As an example, determining the 

optimum number of neurons in the hidden layers of the MLP neural networks or the 

number of Gaussian functions in radial basis function (RBF) neural networks are 

difficult and time consuming. Cortes and Vapnik (1995) introduced a new learning 

statistical theory which led to present the support vector machines (SVMs). The 

significant features of these networks are their ability to minimize the classification 

errors, maximize the geometric margins between classes, design the classifiers with 

maximum generalization, and automatically determining the architecture of network 

for classifiers and modeling the nonlinear separator functions using nonlinear cores.  

In a tunnel construction, an intelligent controlling system was presented by Jun et 

al. (2013). This system needed to recognize the geophysical parameters to find the 

optimum solution of problems. Therefore, a nonlinear optimization technique was 

employed using the least square support vector machine (LSSVM). The results showed 

that this method is timesaving and easy to use in local optimal problems. Mingheng et 

al. (2013) employed several different models of traffic flow using SVM to find the 

best intelligent traffic control tool. They obtained that amongst the three proposed 

models, the SVM with the historical pattern data for the target road section model has 

the best performance. Vafaei et al. (2013) applied MLP neural network to identify the 

real-time seismic damage for concrete shear walls. It was observed that the neural 

network could detect the amount of imposed damage with high accuracy. Two 

different neural networks; the adaptive neuro-fuzzy inference system (ANFIS) and the 

three-layered artificial neural network (TL-ANN) model were used to estimate the 

earthquake load reduction factor for industrial structures by Ceylan et al. (2012). They 

showed that the ANFIS model was more successful than the TL-ANN model. Xie et 
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al. (2013) investigated the amount of voids inside the concrete using SVM. The grid-

algorithm and the genetic-algorithm were used to determine the kernel function and 

network parameters. The obtained results presented that the SVM exhibits a promising 

performance for identification of voids inside the concrete. In addition, ANNs were 

used in conjunction with each other. Koroglu et al. (2012) applied MLP neural network 

in two models; Single MLP and  combined MLP with itself (CMLP) for estimation of 

the flexural capacity for the quadrilateral FRP-confined R/C columns. They obtained 

the model of CMLP had lower prediction error than the single MLP model. In order to 

classify the cardiac arrhythmias, Castillo et al. (2012) considered a hybrid intelligent 

system which consists of the Fuzzy K-Nearest Neighbors with the MLP and very high 

classification rate was obtained. To predict the Short-Term wind power generation, 

combination of genetic algorithm (GA) and orthogonal least squares (OLS) algorithm 

with RBF neural network was proposed by Chang (2013). The test results indicated 

the proposed model is reliable with the sufficient performance. 

Since many researches have been done on different types of buildings which are 

constructed based on previous code and instruction, but unfortunately no research has 

been centrally done on wide-beam R/C building. Also this type of buildings are 

available and still in use, therefore the seismic evaluation of these buildings is 

significant. For this aim, some criteria should be considered, such as, nonlinear 

behavior of material including concrete and steel bar, how to distribute and absorb the 

earthquake energy by structural elements, determine the damage level criteria  and 

compare with existing procedure guideline like FEMA 356, assessment of the collapse 

processing and etc. Since doing the nonlinear time history analysis is difficult, time 

consuming and needs high engineering knowledgement, thus in this research it was 

attempted to present a new method in order to evaluate the seismic performance of 
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buildings with high accuracy, minimum time and simplicity of operation. This method 

can be used for evaluation of an extensive space like a city by considering some 

suitable sample from a set of specified buildings type and carrying out nonlinear 

dynamic analysis. Then using the obtained data, the seismic performance of remained 

buildings will be predicted with high precision. Many applications of this strong 

mathematical tool have been done in many fields of science such as medical science, 

different engineering fields, aerospace, military science and etc. Also this method can 

be used for retrofitting programs, disaster management and insurance company. It 

might be said that the performance of ANN in simplest case is like nonlinear regression 

but more complicated. Indeed the ANN made a relation between input and output 

parameters using some functions such as tangent hyperbolic, sine hyperbolic, etc. Then 

by using this pattern, the test data were evaluated. Also the different models of ANN 

with various applications were used in this research as powerful mathematical tool 

which can solve the complex and difficult problems that cannot be solved by prevalent 

mathematical methods. 
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Chapter 3  

                            METHODOLOGY 

3.1 Sample buildings and material properties  

One of the existing building types in Cyprus is slab-column frame buildings with 

wide beams and rectangular columns where the beam height is equal to the slab 

thickness. This type of building is made in the Mediterranean area such as Spain, Italy, 

Greece and is also available in North Cyprus (Climent et al., 2009; Kulkarni and Li, 

2009; Climent et al., 2010; Goldsworthy and Abdouka, 2012). The structural system 

of exterior wide beam-column connections is shown in Figure 3.1. 

 

 

 

 

 

 

 

 

Figure 3.1: Typical exterior wide beam-column connection 

This type of buildings were largely used by many architects because it has more 

flexibility for definition of spaces and also effective in reducing the use of formwork. 
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However, this model of buildings has several problems, such as, lack of sufficient 

transferring of the bending moment from the wide beam to the column, poor energy 

absorption capacity, inadequate lateral stiffness, etc. Using the wide beam-column 

connection has been limited or prohibited in seismic regions. As an example, the ACI-

ASCE (1991) prohibited using the wide beams in structures in order to dissipate energy 

in response of ground motions during inelastic behavior of the structure. ACI 318-83 

(1983), ACI 318-89 (1989), ACI 318-95 (1995) and ACI 318-99 (1999) codes 

permitted wide beams if: 

𝑏𝑏 ≤ (𝑏𝑐 + 1.5ℎ𝑏)                                                                                                          (3.1) 

The New Zealand standard NZS3101-95 (1995) limited bb to: 

𝑏𝑏 ≤ 𝑚𝑖𝑛 { 𝑏𝑐 + 0.5ℎ𝑐; 2𝑏𝑐}                                                                                        (3.2) 

The more recent ACI 318-05 (2005) and ACI 318-08 (2008) limit bb to: 

𝑏𝑏 ≤ 𝑚𝑖𝑛 { 𝑏𝑐 + 1.5ℎ𝑐; 3𝑏𝑐}                                                                                   (3.3) 

where 𝑏𝑏 is the width of wide-beam, 𝑏𝑐 is the width of column, ℎ𝑐 is the depth of 

column, ℎ𝑏 is the height of wide-beam or slab thickness (Climent et al., 2010). 

In this study, three R/C wide-beam buildings with the 4-, 6- and 8-levels were 

defined with regular plan in order to present the mid-rise buildings in Famagusta city. 

Based on information mentioned in existing building plans, these buildings were 

designed according to 1975 version of the Turkish seismic design code (TEC-1975, 

1975). Also, the American Concrete Institute (ACI) building code was used for 

designing the structural components (ACI 318-83, 1983). The duality in selecting 

codes (i.e. Turkish and American codes) may be a drawback for such buildings. 

Moreover, based on previous researches and experimental tests of this building type, 

the material strength of concrete and steel of these buildings stock were measured as 

15MPa for compressive strength of concrete and 220MPa and 300MPa for yield and 
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ultimate strength of steel, respectively (Rasol, 2014; Arslan, 2010). Soil type IV (D-

type) was specified based on this zone property.  

3.1.1 1975 Seismic Design Code 

The TEC regulation of 1975 has been introduced and used since 1975 as a seismic 

code to be applied in disaster areas. The code considered the spectrum coefficient 

based on the natural period of the building and soil conditions. Ductility term was 

explicitly used for this code and also base shear factor was calculated based on this 

term in order to provide the sufficient resistance under earthquake. The earthquake 

coefficient of the 1975 code is calculated as: 

𝐶 = 𝐶0 ∙ 𝐾 ∙ 𝐼 ∙ 𝑆                                                                                                      (3.4) 

where 𝐶0 is seismic zone factor, 𝐾 is a factor related to structure system type, 𝐼 is 

an important factor and 𝑆 is a spectral factor (Ilki and Celep, 2012; Soyluk and 

Harmankaya, 2012) 

3.1.2 ACI 318-83 Code 

ACI 318-83 (1983) regulation has been presented by the ACI for designing the 

structural concrete members with considering the minimum requirement. This code 

designs the concrete members using the ultimate strength of materials by considering 

appropriate safety margin through applying reduction factors. Also these factors 

include the safety of material properties for controlling the strength, any variations in 

concrete member dimensions and steel positions, lack of precision in design and 

considering the structural members ductility. These factors are 0.9 for flexure and axial 

tension, 0.75 and 0.7 for axial compressions with and without flexure, respectively. 

Furthermore, factors 0.85 for shear and torsion and 0.7 for bearing on concrete were 

considered (ACI 318-83, 1983). 

Based on observations of wide-beam buildings, dimensions of the columns were 

selected as rectangular sections with aspect ratios (width/height ratio of cross section 
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area) between 1.5 and 3. Also the beams with same thickness of slab (15cm) were used 

as a connection elements between columns. SAP2000 was used in order for primary 

design of these models. Figures 3.2-3.7 depict the plans and section views for the 4-, 

6-, and 8-story buildings, respectively. Since the plans of studied buildings were 

rectangular in shape with different strengths in the x- and y-directions, therefore the 

samples were selected in order to investigate in the weaker direction (x direction) only.  

 

 

 

 

 

 

 

 

Figure 3.2: Plan view of four-story building 
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Figure 3.3: Section view of four-story building 

 

 

 

 

 

 

 

 

 

Figure 3.4: Plan view of six-story building 
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Figure 3.5: Section view of six-story building 

 

 

 

 

 

 

 

 

 

Figure 3.6: Plan view of eight-story building 
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Figure 3.7: Section view of eight-story building 

3.2 Ground motions 

 A significant step for performing nonlinear time history analysis is selection of a 

representative set of ground motion records which have high correlation with design 

spectrum and also cover the site properties. For this aim, the effective parameters of 

earthquakes in a region should be considered. These parameters include; the distance 

from the fault line, the soil profile, the time duration of the earthquake as well as the 

variation in intensity, amplitude and frequency content, etc. For Cyprus area, a strike-

slip fault mechanism was specified by Cagnan and Tanircan (2010). 

In this study, due to uncertainty and lack of strong ground motion data for the 

Famagusta region, a series of earthquakes that occurred in other areas of the world 

were selected. The records were taken from the Berkeley data-base site (PEER, 2013). 

These records have been chosen based on the strike-slip fault mechanism, the D (Z4-

type according to TEC (2007)) site classification (Shear-wave velocity < 180 m/s) and 
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a distance less than 100 km from the fault line which is representative for Famagusta 

region (Cagnan and Tanircan, 2010).  

For the best set of records, different methods, such as, the time domain, the 

frequency domain or the time-frequency domain adjustments were suggested 

(Hancock et al., 2006; Rizzo et al., 1975; Suarez and Montejo, 2005). These methods 

are used to match the response spectrum with design spectrum but they lead to change 

the time or frequency content of the original records. In this study, twenty records were 

selected carefully in order to have most correlation with the design spectrum specified 

by the Turkish design code (TEC, 2007) using trial and error approach. For this 

purpose, twenty records considered randomly from a larger set of proper input records 

and then by calculating the mean of these twenty records, the amount of correlation 

between mean and design code are calculated. This process is repeated until to reach 

the best correlation value. The mean and response spectrums of individual records are 

shown in Figure 3.8. Moreover, the characteristics of these ground motions are 

tabulated in Table 3.1.  

 

 

 

 

 

 

 

 

Figure 3.8: The mean and response spectrums of individual records 
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    Table 3.1: Characteristics of the twenty natural records 

Name Event Year 

Time    

Effective 

(s) 

PGA      

   (g) 

PGV 

(cm. s-1) 

PGD  

(cm) 

REC1 Park field 1966 27.80 0.059 5.90 2.86 

REC2 Park field 1966 06.99 0.476 79.34 22.59 

REC3 
Imperial Valley-

06 
1979 12.82 0.171 42.75 02.83 

REC4 
Imperial Valley-

06 
1979 23.32 0.078 13.00 24.18 

REC5 Victoria- Mexico 1980 10.64 0.101 7.77 05.99 

REC6 Victoria- Mexico 1980 15.37 0.150 25.00 09.54 

REC7 Westmorland 1981 08.40 0.171 05.90 00.47 

REC8 Westmorland 1981 18.50 0.155 25.83 12.96 

REC9 Morgan Hill 1984 35.98 0.032 05.33 02.21 

REC10 
Superstition 

Hills-B 
1987 16.86 0.211 30.14 20.44 

REC11 
Superstition 

Hills-B 
1987 28.75 0.207 34.50 21.31 

REC12 
Superstition 

Hills-B 
1987 16.05 0.358 44.75 17.46 

REC13 Landers 1992 36.32 0.136 11.33 05.03 

REC14 Landers 1992 17.62 0.245 49.00 43.66 
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REC15 Kobe- Japan 1995 24.52 0.070 4.38 01.54 

REC16 Kocaeli- Turkey 1999 15.34 0.268 67.00 57.17 

REC17 Kocaeli- Turkey 1999 09.39 0.242 30.25 29.76 

REC18 Kocaeli- Turkey 1999 14.99 0.152 21.71 09.81 

REC19 Duzce- Turkey 1999 19.22 0.042 8.40 08.09 

REC20 Duzce- Turkey 1999 16.09 0.114 11.40 9.74 

 

In order to adapt the mean response spectrum with Turkish design spectrum (TEC-

2007, 2007), scaling the real ground motion records is necessary. Therefore, based on 

Figure 3.8, the mean curve from this set of records has good correlation with target 

curve (Turkish design spectrum) but they are not perfectly fitting to each other. 

Therefore, an optimization program was written via MATLAB software in order to 

find the best scale of mean records using root mean square error (RMSE) reduction 

technique. Flowchart of the proposed optimization algorithm is depicted in Figure 3.9. 
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Figure 3.9: Flowchart of the search optimization algorithm 

Therefore, based on RMSE reduction technique, factor 2.3 was obtained for this set 

of records. The mean and response spectrums of this set of scaled records are shown 

in Figure 3.10.  

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Target (Turkish design spectrum), mean and response spectrums of 

individual modified records 
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3.3 Damage indices 

In order to evaluate the damage level of structures under earthquake loads, several 

different indices were presented by researchers. These criteria provide the value of 

structural failure based on a proper theoretical background. Mathematical models of 

damage that have been determined based on assessment of vulnerabilities can be 

defined as functions of structural strength, ductility, the distance from the fault line, 

the duration of the earthquake, etc. Gradually, combination of visual observations of 

damage and numerical analysis and extensive investigation in this field led to defining 

the damage indices for the evaluation of a building’s vulnerability. Recently, 

considering the seismic behavior of structures under oscillatory motions of the earth 

has led to improve the damage function. As continue, several important damage 

indices which were suggested and used for concrete buildings are presented. 

3.3.1 Ductility ratio index 

Ductility ratio index is defined as ratio of maximum deformation to the yield 

deformation and has been extensively applied to evaluate the seismic capacity of 

building undergoing inelastic deformation (Newmark and Rosenblueth, 1971). 

Experimental studies showed that this index is not properly working when shear 

distortion was happened in joints and the bottom bars pull out through the concrete. 

3.3.2 Slope ratio index 

Slope ratio index is defined as ratio of the secant slope in loading branch to the 

slope in unloading branch of force-displacement diagram and calculates the damage 

based on stiffness degradation under seismic loading (Saiidi and Sozen, 1981). 

3.3.3 Normalized cumulative rotation index 

Normalized cumulative rotation index is defined as ratio of total inelastic rotations 

during half cycles to the yield rotation and is depended on duration and intensity of the 
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ground motion (Allahabadi and Powell, 1988; Banon and Veneziano, 1982).  The 

analytical analysis and experimental results showed that those of indices which 

calculated the damage values only based on dissipated energy or cumulative inelastic 

deformation cannot consider the complex process of damage propagation. 

3.3.4 Inter-story drift ratio index 

   This index expresses the amount of damage according to a relative horizontal 

displacement parameter. Hueste and Bai (2007) utilized the FEMA 356 (2000) global 

drift limits to assess the seismic fragility of R/C buildings and compared them with 

drift limits based on the FEMA 356 (2000) member-level criteria. Rajeev and 

Tesfamariam (2012) investigated this index to evaluate the non-ductile R/C frames 

while considering soil-structure interaction. This index has also been applied for steel, 

masonry and wood buildings by several researchers (Ozel and Guneyisi 2011, 

Kazantzi et al. 2008, García and Negrete 2009, Park et al. 2009, Lee and Rosowsky 

2006). This index is defined as:  

𝐷𝐼 =  
𝛿𝑖+1−𝛿𝑖

ℎ
                                                                                                       (3. 5)                                                      

in which δi+1 is the horizontal displacement of the (i+1)th story, δi is the horizontal 

displacement of the ith story and h is the height between stories. 

Table 3.2 represents the inter-story drift ratio limit states based on the FEMA 356 

(2000) global-level criteria. 
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Table 3.2: Inter-story drift limit states based on FEMA 356 (2000) global-level criteria 

Structure Type 

Inter-Story Drift Limits (%) 

Light 

Damage 

(IO) 

Moderate 

Damage 

(LS) 

Severe 

Damage 

(CP) 

R/C With Shear Wall 0.5 1 2 

R/C Without Shear Wall 1 2 4 

 

3.3.5 Park & Ang index 

The Park & Ang damage index was proposed by Young-Ji Park, Alfredo H.-S. Ang 

and Yi Kwei Wen in 1985 for the seismic vulnerability assessment of R/C buildings 

and is defined as the linear combination of the maximum displacement and the 

dissipated energy (Park et al., 1985). This index is defined in the following equation: 

 𝐷𝐼 =
𝛿𝑚
𝛿𝑢

+ 
𝛽

𝛿𝑢.𝑃𝑦
                                                                                                     (3.6) 

where 𝛿𝑚 and 𝛿𝑢 are the maximum experienced deformation and ultimate 

deformation of the structural element, respectively; 𝑃𝑦 is the yield strength of the 

structural element; ∫ 𝑑𝐸ℎ is the hysteretic energy absorbed by the structural element 

during the response history; and 𝛽 is a constant parameter which is considered equal 

to 0.1 for nominal strength deterioration (MCEER-09-0006, 2009). 

The Park & Ang damage index can be extended to the story and overall scales by a 

summation of damage indices, as follows: 

𝑆𝐷𝐼𝑗 = ∑ 𝜆𝑘𝑗. 𝐷𝐼𝑘𝑗
𝑚𝑗

𝑘=1                                                                                                    (3.7) 

 𝜆𝑘𝑗 =
𝐸𝑘𝑗

∑ 𝐸𝑖𝑗

𝑚𝑗
𝑖=1

                                                                                                               (3.8)  

in which 𝑆𝐷𝐼𝑗 is the damage index of the 𝑗𝑡ℎ story, 𝐷𝐼𝑘𝑗 is the damage index of the 𝑘𝑡ℎ 
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element of the 𝑗𝑡ℎ story, 𝐸𝑘𝑗 is the hysteretic energy of the 𝑘𝑡ℎ element of the 𝑗𝑡ℎ story, 

Ej=∑ 𝐸𝑖𝑗
𝑚𝑗

𝑖=1
 is the hysteretic energy of the 𝑗𝑡ℎ story, and 𝑚𝑗 is number of the elements 

of the 𝑗𝑡ℎ story. Additionally, the overall damage index (ODI) is as follows: 

 𝑂𝐷𝐼 = ∑ 𝜆𝑖. (𝑆𝐷𝐼𝑖)
𝑁
𝑖=1                                                                                                   (3.9) 

𝜆𝑖 =
𝐸𝑖

∑ 𝐸𝑠
𝑁
𝑠=1

                                                                                                                    (3.10) 

where ET =∑ 𝐸𝑠
𝑁
𝑠=1  is the overall hysteretic energy and N is the number of stories. 

   For the Park & Ang damage index, nine damaged R/C buildings have been 

evaluated after the 1971 San Fernando earthquake in the USA and the 1978 

Miyagiken-Oki earthquake in Japan by Park and Ang. The evaluations suggested the 

limit states shown in Table 3.3. 

   Table 3.3: Interpretation of Park & Ang damage index 

Degree of damage Limit State Description of physical damage 

Minor < 0.2 Minor Cracks throughout Building 

Partial Crashing of Concrete in Columns 

Moderate 0.2 – 0.4 Extensive Large Cracks 

Spalling of Concrete in Weaker Elements 

Severe 0.4 – 1.0 Extensive Crashing of Concrete 

Disclosure of Buckled Reinforcements 

Collapse > 1.0 Total Collapse of Building 

 

   To evaluate the amount of global damage of the sample buildings in Famagusta 

based on the Park & Ang damage index, the states of damages suggested by Young-Ji 

Park, Alfredo H.-S. Ang and Yi Kwei Wen shown in Table 3.4 are used. 
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Table 3.4: The classification of damage values based on the Park and Ang investigation 

State of Structure Amount of Damage 

Repairable (Economic) D.I.≤ 0.4 

Beyond Repair (Not Economic) 0.4 < D.I. ≤ 1.0 

Loss of Building D.I. > 1.0 

3.4 Fragility curve 

The first application of fragility curves was done for probabilistic analysis of 

nuclear power plants. In fact, these curves show that the probability of imposed 

damage under various seismic excitations. These curves depend on one of the 

earthquake intensity parameters, such as the PGA, peak ground velocity (PGV), or 

peak ground displacement (PGD), etc. Additionally, the earthquake damage levels 

(i.e., slight, moderate, severe, collapse, etc.) can be considered in this analysis. The 

analysis used for obtaining seismic response data can be nonlinear time history 

analysis or inelastic spectral analysis or nonlinear static analysis, etc. Figure 3.11 

shows the steps of the proposed methodology in the development of fragility curves. 
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Figure 3.11: The steps of the proposed methodology used in the development of 

fragility curves 

The probability of a structural response exceeding the limit state of a given 

earthquake intensity can be defined as: 

𝑃 = 𝑃[𝐸𝐷𝑃 > 𝐴𝐶] = 1 − [𝐸𝐷𝑃 < 𝐴𝐶] = 1 − ∅ (
𝐴𝐶−𝜇

𝜎
)                                  (3.11) 

Where 𝐸𝐷𝑃 is the engineering demand parameter obtained from the output of a 

nonlinear dynamic analysis, 𝐴𝐶 is the limit state derived from Table 3.3, Φ is the 

normal distribution function, and µ and σ are the mean and standard deviation of 𝐴𝐶, 

respectively. 

Also log-normal cumulative distribution function is selected to reduce the 

computational effort of seismic data and drive the fragility curves. This function is 

expressed as following: 

𝑃 = 𝐹( 𝑥 ∣∣ 𝜇, 𝜎 ) =
1

𝜎√2∙𝜋
∫

𝑒
−(ln (𝑡)−𝜇)2

2∙𝜎2

𝑡
𝑑𝑡

𝑥

0
                                                            (3.12) 

 

3.5 Artificial neural network 

ANNs are widely applied in many fields of sciences such as engineering, medical 

science, mathematics, etc., for linear and nonlinear regression, function 

approximation, classification, and other technical and scientific applications. The basic 

parts of a neural network are composed of activation function, architecture of network 
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and learning rules. The architecture of ANNs is inspired by the human brain. Indeed, 

neural networks are used to determine a general solution for complex and irrelevant 

data that lead to extracting a pattern for these types of problems. Therefore, the 

network is able to predict the new situations and act like an expert system. 

3.5.1 Multi-Layer Perceptron (MLP) neural network 

One of the most widely used neural network which has been employed for function 

approximation problems is MLP. A one-layer feed-forward MLP neural network 

consists of several neurons in input layer, optimum neurons in hidden layer and a 

neuron in output layer. Each layer nodes are connected to the next layer nodes with 

specific weight similar to synaptic weight in human neural networks. The architecture 

of a MLP neural network is shown in Figure 3.12. 

 

 

 

 

 

 

 

 

Figure 3.12: Structure of a MLP neural network model with one hidden layer feed-

forward 

To determine and update the weights and bias terms for learning the MLP network, 

a proper algorithm is needed and it is directly depended on input data. Thus, in this 

research the Levenberg–Marquardt back-propagation algorithm was selected and used 
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which has best performance for this network. It is a combination of the gradient descent 

and Gauss–Newton algorithm and is used as an improved algorithm which is employed 

in many researches. This algorithm is known as a method of damped least-squares for 

minimizing a function by using a numerical solution. The back propagation learning 

algorithm includes; propagation and weight update. Therefore, in order to carry out of 

this process, the neuron's outputs for each layer are calculated by using previous layer 

information (front-propagation). Then based on training pattern target, the gradient of 

the weights for each layer are computed using the difference between the target and 

the output of each layer (back-propagation) and finally, the weights of each layer can 

be updated (weight update). The amount of each neuron in the hidden layer is 

calculated by using equation 3.13: 

𝑃𝑗 = 𝑓(∑ 𝑥𝑖
𝑇𝐴

𝑖=1 . 𝑤𝑖𝑗 + 𝑏𝑗)                                                                                            (3.13) 

where the function 𝑓 is the activation function for hidden layer (calculated based on 

minimum test error), 𝐴 is the number of input layer neuron, 𝑥𝑖 is the 𝑖th network's 

input, 𝑤𝑖𝑗 is the inter-connection between 𝑖th input layer neuron and 𝑗th hidden layer 

neuron and 𝑏𝑗 is the bias term of the 𝑗th hidden layer neuron.  

Also, in the output layer, the amount of each neuron is determined as: 

𝑦𝑘 = 𝑔(∑ 𝑝𝑗
𝑇𝐵

𝑗=1 . 𝑤𝑗𝑘 + 𝑏𝑘)                                                                                         (3.14) 

where 𝑔 is the activation function for output layer (linear transfer function), 𝐵 is 

the number of hidden layer neuron, 𝑝𝑗 is the 𝑗th hidden layer neuron value of network, 

𝑤𝑗𝑘 is the inter-connection between 𝑗th hidden layer neuron and 𝑘th output layer 

neuron and 𝑏𝑘 is the bias term of 𝑘th output layer neuron. Also the Matlab code was 

mentioned in appendix A.  



30 

3.5.2 Support Vector Machine 

SVM has been introduced for the classification and pattern recognition problems 

by Cortes and Vapnik (1995). It is a relatively new learning algorithm used for binary 

classification problems. The main difference between SVM and the other algorithms 

is the SVM minimizes the operational risk as an objective function instead of 

minimizing the classification error. The original pattern classification of this machine 

is to classify the linear input data using the perfect hyperplane into two classes with 

the largest margin in between classes. For nonlinear input data, a nonlinear mapping 

is used to transfer the input data from the primal space to the higher dimensional 

feature space and leads to find the proper hyperplane. Furthermore, SVMs have also 

been extended to solve multi-class problems. Also the Matlab code was mentioned in 

appendix B.  

3.5.2.1 Linear SVM 

In this section, a simple introduction of the linear SVM is presented (Burges, 1998). 

Considering a train sample data includes {(x1,y1),(x2,y2), ... , (xn,yn)}, where each 

sample has the inputs (xi ϵ Rd), and one class label (yi ϵ {+1,-1} ) which is shown in 

Figure 3.13. 

 

 

 

 

 

 

 

Figure 3.13: A sample of linear soft margin SVM (Cortes and Vapnik, 1995) 
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In the two dimensional space, the discriminator is a line in the middle of the margin 

between the classes. Thus, for N-dimension space, the discriminator is a hyperplane. 

Suppose the distance between the each separate data and the discriminator is equal to 

1, the two support hyperplanes are considered parallel to the discriminator and the 

classifier function can be obtained as follows (see Figure 3.13):                                                         

{
   𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≥ 1  ,                𝑖𝑓  𝑦𝑖 = 1        𝑖 = 1, 2, … , 𝑛 

  𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≤ −1 ,              𝑖𝑓  𝑦𝑖 = −1      𝑖 = 1, 2, … , 𝑛.
                                  (3.15)     

                                                                                         

For a unique separator, the maximum margin between classes is needed. Thus, if 

the distance between the support hyperplanes is equal to 𝑀, using equation 3.15, the 

optimum margin (𝑀) is given by: 

𝑀 =
(|𝑏+1|−|𝑏−1|)

‖𝑤‖
=

2

‖𝑤‖
∙                                                                                                  (3.16) 

After calculating the maximum margin, the target function is defined as following: 

Maximize (M) = Maximize  
2

‖𝑤‖
 = Minimize   ‖𝑤‖ = Minimize  

1

2
 ‖𝑤‖2  = Minimize 

  
1

2
 𝑤𝑇 . 𝑤         

Subject to (s.t.):   

 {
   𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≥ 1  ,                𝑖𝑓  𝑦𝑖 = 1         𝑖 = 1, 2, … , 𝑛

  𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≤ −1 ,              𝑖𝑓  𝑦𝑖 = −1       𝑖 = 1, 2, … , 𝑛.
                                 (3.17) 

Since the probability of being the separated data in nature is very low and more 

datasets are inseparable, therefore, the discriminator (hyperplane) is also determined 

based on minimum number of errors. As a result, those members belong to another 

class are penalized based on the distance from the boundary of its own class (𝛿) (see 

Figure 3.13). This strategy is represented as a model of soft margin SVM. For this 

reason, non-negative variables (𝛿𝑖) are defined and called as slack variable s.t. δi ≥ 0. 

Thus, the equation 3.17 is changed as following: 
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Minimize   
1

2
 𝑤𝑇 ∙ 𝑤                                                            

s.t. :     {
 𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≥ 1  ,                     𝑖𝑓  𝑦𝑖 = 1         𝑖 = 1, 2, … , 𝑛

 𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≤ −1 ,                  𝑖𝑓  𝑦𝑖 = −1       𝑖 = 1, 2, … , 𝑛
                    

              𝛿𝑖 ≥ 0.                                                                                                                    (3.18) 

By multiplying the both sides of first s.t. of the equation 3.18 by 𝑦, the primal 

problem becomes: 

Minimize   
1

2
 𝑤𝑇 ∙ 𝑤                                                            

s.t. :   𝑦𝑖(𝑤
𝑇 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝛿𝑖            𝑖 = 1, 2, … , 𝑛                                            

           𝛿𝑖 ≥ 0                                                                                                                        (3.19) 

thus 

𝐿𝑝 =
1

2
 𝑤𝑇 ∙ 𝑤 − ∑ [𝑦𝑖(𝑤

𝑇 ∙ 𝑥𝑖 + 𝑏) − 1 + 𝛿𝑖]
𝑛
𝑖=1         𝑖 = 1, 2, … , 𝑛.                  (3.20) 

The primal problem is a quadratic program but it cannot be solved easily because it 

is not just depended on the parameters which are related to input vectors. Therefore, 

this equation changes from the primal form to dual form by using the Lagrange 

method. The Lagrange factors (𝛼𝑖 , 𝜇𝑖) must be nonnegative real coefficients and 

equation 3.20 becomes: 

𝐿𝑝 =
1

2
 𝑤𝑇 ∙ 𝑤 + 𝐶 ∑ 𝛿𝑖

𝑛
𝑖=1 − ∑ 𝛼𝑖

𝑛
𝑖=1 [𝑦𝑖(𝑤

𝑇 ∙ 𝑥𝑖 + 𝑏) − 1 + 𝛿𝑖] − ∑ 𝜇𝑖 ∙ 𝛿𝑖
𝑛
𝑖=1     ,

𝛼𝑖, 𝜇𝑖 ≥ 0                                                                                                               (3.21) 

where 𝐶 is penalty factor. In this case, 𝐿𝑝 is a saddle point. Thus, at this point, the 

minimum value should be taken with respect to the parameters 𝑤, 𝑏 and 𝛿 and the 

maximum value should be taken with respect to the Lagrange multipliers (𝛼𝑖, 𝜇𝑖). This 

can be done by taking the partial derivative with respect to 𝑤, 𝑏 and 𝛿 in order to 

change the primal problem to a maximum problem  as following:  

𝜕𝐿𝑝

𝜕𝑤
= 0                     → 𝑤 − ∑ 𝛼𝑖 ∙𝑛

𝑖=1 𝑦𝑖 ∙ 𝑥𝑖 = 0                                                     (3.22) 

𝜕𝐿𝑝

𝜕𝑏
= 0                     →  ∑ 𝛼𝑖 ∙𝑛

𝑖=1 𝑦𝑖 = 0                                                                     (3.23) 

𝜕𝐿𝑝

𝜕𝛿
= 0                     →  𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0.                                                                   (3.24) 
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By substituting equations 3.22 and 3.23 into equation 3.21, the dual problem is 

obtained as follows: 

 𝐿𝐷 = − 
1

2
 ∑ ∑ 𝛼𝑖 ∙ 𝛼𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗 ∙ 𝑥𝑖

𝑇 ∙ 𝑥𝑗
𝑛
𝑗=1 +𝑛

𝑖=1  ∑ 𝛼𝑖
𝑛
𝑖=1 .                                         (3.25) 

Also based on the equation 3.24, the box constrains are defined as: 

{
   𝛼𝑖 ≥ 0    
𝜇𝑖 ≥ 0 

 𝛼𝑖 + 𝜇𝑖 = 𝑐 
     →                {

0 ≤ 𝛼𝑖 ≤ 𝐶
0 ≤ 𝜇𝑖 ≤ 𝐶.

                                                               (3.26) 

In addition, by considering ℎ𝑖𝑗  and 𝑓 as the following definition: 

ℎ𝑖𝑗 = 𝑦𝑖 ∙ 𝑦𝑗 ∙ 𝑥𝑖
𝑇 ∙ 𝑥𝑗                                                                                                     (3. 27) 

𝑓 =  

[
 
 
 
 
 
−1
−1
.
.
.

−1]
 
 
 
 
 

                                                                                                                       (3.28) 

and substituting ℎ𝑖𝑗  and 𝑓 into equation 3.25, the dual formulation becomes: 

 𝐿𝐷 = −
1

2
  ∑ ∑ 𝛼𝑖

𝑛
𝑗=1 ∙ 𝛼𝑗 ∙𝑛

𝑖=1 ℎ𝑖𝑗 + ∑ 𝛼𝑖
𝑛
𝑖=1         , 𝛼𝑖 ≥ 0                                      (3.29) 

 𝐿𝐷 = −
1

2
  𝛼𝑇 ∙ 𝐻 ∙ 𝛼 − 𝑓𝑇 ∙ 𝛼                                                                                  (3.30) 

where H and 𝛼 are defined as: 

H= [ℎ𝑖𝑗] = [
ℎ11 ⋯ ℎ1𝑛

⋮ ⋱ ⋮
ℎ𝑛1 ⋯ ℎ𝑛𝑛

]      , 𝐻 ∈ 𝑅𝑛∙𝑛                                                              (3.31) 

𝛼 = 

[
 
 
 
 
 
𝛼1

𝛼2

.

.

.
𝛼𝑛]

 
 
 
 
 

.                                                                                                                  (3.32) 

Therefore, the target function is expressed as follows:  

Minimize   
1

2
  𝛼𝑇 ∙ 𝐻 ∙ 𝛼 + 𝑓𝑇 ∙ 𝛼                                                 

s.t. :    {
     𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≥ 1  ,                   𝑖𝑓  𝑦𝑖 = 1         𝑖 = 1, 2, … , 𝑛

     𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≤ −1 ,                𝑖𝑓  𝑦𝑖 = −1      𝑖 = 1, 2, … , 𝑛
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                   ∑𝛼𝑖 ∙

𝑛

𝑖=1

𝑦𝑖 = 0               

                   0 ≤ 𝛼𝑖 ≤ 𝐶.                                                                                                  (3.33) 

The quadratic programming problem (equation 3.33) can be solved easily by using 

the quadprog function in the Matlab software and the values of αi are calculated. Then 

by substituting  αi values into equation 3.22, the values of 𝑤 are obtained. Also for 

calculating the bias term, the Karush-Kuhn-Tucker (KKT) conditions (fletcher, 1987) 

are necessary and sufficient for the optimization problems. Therefore, these conditions 

should be established in optimum point (equation 3.20). The bias value is calculated 

as: 

K. K. T →  𝛼𝑖[𝑦𝑖(𝑤
𝑇 ∙ 𝑥𝑖 + 𝑏) − 1 + 𝛿𝑖] = 0                                                      

𝜇𝑖 ∙ 𝛿𝑖 = ( 𝐶 − 𝛼𝑖) ∙ 𝛿𝑖 = 0.                                                                                     (3.34) 

Thus based on K.K.T conditions three cases are occurred: 

Case 1: None support vectors if (𝛼𝑖 = 0) 

            𝜇𝑖 = 𝐶 → 𝛿𝑖 = 0 

𝛼𝑖 = 0  →                                                                                                                                                                      

                      𝑦𝑖(𝑤
𝑇 ∙ 𝑥𝑖 + 𝑏) − 1 ≥ 0.                                                                 (3.35)                        

 

Case 2: Outliers if (𝛼𝑖 = 𝐶) 

            𝜇𝑖 = 0 → 𝛿𝑖 ≥ 0 

αi = C  →                                                                                                                                                                                   

                      𝑦𝑖(𝑤
𝑇 ∙ 𝑥𝑖 + 𝑏) − 1 + 𝛿𝑖 = 0.                                                         (3.36) 

                         

  Case 3: Support vectors if (0 < 𝛼𝑖 < 𝐶) 

                   0 < 𝜇𝑖 < 𝐶 → 𝛿𝑖 = 0 

0 < 𝛼𝑖 < 𝐶  →                                                                                                                                                                                          

                                 𝑦𝑖(𝑤
𝑇 ∙ 𝑥𝑖 + 𝑏) − 1 = 0.                                                          (3.37) 

In case 3, each 𝑥𝑖 corresponding to 𝛼𝑖 are support vector machines. Thus by 

multiplying both sides of first s.t. of the equation 3.33 by 𝑦 as following: 
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𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 = 𝑦𝑖                                                                                                        (3.38) 

the amount of the bias term can be obtained as follows: 

𝑆 =  {𝑖 | 0 < 𝛼𝑖 < 𝐶}  , 𝑖 ∈ 𝑆                                                                                     (3.39) 

𝑏 =
1

|𝑆|
 ∑ (𝑦𝑖 − 𝑤𝑇 ∙ 𝑥𝑖)

𝑆
𝑖=1                                                                                          (3.40)                                       

and also using equation 3.22, 𝑤 becomes: 

𝑤 = ∑ 𝛼𝑖 ∙𝑛
𝑖=1 𝑦𝑖 ∙ 𝑥𝑖.                                                                                                  (3.41) 

Finally, by having the amounts of 𝑤 and 𝑏, the optimal hyperplane decision 

function can be expressed as follows: 

𝑦𝑖 = 𝑆𝑖𝑔𝑛 ( 𝑤𝑇 ∙ 𝑥𝑖 + 𝑏).                                                                                          (3.42) 

3.5.2.2 Nonlinear SVM 

For nonlinear data, the selection of optimal hyperplane for separation of data is 

difficult. For this case, Cortes and Vapnik (1995) used the Hilbert-Schmidt theory 

(Heckman, 1997) in order to transform the d-dimensional input vector x into (usually 

higher) an N-dimensional feature vector by using an N-dimensional vector function ∅: 

∅ ∶  𝑅𝑑 → 𝑅𝑁  

∅ ∶ 𝑥 → 𝑧 

𝑧 = ∅(𝑥). 

Therefore based on the SVM algorithm, the discriminator equation can be applied 

into 𝑧 space instead of 𝑥 space as following: 

  𝑤𝑇 ∙ 𝑥 + 𝑏 = 0   →  𝑤𝑇 ∙ 𝑧 + 𝑏 = 0     → 𝑤𝑇 ∙ ∅(𝑥) + 𝑏 = 0.                           (3.43) 

And according to the properties of soft margin classifier method, the dual problem 

is obtained as follows: 

 𝐿𝐷 = 
1

2
 ∑ ∑ 𝛼𝑖 ∙ 𝛼𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗 ∙ ∅(𝑥𝑖

𝑇) ∙ ∅(𝑥𝑗)
𝑛
𝑗=1 −𝑛

𝑖=1  ∑ 𝛼𝑖
𝑛
𝑖=1       , 𝛼𝑖 ≥ 0             (3.44) 

by substituting 𝐾(𝑥𝑖, 𝑥𝑗) instead of  ∅(𝑥𝑖
𝑇) ∙ ∅(𝑥𝑗) , the dual formulation becomes: 

 𝐿𝐷 = 
1

2
 ∑ ∑ 𝛼𝑖 ∙ 𝛼𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗 ∙ 𝐾(𝑥𝑖, 𝑥𝑗)

𝑛
𝑗=1 −𝑛

𝑖=1  ∑ 𝛼𝑖
𝑛
𝑖=1       , 𝛼𝑖 ≥ 0                     (3.45) 

where 𝐾(𝑥𝑖, 𝑥𝑗) is kernel trick (nonlinear function), and is applied to change the 

linear discriminator model into nonlinear form.  
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Therefore, the optimal hyperplane decision function is expressed as following: 

𝑦 = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖 ∙ 𝑦𝑖 ∙ 𝐾(𝑥𝑖, 𝑥) + 𝑏 ).𝑛
𝑖=1                                                                  (3.46) 

3.5.2.3 Multi-class SVM (M-SVM) 

The basic theory of SVM is designing the discriminator (hyperplane) with 

maximum margin between the two classes, while the most of classification problems 

are in the multi-class models (Crammer and Singer, 2001). For N classes’ model, 

Vapnik (1995) presented a strategy to compare one class against the remaining classes 

and this leads to generate the N classifiers. Therefore, this method needs the solution 

of the N quadratic programming optimization problems and it is named 'one-versus-

rest' method.            
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Chapter 4  

     ANALYSIS AND RESULTS THROUGH IDA 

4.1 Primary design of models 

As mentioned in section 3.1, the primary design was done in order to determine the 

dimensions of structural members and steel bars. For this purpose, 1975 Turkish design 

code (1975) and ACI 318-83 (1983) were used as seismic code and the reinforced 

concrete members design code, respectively via SAP2000. The seismic factor and 

details of each building are given as follows: 

𝐶 = 𝐶0 ∙ 𝐾 ∙ 𝐼 ∙ 𝑆 ≥
𝐶0

2
                                                                                              (4.1) 

𝑆 =
1.0

|0.8+𝑇−𝑇0|
≤ 1.0                                                                                                 (4.2) 

𝑇 = 0.09
𝐻

√𝐷
   ,   0.07 𝑁 ≤ 𝑇 ≤ 0.1 𝑁                                                                    (4.3) 

𝐶0 = 0.1    for seismic zone I 

𝐾 = 0.6     for reinforce concrete moment frame 

𝐼 = 1.0      for residential building  , 𝑇0 = 0.8 for soil type IV 

 

          Table 4.1: The fundamental period, spectral factor and seismic factor 

Story No. T S C 

4 0.385 2.597 0.06 

6 0.544 1.838 0.06 

8 0.60 1.67 0.06 
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Table 4.1 shows the fundamental period, spectral factor and seismic factor for each 

sample building. The properties of buildings are shown in Table 4.2. Furthermore, the 

beam and column section details for each sample building are tabulated in Table 4.3 

and 4.4, respectively.  

   Table 4.2: The sample buildings properties 

No. Direction First Mode Period (s) No. of Stories 

1 X 0.57 

4 

2 Y 0.54 

3 X 0.75 

6 

4 Y 0.68 

5 X 0.97 

8 

6 Y 0.80 
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  Table 4.3: The beam sections for each sample building 

Story level Beam section 

 4 story 6 story 8 story 

1, 2 40x15cm 8Φ12 50x15cm 10 Φ 12 70x15cm 12 Φ 14 

3, 4 35x15cm 6 Φ 12 40x15cm 8 Φ 12 60x15cm 10 Φ 14 

5, 6  30x15cm 6 Φ 12 50x15cm 8 Φ 14 

7, 8   40x15cm 6 Φ 14 

 

 

  Table 4.4: The column sections for each sample building 

Story level Column Section 

 4 story 6 story 8 story 

1, 2 25x40cm 10 Φ 12 25x50cm 12 Φ 16 25x70cm 16 Φ 20 

3, 4 25x35cm 10 Φ 10 25x40cm 12 Φ 14 25x60cm 14 Φ 14 

5, 6  25x30cm 10 Φ 12 25x50cm 12 Φ 14 

7, 8   25x40cm 12 Φ 12 

 

Because the amount of S from Table 4.1 for each sample building were obtained 

more than one, therefore this parameter value considered equal to 1. After the design 

step, structural models are analyzed via IDARC-2D software, i.e. nonlinear time 

history analysis process is applied after defining the hysteresis parameters. In next 

section, these parameters are explained. 
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4.2 Hysteretic rule 

One of the main aspects for modeling the nonlinear behavior of structural elements 

is hysteretic model type. The IDARC software contains two hysteretic types with 

complex models including; the polygonal and smooth hysteretic models. 

The performance of the Polygonal Hysteretic Model (PHM) is based on piecewise 

linear behavior. The PHM contains initial or elastic behavior, yielding, cracking, 

stiffness and strength degrading stages, crack and gap closures and it can be defined 

by four models as: 

1- Trilinear Model 

2- Bilinear Model 

3- Vertex Oriented Model 

4- Nonlinear Elastic-Cyclic Model (Sivaselvan and Reinhorn, 1999). 

The Smooth Hysteretic Model (SHM) involves continuous change of stiffness due 

to yielding, but sharp changes due to unloading and declining behavior.  

A general model of smooth hysteretic was introduced by Sivaselvan and Reinhorn 

(1999) which is acts based on internal parameters with stiffness and strength decline 

and pinching properties (MCEER-09-0006, 2009). 

In this study, a PHM was used to define the structural members hysteretic based on 

Trilinear Model. 

4.2.1 Trilinear model 

For the first time this model was proposed by Park et al. (1987) and applied in 

original release of IDARC. The trilinear model contains stiffness decline, strength 

decline, slip-lock, non-symmetric response and a trilinear monotonic envelope. This 

acts by changing from one linear phase to another and is dependent on the deformation 

history. The typical of trilinear hysteretic curves is shown in Figure 4.1.  
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Figure 4.1: A typical trilinear hysteretic model 

In IDARC software, three main parameters should be defined for hysteretic model. 

These parameters consist of stiffness degradation, strength degradation and pinching. 

Since the hysteretic behavior of PHMs is starting from a yielding moment, so the paths 

of loading and unloading between yielding and cracking is the same. 

4.2.2 Stiffness degradation parameter 

The stiffness decline is expressed by using primary slope in hysteretic cyclic model 

and it occurs based on geometric effects. Also by increasing the ductility, the elastic 

stiffness will be decreased. Park et al., (1987) presented that the stiffness decline 

parameter can be modeled using the pivot rule. Indeed, this factor is determined by 

dividing the amount of moment in pivot point to yield point which is expressing the 

area enclosed by the hysteresis loops. In IDARC software, this parameter is shown by 

α index. The schematic representation of this parameter is shown in Figure 4.2.  
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Figure 4.2: The sketch of stiffness decline in the PHM 

4.2.3 Strength degradation parameter 

The strength decline is expressed by using the reduced capacity in the backbone 

curve. Indeed this parameter shows the stability of response and also the rate of 

achieving failure. In IDARC software, this parameter is defined by using two factors 

including; 𝛽1 which shows that the rate of strength decline based on ductility and 𝛽2 

which represents this rate based on hysteretic energy dissipation. The schematic 

representation of this parameter is shown in Figure 4.3.  
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Figure 4.3: The sketch of strength decline in the PHM 

4.2.4 Pinching parameter 

The pinching factor is expressed using the crack closure, bond slip, bolt slip, etc. 

Indeed, it is modeled by considering the target point for the loading branch to be the 

crack closing point. In IDARC software, this parameter is shown by γ index. The 

schematic representation of pinching factor is shown in Figure 4.4.  

 

 

 

 

 

 

 

 

Figure 4.4: The sketch of pinching factor in the PHM 
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In IDARC software, four levels were considered for definition of these indices that 

include; (a) Severe degrading (b) Moderate degrading, (c) Mild degrading and (d) No 

degrading (Default).The range of these indices are shown in Table 4.5. 

 

Table 4.5: The stiffness, strength and pinching range for severe, moderate, mild and 

no degrading cases (MCEER-09-0006, 2009) 

Effect 

α 

Stiffness 

parameter 

 

𝛽1 

Strength 

parameter           

(ductility 

based) 

 

𝛽2 

Strength 

parameter 

(energy 

based) 

 

γ 

Slip or crack 

parameter 

 

Severe 4.0 0.60 0.6 0.05 

Moderate 10.0 0.30 0.15 0.25 

Mild 15.0 0.15 0.08 0.40 

No degrading 200.0 0.01 0.01 1.00 

 

4.2.5 Determination of hysteretic indices 

In order to evaluate and determine the hysteretic behavior of structural members, 

the IDARC indices should be calibrated using the experimental results under cyclic 

load test. Since that the structural members used in these building involve the 

rectangular cross section with aspect ratio (width over height) around two, therefore 

the obtained results of experimental test were used which were done by National 

Science Foundation Pacific Earthquake Engineering Research Center (PEER, 2013) 

for 165 spiral and 253 rectangular sections of reinforced concrete columns. Among 

these samples, a rectangular sample which was tested by Aboutaha and Machado 

(1999) was selected because the dimension and bar percentage of tested sample were 
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similar to sections used in this research and also the strong moment of inertia was 

placed in perpendicular direction of earthquake load. The informations of this tested 

sample are shown in Table 4.6. 
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 Table 4.6: The property of tested sample (Aboutaha and Machado (1999)) 

Concrete section detail Parameter Value  

Geometry 

fc
′(Mpa) 21.9 

Axial Load (KN) 0.0 

Section width, B (mm) 914.4 

Section height, H (mm) 547.2 

Column length, L (mm) 1219.2 

Cross Area (mm2) 418064 

Longitudinal Reinforcement 

Data 

Bar Diameter (mm) 25 

Total # Bars 16 

Clear Cover (mm) 38 

Reinforce Ratio  0.0188 

Yield stress, fy (Mpa) 434 

Ultimate stress, fsu (Mpa) 690 

Transverse Reinforcement Data 

Bar Diameter (mm) 9.53 

Bar Spacing (mm) 406.4 

Total # Hoop sets 3 

Yield stress, fy (Mpa) 400 

Ultimate stress, fsu (Mpa) 627 
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Based on Table 4.6, this section was modeled in IDARC software and imposed 

under Quasi-Static Cyclic Analysis. The pattern load was considered same as the 

experimental load which was used in real test and is shown in Figure 4.5. Then the 

hysteretic energy curves were derived based on each hysteretic modeling rule and 

finally they were compared with the obtained curve from experimental test. Figure 4.6 

shows the comparison of results for severe, moderate, mild and no degrading (default) 

cases.  

 

 

 

 

 

 

 

 

Figure 4.5: The pattern load of full-scale tested sample column (Aboutaha and 

Machado (1999)) 
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Figure 4.6: Comparison of tested sample versus computed response for (a) severe 

degrading (b) moderate degrading, (c) mild degrading and (d) no degrading (default) 

(Aboutaha and Machado (1999)) 

Based on compared curves, the best fitting between tested samples and computed 

responses was obtained in moderate degrading state but the pinching effect should 

become stronger. Therefore the amounts of 𝛽1 and γ factors were changed to 0.3 and 

0.1, respectively. This fitting of response hysteretic is shown in Figure 4.7.   
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Figure 4.7: Comparison of tested sample versus computed response with modified 

strength and pinching parameters (Aboutaha and Machado (1999)) 

For the remaining columns which their strong moment of inertia were placed in 

parallel direction with earthquake load, another sample was selected from tests done 

by Aboutaha et al. (1999). The informations of this sample are shown in Table 4.7.  
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 Table 4.7: The property of tested sample (Aboutaha and Machado (1999)) 

Concrete section detail Parameter Value  

Geometry 

fc
′(Mpa) 26.9 

Axial Load (KN) 646 

Section width, B (mm) 400 

Section height, H (mm) 600 

Column length, L (mm) 1784 

Cross Area (mm2) 240000 

Longitudinal Reinforcement 

Data 

Bar Diameter (mm) 24 

Total # Bars 10 

Clear Cover (mm) 24 

Reinforce Ratio  0.0188 

Yield stress, fy (Mpa) 434 

Ultimate stress, fsu (Mpa) 690 

Transverse Reinforcement Data 

Bar Diameter (mm) 12 

Bar Spacing (mm) 80 

Total # Hoop sets 3 

Yield stress, fy (Mpa) 400 

Ultimate stress, fsu (Mpa) 627 
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For this test, the pattern load is shown in Figure 4.8. The hysteretic energy curves 

were derived based on each hysteretic modeling rule and finally they were compared 

with the obtained curve from experimental test. Figure 4.9 shows that the comparing 

results for severe, moderate, mild and no degrading (default) cases. 

 

 

 

 

 

 

 

 

 

Figure 4.8: The pattern load of full-scale tested sample column (Aboutaha and 

Machado (1999)) 
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Figure 4.9: Comparison of tested sample versus computed response for (a) severe 

degrading (b) moderate degrading, (c) mild degrading and (d) no degrading (default) 

(Aboutaha and Machado (1999)) 

Based on compared curves, the nearest fitting between tested sample and computed 

responses was obtained between mild and no degrading states. Therefore the amounts 

of 𝛼, 𝛽1, β2 and γ factors were changed to 4.0, 0.3, 0.15 and 0.8, respectively. This 

fitting of hysteretic response is shown in Figure 4.10.   
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Figure 4.10: Comparison of tested sample versus computed response with modified 

stiffness, strength and pinching parameters (Aboutaha and Machado (1999)) 

4.3 3D model 

Based on information mentioned in Table 4.2, all sample buildings in X direction 

are weaker than Y direction. Therefore each sample was remodeled and excited only 

in X direction via IDARC-2D software. The steps for development of fragility curves 

were mentioned in Figure 3.11. The obtained fragility curves for each sample buildings 

are shown in Figures 4.11-4.13, respectively. Also the log-normal cumulative 

distribution function parameters that were used for drawing the fragility curves are 

tabulated in Table 4.8. 
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Figure 4.11: The fragility curves for four story building 

 

 

 

 

 

 

 

 

Figure 4.12: The fragility curves for six story building 
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Figure 4.13: The fragility curves for eight story building 

Table 4.8: The used mean and standard deviation values for drawing the fragility 

curves 

 Level Minor-Moderate Moderate-Sever Sever-Collapse 

 

Mean 

4 0.28 0.39 0.78 

6 0.35 0.45 0.83 

8 0.45 0.61 1.13 

 

Standard 

Deviation 

4 0.64 0.67 0.89 

6 0.66 0.69 0.91 

8 0.71 0.79 1.07 

 

As an example the nonlinear dynamic response of each sample building under 

Duzce-Turkey record which is scaled to 0.5g was considered and evaluated. Figure 

4.14 and 4.15 show the record and top displacement of each sample building, 

respectively. 
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Figure 4.14: The Duzce-Turkey ground motion record scaled by 0.5g 

 

 

 

 

 

 

Figure 4.15: The top displacement for four, six and eight story buildings 

The damage process of beams and columns from external frame and middle span 

for each sample buildings are shown in Figures 4.16-4.18, respectively. The results 

show that the maximum and minimum damage for columns were observed in the first 

story and the last story, respectively. Whereas this process was revised for beams, it 

means that the maximum and minimum damages were observed in last story and first 

story, respectively. 

 

 

 

 

 

 



57 

 

 

  

 

 

 

Figure 4.16: The process of beams and columns damage for four story building 

 

 

 

 

 

Figure 4.17: The process of beams and columns damage for six story building 

 

 

 

 

 

Figure 4.18: The process of beams and columns damage for eight story building 

Figure 4.19 shows the maximum story displacement and story shear force for each 

sample buildings. The results show that the maximum displacement occurred in top 

story while the maximum shear force was observed in the first story.  
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Figure 4.19: the maximum story displacement and story shear for four, six and eight 

story buildings 

Moreover, the modal participation factor and relative modal weight for each sample 

buildings are shown in Figures 4.20 and 4.21, respectively. The results show that the 

most participation was occurred for the first mode. 

 

 

 

 

 

 

 

 

Figure 4.20: The modal participation factor for each level and each sample buildings 
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Figure 4.21: The relative modal weight (%) for four, six and eight story buildings 

Moreover, the plastic hinge behavior for a beam and each type of column were 

evaluated. The beam hinge was selected from the exterior frame of each building, in 

the middle span, left side and in first level. Also for columns, in same frame and level, 

one of them in corner and another one in middle span were considered. Figures 4.22, 

4.23 and 4.24 show the plastic hinge behavior of beam, corner column and middle 

column for four story building, respectively. The amount of obtained damage for 

beam, corner column and middle column were calculated as 0.54, 0.78 and 0.5, 

respectively.  

 

 

 

 

 

Figure 4.22: The plastic hinge behavior of beam for four story building 
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Figure 4.23: The plastic hinge behavior of corner column for four story building 

 

 

 

 

 

Figure 4.24: The plastic hinge behavior of middle column for four story building 

Figures 4.25, 4.26 and 4.27 show the plastic hinge behavior of beam, corner column 

and middle column for six story building, respectively. The amount of obtained 

damage for beam, corner column and middle column were calculated as 0.2, 0.17 and 

0.22, respectively.  

 

 

 

 

 

Figure 4.25: The plastic hinge behavior of beam for six story building 
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Figure 4.26: The plastic hinge behavior of corner column for six story building 

 

 

 

 

 

Figure 4.27: The plastic hinge behavior of middle column for six story building 

Figures 4.28, 4.29 and 4.30 show the plastic hinge behavior of beam, corner column 

and middle column for eight story building, respectively. The amount of obtained 

damage for beam, corner column and middle column were calculated as 0.05, 0.07 and 

0.13, respectively.  

 

 

 

 

 

Figure 4.28: The plastic hinge behavior of beam for eight story building 
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Figure 4.29: The plastic hinge behavior of corner column for eight story building 

 

 

 

 

 

Figure 4.30: The plastic hinge behavior of middle column for eight story building 

In order to compare the damage level criteria between FEMA 356 (2000) (Table 

3.2) and obtained results, the IDA curves were drown based on maximum inter-story 

drift ratio then, the amount of damage criteria for each buildings was calculated. These 

curves are shown in Figures 4.31, 4.32 and 4.33 for four, six and eight story buildings, 

respectively. Based on obtained curves, two levels of damage, IO and collapse 

prevention (CP) are determined. The IO and CP levels were identified at the end of 

initial slope and close to zero slope in mean curve, respectively. Therefore, the damage 

criteria for IO level was obtained as same as criteria that was suggested by FEMA 356 

(2000) equal to 1%, but for CP level, the damage criteria was obtained one percent 

more than suggested criteria by FEMA 356 (2000) equal to 5%. Also it should be 

considered that some of the records were not completely flattened because their energy 

was very low and they didn`t have any effect on damage levels. 
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Figure 4.31: IDA curves and limit-state capacities for four story building 

 

 

 

 

 

 
 

 

Figure 4.32: IDA curves and limit-state capacities for six story building 
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Figure 4.33: IDA curves and limit-state capacities for eight story building 

4.4 P-Delta Effect  

The P-delta arises due to the relative inter-story drifts and leads to add the 

overturning moments in the vertical elements. These moments are essentially produced 

based on gravity loads and add a geometric stiffness matrix to the element stiffness 

matrix (Wilson and Habibullah, 1987).  

By considering a column between two story levels, which is shown in Figure 4.34 

and calculating the moments for lower story level as following: 

𝑃𝑖 ∙ ℎ𝑖 − (𝑀𝑖 + 𝑀𝑖−1) − 𝑁𝑖(𝑈𝑖 + 𝑈𝑖−1) = 0.0                                                             (4.4) 

Deriving the additional gravity load shears at 𝑖𝑡ℎ story level, the 𝑃𝑖 is given by: 

𝑃𝑖 =
𝑁𝑖(𝑈𝑖−𝑈𝑖−1)

ℎ𝑖
−

𝑁𝑖+1(𝑈𝑖+1−𝑈𝑖)

ℎ𝑖+1
                                                                                    (4.5) 

Therefore, for each component, the above equation can be written as: 

{𝑃∗} = [𝐾𝐺] ∙ {∆𝑢}                                                                                                        (4.6) 

where 𝑃𝑖 is additional gravity load shear, ℎ𝑖 is the 𝑖𝑡ℎ story height,  ℎ𝑖+1 is the 

(𝑖 + 1)𝑡ℎ story height,  𝑀𝑖−1 is lower moment of 𝑖𝑡ℎ story level, 𝑀𝑖 is upper moment of 

𝑖𝑡ℎ story level, 𝑈𝑖−1 is lower displacement of 𝑖𝑡ℎ story level, 𝑈𝑖 is upper displacement 
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of 𝑖𝑡ℎ story level, 𝑈𝑖+1 is upper displacement of (𝑖 + 1)𝑡ℎ  story level, 𝑁𝑖 is 𝑖𝑡ℎ story 

level axial load, 𝑁𝑖+1 is  (𝑖 + 1)𝑡ℎ story level axial load, [𝐾𝐺]  is stiffness matrix which 

is added to  the element stiffness matrix and {∆𝑢} is incremental vectors of story 

displacement. 

 

 

 

 

 

 

 

 

Figure 4.34: Performance of P-delta on a vertical element 

By considering the significance of P-delta and how it can be affected on fragility 

curves, in this part, the fragility curves were drawn for without P-delta case. Figures 

4.35, 4.36 and 4.37 show the comparison of fragility curves between P-delta effect 

case and without P-delta effect case for four, six and eight story buildings, respectively. 

Also the amount of mean and standard deviation which were used for drawing the 

fragility curves in case of without P-delta are tabulated in Table 4.9. The obtained 

results showed that by increasing the building height, the P-delta effect is increased. 

Also the similar trends are shown by increasing the damage levels.  
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Figure 4.35: The fragility curves for four story building with and without P-delta 

effect cases 

 

 

 

 

 

 

 

 

Figure 4.36: The fragility curves for six story building with and without P-delta 

effect cases 
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Figure 4.37: The fragility curves for eight story building with and without P-delta 

effect cases 
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Table 4.9: The used mean and standard deviation values for drawing the fragility 

curves for with and without P-delta cases 

 With P-delta Without P-delta 

 
Level 

Minor-

Moderate 

Moderate-

Sever 

Sever-

Collapse 

Minor-

Moderate 

Moderate-

Sever 

Sever-

Collapse 

 

Mean 

4 0.28 0.39 0.78 0.33 0.48 0.89 

6 0.35 0.45 0.83 0.44 0.61 1.25 

8 0.45 0.61 1.13 0.64 0.87 1.59 

 

Standard 

Deviation 

4 0.64 0.67 0.89 0.65 0.70 0.94 

6 0.66 0.69 0.91 0.70 0.79 1.14 

8 0.71 0.79 1.07 0.82 0.93 1.33 

 

4.5 2D model 

In this section, the effect of considering the 2D models instead of 3D models on 

fragility curves was evaluated. For this aim, the weakest frames from each model were 

selected (Figures 3.3, 3.5 and 3.7) and the fragility curves were drawn for each frame. 

Figures 4.38, 4.39 and 4.40 show the comparison of fragility curves between 2D 

models and 3D models for four, six and eight story buildings, respectively. Also the 

amount of mean and standard deviation which were used for drawing the fragility 

curves are tabulated in Table 4.10. Comparison of these curves show that there are 

excessive difference between 2D models and 3D models. Also using 2D models 

instead of 3D models are inaccurate and unreliable. In fact, a 2D model cannot express 

all characteristics and features of a 3D model. 
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Figure 4.38: The fragility curves for 2D and 3D models of four story building 

 

 

 

 

 

 

 

 

Figure 4.39: The fragility curves for 2D and 3D models of six story building 
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Figure 4.40: The fragility curves for 2D and 3D models of eight story building 
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Table 4.10: The used mean and standard deviation values for drawing the fragility 

curves for 2D and 3D models 

 3D model 2D model 

 
Level 

Minor-

Moderate 

Moderate-

Sever 

Sever-

Collapse 

Minor-

Moderate 

Moderate-

Sever 

Sever-

Collapse 

 

Mean 

4 0.28 0.39 0.78 0.18 0.25 0.39 

6 0.35 0.45 0.83 0.25 0.35 0.50 

8 0.45 0.61 1.13 0.29 0.44 0.64 

 

Standard 

Deviation 

4 0.64 0.67 0.89 0.69 0.71 0.78 

6 0.66 0.69 0.91 0.71 0.76 0.83 

8 0.71 0.79 1.07 0.72 0.77 0.86 

 

4.6 Aftershock effect 

Earthquakes are often composed of three parts including; foreshocks, main shocks 

and aftershocks. The data obtained from earthquakes history showed that the 

aftershocks may occur mostly after the strong main shocks.  As an example, in China 

(May 12, 2008), five aftershocks were recorded (MW > 6.0) following the main shock 

with magnitude equal to 8.0. Since that the aftershocks often may occur in short 

intervals of time, therefore the repair of damaged buildings under the main shock in 

limited time is impossible and it increases the level of building damage and also causes 

collapse. On the other hand, all seismic codes only design the structures based on the 

main shock. Therefore considering the aftershocks effect should be taken into account.  
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Several researches showed that, when the distance of rupture for aftershock is 

smaller than main shock, the severity of aftershock is more than the main shock. As 

an example, in Chi-Chi earthquake, the distance of rupture for main shock and 

aftershock were equal to 10.8 km and 6.2 km, respectively, whereas the PGA of 

aftershock was 1.379 times more than main shock. Therefore, the ratio of PGA for 

aftershock to main shock is considered as a significant factor (Zhai et al., 2014; Zhang 

et al., 2013). 

In this study, based on limited data for Famagusta city, five records were selected 

from Berkeley data base site (PEER) by considering the strike-slip mechanism of fault. 

For each record, the largest aftershock was considered. The information of this data is 

tabulated in Table 4.11. Since there are sequences between main shock and aftershock, 

therefore in nonlinear dynamic analysis process, 50 seconds gap was considered after 

the main shock in order to stop the vibration of building due to damping. 
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Table 4.11: The information of main shock and aftershock  

Earth quake Name 

Main shocks Aftershocks  

Event PGA (g) Event PGA (g) 

Chalfant Valley 20/07/1986 

14:29 

0.285 21/07/1986 

14:42 

0.447 

Helena, Montana 31/10/1935 

18:38 

0.173 31/10/1935 

19:18 

0.041 

Imperial Valley 15/10/1979 

23:16 

0.519 15/10/1979 

23:19 

0.238 

Livermore 24/01/1980 

19:00 

0.229 27/01/1980 

02:33 

0.041 

Superstitn Hills  24/11/1987 

05:14 

0.134 24/11/1987 

13:16 

0.207 

 

4.6.1 Chalfant Valley earthquake 

This earthquake has happened in southern of Mono County near Bishop and 

Chalfant, California and recorded from 54428-Zack Brothers Ranch station with main 

shock magnitude 5.77 Mw and epicentral distance equal to 10.54 km. The aftershock 

has happened thirteen minutes later and recorded from same station with magnitude 

6.19 Mw and epicentral distance equal to 14.33 km. The ratio of PGA for aftershock 

to main shock is equal to 1.568. The acceleration of main shock along aftershock is 

shown in Figure 4.41. The amount of total damage (based on park and Ang damage 

index) under the main shock for four, six and eight story were obtained equal to 0.042, 

0.029 and 0.013, respectively, whereas, these damages reached to 0.1, 0.067 and 0.036 

after adding the aftershock. The plastic hinge performance of each member due to only 

main shock and main shock along aftershock cases for four, six and eight story 
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buildings are shown in figures 4.42-4.47, respectively. The hollow circle and X symbol 

show that the plastic hinge developed and cracking or yield in hinge, respectively. Also 

the imposed damage of all columns and beams caused by main shock versus main 

shock along aftershock are shown in figure 4.48. 

 

 

 

 

 

Figure 4.41: The acceleration of main shock along aftershock for Chalfant Valley 

earthquake 

 

 

 

 

 

 

 

Figure 4.42: The plastic hinge performance for four story building under main shock 
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Figure 4.43: The plastic hinge performance for four story building under main shock 

along aftershock 

 

 

 

 

 

 

 

 

Figure 4.44: The plastic hinge performance for six story building under main shock 
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Figure 4.45: The plastic hinge performance for six story building under main shock 

along aftershock 

 

 

 

 

 

 

 

Figure 4.46: The plastic hinge performance for eight story building under main shock 
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Figure 4.47: The plastic hinge performance for eight story building under main shock 

along aftershock 

 

 

 

 

 

Figure 4.48: The imposed damage for main shock versus main shock along 

aftershock for (a) all columns and (b) all beams  

4.6.2 Helena, Montana earthquake 

This earthquake has happened in Montana, with an epicenter near Helena and 

recorded from 2022-Carroll College station with main shock magnitude 6.20 Mw and 

epicentral distance equal to 6.31 km. The aftershock has happened forty minutes later 

and recorded from same station with magnitude 6.00 Mw and epicentral distance equal 

to 6.31 km. The ratio of PGA for aftershock to main shock is equal to 0.237. The 

acceleration of main shock along aftershock is shown in Figure 4.49. The amounts of 

 

 

http://en.wikipedia.org/wiki/Montana
http://en.wikipedia.org/wiki/Epicenter
http://en.wikipedia.org/wiki/Helena,_Montana
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total damage under the main shock for four, six and eight story buildings were obtained 

as 0.035, 0.025 and 0.013, respectively. Also the same damages were obtained for 

main shock along aftershock case.  

 

 

 

 

 

 

Figure 4.49: The acceleration of main shock along aftershock for Helena earthquake 

4.6.3 Imperial Valley earthquake 

This earthquake has happened in south of the Mexico–United States border and 

recorded from 952-El Centro Array #5 station with main shock magnitude 6.53 Mw 

and epicentral distance equal to 27.8 km. The aftershock has happened three minutes 

later and recorded from same station with magnitude 5.01 Mw and epicentral distance 

equal to 10.09 km. The ratio of PGA for aftershock to main shock is equal to 0.459. 

The acceleration of main shock along aftershock is shown in Figure 4.50. The amounts 

of total damage under the main shock for four, six and eight story buildings were 

obtained as 0.436, 0.182 and 0.105, respectively. Also the same damages were 

obtained for main shock along aftershock case.  
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Figure 4.50: The acceleration of main shock along aftershock for Imperial Valley 

earthquake 

4.6.4 Livermore earthquake 

This earthquake has happened in North of Livermore Valley, California and 

recorded from 1265-Del Valle Dam (Toe) station with main shock magnitude 5.80 Mw 

and epicentral distance equal to 26.79 km. The aftershock has happened three days and 

seven hours and thirty three minutes later and recorded from same station with 

magnitude 5.42 Mw and epicentral distance equal to 13.05 km. The ratio of PGA for 

aftershock to main shock is equal to 0.179. The acceleration of main shock along 

aftershock is shown in Figure 4.51. The amounts of total damage under the main shock 

for four, six and eight story buildings were obtained as 0.047, 0.041 and 0.022, 

respectively. Also the same damages were obtained for main shock along aftershock 

case.  
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Figure 4.51: The acceleration of main shock along aftershock for Livermore 

earthquake 

4.6.5 Superstitn Hills earthquake 

This earthquake has happened in west of Westmorland, California and recorded 

from 5210-Wildlife Liquef. Array station with main shock magnitude 6.22 Mw and 

epicentral distance equal to 24.79 km. The aftershock has happened eight hours and 

two minutes later and recorded from same station with magnitude 6.54 Mw and 

epicentral distance equal to 29.41 km. The ratio of PGA for aftershock to main shock 

is equal to 1.545. The acceleration of main shock along aftershock is shown in Figure 

4.52. The amount of total damage under the main shock for four, six and eight story 

buildings were obtained as 0.033, 0.027 and 0.022, respectively, whereas, these 

damages were reached to 0.265, 0.174 and 0.13 after adding the aftershock. The plastic 

hinge performance of each member due to only main shock and main shock along 

aftershock cases for four, six and eight story buildings are shown in figures 4.53-4.58, 

respectively. Also the imposed damage of all columns and beams caused by main 

shock versus main shock along aftershock are shown in figure 4.59. 
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Figure 4.52: The acceleration of main shock along aftershock for Superstitn Hills 

 

 

 

 

 

 

 

Figure 4.53: The plastic hinge performance for four story building under main shock 

 

 

 

 

 

 

 

Figure 4.54: The plastic hinge performance for four story building under main shock 

along aftershock 
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Figure 4.55: The plastic hinge performance for six story building under main shock 

 

 

 

 

 

 

 

Figure 4.56: The plastic hinge performance for six story building under main shock 

along aftershock 
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Figure 4.57: The plastic hinge performance for eight story building under main shock 

 

 

 

 

 

 

 

Figure 4.58: The plastic hinge performance for eight story building under main shock 

along aftershock 
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Figure 4.59: The imposed damage of main shock versus main shock along aftershock 

for (a) all columns and (b) all beams  
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Chapter 5  

     ANALYSIS AND RESULTS THROUGH ANN 

5.1 Prediction of damage 

In this chapter, ANN was used in order to predict the imposed damage of buildings 

under earthquake excitation. In fact, it can be applied as a rapid evaluation method. In 

this method, only parameters which are able to describe both the properties of building 

and ground motions characteristic should be considered. Therefore the selection of 

them should be taken into account.  

5.1.1 Structural parameters 

In this study, the structural parameters were selected without any relations to the 

engineering analysis, such as, top displacement, first mode period, inter-story drift, 

etc., and they were chosen based solely on the geometry of the structure. Therefore 

nine parameters were selected and defined as:  

Building height / width ratio (h/b) 

Length / width ratio in plan (b/d) 

Number of stories (N)  

Number of bays (B)  

Maximum bay length (M) 

Total moment of inertia for first story columns (IC)  

Total moment of inertia for first story beams (IB)  

Total bars area for first story columns (BC)  

Total bars area for first story beams (BB)  
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Also, the ranges of each parameter are shown in Table 5.1. 

                            Table 5.1: The range of structural parameters 

Parameters Range of parameters 

h/b 1.476-1.958 

b/d 0.730-0.885 

N 4-8 

B 3-4 

M (m) 3-3.8 

IC (cm4) 0.01155-0.1022 

IB (cm4) 0.00135-0.004725 

BC (cm2) 180.96-1507.96 

BB (cm2) 79.02-381.92 

 

5.1.2 Ground motion parameters 

Since the earthquake is a complex phenomenon that is still not completely known, 

therefore the selection of effective ground motion parameters is not easy. In the recent 

century, many researches have been done in order to find the relation between ground 

motion parameters and building responses. Newmark et al. (1973) used PGV, PGA 

and PGD in order to draw the elastic response spectra. Extensive research has been 

conducted on the PGA/PGV ratio, for measuring the frequency content of the strong 

ground motions (Tso et al., 1992). In these studies, the best parameters among the 

various constraints were determined using mathematical function and regression 
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analysis. Riddell and Garcia (2001) used a set of 52 earthquake records, in order to 

establish the relationship between twenty-three intensity parameters of earthquake and 

four response variables including hysteretic energy, input energy, elastic and inelastic 

spectral ordinates. The results showed that no parameter could be singly satisfied over 

the entire frequency range. Indeed, they found that each ground acceleration, ground 

velocity and ground displacement indices were effective in the acceleration sensitive 

region, velocity sensitive region and displacement sensitive region, respectively. 

In this study, a six story frame was selected and excited by 200 different ground 

motion records with various moment magnitudes (5.2 ≤ M ≤ 8.3), different source-to-

site distances and strike-slip fault mechanism from the PEER source (PEER, 2013).  

The distribution of dominant frequency for the records is shown in Figure 5.1. Also 

the proportion between PGA and effective time duration of records are presented in 

Figure 5.2. Figures 5.3 and 5.4 show the relationship between sites epicentral distances 

versus moment magnitude and 5-95% time duration, respectively.  

 

 

 

 

 

 

 

 

Figure 5.1: The dominant frequency values of records 
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Figure 5.2: The effective time duration versus PGA 

 

 

 

 

 

 

 

Figure 5.3: The epicentral distance values versus moment magnitude  
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Figure 5.4: The epicenteral distance values versus the effective time duration 

Therefore nine parameters of earthquake including; PGA, PGV, PGD, PGA/PGV, 

PGA/PGD, PGV/PGD, dominant frequency, effective time duration and fault line 

distance were selected as input data. The ranges of ground motion parameters are 

provided in Table 5.2. Also the amount of damage which is obtained based on 

nonlinear time history analysis of each record was considered as output. 
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Table 5.2: The ranges of ground motion parameters 

Parameters Definition Range of parameters 

PGA Peak Ground Acceleration (g) 0.01-0.775 

PGV Peak Ground Velocity (cm/s) 1.1-109.8 

PGD Peak Ground Displacement (cm) 0.12-65.89 

PGA/PGV Ratio of PGA to PGV (g/cm.s-1) 0.002155-0.029773 

PGA/PGD Ratio of PGA to PGD (g/cm) 0.00211-0.558333 

PGV/PGD Ratio of PGV to PGD (s-1) 0.761548-20 

D.F. Dominant frequency (Hz) 0.146-9.4238 

T.D. 5-95 % Time Duration (s) 1.98-57.17 

E.D. Epicentral Distance (km) 0.5- 217.4 

 

In order to find a good relationship between input and output data and also find the 

more effective parameters of ground motion on the building performance, a MLP 

neural network was applied. In this network, all data was normalized between zero and 

one, then were shuffled and divided into three parts, i.e. 70 percent of total data for 

training process, 15 percent for validating process and 15 percent for testing process. 

For finding the best fit of each data set, the RMSE, the mean square error (MSE) 

and the correlation coefficient (R) were considered (Darper and Smith, 1998). These 

criteria are described below: 
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Root Mean Square Error (RMSE): 

RMSE is often used as a tool for measuring the difference between the predicted 

values and the actual values of one dataset. It is a good estimation for the standard 

deviation of a random set of the databases and is defined as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑝𝑟𝑒−𝑋𝑣𝑎𝑙

𝑛
𝑖=1  )2

𝑛
                                                                                  (4.7) 

MSE is the mean square error and is calculated as the square of RMSE as follows:  

𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸2                                                                                                         (4.8) 

Correlation Coefficient (R): 

The correlation coefficient (R) is the measurement of the linear relationship degree 

between the two variables (predicted values and actual values). The range of 

correlation coefficient values change between +1 and -1 and is defined as: 

𝑅 =
∑ (𝑋𝑖−�̅�)∗(𝑌𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑋𝑖−�̅�)𝑛
𝑖=1

2
∗∑ (𝑌𝑖−�̅�)2𝑛

𝑖=1

                                                                                           (4.9) 

where 𝑋𝑖 is actual value, �̅� is mean of actual values, 𝑌𝑖 is predicted value, �̅� is mean 

of predicted values and 𝑛 is number of data set. 

In this step, the network was trained based on all input data that are represented by 

nine neurons in input layer, optimum neurons in hidden layer and a neuron in output 

layer. The number of neurons in hidden layer was determined based on trial and error. 

Therefore twenty neurons were employed for this layer with tansig activation function. 

In training process, the network stopped at 19 iterations with gradient and MSE equal 

to 0.01871 and 0.00583, respectively. Also the best validation performance was 

0.05820 and occurred at epoch 13. The values of RMSE, MSE, R, mean (µ) and 

standard deviation (σ) of errors are presented in Table 5.3. Figure 5.5 shows that the 

process of network training and error histogram for all data. The concentration of error 

bins around the zero line shows that the network was able to predict the damage values 
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with high accuracy. Moreover, the regression and fit function for train, validation, test 

and all data are shown in Figure 5.6. 

     Table 5.3: The RMSE, MSE, R, µ and σ values for each set of data 

 Train Data Validation Data Test Data All Data 

RMSE 0.10920 0.24123 0.35997 0.19108 

MSE 0.01192 0.05820 0.12958 0.03651 

R 0.94892 0.81771 0.66528 0.85220 

µ -0.01521 0.04780 -0.02412 -0.00709 

σ 0.10852 0.24049 0.36530 0.19143 

 

 

 

 

 

 

 

 

Figure 5.5: The network training process and error histogram 
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Figure 5.6: The regression and fit function for each set of data 

In order to find the effective parameters of ground motion, the training process of 

network was repeated for nine times and in each time, one of the ground motion 

parameters was eliminated. Therefore, the number of neurons in input layer was 

reduced to eight. The results of this process are shown in Table 5.4. 
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Table 5.4: The RMSE, MSE, R, µ and σ values for all data. 

Eliminated 

Parameter 
RMSE MSE R µ σ 

PGA 0.19337 0.03739 0.84401 0.00379 0.19382 

PGV 0.23130 0.05350 0.80124 -0.08361 0.21620 

PGD 0.20957 0.04392 0.82806 -0.01935 0.20920 

PGA/PGV 0.23459 0.05503 0.77255 -0.01081 0.23493 

PGA/PGD 0.21979 0.04831 0.82541 0.05024 0.21450 

PGV/PGD 0.22133 0.04899 0.79408 0.01137 0.22159 

Dominant 

Frequency 
0.24655 0.06079 0.79006 -0.10129 0.22535 

Effective Time 

Duration 

0.19903 0.03961 0.83377 0.00186 0.19952 

Fault line 

Distance 

0.19532 0.03815 0.84128 -0.01292 0.19538 

 

Based on extracted results (see Table 5.4), the minimum values of R were obtained 

for PGA/PGV, dominant frequency, PGV/PGD and PGV cases, respectively which is 

expressing that the network was sensitive to these parameters. Therefore the network 

was run based on these four parameters as input data (four neurons in input layer), ten 

hidden layer neurons (optimum neurons) and a neuron in output layer. In training 

process, the network stopped at 25 iterations with gradient and MSE equal to 0.00431 

and 0.0332, respectively. Also the best validation performance was 0.01136 and 
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occurred at epoch 19. The values of RMSE, MSE, R, µ and σ are presented in Table 

5.5. Moreover, Figure 5.7 shows the fitting function and regression for train, 

validation, test and all data.  

 

     Table 5.5: The RMSE, MSE, R, µ and σ values for each set of data. 

 
Train Data 

Validation 

Data 
Test Data All Data 

RMSE 0.18401 0.10659 0.27995 0.19277 

MSE 0.03386 0.01136 0.07837 0.037161 

R 0.87230 0.90892 0.65085 0.84514 

µ -0.00065 0.000099 -0.02014 -0.00346 

σ 0.18467 0.10841 0.28400 0.19323 

 

 

 

 

 

 

 

 

 

Figure 5.7: The regression and fit function for each set of data 
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The value of R obtained from two networks consist of all input data (nine 

parameters) and four sensitive data (four parameters) were obtained equal to 0.85220 

and 0.84514, respectively which is showing around 0.8% difference between them. 

Also it should be considered that whereas the sample frame was in intermediate period 

region, the velocity controlled responses is more effective among the earthquake 

parameters. Therefore for buildings in this period range, it is suggested to use the above 

effective parameters which are sufficiently enough for evaluation of vulnerability 

instead of considering more ground motion characteristics.  

Thus, in this study, the ground motion parameters has been selected based on above 

obtained results of previous section including; PGV, PGA/PGV, PGV/PGD and 

dominant frequency. The ranges of these parameters are tabulated in Table 5.6. 

                           Table 5.6: The range of ground motion parameters 

Parameters Range of parameters 

PGV 3.385-245.3 

PGA/PGV 0.004-0.03 

PGV/PGD 1.036-12.008 

D.F. 0.22-1.929 

 

5.1.3 Data generation, training and testing of ANN 

In this section, again MLP neural network were employed to predict the 

vulnerability of sample buildings. For this aim, twenty suitable ground motion records 

were selected which had most correlation with design spectrum and scaled to ten 

different level of PGA. Then each scaled records applied to each sample. Therefore, 
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based on this process, 600 input data were generated. In this network, three layers were 

used including thirteen neurons in input layer, optimum neurons in hidden layer and a 

neuron in output layer which is representing the imposed damage values of sample 

buildings. Then the data were normalized and presented to the network. Also, the linear 

normalization method was used in order to change the input parameters range between 

zero and one using the equation 4.10 as: 

𝑆𝑥 =
( x−xmin )

(xmax−xmin)
                                                                                                       (4.10) 

where 𝑆𝑥 is the normalized value, 𝑥 is variable, 𝑥𝑚𝑖𝑛  is minimum value of all data and 

𝑥𝑚𝑎𝑥  is maximum value of all data. 

All normalized data were shuffled and divided to three sets for training, validating 

and testing process. The number of neurons and type of activation function in hidden 

layer are very important parameters for network training process. In common 

networks, linear activation function was applied in output layer. However, for the 

hidden layer, different functions can be used depending on dataset. In this study, ten 

activation functions were examined and based on minimum error of test data, the best 

function was selected. The formulation and shape of these functions are shown in 

Table 5.7. The number of hidden layer neurons and suitable activation function were 

obtained based on minimum test error as following equation:  

𝐸𝑟𝑟𝑜𝑟 ( % ) = (
∑ |𝑂𝑖−𝑇𝑖|

𝑘
𝑖=1

𝑚∗𝑛
) ∗ 100                  (4.11) 

where 𝑂𝑖 is the output of the neural network, 𝑇𝑖 is the desired output, 𝑘 is the number 

of testing or training samples, 𝑚 is the number of testing or training segments and 𝑛 

is the number of neural network outputs for the testing or the training procedures 

(Ozbay et al., 2006). 
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  Table 5.7: Activation functions properties (Cortes and Vapnik (1995)) 

Function name Formula Graph 

Hard-limit transfer function 𝑓(𝑥) = {
0 , 𝑥 < 0
1 , 𝑥 ≥ 0

 

 

Symmetric hard-limit 

transfer function 
𝑓(𝑥) = {

−1 , 𝑥 < 0
1 , 𝑥 ≥ 0

 

 

Log-sigmoid transfer 

function 
𝑓(𝑥) =

1

(1 + 𝑒𝑥𝑝(−𝑥))
 

 

Positive linear transfer 

function 
𝑓(𝑥) = {

0 , 𝑥 < 0
𝑥 , 𝑥 ≥ 0

 

 

Radial basis transfer 

function 
𝑓(𝑥) = 𝑒𝑥𝑝(−𝑥2) 

 

Normalized radial basis 

transfer function 
𝑓(𝑥) =

𝑒𝑥𝑝(−𝑥2) 

𝑠𝑢𝑚(𝑒𝑥𝑝(−𝑥2))
 

 

Saturating linear transfer 

function 
𝑓(𝑥) = {

0 , 𝑥 < 0
    𝑥 ,     0 < 𝑥 ≤ 1

1 , 𝑥 ≥ 1
 

 

Symmetric Saturating linear 

transfer function 
𝑓(𝑥) = {

−1 , 𝑥 < −1
  𝑥 ,   − 1 < 𝑥 ≤ 1

1 , 𝑥 ≥ 1
 

 

Hyperbolic tangent sigmoid 

transfer function 
𝑓(𝑥) =

2 

(1 + 𝑒𝑥𝑝(−2𝑥))
− 1 

 

Triangular basis transfer 

function 

𝑓(𝑥)

= {1 − |𝑥|
0 , 𝑥 < −1
 ,   −1 < 𝑥 ≤ 1
0 , 𝑥 ≥ 1

 
 

 

Based on equation 4.11, for each function, the error values of test data were 

calculated and the optimum number of hidden layer neurons was obtained. For 
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different number of neurons, the test error values of each activation function are shown 

in Figure 5.8. 

 

 

 

 

 

 

 

 

 

Figure 5.8: Number of hidden neurons versus test error 

Moreover, the optimum number of hidden layer neurons and the test error values 

for each activation function are shown in Table 5.8. The results showed that hyperbolic 

tangent sigmoid function with thirty neurons (minimum test error) was the best 

activation function for this set of data. 
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Table 5.8: The optimum number of neurons and test error values for different 

activation functions 

Function 
Optimum Number of 

hidden neurons 
Test Error (%) 

Hard-limit transfer function 45 14.10 

Symmetric hard-limit transfer 

function 
20 14.50 

Log-sigmoid transfer function 25 4.21 

Positive linear transfer function 30 5.09 

Radial basis transfer function 25 5.33 

Normalized radial basis transfer 

function 
10 4.46 

Saturating linear transfer 

function 
10 4.37 

Symmetric Saturating linear 

transfer function 
15 4.67 

Hyperbolic tangent sigmoid 

transfer function 
30 4.13 

Triangular basis transfer 

function 
15 4.41 

 

In training process, the networks stopped after 41 iterations with MSE and Gradient 

equal to 0.0121 and 0.00518, respectively. The best validation performance was 

0.040328 at epoch 35. The values of RMSE, MSE, R, µ and σ are presented in Table 

5.9. Also the weight matrix and bias terms of each network layer were represented in 

appendix C.  
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     Table 5.9: The RMSE, MSE, R, µ and σ values for each set of data 

 Train Data Validation Data Test Data All Data 

RMSE 0.11950 0.20082 0.20921 0.15037 

MSE 0.01428 0.040328 0.04377 0.02261 

R 0.96290 0.90163 0.88393 0.94116 

µ -0.005615 -0.03355 -0.05502 -0.01722 

σ 0.11951 0.19910 0.20298 0.14951 

 

Figure 5.9 shows the error histogram for all data. The concentration of error bins 

around the zero line shows that the network is able to predict the damage values with 

high accuracy. Moreover, the regression and fit function for train, validation, test and 

all data are shown in Figure 5.10. 

 

 

 

 

 

 

 

Figure 5.9: The error histogram for all data 
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Figure 5.10: The regression and fit function for each set of data 

Therefore, using the obtained results of ANN, the amount of damage was predicted 

and the fragility curves were drawn. Figures 5.11, 5.12 and 5.13 represent the fragility 

curves for different limit states and each story building which compared to real 

fragility curves, respectively. Also, the amounts of mean and standard deviation of log-

normal cumulative distribution function which were used for drawing the fragility 

curves are shown in Table 5.10.  
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Figure 5.11: Comparison of the generated fragility curves by analysis and ANN 

methods for four story building 

 

 

 

 

 

 

 

 

Figure 5.12: Comparison of the generated fragility curves by analysis and ANN 

methods for six story building 
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Figure 5.13: Comparison of the generated fragility curves by analysis and ANN 

methods for eight story building 
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Table 5.10: The used mean and standard deviation values for drawing the fragility 

curves for analysis and ANN methods 

 Analysis (IDA) ANN 

 
Level 

Minor-

Moderate 

Moderate-

Sever 

Sever-

Collapse 

Minor-

Moderate 

Moderate-

Sever 

Sever-

Collapse 

 

Mean 

4 0.28 0.39 0.78 0.27 0.36 0.82 

6 0.35 0.45 0.83 0.35 0.44 0.88 

8 0.45 0.61 1.13 0.43 0.63 1.29 

 

Standard 

Deviation 

4 0.64 0.67 0.89 0.60 0.74 0.93 

6 0.66 0.69 0.91 0.64 0.65 0.93 

8 0.71 0.79 1.07 0.67 0.75 1.19 

 

Also this network was used for prediction of other nonlinear dynamic responses of 

sample buildings. In this case, two responses of nonlinear analysis including; the top 

displacement and the base shear force were selected as output parameters of network. 

Again the network was trained for each of them and the forecast data was compared 

to actual data. The results showed that the network was able to predict these parameters 

with high precision. The comparison of actual value with forecast value and the 

regression of each data set for the top displacement and the base shear force data are 

shown in Figures 5.14-5.17, respectively.  
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Figure 5.14: Comparison of actual and forecast values for the top displacement data 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: The regression and fit function for the top displacement data 
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Figure 5.16: Comparison of actual and forecast values for the base shear force data 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: The regression and fit function for the base shear force data 
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5.2 Classification of damage 

For classification of the imposed global damage, the SVM was used and classify 

the damage to three classes including; Repairable (Economic), Beyond Repair (Not 

Economic) and Loss of Building (Collapse). Indeed, this machine specified the 

discriminator (hyperplane) for each class with maximum margin between classes 

based on feature space of input data. For generation of discriminator, the kernel trick 

was used in SVM. In this study, four common kernel tricks were applied in SVM in 

order to find the best kernel function including; Linear Kernel Function, Polynomial 

Kernel Function, Gaussian Kernel Function and Sigmoid Kernel Function as presented 

in Table 5.11.     

 

Table 5.11: Properties of kernel functions (Cortes and Vapnik (1995)) 

Kernel function Expression Comment 

Linear 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑟 + 𝛼. 𝑥𝑖
𝑇 . 𝑥𝑗 𝛼 > 0 

Polynomial 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑟 + 𝛼. 𝑥𝑖
𝑇 . 𝑥𝑗)

𝑝
 𝛼 > 0 

Gaussian 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−
1

2𝜎2 ‖𝑥𝑖 − 𝑥𝑗‖
2
) 

𝜎 ≠ 0 

Sigmoid 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝛽0 + 𝛽1. 𝑥𝑖
𝑇 . 𝑥𝑗) 𝛽1 > 0 

                               𝑥𝑖, 𝑥𝑗 are input vectors and r, 𝛼, 𝜎, 𝛽0 and 𝛽1 are kernel parameters. 

Therefore, the optimal hyperplane decision function is expressed as the following: 

𝑦 = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖. 𝑦𝑖 . 𝐾(𝑥𝑖, 𝑥) + 𝑏 ).𝑛
𝑖=1                                                                        (4.12) 

5.2.1 Data generation 

As mentioned in section 4.7.3, again the same data set which was obtained based 

on nonlinear time history analysis was used with the exception that in the output data, 
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the three classes based on the Park & Ang damage definition (see Table 3.4) was 

considered. The sample number of each class is shown in Figure 5.18. 

 

 

 

 

 

 

Figure 5.18: Distribution of data used in this study 

In order to find the best kernel function, the total accuracy prediction scores of the 

test data were calculated. Also, the kernel parameters (p, r, 𝛼, 𝜎, 𝛽0 and 𝛽1) and penalty 

factor (c) should be determined to reach the maximum margin between classes and the 

minimum classification error between real and predicted data. The amounts of p, 

r, 𝛼, 𝛽0 and 𝛽1 were obtained using trial and error. Also for the two remaining 

parameters (c and 𝜎), the grid-search method was applied and the best values were 

selected automatically using Libsvm-3.17 (Chang and Lin, 2013) in the Matlab 

software. The results showed that 122, 129, 135 and 133 class labels from the total of 

180 test-data class labels were correctly predicted for linear, polynomial (5 degree), 

gaussian and sigmoid functions, respectively. The total accuracy values of test data 

versus different kernel functions are shown in Figure 5.19. Therefore the gaussian 

function was chosen as an efficient kernel trick function. 
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Figure 5.19: The total accuracy of test data for different kernel functions 

5.2.2 M-SVM model 

After determining the best activation function (Gaussian function), a set of 

normalized data which include 600 input data and each data containing thirteen 

elements were shuffled and then applied to this machine that 70% and 30% of the total 

data were used for training and testing process, respectively. Figure 5.20 shows the 

comparison of actual classes and predicted classes of the imposed global damage for 

train data, test data and all data of M-SVM. In this Figure, the hollow circles and stars 

are indicating the actual classes and predicted classes, respectively which if the 

classification be correctly done, then the hollow circles and stars will overlap together. 

The obtained results showed that the M-SVM has predicted the classes No. 1 and No. 

3 with high precision. However, for class No. 2, this performance was poor. Because 

the number of data for this class compared to classes No. 1 and No. 3 was low, 
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therefore for this class, the M-SVM could not determine the proper margins based on 

feature of input data. 

 

 

 

 

 

 

 

 

 

Figure 5.20: Comparison of the actual and predicted classes for train data, test data 

and all data of M-SVM 

Also for evaluation of the obtained results from classified data, the confusion matrix 

is used and is defined as an error matrix or a contingency table to determine the 

performance of network. Each element of this matrix expresses the number of actual 

classes versus predicted classes. The structure of confusion matrix is shown in Figure 

5.21.   
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Figure 5.21: Sample of confusion matrix  

 

whereas TP is a true positive observation, TN is a true negative observation. FN is 

a false negative since observation is an actual negative (-) but the classifier label is 

positive (+) and FP is a false positive since observation is an actual positive (+), 

nonetheless, the classifier label is negative (-). For assessment of this matrix, some 

parameters can be used which are shown in Table 5.12.   
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Table 5.12: Properties of parameters used for evaluation of confusion matrix 

 

Name 

 

 Definition         Function 

Sensitivity or 

Recall (SEN) 

 

The rate of true positive 
𝑆𝐸𝑁 =

𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
 

Specificity 

(SPC) 

 

The rate of true negative 
𝑆𝑃𝐶 =

𝑇𝑁 

𝐹𝑃 + 𝑇𝑁
 

Precision 

(PRE) 

The fraction of observations 

classified as positive that are 

actually positive 

𝑃𝑅𝐸 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
 

Accuracy 

(ACC) 

The proportion of the total 

number of predictions that are 

correct 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Error 

The proportion of the total 

number of predictions that are 

incorrect 

𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑃 + 𝐹𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

NPV The negative predictive values 𝑁𝑃𝑉 =
𝑇𝑁 

𝑇𝑁 + 𝐹𝑁
 

PPV The positive predictive values 𝑃𝑃𝑉 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 
 

 

 

The confusion matrix for the train data, test data and all data of M-SVM are given 

as below: 

Confusion matrix for the train data  =  [
188 5 19
19 14 19
19 3 134

]     
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 Total accuracy= 80.00%, C=03.668, σ =17.910 

Confusion matrix for the test data =  [
69 3 8
6 3 8
18 2 63

]  

Total accuracy= 75.00%, C=13.4543, σ =22.242 

Confusion matrix for the all data =  [
254 12 26
25 18 26
35 10 194

]  

Total accuracy= 77.67%, C=2.3784, σ =14.424 

Based on extracted confusion matrices, the amounts of SEN, SPC, PRE, ACC, 

Error, NPV and PPV for each class and each set of data are presented in Table 5.13. 

The obtained results from these parameters showed that the performance of class No. 

1 and No. 3 are very close and their PRE’s are equal to 86.99 % and 81.17 %, 

respectively. Also, the low value of PRE for class No. 2 represents inaccuracies for 

classification of this class.  
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Table 5.13: The SEN, SPC, PRE, ACC, Error, NPV and PPV values for each class 

 Train Data Test Data All Data 

Class 

1 

Class 

2 

Class 

3 

Class 

1 

Class 

2 

Class 

3 

Class 

1 

Class 

2 

Class 

3 

SEN (%) 83.19 63.64 77.91 74.19 37.50 79.75 80.89 45.00 78.86 

SPC (%) 87.63 90.45 91.13 87.36 91.62 80.20 86.71 90.89 87.29 

PRE (%) 88.68 26.92 85.90 86.25 17.65 75.90 86.99 26.09 81.17 

ACC (%) 85.24 89.05 85.71 80.56 89.14 80.00 83.67 87.83 83.83 

Error (%) 14.76 10.95 14.29 19.44 10.86 20.00 16.33 12.17 16.17 

NPV (%) 81.73 97.83 85.61 76.00 96.84 83.51 80.52 95.86 85.60 

PPV (%) 88.68 26.92 85.90 86.25 17.65 75.90 86.99 26.09 81.17 

 

5.2.3 MM-SVM model 

For generation of MM-SVM, a one-layer feed-forward MLP neural network 

(Chiddarwar and Babu, 2010; Yilmaz and Kaynar, 2011) was used at first level, then 

the output of this network was applied to M-SVM in form of input data. This combined 

ANN was named MM-SVM and is shown in Figure 5.22.  
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Figure 5.22: The architecture of combined MLP with M-SVM (MM-SVM) 

At the first level of MM-SVM, 600 input data was applied to MLP neural network. 

For training process, the Levenberg–Marquardt back propagation algorithm was 

employed to update the weights and bias terms of the MLP network. Therefore, using 

this network led to a change in the primal data space from the thirteen dimensions to 

one dimension. The MLP network consists of thirteen neurons in the input layer, 

optimum neurons in the hidden layer and one neuron in the output layer. The gaussian 

and linear activation functions were used for the hidden layer and the output layer of 

the MLP network, respectively. In addition, the number of hidden layer neurons was 

determined based on the minimum test error and is obtained equal to thirty.   

In the training process of MLP, the network stopped after 85 iterations with MSE 

and gradient equal to 0.0520 and 0.0266, respectively. In addition, the best validation 

performance was 0.19188 at epoch 79. The values of RMSE, MSE, R, µ and σ are 

presented in Table 5.14.  
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       Table 5.14: The RMSE, MSE, R, µ and σ values for each set of data 

 Train Data Validation Data Test Data All Data 

RMSE 0.23761 0.43804 0.37704 0.29938 

MSE 0.05646 0.19188 0.14216 0.089627 

R 0.96675 0.88962 0.93072 0.945832 

µ -0.015535 -0.065719 -0.043856 -0.0075951 

σ 0.23739 0.43551 0.37658 0.29953 

 

As seen in Table 5.14, the RMSE and MSE variables in validating cases are greater 

than variables in training and testing cases. Also the amount of Rs ranged between 

0.88962 and 0.96675. Figure 5.23 compares the real output values and the predicted 

values of all data. The most variation of errors for all data set were determined between 

-0.5 and +0.5 which successfully represents the network damage prediction values 

with high accuracy. The regression and fit function for the train, validation, test and 

all data are shown in Figure 5.24. The high value of R (around 0.95) indicates a good 

relationship between predicted values and actual values for the total response in the 

MLP model. Moreover, the histogram of error for all data is presented in Figure 5.25. 

The concentration of the bins error around the zero line with mean -0.0075951 and 

standard deviation 0.29953 for all set of data represents a good performance of this 

network.  
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Figure 5.23: Comparing the real and predicted values 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: The regression and fit function for each set of data 
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Figure 5.25: The error histogram for all data 

At the second level of MM-SVM, the obtained outputs of the first level (MLP 

network) were applied to the M-SVM as input data. This set includes 600 input data 

and each data consists of only one element. Figure 5.26 shows the comparison of the 

actual classes and the predicted classes of the imposed global damage for the train 

data, test data and all data of MM-SVM. For all classes, the results showed that the 

MM-SVM has predicted the classification of global damage with high accuracy 

compared to M-SVM. Indeed, the reduction in feature space of input data and creating 

high relation between the input and output data by the MLP neural network led to 

determining more precisely of margins for each class by the M-SVM. 
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Figure 5.26: Comparison of the actual and predicted classes for train data, test data 

and all data of MM-SVM 

The confusion matrix for the train data, test data and all date of M-SVM are given 

as below: 

Confusion matrix for the train data  =  [
208 4 0
3 44 5
0 4 152

]     

 Total accuracy= 96.19 %, C=5.6569, σ =0.7071 

Confusion matrix for the test data =  [
74 6 0
4 9 4
0 11 72

]  

Total accuracy= 86.11 %, C=1.17678, σ =0.2973 

Confusion matrix for the all data =  [
282 10 0
7 53 9
0 14 225

]  

Total accuracy= 93.33 %, C=181.0193, σ =0.0526 

Based on extracted confusion matrices from MM-SVM, the amounts of SEN, SPC, 

PRE, ACC, Error, NPV and PPV for each class and each set of data are presented in 

Table 5.15. The maximum and minimum of error were obtained equal to 13.89% and 
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1.67% for class No. 2 and class No. 1, respectively. Also for all data, the PRE values 

for class No. 1, class No. 2 and class No. 3 were extracted equal to 96.58%, 76.81% 

and 94.14% respectively.  

Table 5.15: The SEN, SPC, PRE, ACC, Error, NPV and PPV values for each class 

 Train Data Test Data All Data 

Class 

1 

Class 

2 

Class 

3 

Class 

1 

Class 

2 

Class 

3 

Class 

1 

Class 

2 

Class 

3 

SEN (%) 98.58 84.62 96.82 94.87 34.62 94.74 97.58 68.83 96.15 

SPC (%) 98.09 97.83 98.48 94.12 94.81 89.42 96.78 96.94 96.17 

PRE (%) 98.11 84.62 97.44 92.50 52.94 86.75 96.58 76.81 94.14 

ACC (%) 98.33 96.19 97.86 94.44 86.11 91.67 97.17 93.33 96.17 

Error (%) 1.67 3.81 2.14 5.56 13.89 8.33 2.83 6.67 3.83 

NPV (%) 98.56 97.83 98.11 96.00 89.57 95.88 97.73 95.48 97.51 

PPV (%) 98.11 84.62 97.44 92.50 52.94 86.75 96.58 76.81 94.14 

 

The above obtained results for all three classes showed that the MM-SVM model 

to be highly suited to classification of global damage for R/C wide-beam buildings and 

provide reference for future seismic assessment of this building's type. 

5.3 Case study (Kutup building) 

In this section, an existing R/C slab column frame with wide beams and rectangular 

columns was considered as the case study. This building is constructed in Famagusta 

city and still in use as a residential building. This building is shown in Figure 5.27. It 

has seven floors which the height of the first and the second stories are 2.9m and 3.6m, 
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respectively. Also the rest of stories heights are 2.85m. The building dimensions are 

14.4m and 16.75m in X and Y directions, respectively. For beams and columns, 

different sections were used in each story. The plans and details of model are 

mentioned in appendix D. For nonlinear time history analysis, IDARC software was 

used. In modeling, the amount of the live load and dead load were considered               

200 kg/m2 and 500 kg/m2, respectively. The compressive strength of concrete, yield 

and ultimate strength of steel were considered as 15MPa, 220MPa and 300MPa, 

respectively. Whereas the first mode period in Y direction is more that X direction, the 

building was excited only in weaker direction.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: The Kutup Building (case study) 
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5.3.1 Classical method (IDA)  

Based on proposed mythology that presented and mentioned in Figure 3.11, the 

fragility curves were derived for three different damage levels using the Park & Ang 

limit states criteria (Table 3.3). Furthermore, the log-normal cumulative distribution 

function were applied as probability function. Figure 5.28 illustrates the obtained 

fragility curves for each limit states.  

 

 

 

 

 

 

 

 

Figure 5.28: The fragility curves for case study building (classical method) 

5.3.1 Neural network Method (ANN) 

Before running the ANN analysis, the input data should be prepared for MLP neural 

network. This data consists of building dimension and geometry of the structural 

elements. Table 5.16 shows the amount of these parameters. Also for ground motion 

indices, the same values were considered. For training of MLP neural network, 70% 

and 30% of all obtained data from nonlinear time history analysis of four, six and eight 

story models were considered and used for train and validation progress, respectively.  
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                            Table 5.16: The amount of structural parameters 

Parameters Value of parameters 

h/b 1.44 

b/d 0.86 

N 7 

B 5 

M (m) 3.6 

IC (m
4) 0.0349 

IB (m4) 0.00495 

BC (cm2) 494.74 

BB (cm2) 222.8 

 

In training process, the network stopped at 24 iterations with gradient and MSE 

equal to 0.0133 and 0.0377, respectively. Also the best validation performance was 

0.0537 and occurred at epoch 18. Figure 5.29 shows the process of network training 

and error histogram for all data. The regression and fit function for train, validation, 

and all data are shown in Figure 5.30. 
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Figure 5.29: The network training process and error histogram 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30: The regression and fit function for each set of data 
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After training of the network, the test data (input data from case study) was applied 

to network for test progress. The amounts of error between classical method and ANN 

are shown in Figure 5.31. Also by using the obtained results from ANN, the fragility 

curves were drawn. Figure 5.32 shows the obtained fragility curves for each limit state. 

Also the compared fragility curves based on classical method and ANN are shown in 

Figure 5.33. 

Figure 5.31: The error value for test data 

 

 

 

 

 

 

 

 

Figure 5.32: The fragility curves for case study building (ANN method) 
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Figure 5.33: Comparison of the generated fragility curves by analysis and ANN methods 

for case study building 
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Chapter 6  

                                  DISCUSSION 

In this study, the obtained fragility curves from incremental nonlinear time history 

analysis for these sample buildings represented that the vulnerability for four story 

building was more than six and eight story buildings. Also, the obtained responses due 

to Duzce-Turkey record with PGA equal to 0.5g showed that the first failure was 

happened in beams and then continued in columns. Furthermore, the amounts of 

damages for upper level beams were more than lower level beams and this process was 

inversed for story columns. The story displacement and the story shear were increased 

and decreased with number of levels, respectively. Also the analysis showed that the 

modal participation factor in first mode is much higher than other modes which 

represents the first mode is dominant. Furthermore, the relative modal weight for 

sample buildings in first mode was changing between 70% and 80%. In the following, 

the process of plastic hinges for one beam and two columns with different section areas 

were drawn and showed that although the first plastic hinges occurred in beams and 

then expanded in columns (The principle of the weak beam - strong column), but the 

amount of dissipated energy in beams were much less than columns. 

In order to determine the limit states for this type of buildings and compare with 

the values which are suggested by FEMA 356 (2000), the global damage was 

calculated based on maximum inter-story drift damage index and the IDA curves were 

drawn for each sample. The obtained results showed that the damage criteria for IO 

and CP were 1% and 5%, respectively which is one percent more than FEMA 356 
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(2000) in CP damage level and it indicates that these type of buildings have more 

deformation in comparison with normal buildings.  

According to this deformation, the effect of P-delta for this type of buildings is 

significant. Therefore, in section 4.4, the effect of P-delta in fragility curves was 

evaluated and the obtained curves showed that this effect was increased with number 

of story and performance levels. Table 6.1 shows the RMSE values for with and 

without P-delta effect cases. Based on this table, the RMSE values ranged between 7% 

up to 28%. 

 

Table 6.1: The difference between with and without P-delta effect cases by RMSE for 

each building (%) 

Story No. Minor - Moderate Moderate - Severe Severe - Collapse 

4 6.87 10.05 12.19 

6 10.95 16.17 20.16 

8 19.41 20.13 28.29 

 

In section 4.5, the effect of 2D models on fragility curves were compared with 3D 

models. Whereas the IDARC software can model 2D and also 3D models, but only 

can analyze in one direction, therefore many researches were performed on frame 

models instead of 3D models. Always there is a question whether a 2D model can 

express almost all features of a 3D model. For this purpose, 2D models were selected 

and the obtained fragility curves were compared with 3D models. Table 6.2 shows the 

RMSE values for 2D and 3D cases. Based on this table, the 2D models have less 

capacity than the 3D models. Also, the RMSE values between 2D and 3D curves 

ranged between 15% up to 30%. In fact, a 2D model can be used as a convenient 
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alternative for a 3D model when all the frames of 3D model were equal in terms of 

size, dimension and loading (neglect torsion effect).  

 

Table 6.2: The difference between 2D and 3D models by RMSE for each building 

(%) 

Story No. Minor - Moderate Moderate - Severe Severe - Collapse 

4 16.73 19.11 37.59 

6 14.34 11.94 27.89 

8 20.34 17.94 29.76 

 

In section 4.6, the effect of aftershock was evaluated. Whereas, this effect has been 

ignored almost in all codes and also there is not enough time to repair the damaged 

structural members after the main shock, therefore the aftershocks effect should be 

taken into account. In this study, based on lack of data for Famagusta region, only five 

earthquakes which contain the aftershocks effect were evaluated. By considering the 

PGA ratio of aftershock to main shock as an index, the results showed that for low 

ratios, the damage values had not changed. Whereas, for ratios around 1.5, the amount 

of damages under aftershock was significant. Table 6.3 shows the amount of global 

damage for main shock and aftershock cases. The obtained damage values of this data 

with aftershock effect showed that the damage is between 2 to 8 times more than only 

main shocks. Also it should be considered that the amount of damage under main 

shocks were less than 0.1 and it cannot be generalized to all levels of damage. 
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Table 6.3: The global damage under main shock and main shock along aftershock 

cases 

Earth quake 

Name 

 

Level 

Damage 
Increasing 

proportion 
Main shocks Aftershocks  

Chalfant Valley 

4 0.042 0.10 2.38 

6 0.029 0.067 2.31 

8 0.013 0.036 2.78 

Superstitn Hills 

4 0.033 0.265 8.03 

6 0.027 0.174 6.40 

8 0.022 0.13 5.90 

 

In section 5.1, the ANNs were used in order to predict and classify the building 

damage. In fact, the main aim was to generate the new method for rapid evaluation of 

buildings vulnerability without any analysis. At the first, a MLP neural network was 

applied to determine the effective ground motion parameters. As follows, with 

considering thirteen structural and ground motion parameters, the network was trained 

and the amount of damages were obtained for each samples and led to drawn fragility 

curves. Table 6.4 shows the RMSE values for ANN and classical method (IDA). 

Comparing the obtained curves from ANN and IDA curves showed that the RMSE 

values were changed between 2% to 4% which is expressing the high performance of 

network. 
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Table 6.4: The difference between classical analysis and ANN methods by RMSE for 

each building (%) 

Story No. Minor - Moderate Moderate - Severe Severe - Collapse 

4 2.04 4.28 4.01 

6 0.68 1.90 2.70 

8 2.42 1.71 3.26 

 

Also the MLP network was applied for prediction of the top displacement and the 

base shear force of samples and the regression value of all data were obtained around 

96% and 99 %, respectively which represent high accuracy in predicting of these 

parameters.  

In section 5.2, the classification of building global damage was done using SVM. 

Whereas, the percentage of input data for class No. 1, class No. 2 and class No. 3 were 

equal to 48.67%, 11.5% and 39.83% of all data, respectively, the M-SVM model 

showed a weak performance for classification of class with minimum members (class 

No. 2). In fact, the SVM couldn’t realize the suitable margins for this class. Whereas, 

the MM-SVM model was able to predict 44, 9 and 53 class label from the set of 52, 

17 and 69 considered class label of the train, test and all data cases for class No. 2. 

Indeed, using of the MLP model in first level of MM-SVM led to a reduction in the 

dispersion and complication of feature space for input data and based on this reason, 

in the second phase, the M-SVM was able to determine the margins for each class with 

high precision. Table 6.5 compares the ACC-value for M-SVM and MM-SVM 

models. The results showed that the MM-SVM classifier improves the performance in 

terms of recognition rate and error rate significantly compared to M-SVM model for 

one classification task of global damages. 
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      Table 6.5: Comparing the ACC-value for M-SVM and MM-SVM  

Data Set M-SVM (%) MM-SVM (%) Improvement (%) 

Train data 80.00 96.19 16.19 

Test data 75.00 86.11 11.11 

All data 77.67 93.33 15.66 

 

 

In section 5.3, in order to verify the presented methodology in this thesis, a case 

study model was considered and evaluated. In training process, the MLP network did 

not have any experience of test data. The RMSE values for these two methods are shown 

in Table 6.6. 

Table 6.6: The difference between classical method and ANN by RMSE for case study 

building (%) 

Damage Level Minor-Moderate Moderate-Severe Severe-Collapse 

 1.848 3.984 4.282 

 

Table 6.6 shows that the amounts of RMSE between classical method and ANN for 

Minor-Moderate, Moderate-Severe and Severe-Collapse levels are 1.848%, 3.984% 

and 4.282%, respectively which presents an increasing trend. Also these results show 

that the presented methodology in this research can be used with high precision.  
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Chapter 7  

                                CONCLUSION 

In this study, two main objectives were pursued. First, evaluation of seismic 

vulnerability of wide-beam R/C buildings which were built in the Mediterranean area 

and also available and still in used in North Cyprus. Second, using ANNs as an 

alternative and rapid evaluation method for prediction and classification of imposed 

damages with high precision. The following conclusions were obtained from this 

investigation: 

- Using obtained fragility curves, the vulnerability of buildings decreases with the 

number of stories. 

- The process of damage assessment showed that the first failure was occurred in 

beams and then continued in columns. Furthermore, the amounts of damages for the 

upper level beams were more than lower level beams and this process was inversed 

for columns. 

- The modal participation factor for the first mode was much than the other modes 

which represents the first model is dominant. Also, the relative modal weight for four, 

six and eight story buildings were obtained around 79.5%, 74% and 72%, respectively.  

- By considering maximum inter-story drift as damage index, the obtained IDA 

curves showed that the damage criteria for IO and CP damage levels were obtained 

equal to 1% and 5%, respectively which is 1% more than FEMA 356 (2000) criteria 

for CP damage level. 
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- The fragility curves for without considering the P-delta effect case showed that 

this factor is impressive for this type of buildings. Also, the RMSE values represented 

the difference around 6% up to 28% between with and without P-delta effect cases. 

- Comparison the fragility curves for 2D and 3D models showed that the 2D models 

cannot be used as suitable alternative for 3D models. Also, the RMSE values 

represented the difference around 15% up to 30% between 2D and 3D cases. 

- For high PGA ratio (around 1.5) of main shock to aftershock showed that the 

effect of aftershocks is significant. The obtained damage values for this range of PGA 

ratio represented that the increasing of damage between 2 up to 8 times more than 

single main shocks. Also in this study, it should be considered that the amount of 

damage under main shocks were less than 0.1 and it cannot be generalized to all levels 

of damage. 

- The effective ground motion parameters were identified based on ANNs. The 

observed result from ANNs showed that the minimum values of R were obtained for 

PGA/PGV, dominant frequency, PGV/PGD and PGV parameters, respectively which 

indicated the network is sensitive to these indices. Moreover, the ineffective 

parameters consist of PGA, fault line distance, effective time duration, PGA/PGD and 

PGD, respectively. Also it should be considered that since the sample frame was in 

intermediate period region, the velocity controlled responses are more effective among 

the earthquake parameters. The amount of obtained R from two networks consist of 

all input data (nine parameters) and four sensitive data (four parameters) were obtained 

equal to 0.85220 and 0.84514, respectively which is shown that around 0.8% 

difference between them. Therefore for buildings in this period range, it is suggested 

to use these effective parameters which are sufficiently enough for evaluation of 

vulnerability instead of considering more ground motion characteristics.  
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- For training the network, ten different activation functions were examined in order 

to reach the optimum number of hidden layer neurons and the best function for network 

training process. The results showed that among these functions, hyperbolic tangent 

sigmoid activation function with thirty neurons in hidden layer had higher accuracy. 

Also, for this type of data, using hard-limit transfer function and symmetric hard-limit 

transfer function are not recommended.  

- For prediction of the damage values, the MLP neural network was used with 

thirteen neurons in input layer, thirty neurons in hidden layer and a neuron in output 

layer. The amounts of 𝑅 were obtained around 96%, 90%, 88% and 94% for train, 

validation, test and all data, respectively.  

- Comparison of damage predicted by IDA and ANN showed that this network is a 

more efficient and time saving way for vulnerability evaluation of R/C wide-beam 

buildings only using limited parameters of structural geometric and ground motion 

characteristic. In addition, the high performance of network represented the selected 

parameters are able to establish a good relation between the structural and ground 

motion parameters (input data) and damage values (output data). 

- The MLP network also was applied for prediction of the top displacement and the 

base shear force of sample buildings. The results showed that the network was very 

efficient and it was predicted these parameters with high precision. 

- For classification of the imposed seismic damage under earthquake loads two 

networks were used. In order to find the best kernel trick, four different kernel 

functions were applied including; linear function, polynomial function (5 degree), 

Gaussian function and sigmoid function and these functions were evaluated using 

maximum accuracy of test data. The results showed that the Gaussian function had the 

maximum accuracy and it was employed as an efficient kernel trick function.  
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- Comparing the classification results of the M-SVM and MM-SVM showed that 

the total accuracy of MM-SVM is more than M-SVM. Also for class No. 2 (class with 

the lowest member), the obtained values of PRE indicated that the MM-SVM was 

predicted the label of this class with high efficiency towards the M-SVM. Thus, the 

MM-SVM was identified as an efficient network for classification of the imposed 

global damage under earthquake loads and it can be used for similar R/C buildings 

solely by selecting the structural geometric and ground motion parameters. In addition, 

this method of damage classification can be used by the insurance companies because 

it is easy and fast.   

-Comparison between obtained fragility curves by classical method and ANN for 

case study model showed that using neural network for predicting the damage level of 

buildings can be applied as an alternative method with fast, easy and high accuracy 

capability instead of classical method. Also it should be considered that a good and 

available database, an appropriate ANN with compatible structure and another 

effective parameters have crucial roles in this process. 
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Appendix A: MLP neural network code 

clc; 

clear; 

close all; 

%% Read Data 

in=xlsread('in1.xlsx'); 

out=xlsread('out1.xlsx'); 

x=in'; 

yx=out'; 

xs= x’; 

ys = y’; 

%% Create a Fitting Network 

hiddenLayerSize = 300; 

TF={'tangsig','purelin'}; 

net = newf(inputs,targets,hiddenLayerSize,TF); 

% %Choose Input and Output Pre/Post-Processing Functions 

% %For a list of all processing functions type: help nnprocess 

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 

net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

%% Setup Division of Data for Training, Validation, Testing 

%% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.Ratio = 70/100; 

net.divideParam.Ratio = 70/100; 

net.divideParam.Ratio = 70/100; 

%% For help on training function 'trainlm' type: help trainlm 

%% For a list of all training functions type: help nntrain 

net.trainFcn = 'trainPm';  % Levenberg-Marquardt 

%% Choose a Performance Function 

% %For a list of all performance functions type: help nnperformance 

net.performFcn = 'rsmse';  % Mean squared error 

% %Choose Plot Functions 

%% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','ploterrhist','plotregression','plotfit'}; 

net.trainParam.showWindow=true; 

net.trainParam.showCommandLine=false; 

net.trainParam.show=10; 

net.trainParam.epochs=1; 

net.trainParam.time=100; 

net.trainParam.min_grad=10; 

net.trainParam.goal=10; 

net.trainParam.max_fail=1; 

% %Train the Network 

[net,tr] = train(net,inputs,targets); 

%% Test the Network 

outputs = net(inputs); 

errors = gsubtract(targets,outputs); 

performance = perform(net,targets,outputs); 
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%% Recalculate Training, Validation and Test Performance 

trainInd=tr.trainInd; 

trainInputs = inputs(:,trainind); 

trainTargets = targets(:,trainind); 

trainOutputs = outputs(:,trainind); 

trainErrors = traintargets-trainoutputs; 

trainPerformance = perform(net,trainTargets,trainOutputs); 

 

valInd=tr.valInd; 

valInputs = inputs(:,valInd); 

valTargets = targets(:,valInd); 

valOutputs = outputs(:,valInd); 

valErrors = valTargets-valOutputs; 

valPerformance = perform(net,valTargets,valOutputs); 

 

testInd=tr.testInd; 

testInputs = inputs(:,testInd); 

testTargets = targets(:,testInd); 

testOutputs = outputs(:,testInd); 

testError = testTargets-testOutputs; 

testPerformance = perform(net,testTargets,testOutputs); 

%% View the Network 

% %view(net); 

% % Plots 

% % Uncomment these lines to enable various plots. 

%% 

figure; 

plotperform(tr); 

 figure; 

 plottrainstate(tr); 

figure; 

plotfit(net,inputs,targets); 

figure; 

plotregression(trainTargets,trainOutputs,'Train Data',... 

    valTargets,valOutputs,'Validation Data',... 

    testTargets,testOutputs,'Test Data',... 

    targets,outputs,'All Data') 

figure; 

 ploterrhist(errors); 

 PlotResults(targets,outputs,'All Data'); 

PlotResults(trainTargets,trainOutputs,'Train Data'); 

PlotResults(valTargets,valOutputs,'Validation Data'); 

PlotResults(testTargets,testOutputs,'Test Data'); 
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Appendix B: SVM neural network code 

clc; 

clear;  

close all;  

 

%% addpath to the libsvm toolbox 

addpath ('../libsvm-3.12/matlab'); 

 

%%  

% Load training data 

dirData = './data'; 

load (fullfile (dirData,'spiral_Nc2 _train')); 

trainData = data (:,1:2); clear data; 

trainLabel = label; clear label; 

 

% Extract important information 

labelList = unique (trainLabel); 

NClass = length (labelList); 

[Ntrain D] = size (trainData); 

 

% Load test data set 

dirData = './data'; 

load (fullfile (dirData,'spiral_Nc2 _all')); 

testData = data (:,1:2); clear data; 

testLabel = label; clear label; 

 

%% 

% ## ## ## ## ## ## ## ## ## ## ## # 

% Parameter selection 

% ## ## ## ## ## ## ## ## ## ## ## # 

% First we randomly pick some observations from the training set for parameter 

selection 

tmp = randperm (Ntrain); 

evalIndex = tmp (1:ceil (Ntrain/2)); 

evalData = trainData (evalIndex,:); 

evalLabel = trainLabel (evalIndex,:); 

 

% ## ## ## ## ## ## ## ## ## ## ## # 

% Automatic Cross Validation  

% Parameter selection using n-fold cross validation 

% ## ## ## ## ## ## ## ## ## ## ## # 

% 

============================================================

====  % Note that the cross validation for parameter selection can use different 

% number of fold. In tis example 

% Ncv_param = 3 but  

% Ncv_classif = 50 

% Also note that we don't have to specify the fold for cv for parameter 

% selection as the algorithm will pick observations into each fold 
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% randomly. 

   % 

============================================================

====  optionCV.stepSize = 5; 

optionCV.c = 1; 

optionCV.gamma = 1/D; 

optionCV.stepSize = 7; 

optionCV.bestLog2c = 0; 

optionCV.bestLog2g = log2 (1/D); 

optionCV.epsilon = 0.00765; 

optionCV.Nlimit = 1000; 

optionCV.svmCmd = '-q'; 

Ncv_param = 3; % Ncv-fold cross validation cross validation 

[bestc, bestg, bestcv] = automaticParameterSelection (evalLabel, evalData, 

Ncv_param, optionCV); 

 

% ## ## ## ## ## ## ## ## ## ## ## # 

% Classification using N-fold cross validation 

% ## ## ## ## ## ## ## ## ## ## ## # 

 

% train the svm model using the best parameters 

bestParam = ['-q -c ', num2str (bestc), ', -g ', num2str (bestg)]; 

model = ovrtrainBot (trainLabel, trainData, bestParam); 

% classify the test data set based on the svm model 

[predict_label, accuracy, decis_values] = ovrpredictBot (testLabel, testData, 

model); 

[decisValueWinner, predictedLabel] = max (decis_values,[],2); 

 

% ## ## ## ## ## ## ## ## ## ## ## # 

% Make confusion matrix for the overall classification 

% ## ## ## ## ## ## ## ## ## ## ## # 

[confusionMatrixAll,orderAll] = confusionmat (testLabel,predictedLabel); 

figure; imagesc (confusionMatrixAll'); 

xlabel ('actual class label'); 

ylabel ('predicted class label'); 

title (['confusion matrix for overall classification']); 

% Calculate the overall accuracy from the overall predicted class label 

accuracyAll = trace (confusionMatrixAll)/sum(confusionMatrixAll (:)); 

disp (['Total accuracy is ',num2str (accuracyAll*100),'%']); 

 

% Compare the actual and predicted class 

figure; 

subplot (1,2,1); imagesc (testLabel); title ('actual class'); 

subplot (1,2,2); imagesc (predictedLabel); title ('predicted class'); 

% ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## 

% Plot the clustering results in 2D 

% ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## 

% Pick the 2D representation to plot 

data = testData; 

if D==2 
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    data2D = data (:,1:2); 

elseif D>2 

    % Dimensionality reduction to 2D 

     

%     % ******** Using MDS (Take longer time) 

%     distanceMatrix = pdist (data,'euclidean'); 

%     data2D = mdscale (distanceMatrix,2); 

     

    % ******** Using classical MDS (Pretty short time) 

    distanceMatrix = pdist (data,'euclidean'); 

    data2D = cmdscale (distanceMatrix); data2D = data2D (:,1:2); 

end 

% plot the true label for the test set0 

tmp = min (exp (zscore (decisValueWinner)),100); 

tmp = tmp-min (tmp (:))+1; 

tmp = tmp/max(tmp); 

 

patchSize = 200*tmp; 

colorList = generateColorList (NClass); 

colorPlot = colorList (testLabel,:); 

figure;  

scatter (data2D (:,1),data2D (:,2),patchSize, colorPlot,'filled'); hold on; 

 

% plot the predicted labels for the test set 

patchSize = patchSize/20; 

colorPlot = colorList (predictedLabel,:); 

scatter (data2D (:,1),data2D (:,2),patchSize, colorPlot,'filled'); 
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Appendix C: The weight matrix and bias terms   
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Appendix D: The case building study maps   
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