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ABSTRACT 

A method that uses fuzzy c-means (FCM) is proposed for credit scoring based on 

unsupervised learning of a set training data. Data vectors are composed of  

significant applicant attributes and corresponding expert decisions. Two new 

statistical cost functions mJ  and 
Jσ  are introduced to evaluate the candidate models 

by k -fold cross validation based on the mean and the standard deviation of the 

decision attributes. A linguistic approach based on the fuzzy-valued Choquet integral 

is suggested to rank the consumer loan applicants. The lower and upper imprecise 

probabilities are used as a capacity measure in Choquet integral to determine the 

utility ranking of the consumer loan applicants.  

This thesis proposes an algorithm to calculate the applicant’s non-expected utility by 

using imprecise probabilities of accepted cases over the Fuzzy C-Means clusters for 

fuzzy Choquet integral. The method is applied on consumer loan evaluations for a 

financial institution to verify expert decisions in parallel to extracting linguistic rules 

of decision making. In the suggested approach linguistic fuzzy valued Choquet 

integral is used as measure of fuzzy utility. The results indicate that the proposed 

method is successful in ranking the consumer loan applications with only six fails in 

total of 135 applications. 

Keywords: Fuzzy c-means, Fuzzy clustering, Sugeno integral, Fuzzy valued 

Choquet integral, imprecise probability 
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ÖZ 

Bulanık- c -ortalaması (FCM) kullanan ve anlamlı başvuru nitelikleri ve karşılığı 

uzman kararından oluşan bir modelleme veri kümesiyle yönlendirilmemiş 

öğrenmeye dayanan kredi puanlama metodu önerilmektedir. Değerlendirmeye aday 

modelleri k -kat çapraz sağlamayla karar niteliğinin ortalama ve standard sapmasına 

dayanan mJ  ve Jσ  adında iki yeni istatistiksel maliyet fonksiyonu  

tanımlanmaktadır. Tüketici kredisi için başvuran müşterileri sıralamak üzere bulanık 

değerli Choquet  integrale dayanan sözel bir yaklaşım önerilmektedir. Choquet 

integralde kapasite ölçüsü olarak tüketici kredisi başvurularının fayda sıralamasını 

belirlemek üzere alt ve üst belirsizlik olasılıkları kullanılmaktadır. 

Bu tez başvuranların umulmadık faydasını hesaplamak üzere Choquet integralin 

kapasite ölçüsü olarak bulanık- c -ortalaması kümelerindeki uzmanlarca 

onaylananların belirsiz olabilirliliği kullanan bir algoritma önermektedir. Önerilen 

metod bir finans kuruluşunun tüketim kredisi değerlendirmelerinde bir yandan karar 

vermenin sözel kurallarını bulurken, diğer taraftan uzman kararlarını sınamak üzere 

uygulanmıştır. Önerilen yaklaşımda bulanık-sayı değerli ölçüt kullanan Choquet 

integrali kullanılmıştır. Sonuçlar ileri sürülen metodun tüketici kredisi başvurularını 

sıralamada toplam 135 başvurudan yalnızca altı yanılmayla başarılı olduğunu  

göstermektedir.  

Anahtar Kelimeler: Bulanık- c -ortalaması, bulanık sınıflandırma, Sugeno integral, 

bulanık değerli Choquet integral, kesin olmayan ihtimal  
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Chapter 1  

INTRODUCTION 

Utility is a wide-ranging concept which carries various deep meaning in different 

fields such as in economics, decision theory, game theory, etc. Utility is used in 

economics to measure “the relative satisfaction of goods and services” by Jeremy 

Bentham and John Stuart Mill [1]. For an investor it is the profit of an investment, 

and for a player it is gain or loss at the end of the game. Once measure of utility is 

developed, it is possible to compare utilities of substantial goods and services. 

Consistent comparison of the decisions by their expected utilities provides reliability 

of decisions, and forms the foundation of the Decision Theory based on the expected 

utility function, and utility theory [2].  

Utility is a reward associated with an outcome of the action for each of the possible 

states of the world influencing the outcome of the action. The utility of an action 

scores the decision maker’s attitudes toward possible risk and reward values [3]. 

Utility of an action is also called payoff, and it reflects the desirability of the 

outcomes of that action to the player, for any reason. When the outcomes are 

random, weighted probabilities of payoffs reflect the player’s attitude towards risk 

[4]. 

For a given set of alternatives �, utility function �: � � � ranks the preferences 
relative to each other in increasing or decreasing order by a preference relation  � or 
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�. Function �	
� rationalizes � on � if for every 
, � � �, �	
� � �	��  if and only 
if   
 � � . If �	
� rationalizes � , then it implies that � is complete, transitive and 
rational [1].  

A utility function does not need to be a scoring function for preferences, but the 

legitimate use of calculus of mathematical expectations is possible only with 

numerical utility functions [5]. In applications, there may be representations of utility 

functions in tabular, graphical, and mathematical formats [1]. 

The first known expected utility function was defined by D. Bernoulli in 1738, while 

attempting to solve St. Petersburg Paradox, where the expected monetary payoff 

alone was inadequate for reasoning about the choices of the players in tossing coins. 

His idea to use the probabilities of outcomes in finding the optimum decision built up 

into the final formalism and axiomatic foundation of utility theory by major 

contribution of many researchers including [5], [6] and [7]. The topological existence 

conditions of utility functions as a representation of preference ordering were stated 

by G. Depreu [8].   

Other quantitative decision-making practices use other forms of utility theory. 

Operations Research (OR) is emerged during World War II [9], aiming the scientific 

analysis of decision making. OR has evolved into management science, keeping 

many principles of decision analysis (DA) in its area. Mathematical models of 

decision analysis incorporate the preferences and probability assumptions of the 

decision maker along with the structure of the decision problem. Decision is 

considered to be an irrevocable allocation of resources, and the decision maker is an 

individual who has the power to commit the resources of the organization [10].  
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DA deals with organizational decisions, and concerning with the appropriateness of 

the decision-making process rather than the individuality of the decision maker or the 

relations of power holders within an organization. Later forms of DA did attempt to 

include in their thoughts the result of prospect theory. Namely, they tried to integrate 

biases of human judgment into their model-building processes [10]. 

Utility theory states that consistent, reliable, and rational comparisons of decisions 

optimize expected utilities of outcomes. Expected Utility Theory is a general set of 

assumptions and axioms that outline rational decision making for decisions with 

random outcomes [11]. It recommends to weight for the utility of each outcome by 

the probability of occurrence and then decides for the outcome that results in the 

greatest weighted sum.  

Utility theory formed by von Neumann and Morgenstern is an axiomatically stated 

single objective optimization of expected utilities. Von Neumann and Morgenstern 

established the rational framework of expected utility functions in game theory by 

the following three properties: (i) the higher utility require a desirable outcome. In 

order to explore desirable outcome, in other words the best decision, one need the 

largest expected utility. (ii) For three possibilities; if choice ' 'a   is better than ' 'b  and 

' 'b  is better than ' 'c , then necessarily ' 'a  is better than  ' 'c  , which is called the 
transitivity axiom. (iii) If players are indifferent between two outcomes or choices, 

then necessarily the expected utilities will be the same. These three assumptions 

underlie the rational framework for decision making under uncertainty that expected 

utility theory provides. Moreover, for application in economic actions, transferability 

of one players’ utility to another is necessary [4].  
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A rational decision maker would exhibit certain characteristics (usually expressed in 

the form of axioms), and then the solution of certain problems (expressed in a formal 

way) may be solved based on sound mathematical principles.  

The theory of Bounded Rationality was proposed by H. Simon for real organizations, 

where decisions are not fully rational. Limitations of information, cognitive capacity, 

and attention may impose restrictions on decision maker, and the optimum decision 

cannot be obtained [12].  

In many cases the decision shall be taken in a limited time or deciding to a solution 

that satisfies the objectives to a certain extent is sufficient rather than searching for 

an optimal solution. Satisficing is the term used for searching a sufficiently 

satisfactory decision instead of the exactly optimal one [12]. 

The chapters of this thesis are organized as follows. The introduction is given in 

Chapter 1. Chapter 2 reviews basic definitions and principles that are fundamental 

parts of the structure of the next chapters. Chapter 3 describes main variables of the 

data set and fuzzy c-means (FCM) algorithm. Chapter 4 contains the description of 

the fuzzy utility functions, fuzzy valued Choquet integral and the developed ranking 

method introducing model of credit scoring. The experimental results are discussed 

in Chapter 5. Finally, conclusions are given in Chapter 6.  
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Chapter 2  

PRELIMINARY DEVELOPMENTS and DEFINITIONS 

2.1 General Review  

Credit scoring is a procedure of separating specific subgroups in a population of 

objects. In [13], a general approach for classifying objects using mathematical 

programming algorithms is investigated. The approach is based on optimizing a 

utility function, which is quadratic in indicator parameters and is linear in control 

parameters. The power and usefulness of fuzzy classification rules for data mining 

purposes are studied in [14]. For this purpose, an evolution strategy and a genetic 

algorithm are recommended as evolutionary fuzzy rule learners. Their performances 

are compared against Nefclass, neuro-fuzzy classifier, and selection of other well-

known classification algorithms on number of publicly available data sets and two 

real life Benelux financial credit scoring data sets. An approach in order to develop a 

TOPSIS classifier to show its usage in credit scoring, providing a way to deal with 

large sets of data using machine learning is suggested in [15].  

In paper [16], two real world credit data sets in the University of California Irvine 

Machine Learning Repository are chosen. Support-Vector-Machine (SVM) and 

clustering-launched classification (CLC) are given to discuss the advantages of CLC 

to predict credit scoring. A hybrid mining approach in the design of an effective 

credit scoring model based on clustering and neural network techniques are 

introduced in [17] using the clustering techniques to preprocess the input samples 

with the objective of indicating unrepresentative samples into isolated and 
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inconsistent clusters, and then he used neural networks to construct the credit scoring 

model. Most credit assessment models are based on simple credit scoring functions 

estimated by discriminate analysis.  

Utility theory focuses on methods making decision under risk aversion starting by 

Bernoulli [18]. Preference relations are used in order to discuss the best alternative, 

thus, the theory of decision making is used in many disciplines such as Economy, 

Operational Research, Management, Artificial Intelligence, etc. Utility has an 

important role in decision making and investigation of researcher’s showed us how 

this area can be used to examine and to solve decision problems. The proof of 

existence of fuzzy utility function is proposed in [19]. The utility function is the 

measure of preferences. Generalization of classical utility theory is projected and 

basic preferences are defined by means of rational fuzzy preference relations in [20]. 

A generic procedure for construction of multi-dimensional utility in case of mutual 

utility independence of base vector attributes is offered in [21]. A general approach 

in order to classify objects using mathematical programming algorithms based on 

optimizing utility function is presented in [13], with a utility function that is 

quadratic in indicator parameters and linear in control parameters.  

A fuzzy multipurpose decision making problem is studied in [22] to establish a 

general model that covers all possible representations by means of preference 

orderings, utility functions and preference relations. The process to verify the 

assumption and the evaluation of the resulting utility function including sufficient 

conditions for multi-attribute utility function is considered in [23]. Classical 

weighted arithmetic mean is common in analysis of the problems in decision making 

as presented in [24], where the Choquet integral is used as a weighted arithmetic 
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mean aggregation tool after a classification process on the data set. Fuzzification of 

Choquet integral as a fuzzy number is discussed in [25]. Fuzzy measures and 

nonlinear integrals in data mining are proposed in set function identification, 

nonlinear multi-regression, nonlinear classification, networks, and fuzzy data 

analysis in [26].  

In multi-criteria decision making problems, the theory of fuzzy measures has been 

used by many authors; firstly, fuzzy measure as a generalization of the classical 

probability measure was given by Sugeno. The classical probability measure theory 

has an important role in decision theory; consequently, fuzzy measure has been 

investigated by numerous researchers to determine the best decision for their 

problems. For example, Modave and Grabisch examined the associations between 

additive representation in decision making and measurement theory in order to 

propose a Choquet representation theorem in multi-criteria decision making [27]. 

Graphical explanations of the Choquet integral, viewed as an aggregation operator in 

the case of two elements are given by Grabisch in [28]. Numerous methods have 

been presented to construct Choquet integral-based utility function representing 

decision maker’s preferences.   

A methodology for building a non-additive utility function in terms of Choquet 

integral for multi-criteria problems is defined in [29]. An effective decision theory 

under uncertainty when the environment of fuzzy events and fuzzy states are 

characterized by imprecise probabilities is intended by authors in [30]. The theory is 

based on a non-expected fuzzy utility function represented by a fuzzy-valued 

Choquet integral with a fuzzy number valued fuzzy measure constructed from 

imprecise probabilities. In [31], a synthesis within the application is offered on the 
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application of fuzzy integral as an innovative tool for criteria aggregation in decision 

problems.  

A complexity-based method in order to construct fuzzy measures by the discrete 

Choquet integral is suggested in [32] to evaluate the student’s performance based on 

a basic Competence test. Credit rating for commercial loans is an important issue for 

loan officers of a bank. In [33], a fuzzy credit-rating approach is proposed to deal 

with the problem arisen from the credit rating table used in Taiwan. The credit-rating 

criteria are modeled as hierarchical decision structures.  

2.2 Statement of the Problem 

The process which is carried out for a business or an individual application of credit 

to determine eligibility of the applicant for a loan is loan credit evaluation and 

approval. The loan may also be restricted to pay for goods and services over an 

extended period. An important factor in evaluation process of business loan credit 

applications is the credit worthiness, which score intends to measure history of 

trustworthiness, moral character, and expectations of continued performance of the 

financial credit applicant. However, for the consumer credit applications, it is 

difficult to collect sufficient information about the applicants to evaluate their credit 

worthiness score. This work attacks to the problem of the credit evaluation and 

approvals by modeling the finalized expertise decision based on a set of applicant 

attributes, such as income, age, credit history, requested loan amount, etc, which are 

considered by the financial institutions important in evaluating credit applications. 

The aim of the model is to obtain rules in terms of the applicant attributes to predict 

the expert decision for a new credit applicant and, to score the credit eligibility of the 

applicants for the applied loan. Note that scoring the credit eligibility is also called 
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the credit-scoring, and it is valid only for the applied loan, whereas the credit 

worthiness scores intent to measure the general credit eligibility of the applicants. 

This thesis focuses mainly on a fuzzy-valued Choquet integral based consumer credit 

evaluation model to explore the evaluation criteria. The expert prevision is explored 

from a set of consumer applications for which experts provided an evaluation 

decision using fuzzy clustering and transferred its results into a fuzzy linguistic rule 

base. The fuzzy linguistic rule base is used to determine imprecise prevision of the 

experts in the form of fuzzy upper and lower imprecise probabilistic measure of rule 

prototypes. It extracts the experts prevision using fuzzy clustering by describing the 

expert prevision through a set of flexible fuzzy linguistic rules. The financial 

institutions mostly request a ranking of the applicants rather than only a final 

decision of denied or accepted for each applicant. However, experts typically classify 

the applicants denied or accepted.  

 

A utility score provides flexibility in finalizing the decision such as which applicants 

might be accepted when the financial resources are increased; as well as it provides a 

verification of experts decision. If an applicant’s utility score is low but experts 

decided for it accepted, or vice versa, such inconsistent cases may be detected and re-

evaluated by the experts to prevent any material mistakes in the decision. 

2.3 Preliminaries 

Various fuzzy methods including Fuzzy Clustering have been developed for decision 

making by following the introduction of Fuzzy Set Theory by L. A. Zadeh [34].  

Clustering is one of the important tools in decision making as well as in pattern 
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recognition, data mining, and data modeling. Clustering partitions a data set 

according to a similarity measure for the objects in the data set.  

Clustering a data set into a number of partitions may explore the general 

characteristic relations between the arguments of the data set which contains 

sufficiently rich samples of a decision process. The main purpose of clustering is to 

divide the given data into homogeneous clusters according to the similarity [35]. 

Unsupervised learning is achieved by natural grouping or meaningful partition of 

similar data items in a data set. The extraction of knowledge from a data set by 

clustering is called unsupervised learning if clustering is based on a similarity 

measure rather than corrective actions supervised by the known relations [36]. 

Similarity is fundamental to the definition of clustering. The clustering of input-

output data provides unsupervised learning by collecting similar data vectors into the 

same cluster [37].  

In clustering data sets with scalar type attributes commonly a distance measure is 

used as a similarity measure. A similarity measure of the vectors may be established 

by various different representations of distance. Different distance measures are 

commonly used in fuzzy clustering algorithms [38], [39]. One of the types of 

similarity measures in the fuzzy clustering is the distance measure; different 

representations of distance are used to establish the similarity in the clustering. The 

following list of distance measures has been used in different sources.  

i.    Euclidean distance, where  ��	�, �� � 	 ∑ 	������ � �� ���� �⁄ . 
ii.    Minkowski distance, where  ��	�, �� � ��	�, �� � �∑ |�� � ��|����� �� �⁄ . 
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iii.    Mahalanobis distance, where � 	�, �� � !	� � ��"#$�	� � �� and #$� 
represents the inverse of the covariance matrix of each cluster. 

iv.    Hamming distance, ��	�, �� � ∑ |�� � ��|����  . 

v.    Maximum distance,  �∞	�, �� � %�
���,…,'|�� � ��|. 
FCM clustering algorithm uses Euclidean distance to cluster data set. Mainly, the 

algorithm, the distance measure, and the character of application affect the result of 

clustering. Three main types of clustering methods are proposed: partitioning, 

hierarchical, and fuzzy methods. In partitioning clustering methods, the data set is 

divided into a preset number of clusters. )-Means [40] is a standard partitioning 
clustering method based on ) centroids of a random initial partition. Hierarchical 
clustering methods generate a hierarchy between clusters: small clusters include very 

similar items to combine the larger clusters which contain relatively dissimilar items, 

and produce a clustering space represented by a dendogram to show the hierarchical 

cluster structure.  

Fuzzy clustering is an algorithmic fuzzy data analysis approach, generally obtained 

by fuzzification of classical algorithms using the fuzzy set theory [41]. In contrast to 

the classical set theory, where an object either belongs to a set or not, in the fuzzy set 

theory an object belongs to a set partially with the degree of membership between 0 

and 1, [34]. There are two fundamental methods of fuzzy clustering; a Fuzzy c-

Means Clustering method based on fuzzy c-partitions and Fuzzy Equivalence 

Relation method based on hierarchical clustering method [42]. 
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Ruspini established an algorithm for hard c-mean partitioning which divides data to c 

number of clusters by assigning each data item to exactly one cluster  to illustrate the 

cluster structure of a given data set [43]. He also recommended an algorithm for 

fuzzy partition. Dunn generalized this clustering process to a fuzzy ISODATA 

clustering technique, and Bezdek used Dunn’s process to develop FCM algorithm 

where a data object belongs to all fuzzy clusters with different degrees of 

membership. FCM is a method to find out the fuzzy representation of a data set by 

partitioning each item into c fuzzy clusters [44].  

Fuzzy measure and Choquet integral are the generalizations of the classical 

probability measure and Lebesque integral, respectively. The concept of fuzzy 

measure and the theory of fuzzy integral based on fuzzy measure have been 

established by Sugeno using min and max operators. Later on, fuzzy measures and 

fuzzy integrals were discussed in different sources, such as [45], [46], [47] and [48]. 

In this section, the definition of fuzzy function, fuzzy measure and fuzzy utility 

functions are represented by the Choquet integral.  

The notations that will be used throughout this section are: � is the set of real 
numbers, * � +
�,  
�, … ,  
,-  denotes the universal set, and .	*�  is a non-empty 
family of subsets of * including / and *. 	*, .	*�� is a measurable space and 
.	*� is a 0 -algebra which is defined on the non-empty set *.  
Suppose 1 is a preorder then 0 is a minimal element in * and 1 is a maximal 
element in *. And, also suppose nE  is the space of all fuzzy subsets of nR  satisfying 
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the conditions of normality, convexity, and upper continuous with compact support; 

i.e., 1
[ , ]a bE  denotes the space of fuzzy sets of [ , ]a b R∈ . 

Definition 2.3.1 Let   * be non empty set and let .	*� be non-empty family of 
subsets of * . .	*� is called 0 –algebra of * if it satisfies the following three 
properties:  

i. /, * � .	*�. 
ii. Let  # � *. If  # � .	*� then the complement of  #  is also in  .	*�. 
iii. If  #�,  #�, … � .	*� then 2,��3 #, � .	*�. 

Definition 2.3.2 Let #4 be fuzzy set defined in * with membership 
function  5 6	
� 7  * � �0, 1� for every 
 in *. The fuzzy complement #4:  of  #4 is 
defined by membership function 5 6;	
� � 1 � 5 6	
� for every 
 in *.  5 6	
� is 
defined as the degree such that 
 belongs to #4, therefore, 5 6;	
� is defined as the 
degree such that 
 does not belong to #4. In classical set theory,  # < #: � / and 
# 2 #: � =   for crisp sets, however, these properties do not satisfy for fuzzy sets 
[49].  

Definition 2.3.3 A set function 5 7 .	*� > �0,1�  is called a fuzzy measure on 
measurable space if it satisfies the following statements [31]:  

i. 5	/� � 0, 5	*� � 1  
ii. If # ? @ then 5	#� � 5	@� for all #, @ � .	*�. 
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 5  is a normalized monotonic  set function. For  #, @ ? .	*�, a fuzzy measure 5 is 
additive if 5	# 2 @� � 5	#� A 5	@�, where # < @ � /. 
Definition 2.3.4 Let * be a nonempty fuzzy set and let B6	*� � + @6  | 5C6 D 7
* > �0,1� -

 
 be the class of all fuzzy subsets of *. And, let B6�	*� be subclass 

of B6	*�. B6�	*�  is a fuzzy  0 �algebra if  the following properties are satisfied, [50] 
: 

i. /,* � B6�	*�, where  /	
� � 0 and *	
� � 1 for every 
 in *. 
ii. if @6 � B6�	
�, then the complement of @6   is also in B6�	
�, i.e. @6: � B6�	*� 
iii. if +@6,- E B6�	*�, then 2,��3 @6, � B6�	*�. 

A signed fuzzy measure is a set function  5 7 B6�	*� > 	�∞,∞� that 
satisfies 5	/� � 0. 
Definition 2.3.5 A fuzzy number is a fuzzy set �G 7  � > �0,1�  satisfying the 
properties [49]: 

i.  �G  is normal, that is, there exists and  
 in � such that �G	
� � 1. 
ii. �H � + 
 | �G	
� � I D- is closed interval ��H$, �HJ�, I � 	0,1�.  
A fuzzy infinity denoted by ∞K  is a fuzzy number satisfying the condition that for 
every positive real number L, there exists  IM � �0,1� such that  �HN$ O �L or 

0r
M a+<  

µ
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Definition 2.3.6 Let #4, @6  be two fuzzy sets in P,. The Hausdorff distance of  
#4 and @6  is given by 

�4QRS#4, @6T � U I/��R	#H��, @H���,  W�XHYHZY��R	#HZ , @HZ��H��M,�� . 

Definition 2.3.7 Let B� be a set of fuzzy numbers. A fuzzy number-valued 
fuzzy measure (also called [ �fuzzy-measure) on B6�	*� is a fuzzy number-valued 
fuzzy set function  5G 7 B6�	*� > P� , where P� denotes the space of fuzzy set of 
��, �� E � with the following properties [50]: 

i. 5G	/� � 0; 
ii. if  @6  ? \,]  then 5G	@6�  � 5G	\4�  
iii. if @6� ? @6� ? ^ , and  @6, � B6�	*�,  then  5GS_ @63,�� ,T � lim,�3 5G	@6�   
iv. @6� c @6� c ^, @6, � B6�	*�   and there exists  dM such that 5GS@6,NT e

∞K  then  5KSf @6g,�� ,T � lim,�3 5	@6,�. 
 

In the definition above the limits are defined according to the fuzzy Hausdorff 

distance, [51].  

Other notations that will be used throughout this section are: let #4 and @6  be fuzzy 
sets in P,, where P, is the space of all fuzzy subsets of �,. Meanwhile,  S*, B6�	*�T 
is called a fuzzy measurable space, and S*, B6�	*�, 5GT is called a z-fuzzy-measure 
space. 
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Definition 2.3.8 Let S*, B6�	*�, 5GT be a z -fuzzy-measure space. h:* >
	�∞ ,∞ � is called a fuzzy measurable function if *ij � B6�	*� where Bk � +
 �
* | h	
� l m-D

 
 and *ij	
� �(1 if and only if x )Fβ∈ ; and 0 if and only if x )Fβ∉  

with ( , )b ∈ −∞ ∞ . M ′ denotes a set of all fuzzy measurable functions, and M+′  

denotes a set of non-negative fuzzy measurable functions.  

Let no denote the set of all closed intervals of the real line. hZ: * > no is fuzzy 
measurable if both h�	
� � phZ	
�q�, the left end point of interval 	
�, and 
2 2( ) [ ( )]f x f x= , the right end point of interval ( )x are fuzzy measurable functions of 

x . 

Fuzzy integral is an operator on �0,1� which is used to solve the multi-criteria 
decision problems and also it is used in many applications, such as [52], [53]. While 

there are two well-known types of fuzzy integrals for utility evaluation: Sugeno 

fuzzy integral and Choquet integral; we only focus on the Choquet integral for a 

positive and measurable function.  

Definition 2.3.9 Let  * be a non empty set. And, let .	*� be an 0-algebra 
defined on *. 5	*� 7 .	*� > �0,1� is a Sugeno fuzzy measure if the following 
conditions hold [26]: 

i. 5	/� � 0, 5	*� � 1  
ii. If #� ? #� then 5	#�� � 5	#�� for all #�, #� � .	*�. 
iii. If #� ? #� ? ^ � .	*� then  lim,>3 5	#,� �5	lim,�3 #,� . 
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Definition 2.3.10 Let µ  be the fuzzy measure satisfying given properties. The 

Sugeno integral h: .	*� � 	0,∞� is defines as, [26], 
 

[0, )

sup [ ( )] af d F
α

µ α µ
∈ ∞

= ∧∫ such that { }( )aF x f x α= ≥  

For an  α -cut set of a function of a non-negative function f  in [0, )∞ . 

Definition 2.3.11 Choquet integral of a nonnegative function r: .	*� > �MJ  
with respect to a fuzzy measure s  on *  is defined by 

 Pt	
� � u s	vw��x'M , 

where vw � + 
 � �| r	
� � x D-.  
Choquet integral Pt	r� for a finite � always exists, and it is a generalization of 
mathematical expectation if s is a probability measure. Proofs of the following 
important properties of Pt	� are available in [54]:  

i. If x � �MJ, then Pt	x� � x. 
ii. If r	
� O ry	
�  z
 � �,  then Pt	r� � Pt	ry�. 
iii. If s	#� O sy	#� , z# ? �, then Pt	r� � Pt{	r� for every h  such that  

r 7 * > �MJ.  
iv. Pt	| � � s	#�.  
v. If  �, } � �MJ, then Pt	} A �r� � } A �Pt	r� for everyh , such that r 7

� > �MJ. 
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Pt	r� is an additive functional for probability measures. 
Denote r� a value of a function r at point 
� � �. Then, the Choquet integral of r 
denoted by Pt	r� is expressed as   Pt	r� � ∑ S	r� � r	�J���s	#	���T,��� , where 

subscript ~ shows that the indices are permuted in order to have   r	�� � r	�� � ^ �
r	,� and r	,J�� � 0, #	�� � �
	��, … , 
	���. 
Two functions r and ry are called equi-ordered, and denoted by r � ry, if and only if 
either r is a constant function or for each pair 
� ,  
� � � such that r� � r�, it follows 
necessarily that  r�y � r�y. For a fuzzy measure s on �, the proof of ordered 
additivity of the Choquet integral, Pt	r� � Pt	r A ry� � PtSr� A Pt	ryT  if 
function r is equi-ordered with ry, is presented in [55]. Consequently, although Pt	� 
is in general non-additive, it is additive for equi-ordered functions. Finally, Choquet 

integral P�	� with the probability measure ., instead of an arbitrary fuzzy measure, 
corresponds to the mathematical expectation with respect to ., and is simply 

( )
1

n

p i i
i

E h p h
=

=∑ , 

where X� � .	+
�-�, where ~ � 1, … , d. 
Let h be a classical function from * into � and let * and � be the domain and the 
range of  h , respectively. In [41], Zimmermann stated that there are three categories 
of the fuzzy function as generalizations of the classical function h 7 * > �. 

(2.1)
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Defining a fuzzy function we mean a function whose values are fuzzy numbers. Let 

5Q4	'� represent the membership function of the fuzzy number h	
�.  
Definition 2.3.12 Fuzzy function h4 is defined from * into the power sets �	�� 
in �, if and only if 5Q4	'�	�� � 5o�	
, �� for every 	
, �� in * � �. For 0 O I � 1, 
h4�H and h4�H are the level functions of h4 so that h4�H denotes W�X� [ � ��%S5Q4	'�T 7
 5Q4	'�	[� � I� and h4�H  denotes ~dh� [ � ��%S5Q4	'�T 7 5Q4	'�	[� � I� , respectively. 
 

Fuzzy Utility Function Utility of a decision is introduced by Bernoulli to 

measure of the risk connected to the decision, concluding that the future value of the 

decision is expected to be the sum of the products of probabilities of the 

consequences by their expected losses and gains [18]. Mathieu-Nicot introduced the 

concept of fuzzy expected utility [56], and Billot introduced a set of theorems to 

extend Ponsard`s result to a convex fuzzy utility proving that the preferences may be 

sorted in a convex fuzzy utility function [19].  

The credit-scores of applicants target to sort the applicants according to their future 

contribution to the profit of financial institution. The unsupervised learning ability of 

the FCM provides the applicants to be partitioned into c fuzzy clusters, and assigns 

membership functions to the applicants for each cluster. This thesis proposes a 

method to construct fuzzy utility function of the credit applicants by using the FCM 

membership degrees 5�,� of the applicants, and the accepted-rates ��,� of the 
partitions 

  ��,� � n�,� n�⁄  
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where n� is the total number of applicants those belong to partition ~ with the highest 
membership degree compared to the other partitions. And, n�,� is the number of 
accepted applicants those belong to partition ~ with the highest membership degree 
compared to the other partitions.  

Each FCM partition corresponds to a characteristic class of risk factor with different 

expected success rate. Under the assumption of having expected success rate P�,� of 
partition ~ equal to ��,�, and assuming that the membership values 5�,� indicates the 
probability ending up in the partition, a non-additive fuzzy expected utility value is 

obtained by expression 

,, , ,
1,...,
max ( , )a in k a i k
i c

U Rµ
=

=  

which means that an applicant cannot accumulate utility-scores from multiple 

partitions. Non-additive fuzzy expected utility is known as not a rational utility since 

the utility shall measure the sum of all benefits of the choice. However, in some 

cases the utilities may not be additive because of the future alternates are not 

independent, i.e., if one occurs the other cannot occur. 

The axiomatic definition of a probability Let a space of all events * be given that 
(a)  .	#� � 0 hor all # in *.  (b) .	*� � 1.  (c) .	# 2 @� � .	#� A .	@� if # and 
@ are disjoint sets in * . The number .	#� corresponds to the probability of an event 
# in *. Then, the probability of an event # has the properties; (a) 0 � .	#� � 1, (b) 
.	#� � 1 � .	#�� , (c) .	/� � 0, (d) .	*� � 1.  The set #� is + � � � 7  � � # -, 
.	#� A .	#�� � 1. Let us suppose .	#� and .	#� are the lower and upper 

(2.2)



21 
 

probabilities for an event #, respectively. Then, we have 0 � .	#� � .	#� � 1, for 
every event # in *. .	/� � .	/� � 0, and .	*� � .	*� � 1. If #� ? #�, this 
implies that .	#�� � .	#�� and .	#�� � .	#�� . Also for all events #  in *,  
.	#� � .	#� � .	#�,  .	#�� � 1 � .	#�,   #� is complement of #.  
Definition 2.3.13 If the sample space * is finite and the following three 
properties are satisfied  

i. .	/� � .	/� � 0, and .	*� � .	*� � 1 
ii. #� ? #�, implies that .	#�� � .	#�� and .	#�� � .	#�� 
iii.  .	#� � .	#� � .	#� for all events # � * 

then the functions .	#� � inf 	.	#��  and  .	#� � W�X 	.	#�� are called  lower 
probability, upper probability measures, respectively, [57]. 

Application of probability theory has drawbacks in the problems involving in 

evaluation of expert decisions since the expert’s perception has nonlinear character 

which is not suitable for probabilistic utility calculations. Perceptions are both 

imprecise, and fuzzy in character. Fuzzy Choquet integral of imprecise probabilities 

is a successful tool for determination of non-expected utility [58].   

Let � � + 
�  | � � 1,… , d D-  be a set of input vectors, with the corresponding set of 
output � � + �� � +0,1- | � � 1,… , d D-. Let m� denote the membership value of 

� � � in fuzzy set @. The fuzzy mean of the output based on @ is given by 
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( 1) , ,
1 1

/
D Dn n

mean y i k k i k
i i

P yβ β=
= =

   
   
   
   

= ∑ ∑  

The lower probabilities of 	� � 1� can be evaluated for the available x �cut points 
of fuzzy set, 

, ,

, ,( 1) ( ) /
i k i k

k i k k i klower y yP
β α β α

α β β β
≤ ≤

=

   
   =
   
   

= ∑ ∑  

The lower edge of the fuzzy imprecise probability set may be easily obtained by 

curve fitting on the evaluated points  .����H	����	x � m��, � � 1,… , d. 
For the upper edge of the fuzzy probability of 	� � 1�, we may use a curve-fit on the 
points calculated by the 	� � 1) cases above the x –cut 

, ,

, ,
(1 ) (1 )

( 1) ( ) /
i k i k

k i k k i kupper y yP
β α β α

α β β β
≥ − ≥ −

=

   
   =
   
   

= ∑ ∑  

Definition 2.3.14     Let  h 7 � > no be a fuzzy measurable interval-valued function 
on � and 5  be a fuzzy number-valued fuzzy measure on h. The Choquet integral of 
 h with respect to 5 is defined by 

Pt � � u h�5 � h	
� � h	
�, z
 � �, h: � > � ~W %��W�I���� D� 

                   � uh �5 

(2.3)

(2.4)

(2.5)

(2.6)
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A fuzzy valued function  h 7 � > P, is fuzzy measurable if the I-cut  hH	
� �
� � � hD	�� � I � that belongs to the fuzzy measure is a fuzzy measurable interval-
valued function for every I � 	0,1�, where h	�� is the membership value of  h at �. 
One of the advantages of Choquet integral is a possibility to illustrate decision 

making under uncertainty. A Choquet integral may be taken at only individual level 

which is equivalent to ordinary weighted average, or considering proper weights for 

the couplets of permutations, triplets of permutations, etc. 

Definition 2.3.15 The fuzzy ranking is the method of comparing fuzzy numbers. 

One way to compare fuzzy numbers is to convert a fuzzy number to a crisp number 

by concerning a mapping function, i.e. if # is a fuzzy number, then B	#� � �, where 
� is a crisp number.  
The aim of such a fuzzy ranking is to express the best scores of decision making 

problems by crisp preferences of alternatives, such that in many cases final scores of 

alternatives are represented in terms of fuzzy numbers. There are several methods to 

sort fuzzy numbers by ranking crisp numbers; each one has advantages besides 

disadvantages. For example in [42], fuzzy numbers are compared by defining the 

Hamming distance, and by determining x-cut and also through the extension 
principle. 
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Chapter 3   

DATA SET AND DATA SET ANALYSIS  

3.1 Main Variables and the Data Set 

In this thesis, our plan is to estimate a non-expected (non-additive) utility of each 

consumer loan credit applicant using an available dataset that contains the expert 

decision attributes as the input features, and the binary expert decision result 

(accepted or denied) as output of the application. 

Consumer Loan Data Set The analyzed data set is obtained from a finance 

institution which provides credit to appropriate applicants. The available data set 

contains totally d� � 135 cases of complete input features of the credit loan 
applicants, and corresponding expert decisions. Each case composes a data vector 

	
�, ���  with the following 10 attributes: 
1. Net income (USD), scalar 

2. Age (Years), scalar 

3. Last employment period (Years), scalar 

4. Credit history (Negative, Positive) 

5. Purpose of loan (General purpose, Flat refurbishment, Car purchase, Flat      

purchase) 

6. Requested loan amount (USD), scalar 

7. Loan-maturity (Years), scalar 
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8. Proposed number of guarantors (Number), scalar 

9. Collateral (None, Not applicable, Car, Flat) 

10. Expert decision (Denied, Accepted). 

 

From these ten attributes, the first nine are input attributes 
� � 	
�,�, … , 
�,,��, 
d� � 9, where � stands for the ��  applicant, and the last attribute states the experts 
decision for the case: either accepted (�� � 1, total of 103 applicants) or denied 
(�� � 0, total of 32 applicants). Some statistical properties of the input and output 
such as minimum, maximum, mean and standard deviation are calculated for the 

consumer loan data set. Then, we converted the nominal attributes into numerals and 

normalized all attributes into the �0,1�  range to avoid anomalies of large difference 
between the ranges of each attribute before applying fuzzy c-means (FCM) to 

partition the data set into nC fuzzy clusters.  
3.2 Fuzzy Clustering Algorithm 

Fuzzy c -means (FCM) is a well-known fuzzy clustering algorithm to cluster a 

numerical data set into c  clusters [59]. FCM clusters a finite set of data vectors 

� � +
�, 
�, … , 
�, … , 
,- E ¢�, where the dimension of the vector space is Ρ. A 
fuzzy c   partition � � +5�, 5�, … , 5�, … , 5,- is a family of subsets of �. � is the 
class of fuzzy sets such that 5H� denotes the value of the degree of membership of 
object 
� � �
�,�, 
�,�, … , 
�,,� � ¢�

 
in the  ~-the partition, for all  � � 1, 2, … , d 

and 1,...,i c= .  A fuzzy }-partition � of the given set of data � satisfies the 
constraints: 

1

( ) 1i k

i

xµ
=

=∑  for every x X∈  
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and  

0 ( ) 1
c

i k

x X

xµ
∈

< <∑    for 1,...,i c= . 

The vectors ¥�, ¥�, … , ¥�, … , ¥�  are the cluster centers corresponding to each cluster c 
and �	
, ¥�� is the distance function. 
The matrix  = � p5�,�q�', is the }
d fuzzy partition matrix of �. In other words, this 
is the matrix of degrees of memberships of data objects 
�, � � 1,… , d in each 
cluster ~, where  ~ � 1,… , }. The aim of the FCM algorithm is to find the best 
possible fuzzy partitions that minimize the objective function ¦ such that the 
objective function is defined by   

( ) 2

1 1

( , ) ( )
c n

m
iik k

i k

J U V x x vµ
= =

= −∑∑ ,  

where % � 	1,∞� is the fuzzification power, and §
� � ¥�§� is the distance function 
between  
� and ¥�,  [42], [44]. In order to minimize the objective function ¦, the  } 
fuzzy cluster centers ¥�	��,  ¥�	��, … , ¥�	��   using the fuzzy } � partition matrix  =	�� 
are calculated by  

( )
,( ) 1

( )
,1

mn t
kj kt k

i mn t
j kk

x

v

µ

µ

 
 =  

 
 =  

=
∑
∑

,  1,...,i c=  

(3.2)

(3.3)

(3.1)
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and also the fuzzy } �partition matrix =	�J�� is revised using the } fuzzy cluster 
centers from   

2
( ) 1

( 1) 1
, ( )

1

( , )
[ ( ) ]

( , )

tc m
kt i

i k t
kj j

d x v

d x v
µ

−+ −

=

= ∑ . 

The number of clusters } and the fuzzification power % of FCM have an important 
role in unsupervised learning of the relations in a data set. Fuzzification power % 
close to 1 makes the clustering to approach nearly too hard clustering, and higher %  
values makes the clusters more and more fuzzily mixed to each other. Typically % 
values near 2 are satisfactory for proper generalization in unsupervised learning. If } 
is decided appropriately each cluster center corresponds to a prototype in the data set.  

In the literature there are many proposals for fuzzy validity functions to test the 

validity of the partitions generated by FCM [59]. However, recently researchers 

avoid cluster validity indices by searching the best performing } and % value in a set 

of specific cases [60], [61] and [62]. 

The following steps can be applied for Fuzzy C-Means (FCM) algorithm, [41], [42]. 

Suppose m and e are real, small positive numbers, respectively. At the beginning the 

real number % and a small positive number ¨ are selected to terminate this algorithm. 
Step 1: Compute the fuzzy } �partition matrix =	M�, i.e. compute  5�	��, 5�	��, ^ , 5�	�� 
for � � 0 according to the given }. 

(3.4)
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Step 2: Then, compute the } fuzzy cluster centers ¥�	��, ¥�	��, ^ , ¥�	�� using the 
fuzzy  5�	��, 5�	��, ^ , 5�	��, }- partition matrix  =	�� obtained by 

( )
,

( ) 1

( )
,

1

( )

( )

n
t m

j k k
t k

i n
t m

j k

k

x

v

µ

µ

=

=

=
∑

∑
      for ~ � 1,… , }. 

Step 3: revise the fuzzy c-partition matrix =	�J�� using the } fuzzy cluster centres 
from   

5�	�J��	
� � ©ªª
ª«¬­�®
, ¥�	��¯� ®
, ¥�	��¯°

�±$��
��� ²³³

³́
$�
 

for each ~ � 1,… , }, if  �	
, ¥�	'�� e 0, ~ � 1, … , }.  
But if  �®
, ¥�	'�¯ � 0 then  5�� � 1 when µ � ~ or  5�� � 0  when  µ e ~.  

Step 4: If  ¶¥�	�J�� � ¥��¶ � · then terminate, otherwise repeat step 2.  
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Chapter 4  

CONTINUOUS MODEL OF CREDIT SCORING 

4.1 Validity Test for the Best Model  

A fuzzy credit-scoring model requires trimming of structural and non-structural 

parameters to a training data set. For FCM based modeling cluster validity indices 

may be a remedy to decide on structural parameters such as the number of clusters c, 

and the fuzzification power % of the model. But, the cluster validity indices only 
validates that the vectors are concentrated in the neighborhood of the cluster centers 

rather than validating the accuracy of predicting the unknown target attribute.  

Mosteller introduced �-sample method of validating for the significance test [63]. 
Pickard and Cool introduced the cross validation method based on splitting the data 

set to training and verification partitions [64]. The major drawback of Pickard’s cross 

validation is a significant reduction of the training data, which is not tolerable for 

small data sets. In most application the evaluation of validation tests of the models 

are carried statistically by �-Fold cross-validation (CV) method. �-Fold CV is based 
on construction of � models using randomly partitioned training and verification data 
sets in a moving window pattern as described by Mosteller.  

A special case of the �-Fold CV is called leave-one-out-cross-validation (LOOCV), 
where the validation is based on total d, each case reserving a single training vector 
for validation purpose and using all others for training. LOOCV is known 
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statistically most sound cross verification method. But, it requires highest 

computational effort compared to �-Fold CV when � O d. 
The evaluation of � models which are obtained by �-Fold CV method is carried 
using accuracy measures on candidate models. The primary cost function is based on 

the fail rate in estimating the positive and negative expert decisions. However, many 

models give exactly same fail-rate due to exactly same fail counts. This thesis 

introduces two measures of modeling accuracy. The first measure ¦± is based on the 
maximum of mean of centers  

,
1

1 k

i j i

j

v v
k =

= ∑  

of �-Fold ensemble of FCM cluster-center vectors ¥�,� where µ � 1,… , � points the 
�-Fold models, ~ � 1,… , }  is the FCM cluster number. 

, ,
1,...,
max ( (1 ))m i d i d
i c

J v v
=

= −  

where ,i dv  is the expert-decision component of iv . For both negative decision 

	¥Z�,¸  � 0� and positive decision 	¥Z�,¸  � 1�, the product  ¥Z�,¸	1 � ¥Z�,¸ � is zero, and 
smaller ¦±  indicates corresponding clusters that are more significant. Our second 
cost measure Jσ    is the maximum of mean of standard deviation of decision attribute 
of the cluster centers, ¥�,�,¸  , for all �-Fold CV models. 

2 2
, , , ,

1

1
( )

k

f i j i d i d

j

v v
k

σ
=

= −∑  

(4.1)

(4.2)

(4.3)
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and 

, ,( )max
1,...,

f j kJ

i c
σ σ=

=
 

The fail-rate is the most significant cost measures among these three cost measures, 

¦± is based on the mean of fuzzy means of the decision attributes in each cluster, and 
expected to have higher significance than ¦¹, which is based on the variance of the 
fuzzy means of decision attributes. 

4.2 Fuzzy Utility Function Construction 

FCM cannot be applied directly on the data set since many of the attributes are 

nominal. In the preprocessing phase of the process the nominal attributes were 

converted to numerals by assigning an integer number to each nominal symbol 

starting from zero. Thus, preprocessing converts the “negative” credit history to “0”, 

and “positive” to “1”. Similarly, “General purpose” in purpose of loan is replaced by 

“0”, “Flat refurbishment” by “1”, “Car purchase” by “2”, and “Flat purchase” by “3”. 

Similar replacements are applied to collateral and credit decision attributes as well. 

Finally, preprocessing splits the data set randomly to training and verification sets, to 

concern � �fold cross validation with � � d, which is called leave-one-out-cross-
validation (LOOCV).  

Figure 1 shows the process diagram to obtain FCM based decision model from the 

training data set.  

(4.4)
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Figure 1. Process diagram of decision making 

FCM is applied to the processed data set for % � 2 and all values of   } �
+ 2, 3, … , 15 - for 120 times with random initialization of cluster-centers to reduce 
the effects of ill FCM initialization which has been described by Hathaway et.al. 

[65]. The FCM result with the smallest FCM cost, equation 3.2, is used for the 

modeling. In parallel to Mamdani modeling, FCM membership expression, equation 

3.4, is applied for decision making to decide on  
�,� using the success rates of the 
dominant cluster, where 
� belongs with highest membership value. However, since 
the decision attribute  
�,� is unknown for the verification data set, an equal- located-
parameter x � 0.5 (in between 0 and 1) is used in place of 
�,�, as proposed by 
Mosteller [63].  
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The training and verification fail-rates for positive and negative credit decisions are 

shown in Table 1, where % fail is the sum of percent fail of denied and percent fail of 

accepted objects.         

% h�~� � 100Sn�� n�⁄ A n¸� n¸⁄ T,  
n�� and n¸�  are predicted numbers of accepted and denied objects. Also, n� and n¸  
are actual number of accepted and denied objects of all training vectors or 

verification vectors. ¦±  and  ¦¹  are the secondary cost measures for the estimation 
accuracy.  

At the same time, Table 1 indicates the lowest percent verification fail-rate and 

lowest secondary costs obtained with } � 7. The model with } � 7 appears to be the 
best performing model among all models according to the primary and secondary 

cost functions ¦±  and  ¦¹ . 
A conventional visual fuzzy rule base of the training data is obtained using the 

Mamdani modeling of the data set [66], which is used and described by [67] and 

[60]. The fuzzy rule base of Mamdani type fuzzy model of the training data is 

determined by the cluster centers +¥�, ¥�, … , ¥�-, training data vectors �, and FCM 
partition matrix =. Table 2 demonstrates the results of FCM cluster-centers with 
7c= . The visual Mamdani Fuzzy-Rule-Base for the best performing model ( 7c= ) 

is shown in Figure 2. 

 

(4.6)
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       Table 1. The fail counts for denied and accepted applicants 

 Fail events in training 

 

Fail events with verification 

C 

for 

deny 

for 

accept 

% 

Fail 

for 

deny 

For 

accept 

% 

fail 
¼½  ¼¾ 

2 46 1 53.2% 46 1 53.2% 0.2454 0.0231 

3 11 3 22.9% 12 5 31.4% 0.1213 0.0043 

4 7 6 29.7% 7 9 40.9% 0.0776 0.0779 

5 0 16 59.3% 0 18 66.7% 0.1710 0.1131 

6 10 2 18.2% 11 3 22.9% 0.0749 0.0031 

7 8 2 16.0% 10 2 18.2% 0.0577 0.0022 

8 8 3 19.7% 10 4 25.6% 0.0633 0.0109 

9 4 3 15.4% 8 4 23.4% 0.0659 0.0206 

10 4 3 15.4% 5 5 23.9% 0.1250 0.2327 

11 4 3 15.4% 6 4 21.3% 0.2496 0.4376 

12 5 3 16.5% 10 7 36.7% 0.1113 0.2261 

13 3 9 36.6% 8 11 49.3% 0.2390 0.4354 

14 5 7 31.3% 4 12 48.7% 0.1650 0.3673 

15 6 3 17.6% 8 10 45.6% 0.0962 0.2696 

 

The cross sectional plot of FCM membership values along each attribute of the input 

vectors at each cluster-center is shown in Figure 3. It forms a clear and direct visual 

representation of the membership expression of FCM for a particular cluster-center 

matrix tV .             
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The sharp peaks on the fuzzy sets of the 3, 4 and 5th rules are placed to display the 

cluster-centers. These three rules are weak in membership values, and also there are 

fewer objects with maximum membership values in them.  

            Table 2.  FCM cluster-centers with } � 7 
i  ¿À ¿Á ¿Â ¿Ã ¿Ä ¿Å ¿Æ ¿Ç ¿È É 

1 0.18 0.25 0.33 0.10 0.41 0.13 0.83 0.84 0.43 0.03 

2 0.07 0.14 0.13 0.96 0.50 0.09 0.83 0.85 0.51 0.06 

3 0.31 0.39 0.53 0.98 0.50 0.24 0.59 0.87 0.76 0.94 

4 0.32 0.39 0.53 0.98 0.50 0.24 0.59 0.87 0.76 0.94 

5 0.32 0.39 0.53 0.98 0.50 0.24 0.59 0.87 0.76 0.94 

6 0.18 0.22 0.28 0.99 0.58 0.18 0.83 0.95 0.71 0.96 

7 0.48 0.64 0.70 0.99 0.95 0.51 0.85 0.93 0.97 0.98 

 

 
Figure 2. Mamdani rule base of decision model for 7c=  
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Figure 3. Cross sectional plots of FCM membership expression for 7c=  

The additive and non-additive utility-scores of the applicants shown in Figure 4 are 

obtained by equations 4.1 and 4.2. In Figure 4, squares indicate predicted, circles 

indicate expert decision such that higher position means accepted position, lower 

position means denied position.  

 
            

Figure 4. Non-additive utility predicted for the applicants 
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4.3 The Methodology of the Credit Scoring 

4.3.1 Fuzzy Modeling 

Fuzzy modeling is a method in order to explain the feature of a system using fuzzy 

rules, [68]. In this thesis, the fuzzy rule base that represents the input-output relation 

of an available data set �� � + 	
�, ��� | � � 1,^ , d� D- is obtained from the fuzzy 
clusters which are assigned by the FCM algorithm [44]. FCM has unsupervised 

learning ability by connecting the similar data items in the same cluster and 

consequently discovering the input-output relation of the modeled system [37]. FCM 

algorithm partitions the data set into clusters by assigning a membership value 

 �'�,�,�	
���  to each data vector 
�� � 	
�,  ���  to indicate its membership value in 
cluster ~ based on the similarity between the fuzzy cluster centers ¥�, ~ �
1,^ , d�  and the data vector  
��.  
The Euclidean distance between the normalized data vectors usually form the 

similarity measure of FCM clustering algorithm. Each of  d:  fuzzy clusters contains 
similar input-output cases with membership values closer to 1, and is processed to 

extract multi-input fuzzy rules [61], [62]. The ~�  rule of the conventional type of 
fuzzy rule base is obtained from the projections of the FCM-membership values 

� '�,�,�	
���  on 
 � � Cartesian space of each input feature using convex-points 
[34], [67] and [60].  

The statistical properties of the consumer loan data set for the input and output are 

listed in Table 3. And, also consumer loan approval expert decision of the data set 

can be seen in Table 3.  
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              Table 3. Some statistical properties of the consumer loan data set 

Attributes Min. Max Mean St. Dev. 

Income : ¿À 104 3400 1029 633 

Age : ¿Á 20 60 35 9.5 

Employment  ¿Â 0.5 10 4.5 2.4 

Cr. History: ¿Ã 0 1 0.9 0.30 

Purpose: ¿Ä 0 3 1.7 0.94 

Amount:  ¿Å 1000 25000 6900 4468 

Maturity: ¿Æ 6 36 27 8.6 

Guar.: ¿Ç 0 2 1.7 0.5 

Collateral  ¿È 0 3 2.2 0.8 

Exp. Decision: É 0 1 0.8 0.4 

 

Meanwhile, Figure 5 shows the process diagram of Choquet expected utility scoring 

to obtain FCM-based decision model from the training data set. The representation of 

a triangular membership function is obtained by three parameters +\, Ê, P-, which 
are well defined in the range �0,1� for a range of  
 � �0,1�. The left, top and right 
corners of the triangle are represented by  
Ë , 
: and 
o, respectively. \ is the 
 
value of the top corner of the triangle. Ê is the measure of the width Ì of the base of 
the triangle, where Ê � 	
o � 
Ë�� �⁄ 2⁄ � √Ì 2⁄ .  
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Figure 5. Process diagram of Choquet expected utility scoring 

And, P is the tilt of the triangle, where P � 	
o � 
:� 	
o � 
Ë�⁄ . For equation P, 
the distance from top to right corners is divided by the distance from left to right 

corners. The corner points of the triangle are defined as 
: � \, 
o � ÌP A 
:  
and 
Ë � 
o � Ì,  where Ì � 4Ê�. The triangular membership function is described 
by three parameters  
: ,  
Ë and 
o , where 
: � �0,1� and 
Ë and 
o  may be out of 
the range.  

The presented format of \, Ê and P provides advantage in tuning the model by 
evolutionary optimization methods since they are valid all through �0,1� and they are 
independent measure of top corner position, width of base, and tilt of triangle [60]. 

After we determined the convex points  S��,�, 
�,�T such that � � ��, ��, ^ , ��, at the 
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right-side and at the left-side of the cluster center ¥�,�, the right and left corner of the 
triangle were determined using the least squares estimation (LSE) to find the best 

fitting line passing through the cluster center and near the convex points.  

The line parameters 	}M, }�� satisfy }M A }�
 A · � �, where · denotes the deviation 
of � due to parameters }M and }�. The line passing through 	
M, �M� �
S¥�,�, 1T satisfies  }M � �M � }�
M and it reduces the line equation · � � � �M �
}�	� � 
M�. Thus, LSE with this constraint is reduced to minimize  ∑ ·�� �∑S	�� �
�M� � }M	
� � 
M�T�. Solution is simplified using matrices = � ÏS��Ð �
�M�,… , ®��Ñ � �M¯Ò and � � ÏS
�Ð � 
MT, … , ®
�Ñ � 
M¯Ò to write the estimation 
error in the form 

11 1( ) ( ) ( ,..., ) 0
p

T T

k kU c X U c X ε ε− − = = . The solution 

1
1 ( ) ( )T Tc X X X U−=  is reduced to 

0 0

1 2
0

( )( )

( )

k k

k

k

k

x x u u

c
x x

− −

=
−

∑

∑
 

where }M � �M � }�
M.  
The left and right corners S
�, ��T of the triangular membership function have  �� �
0. Accordingly, we obtained 
� of these points from 0 � �� � �M � }�S
� � 
MT and 
�� � �M � }�S
� � 
MT  through  

(4.6)
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2
, ,

,

,

( )

( )( 1)

i j k i j

k
p j

k i j k

k

v x v

x
x v u

+ −

=
− −

∑

∑
 

The credit scoring problem is studied to evaluate the utility of applicants by non-

additive Sugeno integral of the FCM generated probabilistic partition matrix as a 

measure in [69]. The study determined the optimum d: � 7  of FCM at constant % � 2  for minimum fail rate and secondary cost functions [69]. The optimum 
number of rules d: � 7 provides sufficiently high interpretability and 
comprehensibility for linguistic representation [70].  

In this thesis, we searched a decision making model for the same problem using 

fuzzy-valued  Choquet integral instead of the Sugeno integral to calculate the fuzzy 

utility functions based on expert probabilities using FCM generated fuzzy linguistic 

models. In the following parts of this section, we describe the developed 

methodology of linguistic decision-making modeling algorithm for d: � 6, which 
gives the lowest fail rates among all searched d:   values.  
Table 4 lists the cluster-centers obtained by FCM for d: � 6  and m� 1.7. Figure 6 
shows the graphical representation of the fuzzy rule base which is obtained from 

FCM by determination of the left and right convex points of the projected 

membership values on each attribute. The projection and linear regression procedure 

to obtain the fuzzy rule base is described in [60], [62] and [69]. 

 

(4.7)
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 Table 4.  FCM cluster centers of data set for % � 1.7, d: � 6 
 ¿À ¿Á ¿Â ¿Ã ¿Ä ¿Å ¿Æ ¿Ç ¿È É 

ÔÀ 0.15 0.22 0.31 0.05 0.44 0.13 0.82 0.87 0.42 0.024 

ÔÁ 0.06 0.12 0.13 0.97 0.5 0.08 0.76 0.94 0.53 0.084 

ÔÂ 0.13 0.25 0.2 0.92 0.47 0.12 0.87 0.36 0.51 0.112 

ÔÃ 0.34 0.43 0.63 0.99 0.41 0.24 0.46 0.91 0.81 0.989 

ÔÄ 0.2 0.24 0.31 0.99 0.56 0.19 0.82 0.95 0.74 0.991 

ÔÅ 0.48 0.62 0.69 0.99 0.93 0.48 0.81 0.9 0.96 0.993 

 

 
Figure 6. Graphical representation of fuzzy rule base 

The FCM generated fuzzy rule base with Cn clusters is expected to contain Cn

different fuzzy sets for each variable. Each of these fuzzy sets corresponds to 

possible fuzzy linguistic terms of the variable. 

However, inspecting Figure 6 carefully we realize that many of the terms resembles 

each other, and the difference between some of the sets are very small to represent 
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them by linguistic terms. To progress the evaluation of the Choquet integrals through 

less number of linguistic terms, we represented all similar fuzzy sets by a single 

fuzzy set with rounded average of corner points of all similar fuzzy sets.  

Table 5 states the linguistic terms for each variable, the corner points of their 

triangular membership functions, and the list of rules which are used in the rule base. 

The linguistic terms and their fuzzy membership functions that are described in 

Table 5 were applied to the rule base in Table 6 to illustrate the relations in fuzzy 

linguistic terms shown in Figure 7. The graphical representation of the fuzzy rule 

base is displayed in Figure 8. The obtained linguistic fuzzy rule base is a simplified 

approximation of the FCM generated fuzzy rule base resulting in a loss of 

information. In spite of loss in prediction accuracy the obtained rule base has less 

linguistic terms per variable thus, it is a simpler linguistic expression to approximate 

the multi-input fuzzy locations of the FCM rule-base.    

Looking at Table 6, it is possible to think of that only  
Õ  is sufficient to distinguish 
denied and accepted cases. But, the fuzzy sets of the linguistic terms weak, good and 

strong for 
Õ  are quite similar to each other as shown in Figure 7. 
A decision based on only 
Õ will have higher probability to fail compared to a 
decision based on all inputs because the data set contains high uncertainty and fuzzy 

sets corresponding to linguistic terms of 
Õ are closed to each other. 
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       Table 5. Observed linguistic terms of input variables 
Attribute term ¿Ö ¿× ¿Ø in rules 

¿À 

Net Income  

(USD) 

Low -0.2 0.1 0.2 2, 3 

medium -0.6 0.2 0.7 1, 5 

high 0 0.4 1.4 4, 6 

¿Á 

Age (years) 

young -0.6 0.2 1.1 1-3, 5 

Old -0.2 0.5 1.4 4, 6 

¿Â 

Last Emp. 

period/year 

short -0.7 0.2 0.9 1-3, 5 

long -0.1 0.6 1.2 4, 6 

¿Ã 

Credit History 

negative -0.7 0.1 1.4 1 

positive 0.9 1.0 1.1 2-6 

 ¿Ä 

Purpose of loan 

low loans -0.5 0.5 1.1 1-5 

high loans 0.2 0.9 1.1 6 

¿Å 

Requested Loan 

Low -0.2 0.1 0.3 2, 3 

medium -0.2 0.3 1.2 1, 4-6 

¿Æ 

Loan maturity, 

years 

short -0.4 0.5 0.9 
1-3,  

5, 6 

long -0.2 0.8 1.3 4 

                               

Prop. # of 

Guarantors 

one or two -1.4 0.4 1.2 3 

two or three -0.1 0.9 1.2 
1, 2, 

     4-6 

three 0.5 0.9 1.4 6 

¿È 

Collateral 

weak -0.6 0.5 1.3 1-3 

good -0.1 0.8 1.4 4, 5 

strong 0.2 1.0 1.1 6 
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       Table 6. Linguistic fuzzy rule base 
Input attributes Output 

Ù ¿À ¿Á ¿Â ¿Ã ¿Ä ¿Å ¿Æ ¿Ç ¿È É 
 

1 

 

Med 

 

Young 

 

short 

 

negative 

 

low 

 

large 

 

long 

 

2 or 3 

 

Weak 

 

Denied 

 

2 

 

Low 

 

young 

 

short 

 

positive 

 

low 

 

small 

 

long 

 

2 or 3 

 

Weak 

 

Denied 

 

3 

 

Low 

 

young 

 

short 

 

positive 

 

low 

 

small 

 

long 

 

1 or 2 

 

Weak 

 

Denied 

 

4 

 

High 

 

old 

 

long 

 

positive 

 

low 

 

large 

 

short 

 

2 or 3 

 

Good 

 

Accepted 

 

5 

 

Med 

 

young 

 

short 

 

positive 

 

low 

 

large 

 

long 

 

2 or 3 

 

Good 

 

Accepted 

 

6 

 

High 

 

old 

 

long 

 

positive 

 

high 

 

large 

 

long 

 

3 

 

Strong 

 

Accepted 

 
    
 
         

 
Figure 7. Fuzzy linguistic terms of each input variable 

 
Figure 8. Linguistic fuzzy rule base for utility ranking 
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4.3.2 Fuzzy Set of a Rule 

The antecedent part of each fuzzy rule ~ � 1,… , d: describes a multi-dimensional 
fuzzy set #�	
� such that it expresses a fuzzy location in the input space. The 
membership value of 
�  in #�	
� is called the degree of fulfillment of 
�  in rule-~ 
and also it is denoted by 5 ,�,�. It is calculated by fuzzy logical operations  

 µA,Ü,Ý �  AÜ	xÝ� � à AÜ,áSxÝ,áTâXá��  

where the logical intersection à denotes a t-norm operation [34], [71] and [41]. In 
our application, we preferred min and max functions for t-norm and t-conorm, 

respectively. The normalized membership values  5 ,�,� of the rule- i  through the 
training data set + 
�| � � 1,… , d� D- are called the degree of fulfillment of the rule, 
and are denoted by  m�,�. The normalized fuzzy sets are denoted by  hZ �
� h�, h�, … , h,ä�. 
The fuzzy-valued Choquet integral with a fuzzy probabilistic prevision over the rules 

of the linguistic fuzzy rule base forms a non-additive utility for each case. In the 

application, we assume that most of the applicants are similar to one of d:  
prototypes � h�, h�, … , h,ä�. We expect that each training observation belongs 
dominantly to one of d:  rules. The evaluation of fuzzy probabilistic perceptions 
related to each rule may be calculated using the fuzzy expectation of the expert 

decisions by a x � cut, with x � �0,1�. 
4.3.3 Evaluation of Fuzzy Imprecise Probabilistic Perceptions 

The fuzzy measurable interval valued functions hZ � � h�, h�, … , h,ä� denote the fuzzy 
regions that are described by the rules; ~ � 1, … , d: and the Choquet integral with 

(4.8)
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expert decision based fuzzy measures � .�, … , .,ä� over hZ shall rank the applicants. A 
fuzzy-valued fuzzy measure corresponding to h�   is obtained as fuzzy probabilistic 
imprecise prevision  .�	
�. We obtain the fuzzy measures  .�  using probability 
theory by the fuzzy counts of experts accepted decisions in each fuzzy rule, [72].  

The overall probability  .� of the rule-~ is obtained using the fuzzy expectation of the 
experts accepted decisions for fulfillment degree  m�,� of the observation 

( , )k i kxy x y= in the training dataset { }1,...,k DXY yx k n= = . 

, ,
1 1

D Dn n

i i k k i k

k k

p yβ β
= =

   
   
   
   

= ∑ ∑  

where ip is the probability of being accepted by experts if the rule-~ is fully satisfied 
i.e. m�.� � 1. If the probability of “accepted” cases were decreasing proportionally to 
the fulfillment degree of the rule-~ it could be the only necessary parameter to 
estimate the overall probability of the cases. However, we know that the rule is a 

nonlinear function and the probability for x O 1 may highly deviate from its linear 
estimate xX�. In this region, an estimate of a lower boundary and an upper boundary 
of probability may surely help to improve the estimate.  

The lower bound of the probability , ( )L iP α  for [0,1]α ∈  is obtained by restricting the 

observations to an α-cut by 

, ,

, ,, , [0,1]( )
i j i j

i j i jkL i yp
α αβ β

αα β β
≤ ≤

   
    ∈
   
   

= ∑ ∑  

(4.9)

(4.10)
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where ky denotes the expert decision and it is 1 for “accepted”, 0 for “denied”. The 

upper bound of the probability of 1y =  in rule- i  is denoted by , ( )U iP α  and estimated 
using the points above the α -cut  

, 1 , 1

, , , [0,1].,( )
i j i j

U i i k k i kyp
α αβ β

αβ βα
≥ − ≥ −

   
    ∈
   
   

= ∑ ∑
 

The plots of the probability points for each observation case ( , )k kx y  for each rule-

{ }1,..., Ci n∈  are shown in Figure 9, where x -axis is probability, and y -axis is 

[0,1]α ∈ .  

 
Figure 9. Imprecise probability functions iP of the linguistic fuzzy rules 

The formulas in equations 4.6 and 4.7 have been used in linear regression for the 

parameters of the linguistic terms. A linear regression with the point ip set at 1α =  is 

carried as explained by equations 4.6 and 4.7.  

The corner points given in Table 7 are obtained using line fitting. Note that the 

corner points beyond �0,1� only express the left and right edges of the triangular 
membership functions shown in Figures 9 and 10, respectively. 

 

(4.11)
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     Table 7. Corner points of imprecise probability functions .� 
 

Rule # i : 1 2 3 4 5 6 
 

Mean Prevision (Top Corner) 
  X� 0.66 0.62 0.53 0.98 0.84 0.96 

Lower Prev. (Left Corner) X�,Ë	0� -0.10 0.33 0.01 0.36 0.12 0.29 

Upper Prevision (Right Corner) X�,å(0) 1.05 0.88 0.85 1.01 0.98 1.02 
 

 
Figure 10. Fuzzy probability functions .� of the linguistic fuzzy rules 

4.3.4 Ranking of the Fuzzy Linguistic Rules 

Inspecting Figure 9 gives important clues about the expert’s prevision of 

probabilities. Through the process, the rules were already sorted by the ascending 

order in their cluster center coordinate as seen in Figure 6. Thus, intuitively we 

expected that rule-6 has the strongest perceptional probability among the six rules 

because the fuzzy mean of decision for rule-6 is closest to unity. However, the fuzzy 

probabilities, equation 4.5, of the rules indicate that the overall probability Xæ O Xç. 
Thus, the capacity measures of the rules are ordered by their center of gravity 

into  .è 1 .� 1  .� 1 .é 1  .æ 1 .ç. 
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4.3.5 Ranking the Utilities of the Applicant-ê by Choquet Integral 
The fuzzy-valued Choquet utility for the input variables of each observation is 

obtained by the Choquet integral using max () for ë-conorm operation. The fuzzy-
valued Choquet utility of case-� were defuzzified to scalar score �� using the center-
of-gravity to rank the cases in their utility scores.  

The fuzzy-valued integrals of six cases are shown in Figure 11, where according to 

their scalar scores they are ranked  P�MÕ 1 P�èM 1  P��� 1 P��Õ 1  P�� 1 Pçì  with 
the indices indicating the applicant ID number. The fuzzy-valued Choquet utility P� 
encloses more details than the score �� since it also indicates the magnitude of each 
rule in the utility of case-�. 

 
Figure 11. Fuzzy Choquet utility for six cases of applicants 

4.4 Decision Analysis 

The consumer credit applications are difficult to evaluate due to difficulties in 

collecting sufficient information about the applicants such as the credit worthiness 

score of each consumer individually. The loan credit evaluation experts discuss the 

applications case by case using their experience in their decision.  
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A decision based on the Decision Theory requires an estimation of the expected 

utility of each consumer loan credit applicant. The non-additive nonlinearity in 

expert perception of utility makes the application of the probabilistic expected utility 

theory unpractical and inaccurate.  

The Choquet integral provides a tool to predict the non-expected utility of each 

applicant using the provisional probabilities over an observation set of cases that 

contains the expert decisions such as denied or accepted as output of each case.  

In this section, we demonstrate the evaluation of non-expected utility by using the 

Choquet integral of the measure of capacities obtained by imprecise probabilities 

over the FCM clusters according to the process diagram shown in Figure 12. 

 
 

Figure 12. Simplified block diagram of the utility evaluation process 

 

Data Set 

XY  

Unsupervised Learning (FCM) 
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The input and output attributes of the data vectors are specified in Table 8, where ID 

number is the identification number of the randomly selected cases. The complete 

consumer loan dataset contains total 135Dn = consumer loan applicants. Table 9 

contains the data set Ê� that consists of sampled 30 cases and corresponding expert 
decisions.   

         Table 8. Input and output attributes of loan applicant case k -set 

Symbol Type 
 

Explanation 

1kx  Scalar Net income  (USD), 

2kx  Count Age  (Years) 

3kx  Count Last employment period  (Years) 

4kx  Nominal Credit history (0: Negative, 1: Positive) 

 

5kx  Nominal 

Purpose of loan  (0: General purpose,  

1: Flat refurbishment, 2: Car purchase,  

3:Flat purchase) 

6kx  Scalar Requested loan amount (USD) 

7kx  Scalar Loan-maturity (Years) 

8kx  Scalar Proposed number of guarantors (Number) 

9kx  
Nominal 

Collateral  ( 0: None,  1: Not applicable,  

2: Car,  3: Flat) 

ky  Nominal Expert decision  (0: Denied, 1: Accepted) 
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   Table 9. Data set tD with 30 loan credit applications 

 Income Age Emp. Cre Pur Req. Mat. Gua. Col. Dec. 

1 1322 31 8 1 2 6000 24 2 2 1 

2 830 30 8 1 1 5000 24 2 3 1 

3 381 25 2 1 1 2000 18 2 1 1 

4 732 37 4 1 0 2500 12 2 1 1 

5 1800 48 7 1 3 8500 30 2 3 1 

6 1161 29 4 1 3 7000 30 2 3 1 

7 185 23 1 1 0 3000 36 2 1 0 

8 710 27 8 1 2 5000 36 2 2 1 

9 662 32 4 1 3 6500 36 1 3 1 

10 942 26 5 1 0 2000 12 2 1 1 

11 1600 45 10 1 2 11000 24 1 2 1 

12 586 28 3 1 1 4000 18 2 3 1 

13 180 25 2 1 2 2500 36 2 1 0 

14 1583 45 10 1 2 11000 24 1 2 1 

15 900 26 3 1 2 8500 36 2 2 1 

16 1178 28 8 1 1 7500 18 2 3 1 

17 250 20 1 1 2 2000 24 2 2 0 

18 1543 48 6 1 3 16000 36 2 3 1 

19 1296 28 4 1 3 15000 36 1 3 1 

20 930 33 5 1 1 7500 36 2 3 1 

21 1125 42 5 1 2 6000 24 2 2 1 

22 893 32 4 0 1 3000 36 2 1 0 

23 2800 40 7 1 1 7000 12 1 3 1 

24 1089 28 9 0 2 9500 18 2 2 0 

25 987 34 5 1 1 4500 12 2 3 1 

26 1351 36 6 1 2 9000 30 1 2 1 

27 231 26 2 0 1 3000 36 2 1 0 

28 1335 37 7 1 2 4000 12 1 2 1 

29 650 30 6 1 1 4500 24 1 3 1 

30 1647 50 7 1 0 3000 6 2 1 1 
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Chapter 5     

EXPERIMANTAL RESULTS 

5.1 Decision Making by Minimizing Misclassification Rates 

The plot of the normalized scalar utility scores ��y against the utility-ordered cases    
�y � 1,… , d� is shown in Figure 13, where the expert decision of each case is 
marked by a í-mark at lower-position for “denied” and upper-position for 
“accepted”.  The upper positioned marks indicate � � 1 and expert decision of the 
case is “accepted” in Figure 13. 

 
Figure 13. Normalized Choquet utility scores for all applicants sorted in utility 

score. 

The plot indicates the success of the method in ranking the cases in their utility 

scores with only six exceptional cases. The perfect scoring shall give the first 32 

cases with “denied” expert-decisions and all remaining with “accepted”. However, 
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(accepted) in the first 32 cases, and 2 fails (denied) in the remaining 103 cases. Table 

10 contains the fail rates of modeling tests carried out for % � + 1.7, 1.8, 1.9, 2.0 - 
at d: � + 3, … ,12 -, and compares them to the fail rates obtained by the Sugeno 
Integral over the multi-input FCM membership functions as fuzzy measurable fuzzy 

sets [69]. The Sugeno integral over FCM functions were carried with 120 applicant 

cases, where total 27 were denied and remaining 93 were accepted by experts. The 

applied fuzzy utility method in this thesis is superior to the Sugeno-Integral of FCM 

functions since it gives both less number and also less percent fail. Note that the 

detected exceptions may be re-examined by the experts to maximize the utility of 

financial institution by the granted credits. 

The secondary fail measure Ê� in Table 10 is the sum of the index-distance from 
sorted-index of denied-failed-case to the accepted region which starts at �ï l 32. 
Similarly, Ê  is the sum of index-distance from failed-cases in accepted region to the 
denied region. For d: � 6, �y � + 24, 29 - are the failed cases in the denied region 
and �y � + 34, 119 - are the failed cases in the accepted region, giving Ê� � 7 A 9 �
16, and Ê� � 2 A 87 � 89. A high Ê�  means the institution may have a loss of 
profit due to denied acceptable cases, and a high Ê   means that the institution has 
taken unacceptable risk by accepting unacceptable cases.     

The fail rates according to the Sugeno integral are demonstrated in Table 10, [66]. 

The fail rates indicate that the applied fuzzy-valued Choquet integral in this thesis 

gives less number of fails although the number of cases is increased from 120 to 135.  
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          Table 10. Number of fails for expected utility prediction 
Linguistic Fuzzy Choquet 

Integral 
 Sugeno 

Integral 
 ð×  

# Fail 
 

% Fail 
 ññ  ñò  ð×  

#Fail 
 

%Fail 

3 36 72 305 641 3 17 31.4 

4 8 16 24 115 4 16 40.9 

5 30 60 115 506 5 18 66.7 

6 4 8 13 90 6 14 22.9 

7 30 60 171 513 7 12 18.2 

8 28 56 106 611 8 14 25.6 

9 22 22 123 383 9 12 23.4 

10 32 64 166 821 10 10 15.4 

11 28 56 224 290 11 10 21.3 

12 36 72 196 736 12 17 36.7 
 

Another advantage of the proposed method is the ranking of the rules in their 

previsional probability of utility score by  .è 1 .� 1 .� 1 .é 1 .æ 1 .ç. 
Accordingly, the highest utility section specified by rule-4, and the lowest utility by 

rule-3 are expressed. 

Rule-4: if (net income ~WH high) and (age ~WH old) and (last employment period 
~WH long) and (credit history ~WH positive) and (purpose of loan ~WH low) and 
(requested loan ~WH large) and (loan maturity ~WH short) and (proposed number of 
guarantors ~WH 2 or 3) and (collateral ~WH good) then (utility ~WH highest). 
Rule-6: if (net income ~WH high) and (age ~WH old) and (last employment period ~WH 
long) and (credit history ~WH positive) and (purpose of loan ~WH high) and (requested 
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loan ~WH large) and (loan maturity ~WH long) and (proposed number of guarantors 
~WH 3) and (collateral ~WH strong) then (utility ~WH higher). 
Rule-5: if (net income ~WH} medium) and (age ~WH young) and (last employment 
period ~WH short) and (credit history ~WH positive) and (purpose of loan ~WH low) and 
(requested loan ~WH large) and (loan maturity ~WH long) and (proposed number of 
guarantors ~WH 2 or 3) and (collateral ~WH good) then (utility ~WH high). 
Rule-1: if (net income ~WH medium) and (age ~WH young) and (last employment period 
~WH short) and (credit history ~WH negative) and (purpose of loan ~WH low) and 
(requested loan ~WH  large) and (loan maturity ~WH long) and (proposed number of 
guarantors ~WH 2 or 3) and (collateral ~WH weak) then (utility ~WH sufficient). 
Rule-2: if (net income ~WH medium) and (age ~WH young) and (last employment period 
~WH short) and (credit history ~WH negative) and (purpose of loan ~WH low) and 
(requested loan ~WH large) and (loan maturity ~WH long) and (proposed number of 
guarantors ~WH 2 or 3) and (collateral ~WH weak) then (utility ~WH insufficiently low). 
Rule-3: if (net income ~WH low) and (age ~WH young) and (last employment period ~WH 
short) and (credit history ~WH positive) and (purpose of loan ~WH low) and (requested 
loan ~WH small) and (loan maturity ~WH long) and (proposed number of guarantors ~WH 
1 or 2) and (collateral ~WH good) then (utility ~WH lowest). 
The described fuzzy Choquet integral may be applied to the new consumer credit 

applicants to estimate the probable standing of the applicant in the expert’s decision 
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range. This feature may be especially useful to satisfy the consumers before they 

formally apply to the financial institution. 

The applied fuzzy-valued Choquet integral to the already evaluated applicants 

provides the ranking of the applicants in the provisional utility scale according to the 

expert decisions given for similar cases. The inconsistent cases with an expected 

utility highly deviated from the decision boundary may be reviewed by the experts to 

prevent material mistakes in the decision making process. 

5.2 Evaluation of Utility Function Based on Choquet Integral 

The proposed process for evaluation of utility function by Choquet integral 

evaluation mainly depends on unsupervised learning ability of FCM by partitioning 

the similar cases into the same cluster with higher fuzzy membership values. The 

following algorithm is applied to the data set: 

Algorithm 

1. Normalize Ê� into �0,1� interval to prevent anomalies of FCM algorithm. 
Normalized data set is denoted by 1{ ,..., }

Dn nD xy xy=
 where 

1 2 9{ , ,..., , }.k k k kxy x x x y=  

2. Select the sets of % m and d: , parameters to search the best % and  d:  that 
minimize the fail rate in expert decisions. For each % and  d:  pair: 

i. Apply FCM to  Ê, in order to get partition matrix =i:ó and cluster center 
matrix  Bi:ó. 
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ii. Obtain the fuzzy set  #�,�, of attribute-µ for the rule  �� by applying the 
convex- points method to the  =i:ó,��
�ô, planes; for all  ~ � 1, … , d:. 

iii. Use the cluster center   õi:ó,�,�  for the top point of triangular membership 
function   #�,�. 

iv. Use the least squares regression with fixed top corner on convex points for 

left and right corners of   #�,� to generate a fuzzy rule base � � + ��| ~ �
1, … ,Dd:-. 

v. Simplify the rule base � to get a convenient fuzzy linguistic rule base 
ö �      + ö�| ~ � 1,… ,Dd:- by reducing fuzzy sets   #�,�  to linguistic sets   #�,�. 

vi. Calculate the membership degree 

  5Ë,�,� �<���,ä #Ë,�,�S
�,�T 

of each   
�� in ö� � ö; and normalize   5Ë,�,� over � � 1, … , d�, to m�,�. 
vii. Calculate the fuzzy mean, upper and lower imprecise accepted probabilities 

and construct the triangular membership functions .� of each rule.  

,
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viii. For each 
�  integrate the fuzzy Choquet expected utility P�  by fuzzy 
integral of imprecise probabilities .�  over all rules using the membership degree 
of the case in rule-~ 
ix. Defuzzify P� to a scalar expected utility �� by center-of-gravity, centeroid, or 

similar methods. 

x. Sort the cases in �� and find the total fail of expert decisions to find the best 
	d: , %� pair with the minimum fail. 

3. Return the sorted expected utilities �� calculated for the best 	d: , %� pair. 
The cluster centers and the fuzzy membership values obtained by FCM with 6Cn =

 

and 1.7m=  on dataset tD  are shown in Table 11 and Table 12. The graphical 

representation of the fuzzy rule base is displayed in Figure 14 which is obtained 

using the convex points of projected scatter-plots explained in [60].       

 

(5.3)

(5.4)
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            Table 11. FCM cluster centers for m � 1.7, nC � 6 
 

vFCM,1=(0.15, 0.30,0.27, 0.04, 0.34, 0.08, 0.99, 0.99, 0.02, 0.03) 

vFCM,2=(0.03, 0.11, 0.10, 1.00, 0.49, 0.05, 0.86, 0.99, 0.19, 0.06) 

vFCM,3=(0.35, 0.30, 0.86, 0.11, 0.67, 0.53, 0.43, 0.97, 0.53, 0.10) 

vFCM,4=(0.28, 0.45, 0.42, 1.00, 0.11, 0.05, 0.24, 0.98, 0.07, 1.00) 

vFCM,5=(0.34, 0.42, 0.57, 1.00, 0.58, 0.34, 0.68, 0.96, 0.84, 1.00) 

vFCM,6=(0.48, 0.60, 0.70, 1.00, 0.67, 0.49, 0.63, 0.06, 0.69, 1.00) 

          

      Table 12. FCM cluster centers of each case 1,...,30k = in each rule 

k 1i =  2i =  3i =  4i =  5i =  6i =  max i  

1 0.01 0.01 0.91 0.03 0.02 0.02 0.91 3 

2 0.05 0.06 0.14 0.45 0.2 0.09 0.45 4 

3 0.99 0.01 0 0 0 0 0.99 1 

4 0.02 0.02 0.08 0.13 0.51 0.25 0.51 5 

5 0.01 0.01 0.87 0.05 0.03 0.03 0.87 3 

6 0 0.01 0.03 0.05 0.86 0.05 0.86 5 

7 0.31 0.12 0.13 0.16 0.15 0.12 0.31 1 

8 0.07 0.1 0.33 0.34 0.1 0.05 0.34 4 

9 0.02 0.02 0.1 0.19 0.47 0.2 0.47 5 

10 0.01 0.01 0.04 0.07 0.15 0.73 0.73 6 

11 0 0.01 0.05 0.06 0.8 0.07 0.8 5 

12 0.03 0.89 0.04 0.02 0.01 0.01 0.89 2 

 13 0.93 0.03 0.01 0.01 0.01 0.01 0.93 1 

14 0.03 0.9 0.03 0.02 0.01 0.01 0.9 2 

15 0.02 0.04 0.59 0.1 0.18 0.07 0.59 3 

16 0 0.01 0.03 0.06 0.86 0.03 0.86 5 

17 0.01 0.04 0.26 0.51 0.11 0.07 0.51 4 

18 0.5 0.15 0.12 0.08 0.09 0.06 0.5 1 

19 0 0.01 0.03 0.03 0.05 0.88 0.88 6 

20 0.01 0.01 0.04 0.03 0.05 0.88 0.88 6 

  



 

      Table 12. (continued)
k 1i =  

21 0.01 

22 0.98 

23 0 

24 0 

25 0.01 

26 0.98 

27 0.01 

28 0.02 

29 0.01 

30 0.01 

 
 
 
            

The corner points of the similar triangular fuzzy membership functions in the FCM 

generated rule base are represented by a single fuzzy set to obtain the linguistic terms 

which are shown in Table 1

The graphical representation of the fuzzy linguistic rule base is shown in Figure 

The linguistic rule base provides the comprehensibility of the rules by simplification 

62 

Table 12. (continued) 
1  2i =  3i =  4i =  5i =  6i =  

 0.02 0.45 0.31 0.13 0.09 

 0.01 0 0 0 0 

0 0.01 0.02 0.95 0.01 

0 0.04 0.9 0.04 0.02 

 0.01 0.06 0.08 0.81 0.04 

 0.01 0 0 0 0 

 0.02 0.15 0.06 0.1 0.65 

 0.02 0.07 0.09 0.11 0.69 

 0.01 0.35 0.51 0.08 0.04 

 0.02 0.07 0.75 0.11 0.05 

Figure 14. FCM generated fuzzy rule base 

The corner points of the similar triangular fuzzy membership functions in the FCM 

generated rule base are represented by a single fuzzy set to obtain the linguistic terms 

which are shown in Table 13 and Figure 15.  

epresentation of the fuzzy linguistic rule base is shown in Figure 

The linguistic rule base provides the comprehensibility of the rules by simplification 

6  max i  

 0.45 3 

0.98 1 

 0.95 5 

 0.9 4 

 0.81 5 

0.98 1 

 0.65 6 

 0.69 6 

 0.51 4 

 0.75 4 

 
 

The corner points of the similar triangular fuzzy membership functions in the FCM 

generated rule base are represented by a single fuzzy set to obtain the linguistic terms 

epresentation of the fuzzy linguistic rule base is shown in Figure 16. 

The linguistic rule base provides the comprehensibility of the rules by simplification 
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and standardization of the fuzzy sets corresponding to each attribute. The 

approximate membership functions for the imprecise probabilities of ( 1)y=  for 

each rule is obtained by line-fitting on the evaluated points which are calculated 

according to equations (5.3) and (5.4). 

                   Table 13. Corner points of the linguistic triangular membership 
                   functions 

 
Attributes 

 
Terms 

 
Left 

 
Top 

 
Right 

 

1x  

 

low -3.20 0.20 0.80 

medium -0.40 0.20 0.50 

high -0.30 0.40 1.40 

2x  

young -2.30 0.30 1.20 

old -0.30 0.50 1.30 

3x  

short -1.10 0.30 0.80 

long -0.00 0.70 1.70 

4x  

negative -2.40 0.10 1.40 

positive 0.90 1.00 1.00 

5x  

high -2.60 0.20 0.80 

low -0.20 0.60 1.30 

 

6x  

small -0.40 0.10 0.90 

large -0.40 0.40 1.20 

 

7x  

short -1.00 0.60 1.20 

long 0.90 1.00 1.10 

 

8x  

1-2 -1.00 0.10 1.40 

2-3 0.80 1.00 1.10 

 

9x  

low -2.00 0.10 1.30 

good -2.60 0.60 1.30 

high -0.50 0.80 1.30 



 

                    

Figure 15.

In the line-fitting the top point is fixed at the mean value which is obtained by 

equation (5.2). The degree of 

which are used in evaluation of imprecise probabilities, are listed in Table 14. The 

resulting imprecise probabilities and the fitted fuzzy sets are shown in Figure 1

[72], [73].                       

The imprecise probabilities 

agglomerated using Choquet integral to a fuzzy utility 

sample fuzzy utilities are displayed in Figure 18.

vector is defuzzified by 

score of the input vector. The scalar utility scores provide the ordering

applicants according to the imprecise probabilities of expert decisions. 
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Figure 15. Fuzzy sets of linguistic terms for input attributes

 

Figure 16. Linguistic fuzzy rule base 

fitting the top point is fixed at the mean value which is obtained by 

). The degree of fulfillments ,i kβ  of the input vectors for each rule, 

which are used in evaluation of imprecise probabilities, are listed in Table 14. The 

resulting imprecise probabilities and the fitted fuzzy sets are shown in Figure 1

                       

The imprecise probabilities for each input vector corresponding to

agglomerated using Choquet integral to a fuzzy utility functionE x

sample fuzzy utilities are displayed in Figure 18.The fuzzy utilities of each input 

vector is defuzzified by using Center of Gravity method in order 

score of the input vector. The scalar utility scores provide the ordering

applicants according to the imprecise probabilities of expert decisions. 

 
terms for input attributes 

 

fitting the top point is fixed at the mean value which is obtained by 

input vectors for each rule, 

which are used in evaluation of imprecise probabilities, are listed in Table 14. The 

resulting imprecise probabilities and the fitted fuzzy sets are shown in Figure 17, 

corresponding to each rule are 

( )kE x . Some of the 

The fuzzy utilities of each input 

 to obtain the utility 

score of the input vector. The scalar utility scores provide the ordering of the loan 

applicants according to the imprecise probabilities of expert decisions.    
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              Table 14. Degree of fulfillments, defuzzified non-expected utility 

 

 
                   
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    k  1,kβ  2,kβ  3,kβ  4,kβ  5,kβ  6,kβ  ( )ke x  

1 1.00 0.45 0.42 0.03 0.03 0.00 0.6186 

2 0.78 0.60 0.45 0.03 0.03 0.00 0.5988 

3 0.78 0.74 0.44 0.33 0.29 0.00 0.5286 

4 1.00 1.00 0.49 0.37 0.33 0.00 0.5425 

5 0.56 0.45 0.00 0.00 0.00 0.00 0.6388 

6 0.60 0.56 0.45 0.00 0.00 0.00 0.5792 

7 0.46 0.44 0.38 0.15 0.11 0.10 0.494 

8 0.60 0.45 0.43 0.03 0.03 0.03 0.5792 

9 0.49 0.00 0.00 0.00 0.00 0.00 0.6263 

10 0.86 0.83 0.49 0.37 0.33 0.00 0.5365 

11 0.86 0.00 0.00 0.00 0.00 0.00 0.6723 

12 0.60 0.49 0.45 0.34 0.33 0.00 0.5561 

13 0.46 0.44 0.33 0.30 0.30 0.29 0.5077 

14 0.86 0.00 0.00 0.00 0.00 0.00 0.6723 

15 0.60 0.46 0.45 0.43 0.30 0.30 0.5407 

16 0.78 0.60 0.45 0.03 0.03 0.00 0.5988 

17 0.30 0.30 0.00 0.00 0.00 0.00 0.4988 

18 0.37 0.33 0.00 0.00 0.00 0.00 0.6037 

19 0.49 0.00 0.00 0.00 0.00 0.00 0.6263 

20 0.60 0.45 0.43 0.38 0.34 0.33 0.5508 

21 0.88 0.60 0.45 0.30 0.30 0.00 0.5886 
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               Table 14. (continued) 
 

 

 

 

 

 

 

 
Figure 17. Imprecise probabilities of experts accept decision 

 
Figure 18. Fuzzy probabilistic Choquet utility of selected cases 

k  1,kβ  2,kβ  3,kβ  4,kβ  5,kβ  6,kβ  ( )ke x  

22 1.00 0.65 0.00 0.00 0.00 0.00 0.5064 

23 0.59 0.00 0.00 0.00 0.00 0.00 0.642 

24 1.00 0.00 0.00 0.00 0.00 0.00 0.6094 

25 0.78 0.60 0.45 0.34 0.33 0.00 0.5764 

26 0.98 0.00 0.00 0.00 0.00 0.00 0.6772 

27 1.00 0.44 0.00 0.00 0.00 0.00 0.4623 

28 1.00 0.00 0.00 0.00 0.00 0.00 0.6773 

29 0.63 0.00 0.00 0.00 0.00 0.00 0.6481 

30 0.37 0.33 0.32 0.00 0.00 0.00 0.6037 



67 
 

The obtained scalar utility values are listed in the last column of Table 14. Figure 19 

displays the ordered normalized utility values of the applicants together with the 

expert decisions.             

                   

 
Figure 19. Utility scores defuzzified from fuzzy Choquet utilities 
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Chapter 6  

CONCLUSION 

First of all, this thesis is attracted to the problem of credit risk scoring by developing 

a Fuzzy C-Means clustering based approach. The proposed approach is based on 

scoring the objects by a non-additive fuzzy utility as described by the process 

diagram of the decision model. The approach is applied to financial credit data with 

ten attributes. The computer simulation results show the effectiveness of FCM 

algorithm for unsupervised learning by fuzzy clustering. The optimal number of 

cluster-centers c to reach the best performance of the model is obtained by k-Fold 

cross validation to minimize the fail rates and by two cost functions based on mean 

and standard deviation of the decision attributes. A non-additive utility measure 

based on the cluster with maximum fuzzy membership value is used to score the 

credit risks non-additively. Together with the decision model the Mamdani rule-base 

of the decision model is recommended to describe the fuzzy model graphically. 

In the experimental simulations the fail rate of estimating the expert decisions is 

dropped down to nearly 18% with the best number of clusters c=7. In accordance 

with the minimum fail rate, the minimum of the introduced secondary validation 

costs is obtained by the same best model with c=7. Moreover, on the change of 

accepted objects the utility scores enable to change the decision attributes of the 

objects accordingly.  
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Secondly, ranking the consumer loan credit applicants in the previsional probabilistic 

utility scores using only the available expert decisions for each case is studied. The 

Choquet integral over the FCM generates fuzzy linguistic rule base provided a non-

additive aggregation based on perception of the experts. The described fuzzy-valued 

Choquet integral may be applied to the new consumer credit applicants to estimate 

the probable standing of the applicant in the expert’s decision range. This feature 

may be especially useful to satisfy the consumers before they formally apply to the 

financial institution. 

The described method ranks the applicants in a previsional utility scale according to 

the expert decisions given for similar cases. The previsional expected utility scale 

ranking of the applicants make the inconsistent cases with an expected utility highly 

deviated from the decision boundary detectable, so that these cases may be reviewed 

by the experts to prevent material mistakes in the decision making process. 

Finally, the application of imprecise probabilities as a capacity measure in Choquet 

integral to determine the utility ranking of the consumer loan applications is 

discussed. We propose a method to calculate lower and upper imprecise probabilities 

of a desired output in a fuzzy set, and an algorithm to evaluate the utility scores of 

the consumer loan applicants. The example application uses a data set of 30 

applicants as input, and expert decisions (0 � deny, 1 � accept) as their output. The 
resulting utility scores are consistent to the output, and these scores provide the 

ordering of the applicants in the risk of credit. They can be used to classify applicants 

into accepted and denied classes. 
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