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ABSTRACT 

Accurate calculation of the deflection of reinforced concrete members has been                               

a challenge since the inception of modern reinforced concrete. Many formulas and 

methods have been developed, over the years. However, most of them are empirical 

in nature and do not predict accurately the flexural deflection of reinforced concrete 

members over the entire loading range. Deflection calculation has important impact 

on the satisfactory performance of structures, especially in performance based design 

and in the design of fiber reinforced polymers (FRP) reinforced concrete members, 

where deflection limits may govern the design. This highlights the need for more 

accurate deflection calculation methods. This research proposes a method, based on 

first principles, to more accurately calculate, compared to ACI Committee 440 and 

CSA S806-12 methods, the deflection of FRP reinforced beams. The method has two 

key features: (1) It accounts, via a tension-stiffening model, for the contribution of the 

concrete teeth between flexural cracks to the stiffness of the beam; (2) the method is 

developed by dividing the beam cross-section at selected points along its span into 

several layers. The contribution of each layer to the flexural rigidity is computed by 

finding its elastic modulus (secant modulus) as function of the type and magnitude of 

the longitudinal stress (strain) at the level of the centroid of that layer. The layers 

flexural rigidities are summed over each cross-section and used in conjunction with 

the second moment-area theorem to compute the beam deflection. This method is 

based on first principles and no empirical factors are involved besides the adopted 

tension-stiffening model. The validity of the proposed method is demonstrated by 

comparing its results with corresponding experimental data. It is shown that it can 

estimates the deflection at the serviceability load levels quite accurately. Also it is 
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reliable in estimating deflection under load levels beyond serviceability, which is a 

limitation to of both the ACI Committee 440 and CSA S806-12 methods. The 

proposed method was applied on steel reinforced beam and compared with 

experimental and ACI Committee 318 results. The proposed method gave reliable 

results, but further investigation for the case of steel reinforced beams is required. 

Keywords: Deflection, FRP reinforced concrete, Flexural behavior, Tension 

stiffening.  
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ÖZ 

Betonarme elemanlarda deformasyon hesaplarının yıllardır gerçeğe yakın 

hesaplanabilmesi nerdeyse betonarmenin keşfi ile birlikte tartışılmaktadır. Bu konuda 

birçok formül ve yöntem geliştirilmiş olmasına rağmen, deneysel çalışmalar ve 

gözleme dayalı olmaları, farklı hesap yöntemlerinin uygulanmasına neden olmuştur. 

Özellikle sınır durumlar yöntemi ve performansa göre tasarımın ön planda olduğu bu 

günlerde, deformasyon hesaplarının etkisi artmış bulunmaktadır. Bu durum, 

deformasyon hesaplarındaki hassasiyeti artırmaktadır. Bu çalışma sonucu FRP 

donatılı kirişler için önerilen yöntem ACI 440 ve CSA S806-12 yöntemleri gibi 

güvenilir olarak saptanmıştır. Geliştirlen bu yöntemde, elastik modülün ve atalet 

momentinin efektif değerlerinin kullanılmasının yanında betonun çatlama sonrası çeki 

gerilmeleri de göz önünde bulundurulmuştur. Bu çalışma sonucunda ampirik 

bağıntılar kullanılmadan tamamen teori bazlı bir yöntem önerilmektedir. Ayni 

zamanda bu çalışma sonucunda önerilen yöntem kullanılarak elde edilen deformasyon 

değerleri mevcut deneysel çalışmalarla karşılaştırılmıştır. Tahmin edilen deformasyon 

değerleri, elemanlardan beklenen kullanılabilirlik sınır durumu seviyesinde kabul 

edilebilir seviyedeyken, bu yöntem, ACI 440 ve CSA S806-12’nin aksine 

kullanılabilirlik sınır durumu ötesinde de güvenilir sonuçlar vermiştir. Bu yöntem 

ayrıca çelik donatılı betonarme kirişe de uygulanmış olup ACI 318 ve deneysel 

sonuçlarla karşılaştırılmıştır. Bu yöntem ayni şekilde çelik donatılı betonarme kiriş 

için de güvenilir sonuçlar vermiştir ancak çelik donatılı kirişler için daha ileri seviyede 

detaylı çalışma gerekmektedir. 

 

Anahtar kelimeler: Deformasyon, FRP donatılı betonarme, eğilme davranışı, 

çatlamış kesitteki çeki etkisi 
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Chapter 1 

 INTRODUCTION 

1.1 Importance of research 

Deflection control is one of the important design criteria. Codes suggest limits for 

deflection to provide reasonable comfort for the occupants of buildings, and to 

minimize the possibility of damage to finishing material. Thus the role of deflection 

control is essential in design. In the case of elastic materials, deflection can be 

calculated easily and accurately, but in the case of reinforced concrete, which has 

nonlinear behavior, the calculations become much more complicated. However, 

within the serviceability limits and prior to concrete cracking, the deflection can be 

estimated with good accuracy due to the linear behaviour of concrete. After cracking 

and under higher load levels, nonlinearity becomes more dominant and the estimation 

of deflection becomes more challenging. 

By reviewing the literature it was discovered that there are many deflection formulas, 

some proposed by codes. However, most of these formulas have empirical nature or 

cannot predict deflection accurately over the entire loading range up to failure. This 

calls for improved and more accurate formula to calculate deflection. 
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1.2 Long term vs. short term deflection 

The initial deflection occurs when loads are imposed on a beam and measure the 

corresponding deflection immediately. If other factors are considered in the 

calculations (e.g. complex effects of cracking, shrinkage, creep and construction 

loading), then long-term deflection can be calculated. In the long-term deflection, the 

deflection increases with increasing time for 5 to 10 years. However, the magnitude 

and rate depends on various factors including material, design, construction, and 

environmental factors. (Taylor, 1970)    

1.3 Objective of the research 

The objective of this research is to propose, implement and verify a refined method 

for calculating the short-term deflection of reinforced concrete beams, with special 

focus on FRP reinforced concrete members, which can be used to trace the full load-

deflection response of beams subjected to monotonic loads. The study will be limited 

to short-term deflection and will only deal with statically determinant beams. 

1.4 Introduction to chapters 

This study is presented in five chapters as follows: 

Chapter 1 gives a brief introduction to the thesis topic and describing the contents of 

each chapter. 

In chapter 2, literature review about the deflection theory of flexural members and 

factors affecting tension stiffening are discussed. It also includes the historical 

overview of tension stiffening phenomenon and the proposed models to account for 

tension stiffening in the deflection calculations. 
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Chapter 3 discusses the proposed method. It starts by identifying the constitutive 

materials laws used in this research work, and then explains how to modify the 

components of the differential equation of deflection of flexural members. A step-by-

step procedure for applying this method is presented. 

Chapter 4 includes the verification of the proposed method, and compares its results 

with an experimental work and common code methods. The verification is based on 

seven FRP reinforced concrete beams which vary in reinforcement ratio, effective 

depth of the section, width of the section, and materials properties. It shows that the 

results of the proposed method are acceptable after comparison with experimental data 

better than the predictions of some common code methods. 

In the last chapter, conclusions are drawn according to the literature review and the 

verification of the proposed method. Suggestion for practical implementations are 

made in this chapter. 
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Chapter 2 

 LITERATURE REVIEW 

2.1 Introduction 

This chapter presents an overview of deflection theory and the main concepts involved 

where the differential equation is formed and simplifications are made to arrive at 

formula for practical applications. 

Moreover, main factors influencing deflection (creep, shrinkage, and tension 

stiffening) are examined, especially, detailed information about tension stiffening is 

given. 

Historical overview about tension stiffening is given, fields of application and factors 

affecting tension stiffening are examined in details. Moreover, decaying of tension 

stiffening effect is discussed according to recent research findings. In addition, 

problems arising when tension stiffening in flexural members is ignored. However, 

tension stiffening concept can be clearly monitored in prestressed concrete as 

explained in this chapter. In addition to monotonic loading, effect of cyclic loading on 

deflection is briefly discussed later in this chapter. Furthermore, new concept in which 

tension stiffening occurs under tensile load is discussed. This concept is dubbed 

negative tension stiffening. Moreover, models of tension stiffening in widely used 

codes formula are highlighted. Finally, the effect of reinforcement ratio on tension 

stiffening is explained with graphs along with comparison between ACI and Eurocode 
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methods and the experimental results. Also, the effect of neglecting its effect is 

investigated by comparing the predicted deflection values with and without tension 

stiffening with corresponding experimental data. 

2.2 Deflection theory 

By the advancement of science and creativity of architects the demand for open areas 

where concrete members must span large distances is becoming common occurrence. 

This has encouraged architects to span even larger distances without intermediate 

supports, but for structural engineers it has created the problem of deflection control. 

Figure 2.1 shows a typical segment of the deflection curve in a member due to bending, 

which shows its vertical deflection v(x) at distance x from the left end in the beam and 

its slope Φ at the same location: 

 

Figure 2.1: Moment/curvature relationship in beam  

From basic mechanics (Popove, 1998) the differential equation in the case of pure 

bending can be written as: 
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Mb

E I
  =   

dφ

ds
 (2.1) 

where: s is the centroidal axial coordinate of any point along the beam measured from 

its left end, Mb is the bending moment acting on the beam, and EI its flexural rigidity. 

However, curvature of the member need to be related to its transverse displacements. 

This can be done by direct application of classical calculus resulting in: 

 
𝛹 = 

𝑑𝜑

𝑑𝑠
=  

𝑑2𝑣
𝑑𝑥2

{ 1 + (
𝑑𝑣
𝑑𝑥
)
2

}

3
2

= 
𝑉′′

{ 1 +  (𝑉′)2}
3
2

 
(2.2) 

where 
' ''v and v are the first and second derivative of deflection with respect to x. 

So whenever bending moment is given in terms of x, this non-linear, second order, 

ordinary differential equation can be solved to obtain the transverse displacement 

(deflection) in terms of x. However, solving this kind of differential equation is not an 

easy thing but Leonhard Euler manipulated and solved this equation back in eighteenth 

century for extremely complex end-loading conditions. However, going into that much 

details can be avoided by the usual assumption of having small rotations and 

displacement where ( 
dv

dx
 )

2

< 1. This implies that slope of the deflected beam is small 

with respect to 1 or in another words the rotation of the cross section is less than 1 

radian, which results in: 

 Ψ = 
d
2
v

d𝑥2
= 

Mb (x)

E I
 (2.3) 

Equation (2.3) may be integrated twice to obtain the beam deflection equation as: 



 

7 

 

 
x x

0 0

v(x) dx dx    
 (2.4) 

Equation (2.4) represents the well-known double integration formula deflection. In the 

case of linear elastic and homogeneous beams, the curvature ψ in Equation (2.4) can 

be replaced by 
M

EI
  per Equation (2.3), in which case Equation 4 becomes: 

 

x x

0 0

M
v(x) dx dx

EI
    (2.5) 

In Equation (2.5) the second integral represents the area of the curvature diagram from 

zero to a distance x while the first integral represents the distance from beam end to 

the centroid of the curvature diagram. Therefore it may be written as: 

 

x

M

0

M
v(x) x dx xA

EI
   (2.6) 

where x  is the centroidal distance of the curvature diagram between zero and x from 

the beam left end and AM is the area of the curvature diagram between the two points. 

Equation (2.6) is the well-known mathematical representation of the so-called second 

moment-area theorem. This theorem will be used later on to calculate the deflection 

of reinforced concrete beams over the complete loading range, involving linear or 

nonlinear material behavior. 

When this simplified formula is considered for elastic materials, it yields quite 

accurate results but as non-linear behavior starts to appear, the results of this formula 

deviate from the accepted values. Therefore, modifications to this formula are needed 

to account for material and/or geometric non-linearity. 
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2.3 Extension of elastic deflection theory to inelastic non 

homogeneous beams   

The above relationships can be extended to beams comprising sections undergoing 

linear or nonlinear deformations under the assumption of small deflection theory. In 

this case, one can either express the curvature of the beam directly as function of its 

material properties at each section or alternatively compute the flexural rigidity of the 

section at each section based on the constitutive laws of the material comprising the 

cross-section. The quantity E in the case of nonlinear materials represents the 

tangential or secant modulus rather than the elastic modulus. Hence, to trace the load-

deflection response, one must perform a series of analyses by gradually increasing the 

applied load in small increments and then compute the EI value for each load 

increment. Hence in this case, increments of deflection Δv can be computed for 

increments of moment ΔM using: 

 

n
i

i m
3 3i 1

ij ij j j 1

j 1

M
v x

1
E b (z z )

3







 






 
(2.7) 

In Equation (2.7), m represents the number of layers that each cross-section i is divided 

in, n represents the number of cross-sections considered between points x1 and x2 

along the beam, Eij and bij represent the tangent modulus and width of the layer ij and 

zj and zj-1 represent the distance of the bottom and top of layer j from the neutral axis, 

respectively. Notice that positive z points upward. Figure 2.2 illustrates the sections 

and layers for a typical beam. 

 

     
(a) Beam 
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Figure 2.2: Sections and layers for a typical beam, (a) Beam , (b) Beam bending 

moment diagram, (c) Beam cross section and its division into layers 

Equation (2.7) is general and applies to any cross-section or material composition 

acting linearly or nonlinearly. A layer can be made of any material provided it is fully 

bonded to its adjacent layers and acts fully compositely. 

However, in this study, a simplified version of the procedure explained before is 

applied. 

It should be kept in mind the importance of other factors related to the concrete itself 

such as: material properties, loading level, and time, which affect the long-term 

deflection behavior in general. These factors are: creep, shrinkage, and tension 

stiffening of reinforced concrete. As this research is interested in short-term deflection 
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(b) Beam Bending Moment Diagram 
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of reinforced concrete beams, the concept of tension stiffening will be discussed in 

more detail. 

2.3.1 Tension stiffening 

Tension stiffening is the ability of the uncracked concrete between two cracks to carry 

tensile stresses in reinforced concrete. Figure 2.3 illustrates the effect of tension 

stiffening on the deflection of a concrete member. 

 
Figure 2.3: Conventional load - deflection behavior for a concrete member 

2.3.1.1 Historical overview 

The contribution of tension-stiffening was neglected in the early days of concrete 

technology due to its minor effect on the concrete ultimate strength. It remained 

neglected up to the 70s, but subsequently was introduced in the analysis of deflection 

characteristics of reinforced concrete, and in 80s it appeared in the design codes 

recommendations. (Stramandinoli & La Rovere, 2008) 

Obviously the concrete at cracked section has no tension strength but the concrete 

between two cracks can carry tension. This contribution to tensile resistance gradually 
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decreases as the tensile stress (strain) in the embedded tensile reinforcement increases. 

Thus tension stiffening reduces the deformation of the reinforcement, resulting in less 

curvature, and leads to reduced level of deflection of the reinforced member. In other 

words, it gives extra stiffness to the member and is thus called tension stiffening. 

2.3.1.2 Fields of application 

From this point it can be realized that the effect of tension stiffening of reinforced 

concrete is essential for the assessment of the performance of reinforced concrete 

structures. It is also widely used in a variety of fields of knowledge in reinforced 

concrete. For instance: as mentioned earlier, the deflection of flexural members might 

be one of the most important applications of this principle. However, it has more effect 

on the lightly reinforced members (slabs) than the heavier reinforced ones (beams) 

which will be discussed in details later (Gilbert, 2007). Another issue that concerns 

with tension stiffening is the ductility of reinforced members where structural 

engineers consider the ductility of reinforced structures as an important characteristic. 

However, this is directly related to the bond characteristics (Mu, reinforcement) as it 

affects the rigid body rotation of the plastic hinges of reinforced members in which 

tension stiffening has a significant impact on this behavior (Haskett, Oehlers, Ali, & 

Wu, 2009). Crack propagation is also affected by the behavior of the reinforced 

concrete. Moreover, the performance based design and its applications are based on 

the deflection calculations which are affected by tension stiffening. 

2.3.1.3 Factors affecting tension stiffening 

There are many factors affecting this phenomenon, including the dimensions of the 

member, and the reinforcement characteristics (material, condition, ratio, number of 

bars and their diameter/s, modular ratio …etc.). 
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2.3.1.4 Tension stiffening decaying 

However, tension stiffening is time dependent and it has a high short-term effect which 

drops to a lower long-term one within 20 days. However, in real life practice the long-

term behavior is more important than the short-term one. The effect of tension-

stiffening reduces to approximately half of its short-term effect. Moreover, the 

specimens with higher reinforcement ratios show shorter decay times while lightly 

reinforced slabs show longer time. (Scott & Beeby, 2005) 

It should be kept in mind that the increase in concrete member deflection is due to 

three main reasons: creep, shrinkage, and the loss of tension stiffening in which all of 

these factors are time dependent.  

2.3.1.5 Tension stiffening in flexural members 

Unfortunately, the study of tension stiffening effect on flexural members is 

problematic because the strain in flexural members can be measured relatively 

accurate but the stresses which initiate these strains cannot be measured. In addition, 

in the long term, the effects of creep on the compression zone and shrinkage influence 

the tension stiffening effect. That is the reason why the majority of researchers have 

concentrated their experimental works on members subjected to pure tension.(Scott & 

Beeby, 2005) 

2.3.1.6 Tension stiffening in prestressed concrete 

Although many researchers worked on the tension stiffening of reinforced concrete, 

less attention has been paid to this phenomenon in prestressed concrete. Even those 

who conducted research on the prestressed concrete did it under direct tension, not 

flexural, and concluded that the prestressing forces enhanced the tension stiffening 

behavior. However, the contribution of tension stiffening in fully prestressed concrete 
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sections are found to be negligible from the practical way of view. (Gar, Head, & 

Hurlebaus, 2012) 

2.3.1.7 Cyclic loading 

The deformation behavior of reinforced concrete structures are intensively related to 

the unloading and reloading (UR) cycles in which it affects the tension stiffening 

behavior.  A typical example of this problem arises in flat concrete slabs due to 

punching shear resistance in which it depends on the slab rotation. In this particular 

case the slab had to be unloaded and post-installed strengthening was required. This 

is the case in a variety of structural strengthening techniques. (Koppitz, Kenel, & 

Keller, 2014) 

2.3.1.8 Negative tension stiffening 

Some researchers observed an increase in the stiffness of the concrete between cracks 

while unloading. That is the case when the concrete in tension zone starts to take 

compression stresses and prevent the reinforcement from retrieving to its original 

state. This is called negative tension stiffening effect which was experimentally 

observed by Gómez Navarro and Lebet (Zanuy, de la Fuente, & Albajar, 2010). 

2.3.1.9 Models considering tension stiffening 

Many models have been proposed to account for the tension-stiffening in the 

deflection calculations ranging from simple to complex. One of the simplest models 

rely on considering an equivalent moment of inertia for the cracked beam section 

which is proposed by Branson in 1968– which is used method to calculate deflection 

in ACI-318-2005. 

 
Ie  = ( 

Mcr

Ma
 )

3

Ig + [ 1 - ( 
Mcr

Ma
 )

3

]  Icr  ≤  Ig (2.8) 
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where: Icr = moment of inertia of the cracked transformed section, Ig = moment of 

inertia of the gross section about the centroidal axis, Ma = maximum moment in the 

member under the applied load stage, and Mcr = cracking moment. 

Other researchers have examined the effect of tension stiffening on continuous 

composite beams and end up with simplified method by modifying the cross sectional 

area (Fabbrocino, Manfredi, & Cosenza, 2000), some other models modifies the 

sectional area including ACI-440 (ACI Committee 2005) and Behfarnia (2009). 

Other models modify the constitutive laws of concrete or reinforcement (Steel, 

FRPs…etc.) after cracking. However, these models were mainly proposed for 

nonlinear finite element analysis. Some models which modify the steel constitutive 

equation are: Gilbert and Warner (1978), Choi and Cheung (1996) and the CEB 

manual design model (1985). Among those which modify the concrete constitutive 

law are: Scanlon and Murray (1974), Lin and Scordelis (1975), Collins and Vecchio 

(1986), Stevens et al. (1987), Balakrishnan and Murray (1988), Massicotteet al., 

Renata et al (1990). (Stramandinoli & La Rovere, 2008) 

The most complex models rely on the bond stress – slip mechanism. Among those 

who worked on these models: Marti et al. (1998), Floegl and Mang (1982), Gupta and 

Maestrini (1990), Wu et al. (1991), Russo and Romano (1992), Choi and Cheung 

(1996), and Kwak and Song (2002). (Stramandinoli & La Rovere, 2008) 

It is worth mentioning that the current approach applied in Eurocode 2 (1994) which 

involves the calculation of curvature at specific cross section followed by integrating 

it to obtain the deflection. 
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 κ = ζ κcr +( 1 - ζ ) κuncr (2.9) 

where: κcr = curvature at the section by ignoring concrete in tension, κuncr = curvature 

at the uncracked transformed section, and ζ = distributing coefficient stands for degree 

of cracking and moment level and is given as: 

 ζ = 1 - β1 β2 ( 
σsr

σs
 )

2

  (2.10) 

where: β1 = 0.5 for plain bars and 1.0 for deformed one; β2 = 1.0 for single, short-run 

load and 0.5 for repeated or sustained loading; σsr = tensile stress in reinforcement 

corresponding to first cracking (i.e. M = Mcr) which is calculated by ignoring tensile 

forces in concrete; σs = tensile stress in reinforcement corresponding to applied load. 

2.3.1.10 Tension stiffening relationship with reinforcement ratio 

It has been mentioned before that amount of reinforcement provided in the concrete 

members has key role in the tension stiffening contribution to deflection (Gilbert, 

2007). This can be best demonstrated by a comparison between the deflections of 

concrete slab with varied amount of reinforced (ρ) in which the same concrete 

properties and loading level is maintained for all of the specimen. The results are 

illustrated in Figure 2.4. 

It is obvious that the difference between experimental results and theoritical ones 

excluding tension stiffening has discending trend as the reinforcement ratio increases. 

Moreover, by closely examining this graph it can be realized that the Eurocode method 

results   in better estimations rather than ACI method at any reinforcement ratio 

whereas ACI results improves as the reinforcement ratio increases This demonstrates 

the effectiveness of using the above curvature method to calculate the deflection of 

reinforced concrete members. 
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Figure 2.4: Experimental vs. calculated deflection using different approaches 

(Gilbert, 2007) 
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Chapter 3 

 PROPOSED METHOD 

3.1 Introduction 

This chapter includes the method used in this research. This method consists of several 

steps. It involves modifications of moment of inertia of the section and strain-

dependent elastic modulus values as well as application of the tension-stiffening 

concept in calculations. First of all the concrete and reinforcement constitutive laws 

used in this method are presented. Then the procedure used to solve the differential 

equation of deflection (i.e. Moment-area method) in conjunction with the appropriate 

constitutive laws and tension stiffening model are explained.  The proposed concept 

for calculating the moment of inertia is explained and the required details are given in 

order to facilitate calculations. Then modifications of modulus of elasticity are 

introduced using the concept of effective modulus of elasticity and secant elastic 

modulus. Later on a step-by-step procedure for calculating the deflection is explained 

and a flow chart demonstrating the process is introduced. 

3.2 Constitutive laws of reinforced concrete 

The value of Eij for any layer is function of the stress-strain relationship of its 

constituent material. For materials which have different stress-strain relationship in 

tension versus compression, the appropriate constitutive law must be used. For 

example, concrete and FRP have different constitutive laws in tension versus 

compression. Therefore, in this study the constitutive laws used will be described. 
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100εy 6εy 60εy 

3.2.1 Steel reinforcement 

Typical reinforcing steel in tension with minimum guaranteed yield stress of 400 MPa 

is modeled as an elasto-plastic strain hardening material as illustrated in Figure 3.1. 

 

 

 

 

 

 

Figure 3.1: Stress-Strain Relationship of Reinforcing Steel 

The slope of this curve at any stress or strain level represents the tangent modulus of 

this material.  

In most properly reinforced beams, failure occurs before strain hardening of the steel 

while in slabs failure may occur after strain hardening, however, the bar strain 

practically never reaches the descending branch  under monotonic loading of 

reinforced concrete members. Hence, practically, only the part up to fu is of interest. 

3.2.2 Fiber reinforced polymer (FRP) reinforcement      

FRP bars and grids are principally used as tensile reinforcement while their 

compressive strength is neglected in reinforced concrete members. In tension, FRP 

behaves as a linear elastic material up to failure as illustrated in Figure 3.2. 
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Figure 3.2: Stress-strain Relationship of FRP Reinforcing Bars 

3.2.3 Concrete 

3.2.3.1 Concrete in compression 

There are many constitutive laws idealizing the stress-strain behavior of concrete. 

However, the most common one is Hognestad’s parabolic relationship as shown in   

Figure 3.3: 

 
Figure 3.3: Hognestad's parabolic relationship (Park & Paulay, 1975) 
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The equations for this model are presented in Table 3.1: 

Table 3.1: Constitutive law for concrete under comprission 

1 εc ≤ ε0 fc = f ’c [
2εc

εo
 - (

εc

εo
)

2

] 

2 εc ≥ ε0 fc = f ’c [1 − 100(𝜀c −  𝜀o)] 

N.B. f’c is based on standard cylindrical specimen. In the case of cubic samples, 

0.85f’c is used instead of f’c.  

 

3.2.3.2 Concrete in tension 

Many idealization of the tensile stress-strain relationship of concrete under tension 

have been proposed by researchers. . However, the model which is used in this study 

is the Modified Bazant & Oh model (Bažant & Cedolin, 1991) as illustrated in Figure 

3.4: 

 
Figure 3.4: Modified Bazant & Oh relationship (Bažant & Cedolin, 1991) 
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The modification is taking the ultimate tensile strain to be 10εcr that is recommended 

by Prof. Dr. Razaqpur (personal communication) based on to his experience in this 

field. Thus, the constitutive law can be shown in Table 3.2 as follows: 

Table 3.2: Constitutive law for concrete under tension 

1 εt ≤ εcr ft = Eo εt  

2 εcr ≤ εt ≤ 10 εcr ft = 
- 0.8 f ct

9 εcr
 εt + 

10

9
 0.8 fct 

3 εt > 10 εcr ft =  0 

 

3.3 Moment-area method 

The purpose of this research since the rigidity of the beam will vary, depending on the 

region of the beam and its loading.  

For simply supported prismatic and symmetrically loaded beams to calculate the 

maximum deflection, calculate the area below the M/EI diagram between the nearest 

support and the point of maximum deflection and multiply this area by the distance 

between its centroid and the nearest support In this case, the area below M/EI diagram 

can be divided into several segments especially if the moment of inertia varies along 

the beam varies significantly. For more general load and boundary conditions, this 

method can be applied with appropriate modifications as described in Popove and 

Balan (Popove, 1998). 

To apply this method, the span of the beam is divided into several segments, with each 

segment having different E and I values. The way to calculate these values is 
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mentioned later in this chapter. Then by applying the moment-area method one can 

determine the deflection of the beam. As a general guide in dividing the beam, the first 

segment is the uncracked segment in which M < Mcr. Another segment is generally at 

the section where M reaches Mmax. The segment between these two segments can be 

considered as the third segment. This is a simplification of this method, for hand 

calculation purposes, but considering more segments might lead to more accurate 

results but it requires the use of computers. 

3.4 Moment of inertia 

The moment of inertia is calculated using the concept of tension stiffening. So to 

include this effect neither Igross nor Icr are going to be used. Other methods like ACI 

and Eurocode use formula to find the appropriate I of the section under a specific 

applied moment profile. However, in this research an alternative method is proposed 

in order to calculate the deflection relatively accurately and expediently. One of the 

fundamental shortcomings of existing code-based formulas is that they assume the 

elastic modulus of concrete to be constant and independent of the level of strain in the 

concrete. In fact, the elastic modulus decreases with the level of strain, particularly 

when the concrete strain exceeds approximately 0.1% in compression. 

Based on the equilibrium of the tension and compression forces in the cross-section, 

the depth of the neutral axis (c) can be calculated by iteration method. However, the 

calculation of this depth should include the contribution of the concrete in tension 

which has considerable capacity and it affects this equilibrium. Based on the maximum 

applied compressive strain on concrete under the given load state (εcm) and the depth 

of neutral axis (c) one can calculate all the relevant variables which are going to be 

used in calculating the moment of inertia. 
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Figure 3.5: Cross section segments for finding I 

From Figure 3.5 height of uncracked segment of concrete in tensile zone below the 

neutral axis (i.e. c’) can be determined.  Using similar triangles c’ can be calculated 

from Equation (3.1) as follows: 

 c'=
εcr

εcm
  c (3.1) 

Consequently one can calculate the moment of inertia under an applied moment 

based on moment of inertia concept as expressed in Equation (3.2): 

 
I = 

b c3

12
+ b c (

c

2
)

2

 + 
b c'

3

12
+ b c' (

c'

2
)

2

  + n Af (h - c - d')
2
 

(11) 

3.5 Effective elastic modulus 

As stated earlier, most of the well-known deflection methods assume the elastic 

modulus of the section to be constant and equal to the secant modulus of concrete (Eo), 

corresponding to stress of 0.4fc’. This assumption is reasonable, provided the 

maximum stress in the concrete does not exceed 0.4fc’ or the approximate elastic limit 

of concrete. At the serviceability limit state, the assumption is generally reasonable. 
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However, at higher load levels, this is assumption is not correct and the actual elastic 

modulus may be significantly less than this value. It will depend on the level of stress 

or more accurate maximum strain in the concrete. On the other hand, the presence of 

FRP reinforcement also affects the elastic modulus of the section.  Of course, the 

concept of transformed section, with proper values of elastic modulus for each 

concrete layer can easily account for the presence of any reinforcement. 

Kwok et al. have proposed a method to include these effects together and called the 

equivalent elastic modulus the effective elastic modulus. (Aron Michael and Chee 

Yee, 2006) 

Using that concept the cross section can be divided into layers as shown in Figure 3.6,  

 
Figure 3.6: Effective modulus of elasticity 

According to Kwok et al., the effective modulus of elasticity can be calculated using 

Equation (3.3) as follows: 
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 Eeff  =   
∑ Hi Ei

N
i=1

∑ Hi
N
i=1

  (3.3) 

In which: Hi is the height of the ith layer, and Ei is the average modulus of elasticity of 

the ith layer. This is clearly an approximation as it assumes the effective elastic 

modulus to be the weighted average of the elastic moduli of the various layers in a 

section. Still, it is much better than the assumption of a constant elastic modulus for 

the entire section or beam. 

The number of layers to be used depends mainly on the stress level; particularly, the 

stress level on the tension side of the section. According to this concept, cases that 

arise in the tension part is discussed in the following sub-sections. 

3.5.1 Classification of cases due to the stress level in tension part of cross section 

Two unique cases can be faced. One of them is when all the tension part below the 

neutral axis is contributing to the tensile capacity of the section (i.e. 10 c’ > Y = d – 

c). And the second case is when a portion of the tension part below the neutral axis 

provides tension stiffening to the section (i.e. 10 c’ < Y= d – c). 

3.5.1.1 Case I: 10c’ > Y= d – c   and   c’ < Y = d – c 

For the sake of simplicity, d will be used instead of h in this thesis. In this case, the 

cross section can be divided into the following layers as shown in Figure 3.7: 
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Figure 3.7: Layers for the effective "E" in case I 

Then the secant elastic modulus in the middle of each layer is needed to be found 

and Equation (3.4) is applied: 

 𝐸𝑒𝑓𝑓   =   
𝑐 𝐸𝑠𝑐  +   𝑐

′𝐸𝑜  +  0.5𝑥 𝑐
′𝐸′𝑠𝑡  +  0.5𝑥 𝑐′ 𝐸

′′
𝑠𝑡   +  𝑑 𝑏 𝐸𝑓

𝑐 + 𝑐′  +  𝑥𝑐′ +   𝑑 𝑏
 (3.4) 

where E’st is the secant modulus in the middle of second layer below N.A., and E’’st 

is the secant modulus in the middle of third layer below N.A. 

However, the value of x can be found by applying simple triangle similarity. And d 𝑏 

is the diameter of the FRP reinforcement bars used. 

3.5.1.2 Case II: 10 c’ < Y = d – c 

In this case, the layers of the cross section can be determined as demonstrated in                

Figure 3.8: 
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Figure 3.8: Layers for the effective "E" in case II 

And by formulating this Equation (3.5) can be written to calculate the effective 

modulus of elasticity: 

 𝐸𝑒𝑓𝑓  =   
𝑐 𝐸𝑠𝑐  +   𝑐′ 𝐸𝑠𝑡  +  4𝑐′ 𝐸′𝑠𝑡  +  5𝑐′ 𝐸′′𝑠𝑡    +  𝑑 𝑏  𝐸𝑓  

𝑐 +  𝑐′  +  4𝑐′  +  5𝑐′ +  𝑑 𝑏
 (3.5) 

where E’st is the secant modulus in the middle of second layer below N.A., and E’’st 

is the secant modulus in the middle of third layer below N.A. 

3.5.1.3 Secant modulus of elasticity 

It is extremely important to use the secant modulus of elasticity for the equations 

mentioned above. The secant modulus can be obtained based on the constitutive laws 

described in the beginning of this chapter. For easy reference, the secant modulus of 

elasticity for the related constitutive laws can be obtained from Table 3.3 which 

provides the summary of the constitutive laws presented earlier. 
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Table 3.3: Secant modulus values for different stress levels and materials 

Secant modulus = (Stress) / (corresponding strain) 

Concrete under compression 

1 εc ≤ ε0 𝑓𝑐  =  𝑓 ’𝑐  [
2𝜀𝑐
𝜀𝑜
 −  (

𝜀𝑐
𝜀𝑜
)
2

] 

2 εc ≥ ε0 𝑓𝑐  =  𝑓 ’𝑐  [1 − 100(𝜀𝑐  −  𝜀𝑜)] 

Concrete under tension 

1 εt ≤ εcr 𝑓𝑡 =  𝐸𝑜  𝜀𝑡  

2 εcr ≤ εt ≤ 10 εcr 𝑓𝑡  =  
− 0.8𝑓𝑐𝑡  

9 𝜀𝑐𝑟
 𝜀𝑡 +  

8

9
 𝑓𝑐𝑡 

3 εt > 10 εcr 𝑓𝑡  =  0 

FRP reinforcement 

1 εf ≤ εcu 𝑓𝑓  =  𝐸𝑓  𝜀𝑓 

 

3.6 Step-by-step procedure for calculating beam deflection 

Using all the concepts mentioned earlier, the calculation steps are as follows: 

(1) Find Mcr, Icr, and Ig. 

(2) Draw the bending moment diagram for applied load. 

(3) Using the cross sectional analysis by equating the tensile and compression 

forces determine the depth of neutral axis (c), and the concrete compression 

strain in the extreme fiber (εcm). This process requires iterations, and this step 

should be repeated for two cross sections (at Mmax, and Mavg; Mavg = 0.5(Mmax 

+ Mcr)  

(4) Calculate Eeff for the extreme case (i.e. Mmax) under the applied load as 

mentioned in (3.5) 



 

29 

 

(5) Calculate the moment of inertia corresponding to (c) and including the 

uncracked depth of the concrete (c’). “I” should be calculated twice under each 

load level (i.e. Imin for Mmax, and Iavg for Mavg). Using Equation (3.2). 

(6) Find the deflection of the beam under the applied loads using the second 

moment-area theorem. 

For the case of four-points bending load, which is the case of verification, If Mmax < 

Mcr then the elastic deflection method can be used. Otherwise if Mmax > Mcr, the M/EI 

diagram is shown in the Figure 3.9 and the deflection formula is given as:  

 
Figure 3.9: M/EI diagram for the verification experimental work 

𝛿𝑚𝑎𝑥 =
2 𝑀𝑐𝑟

𝐸𝑒𝑓𝑓  𝐼𝑔
∗
𝐿𝑔

2
∗ (0.5𝐿 −

2𝐿𝑔

3
) +

2 𝑀𝑐𝑟

𝐸𝑒𝑓𝑓  𝐼𝑎𝑣𝑔
 . (
𝐿

3
− 𝐿𝑔) {

𝐿

6
+

1

2
(
𝐿

3
−

𝐿𝑔)} + (
𝑀𝑚𝑎𝑥

𝐸𝑒𝑓𝑓 𝐼𝑎𝑣𝑔
−

𝑀𝑐𝑟

𝐸𝑒𝑓𝑓  𝐼𝑎𝑣𝑔
) ∗ (

𝐿

3
− 𝐿𝑔) ∗

2

2
∗ {

𝐿

6
+

1

3
(
𝐿

3
− 𝐿𝑔)} +

 
2 𝑀𝑚𝑎𝑥

𝐸𝑒𝑓𝑓  𝐼𝑚𝑖𝑛
(
𝐿

6
∗
𝐿

12
) 

(3.6) 

Where Lg is the uncracked length of the beam which can be calculated as: 

P P 
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 𝐿g = 
𝑀𝑐𝑟

𝑃
 (3.7) 

The procedure is further illustrated in the flow chart of Figure 3.10: 
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Figure 3.10: Flow chart explaining the proposed method 
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3.6.1 CSA S806-12 method (CSA, 2012) 

Considering the case of four-point bending in Figure 3.11, the CSA S806 method, 

Originally derived by Razaqpur et al (Razaqpur, Svecova, & Cheung, 2000) specifies: 

 
Figure 3.11: Four-point bending case 

3.6.1.1 Before cracking 

Elastic theory and Igross are used. 

 δmax  =
 𝑃 𝐿3 

6 𝐸𝑐  𝐼𝑔
 [ 
3𝑎

4𝐿
− (

𝑎

𝐿
)
3

 ] (3.8) 

 or    δmax =
23 𝑃 𝐿3

648 𝐸𝑐  𝐼𝑔
 ;  a =

L

3
 (3.9) 

 

3.6.1.2 After cracking 

The following formula is used:  

 δmax  =  
𝑃 𝐿3

24 𝐸𝑐  𝐼𝑐𝑟
[3 (

𝑎

𝐿
) − 4 (

𝑎

𝐿
)
3

− 8𝜂 (
𝐿𝑔
𝐿
)
3

] (3.10) 

Where: 𝜂 =  (1 − 
𝐼𝑐𝑟

𝐼𝑔
) 

3.6.2 ACI Committee 440.1 R-06 method: (ACI, 2006) 

This method is the modified Branson’s method in which a correction factor βd is 

introduced to the formula. The original formula is given in Equation (2.8). Considering 

the same case of four-point bending, this method implies: 

3.6.2.1 Before cracking 

Elastic theory and Igross are used. 
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 δmax  =
 𝑃 𝐿3 

6 𝐸𝑐  𝐼𝑔
 [ 
3𝑎

4𝐿
− (

𝑎

𝐿
)
3

 ] (3.11) 

 or    δmax =
23 𝑃 𝐿3

648 𝐸𝑐  𝐼𝑔
 ;  a =

L

3
 (3.12) 

 

3.6.2.2 After cracking  

The same formula applies but Ie is used instead of Igross: based on ACI Committee 

440.1 R-06, to find Ie the following equations are used: 

 𝜌𝑓𝑏 = 0.85 𝛽1  
𝑓′
𝑐

𝑓𝑓𝑢
 

𝐸𝑓 𝜀𝑐𝑢
𝐸𝑓 𝜀𝑐𝑢 + 𝑓𝑓𝑢

 (3.13) 

where β1 can be calculated from: 

 𝛽1 =  

{
 
 

 
 𝛽1 =  0.85 ;𝑓

′
𝑐
< 28 𝑀𝑃𝑎

𝛽1 =  0.85 − 
0.05

7
(𝑓′

𝑐
− 28) ;  𝑓′

𝑐
> 28 𝑀𝑃𝑎

𝛽1 > 0.65  ∀ 𝑓
′
𝑐

 (3.14) 

 𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)
3

𝛽𝑑  𝐼𝑔 + [1 − (
𝑀𝑐𝑟

𝑀𝑎
)
3

] 𝐼𝑐𝑟  ≤  𝐼𝑔  (3.15) 

where βd can be calculated from: 

 𝛽𝑑 = 
1

5
 (
𝜌𝑓
𝜌𝑓𝑏

)  ≤ 1.0 (3.16) 

And finally the deflection can be calculated using the following equation: 

 δmax =
 𝑃 𝐿3 

6 𝐸𝑐  𝐼𝑒
 [
3𝑎

4𝐿
− (

𝑎

𝐿
)
3

] (3.17) 

 or      δmax =
23 𝑃 𝐿3

648 𝐸𝑐  𝐼𝑒
 ;  a =  L/3 (3.18) 

In the next chapter the accuracy of these code methods for FRP reinforced concrete 

members will be compared with that of the proposed method over the entire loading 

range up to failure. 
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Chapter 4 

 VERIFICATION AND DISCUSSIONS 

4.1 Introduction 

This chapter includes the verification of the proposed method. This verification is 

conducted by comparing the results of the proposed method with the corresponding 

experimentally measured deflection values for seven beams. The tested beams vary in 

reinforcement ratio, width of the section, concrete class, and the concrete cover. 

Comparison is also made with the predictions of the ACI Committee 440.1 R-06 and            

CSA S806-12 methods. A brief explanation of the experimental work and test setups 

are also presented in this chapter. At the end, graphs are displayed to show the 

accuracy of the proposed method and discussion of the results is presented.  

4.2 Experimental data 

The data used for verifying the method was taken from three different published 

papers. (Barris, Torres, Comas, & Mias, 2013), (Barris, Torres, Turon, Baena, & 

Catalan, 2009), and (Qu, Zhang, & Huang, 2009). These data is based on experimental 

work in which the deflection under different stress level is reported. It is useful for 

verification as it compares different reinforcement ratios, width of the section, 

effective depth, and concrete strengths.  

4.2.1 Test setups 

According to the references (Barris et al., 2013) and (Barris et al., 2009), two 

specimens of each beam type have been tested. All of the tested beam were designed 

to fail by concrete crushing at the mid-span. The beam specimens had 2050 mm length, 
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rectangular cross-section with varied values of b, and a total depth of 190 mm. The 

span of the beams was 1800 mm, and distance between the applied loads was 600 mm. 

To assure that no shear failure will occur, the shear span was reinforced with transverse 

reinforcement of Φ8mm/70 mm and no transverse reinforcement provided in the pure 

bending zone. This was done to eliminate the possibility of getting influenced by the 

transverse reinforcement. The test setups can be illustrated in Figure 4.1. 

 
Figure 4.1: Test setups and details (mm) (Barris et al., 2013) (Barris et al., 2009)  

All the beams were tested under a static four-point bending test. The load was applied 

by a servo-controlled hydraulic jack which had a capacity of 300 KN. The load from 

the jack was exerted on the beam by the mean of spreader steel beam. However, for 

the steel beam (B1) (Qu et al., 2009) it has the same span and the distance between 

applied loads. It has ductile behaviour. The depth of the section is 250 mm and the 

width 180 mm. As a transverse reinforcement, steel stirrups of Φ10mm/100 was 

applied outside the pure bending zone. Test setups and details for steel beam are shown 

in Figure 4.2. 
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Figure 4.2: Shows the test setups and details for steel beam (Qu et al., 2009) 

The geometrical information and the material properties of the tested beams are given 

in Table 4.1 and Table 4.2, respectively. 

Table 4.1: Geometrical properties of the studied beams 

Beam Name 

Width 

 

b 

(mm) 

Cover  

 

d’ 

(mm) 

Effective depth 

  

d 

(mm) 

Rein. ρ 

(%) 

Concrete 

type 

N-212-D1* 140 20 170 2φ12 0.99 N 

N-216-D1* 140 20 170 2φ16 1.77 N 

N-316-D1* 140 20 170 3φ16 2.66 N 

N-212-D2* 160 40 150 2φ12 0.99 N 

C-216-D1** 140 20 170 2φ16 1.78 H 

C-216-D2** 160 40 150 2φ16 1.78 H 

H-316-D1* 140 20 170 3φ16 2.66 H 

B1*** 180 30 220 4φ12 1.14 N 

* Cracking and deflection in GFRP RC beams: An experimental study. (Barris et al., 

2013) 

**An experimental study of the flexural behavior of GFRP RC beams and comparison 

with prediction models. (Barris et al., 2009) 

*** Flexural Behavior of Concrete Beams Reinforced with Hybrid (GFRP and Steel) 

Bars(Qu et al., 2009) 
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Moreover, material properties of the studied beams are shown in Table 4.2 as follows: 

Table 4.2: Material properties of the tested beams 

Beam Name 

Concrete Reinforcement  bars 

f 'c 

(MPa) 

fct 

(MPa) 

Ec  

(MPa) 

ffu 

(MPa) 

Ef 

(MPa) 

εf   

(%) 

N-212-D1 32.1 2.8 25,845 1321 63,437 -1.8 

N-216-D1 32.1 2.8 25,845 1015 64,634 -1.8 

N-316-D1 32.1 2.8 25,845 1015 64,634 -1.8 

N-212-D2 32.1 2.8 25,845 1321 63,437 -1.8 

C-216-D1 56.3 3.3 26,524 995 64,152 -1.8 

C-216-D2 61.7 3.3 27318 995 64,152 -1.8 

H-316-D1 54.5 4.1 28,491 1015 64,634 -1.8 

B1 (steel 

reinforced) 
30.95 3.45 25,035 fy= 363 181,500 εy = 0. 2 

 

4.3 Comparison between the proposed method results and 

experimental data 

The results of the proposed method l are compared with the corresponding 

experimental data, and with the ACI Committee 440.1 R-06 method and CSA S806-

12 methods predictions. The comparison is based on moment vs. deflection graphs. 

For each beam, two graphs are displayed. The first one shows the behaviour under 

serviceability loads (in the case of FRP, up to 40%Mult or in case of steel 

reinforcement, up to 50% Mult) (Bischoff & Gross, 2011), the second one traces the 

full behaviour up to failure. A summary of the deflection values for several load levels 

is also presented in the table accompanying some of the moment-deflection Figures. 
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4.3.1 N-212-D1 

 
Figure 4.3: Beam N-212-D1 results within serviceability loads 

 
Figure 4.4: Beam N-212-D1 results of full behavior 
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Table 4.3: Ratios of applied methods under serviceability load - beam N-212-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

3.78 3.084 3.437 1.114 3.839 1.245 1.941 0.630 

5.45 5.942 6.200 1.043 5.854 0.985 4.347 0.732 

6.35 7.416 7.525 1.015 6.883 0.928 5.633 0.760 

7.24 8.832 8.749 0.991 7.897 0.894 6.866 0.777 

7.75 9.626 9.437 0.980 8.471 0.880 7.545 0.784 

9.84 12.857 12.261 0.954 10.804 0.840 10.189 0.792 

Mean  1.016  0.962  0.746 

Std. Deviation 0.057  0.147  0.061 

 

Table 4.4: Ratios of applied methods under higher load levels - beam N-212-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

12.56 17.143 16.116 0.940 13.825 0.806 13.434 0.784 

14.86 21.429 19.703 0.919 16.373 0.764 16.091 0.751 

17.79 27.857 25.053 0.899 19.612 0.704 19.414 0.697 

21.98 34.286 33.748 0.984 24.236 0.707 24.105 0.703 

24.70 40.714 40.250 0.989 27.240 0.669 27.136 0.666 

Mean  0.946  0.730  0.720 

Std. Deviation  0.039  0.055  0.047 
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4.3.2 N-216-D1 

 
Figure 4.5: Beam N-216-D1 results within serviceability loads 

 
Figure 4.6: Beam N-216-D1 results of full behavior 
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Table 4.5: Ratios of applied methods under serviceability load - beam N-216-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

3.78 2.113 2.336 1.106 2.337 1.106 1.426 0.675 

5.45 3.726 3.976 1.067 3.556 0.954 2.900 0.778 

6.35 4.601 4.405 0.957 4.180 0.908 3.651 0.793 

7.24 5.471 5.193 0.949 4.795 0.876 4.367 0.798 

8.00 6.218 5.869 0.944 5.314 0.855 4.952 0.796 

10.00 8.199 7.575 0.924 6.669 0.813 6.427 0.784 

12.00 10.203 9.183 0.900 8.016 0.786 7.846 0.769 

Mean  0.978  0.900  0.771 

Std. Deviation  0.071  0.099  0.040 

 

Table 4.6: Ratios of applied methods under higher load levels - beam N-216-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

14.66 12.857 11.365 0.884 9.802 0.762 9.686 0.753 

18.51 17.143 14.818 0.864 12.390 0.723 12.316 0.718 

22.11 21.429 18.632 0.869 14.803 0.691 14.751 0.688 

26.74 27.857 24.314 0.873 17.904 0.643 17.869 0.641 

27.77 30.000 25.692 0.856 18.593 0.620 18.560 0.619 

29.31 32.143 27.862 0.867 19.626 0.611 19.597 0.610 

Mean  0.869  0.675  0.672 

Std. Deviation  0.009  0.061  0.058 
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4.3.3 N-316-D1 

 
Figure 4.7: Beam N-316-D1 results within serviceability loads 

 
Figure 4.8: Beam N-316-D1 results of full behavior 



 

43 

 

Table 4.7: Ratios of applied methods under serviceability load - beam N-316-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

3.78 1.423 1.998 1.404 1.695 1.191 1.106 0.777 

5.45 2.61 3.153 1.208 2.574 0.986 2.166 0.830 

6.35 3.25 3.810 1.172 3.025 0.931 2.699 0.831 

7.24 3.883 4.476 1.153 3.469 0.893 3.207 0.826 

10.50 6.2 6.174 0.996 5.067 0.817 4.934 0.796 

13.61 8.412 8.113 0.964 6.579 0.782 6.499 0.773 

Mean  1.150  0.934  0.805 

Std. Deviation  0.159  0.146  0.027 

 

Table 4.8: Ratios of applied method under higher load levels - beam N-316-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

16.74 10.714 10.091 0.942 8.102 0.756 8.048 0.751 

19.47 12.857 11.912 0.927 9.421 0.733 9.382 0.730 

24.07 17.143 15.437 0.901 11.653 0.680 11.627 0.678 

28.26 21.429 19.418 0.906 13.681 0.638 13.662 0.638 

33.07 27.857 24.716 0.887 16.013 0.575 15.999 0.574 

Mean  0.912  0.676  0.674 

Std. Deviation  0.022  0.073  0.071 
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4.3.4 N-212-D2 

 
Figure 4.9: Beam N-212-D2 results within serviceability loads 

 
Figure 4.10: Beam N-212-D2 results full behavior 
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Table 4.9: Ratios of applied methods under serviceability load - beam N-212-D2 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

3.78 3.026 3.965 1.310 4.940 1.632 2.129 0.703 

5.45 5.986 7.284 1.217 7.531 1.258 5.132 0.857 

6.35 7.848 8.765 1.117 8.855 1.128 6.815 0.868 

7.24 9.942 10.230 1.029 10.160 1.022 8.448 0.850 

7.75 11.264 11.066 0.982 10.899 0.968 9.350 0.830 

8.60 13.655 12.468 0.913 12.124 0.888 10.811 0.792 

Mean  1.095  1.149  0.817 

Std. Deviation  0.150  0.270  0.062 

 
 

Table 4.10: Ratios of applied methods under higher load levels - beam N-212-D2 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

10.22 16.986 15.209 0.895 14.448 0.851 13.470 0.793 

12.36 22.466 19.059 0.848 17.498 0.779 16.806 0.748 

14.19 27.945 22.709 0.813 20.106 0.719 19.573 0.700 

17.39 36.164 30.083 0.832 24.663 0.682 24.303 0.672 

20.75 44.384 38.710 0.872 29.432 0.663 29.178 0.657 

21.51 47.123 40.869 0.867 30.515 0.648 30.279 0.643 

Mean  0.855  0.724  0.702 

Std. Deviation  0.030  0.078  0.058 
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4.3.5 C-216-D1 

 
Figure 4.11: Beam C-216-D1 results within serviceability loads 

 
Figure 4.12: Beam C-216-D1 results of full behavior 



 

47 

 

Table 4.11: Ratios of applied methods under serviceability load - beam C-216-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

3.78 1.277 2.146 1.680 2.217 1.736 1.720 1.347 

5.45 2.636 3.686 1.399 3.501 1.328 3.156 1.197 

6.35 3.457 4.584 1.326 4.141 1.198 3.867 1.119 

7.24 4.329 4.783 1.105 4.767 1.101 4.547 1.050 

8.00 5.058 5.437 1.075 5.292 1.046 5.108 1.010 

11.05 7.827 8.017 1.024 7.372 0.942 7.272 0.929 

13.58 10.017 9.926 0.991 9.078 0.906 9.011 0.900 

17.21 12.632 12.618 0.999 11.522 0.912 11.480 0.909 

Mean  1.268  1.225  1.109 

Std. Deviation  0.250  0.283  0.148 

 

Table 4.12: Ratios of applied methods under higher load levels – beam C-216-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

23.05 17.632 17.093 0.969 15.445 0.876 15.421 0.875 

28.42 22.632 21.562 0.953 19.047 0.842 19.031 0.841 

35.84 30.000 28.749 0.958 24.023 0.801 24.014 0.800 

41.68 35.000 35.794 1.023 27.941 0.798 27.933 0.798 

44.84 40.000 40.063 1.002 30.058 0.751 30.052 0.751 

Mean  0.981  0.814  0.813 

Std. Deviation  0.030  0.047  0.047 
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4.3.6 C-216-D2 

 
Figure 4.13: Beam C-216-D2 results within serviceability loads 

 
Figure 4.14: Beam C-216-D2 results of full behavior 
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Table 4.13: Ratios of applied methods under serviceability load - beam C-216-D2 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

4.64 2.031 3.372 1.661 3.559 1.752 2.498 1.230 

6.00 3.041 4.526 1.488 4.890 1.608 4.039 1.328 

7.23 5 5.770 1.154 6.018 1.204 5.356 1.071 

9.54 7.74 8.055 1.041 8.064 1.042 7.646 0.988 

11.85 10.054 10.172 1.012 10.074 1.002 9.792 0.974 

16.23 15 14.178 0.945 13.850 0.923 13.695 0.913 

Mean  1.217  1.255  1.084 

Std. Deviation  0.290  0.345  0.162 

 

Table 4.14: Ratios of applied methods under higher load levels - beam C-216-D2 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

20.73 20.000 18.370 0.918 17.712 0.886 17.616 0.881 

24.99 25.000 22.576 0.903 21.362 0.854 21.296 0.852 

29.73 30.000 27.680 0.923 25.420 0.847 25.374 0.846 

34.02 35.000 32.869 0.939 29.092 0.831 29.057 0.830 

37.71 40.000 37.998 0.950 32.250 0.806 32.221 0.806 

41.43 45.000 43.750 0.972 35.433 0.787 35.409 0.787 

Mean  0.927  0.845  0.843 

Std. Deviation  0.018  0.029  0.028 
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4.3.7 H-316-D1 

 
Figure 4.15: Beam H-316-D1 results within serviceability loads 

 
Figure 4.16: Beam H-316-D1 results full behavior 
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Table 4.15: Ratios of applied methods under serviceability load - beam H-316-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

5.45 1.94 2.744 1.414 2.386 1.230 1.635 0.843 

6.35 2.527 3.344 1.323 2.863 1.133 2.199 0.870 

7.24 3.079 3.982 1.293 3.321 1.079 2.751 0.894 

10.99 5.248 6.196 1.181 5.163 0.984 4.866 0.927 

14.74 7.431 8.552 1.151 6.962 0.937 6.790 0.914 

18.00 9.696 10.573 1.090 8.519 0.879 8.401 0.866 

Mean  1.272  1.072  0.889 

Std. Deviation  0.108  0.117  0.034 

 

Table 4.16: Ratios of applied methods under higher load levels - beam H-316-D1 

Mmax δexp. δmethod δmethod/δexp. δCSA δCSA/δexp. δACI 440 δACI 440/δexp. 

21.72 12.326 12.826 1.041 10.290 0.835 10.209 0.828 

27.93 16.977 16.711 0.984 13.239 0.780 13.190 0.777 

32.43 20.000 19.768 0.988 15.375 0.769 15.339 0.767 

40.66 26.977 26.333 0.976 19.278 0.715 19.254 0.714 

43.45 29.302 29.053 0.991 20.603 0.703 20.582 0.702 

45.00 30.000 30.697 1.023 21.339 0.711 21.320 0.711 

Mean  0.996  0.760  0.758 

Std. Deviation  0.025  0.053  0.051 
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4.3.8 B1 

 
Figure 4.17: Beam B1 results within serviceability loads 

 
Figure 4.18: Beam B1 results full behavior 
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Table 4.17: Ratios of applied methods under serviceability load - beam B1 

Mmax δexp. δmethod δmethod/δexp. δACI 318 δACI 318/δexp. 

10.53 1.98 2.212 1.118 0.949 0.480 

13.07 2.48 2.748 1.109 1.442 0.582 

16.18 2.967 3.410 1.149 2.021 0.681 

Mean  1.126  0.581 

Std. Deviation  0.021  0.101 

 

Table 4.18: Ratios of applied methods under higher load levels - beam B1 

Mmax δexp. δmethod δmethod/δexp. δACI 318 δACI 318/δexp. 

19.33 3.533 4.032 1.141 2.569 0.727 

24.84 4.589 5.063 1.103 3.469 0.756 

28.79 5.389 5.783 1.073 4.087 0.758 

30.58 6.378 6.107 0.958 4.362 0.684 

Mean  1.069  0.731 

Std. Deviation  0.079  0.035 

 

4.4 Discussion of results 

4.4.1 Discussing the FRP reinforced beams case 

Considering the full behaviour, the proposed method gives reasonable and better 

results than both the ACI and CSA methods. However, it overestimates the deflection 

at the serviceability load level. According to the verification of the proposed method, 

it overestimates the deflection at the serviceability limit state of high strength concrete 

beams with bigger ratio (average ratio 1.252) than for normal strength concrete 

(average ratio 1.06) as shown in Table 4.19. However, CSA method gives better results 

for normal strength concrete at the serviceability limit state  (average ratio 0.986) but 

for high strength concrete, the ACI method gives better estimation (average ratio 

1.027) as explained in Table 4.19. Still the proposed method gives acceptable results 

at the serviceability limit state. 
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Concerning the higher load levels, which has limitations for most of deflection 

formula, the proposed method gives closer results to experimental results for both high 

and normal strength concrete compared to ACI and CSA methods. This is 

demonstrated in Table 4.20. The proposed method l gives better results for high 

strength concrete (average ratio 0.968) comparing to normal strength concrete 

(average ratio 0.896). 

Comparing the standard deviation of the ratios of different methods, it can be noticed 

that for serviceability loads, the ACI Committee 440 method has the lowest average 

standard deviation values as shown in Table 4.21. For the case of higher load levels, 

the proposed method has the lowest average standard deviation values as displayed in 

Table 4.22. It should be kept in mind that the lower the standard deviation value, the 

less difference exists between the individual ratios and the average value of these 

ratios. This means predicting the deflection with almost the same accuracy. 

Table 4.19: Comparing the ratios of the applied methods for serviceability loads of 

FRP reinforced beams 

Beam name 

Serviceability 

Average 

δmethod/δexp. 

Average 

δCSA/δexp. 

Average 

δACI 440/δexp. 

N-212-D1 1.016 0.962 0.746 

N-216-D1 0.978 0.900 0.771 

N-316-D1 1.150 0.934 0.805 

N-212-D2 1.095 1.149 0.817 

Average 1.060 0.986 0.785 

C-216-D1 1.268 1.225 1.109 

C-216-D2 1.217 1.255 1.084 

H-316-D1 1.272 1.072 0.889 

Average 1.252 1.184 1.027 
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Table 4.20: Comparing the ratios of the applied methods for higher load levels of FRP 

reinforced beams 

Beam name 

Higher load levels 

Average 

δmethod/δexp. 

Average 

δCSA/δexp. 

Average 

δACI 440/δexp. 

N-212-D1 0.946 0.730 0.720 

N-216-D1 0.869 0.675 0.672 

N-316-D1 0.912 0.676 0.674 

N-212-D2 0.855 0.724 0.702 

Average 0.896 0.701 0.692 

C-216-D1 0.981 0.814 0.813 

C-216-D2 0.927 0.845 0.843 

H-316-D1 0.996 0.760 0.758 

Average 0.968 0.806 0.805 

 

Table 4.21: Comparing standard deviation of the applied methods for serviceability 

loads of FRP reinforced beams 

Beam name 

Serviceability 

Standard dev. 

δmethod/δexp. 

Standard dev. 

δCSA/δexp. 

Standard dev. 

δACI 440/δexp. 

N-212-D1 0.057 0.147 0.061 

N-216-D1 0.071 0.099 0.040 

N-316-D1 0.159 0.146 0.027 

N-212-D2 0.150 0.270 0.062 

Average 0.109 0.166 0.048 

C-216-D1 0.250 0.283 0.148 

C-216-D2 0.290 0.345 0.162 

H-316-D1 0.108 0.117 0.034 

Average 0.216 0.265 0.119 
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Table 4.22: Comparing the standard deviation of the applied methods for higher load 

of FRP reinforced beams levels 

Beam name 

Higher load levels 

Standard dev. 

δmethod/δexp. 

Standard dev. 

δCSA/δexp. 

Standard dev. 

δACI 440/δexp. 

N-212-D1 0.039 0.055 0.047 

N-216-D1 0.009 0.061 0.058 

N-316-D1 0.022 0.073 0.071 

N-212-D2 0.030 0.078 0.058 

Average 0.025 0.067 0.059 

C-216-D1 0.030 0.047 0.047 

C-216-D2 0.018 0.029 0.028 

H-316-D1 0.025 0.053 0.051 

Average 0.024 0.043 0.042 

 

4.4.2 Discussing steel reinforced beam case 

The proposed method gave reasonable results in the full behaviour. Considering the 

serviceability limits, the proposed method overestimated the deflection (average ratio 

1.126) as mentioned in Table 4.17. Considering the higher load levels, the proposed 

method overestimated the deflection too but with a smaller average ratio (1.069) which 

is demonstrated in Table 4.18. Comparing these average ratios with ACI Committee 

318 and the experimental work, the proposed method gives reliable results and better 

estimation. However, the tested steel reinforced beam is ductile beam (under 

reinforced) and the concrete type is normal strength, that is why further investigation 

is required to verify this method completely for steel reinforced beams use, and this is 

out of this research scoop. 
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Chapter 5 

CONCLUSION 

The concept of tension stiffening has significant effect on the deflection of steel 

reinforced concrete members, but for FRP reinforced concrete members some 

researchers have stated that it is less important. 

The ACI Committee 440 deflection calculation method for FRP reinforced concrete 

beams accounts for tension stiffening while the Canadian CSA S806-12 method 

ignores it, yet both give relatively reliable results under service load. But both 

underestimates the deflection significantly for higher load levels. According to these 

codes, their suggested expressions are only intended for service load conditions, which 

is verified by the current results.  

The experimental work used for verification gives good variation of conditions in 

which the reinforcement ratio, effective depth, width of section, concrete class, elastic 

modulus, and FRP properties are varied to ascertain the reliability of the proposed 

method. 

In the case of FRP reinforced concrete beams, the proposed method overestimated 

deflection under the serviceability conditions, and underestimated deflection for 

higher load levels. However, the results are still reliable. 
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In the case of FRP reinforced concrete beams, considering serviceability loads, the 

proposed method gives more reliable results for normal strength concrete compared to 

high strength concrete. This could be due to the constitutive law of concrete under 

compression.  

The proposed method gives acceptable results for serviceability limits but using CSA 

S806-12 method for normal strength concrete and ACI Committee 440 method for 

high strength concrete is preferred. This conclusion is based on comparing the results 

of the studied experimental work. 

On the other hand, for the case of higher load levels FRP reinforced concrete beams, 

the proposed method gives closer results to experimental work for the case of high 

strength concrete rather than normal strength concrete. Using the proposed method 

rather than ACI Committee 440 or CSA S806-12 methods is advised for the case of 

higher load levels. 

The proposed method overestimated deflection for steel reinforced beam under 

serviceability and higher load levels. Comparing the results to ACI Committee 318, 

the application of the proposed method is preferred for all the load levels. However, 

further verification of the proposed method is required for steel reinforced beams. 

Recommendations for Future Work 

(1) The proposed method is aimed at short-term deflection calculation, but it can 

be extended to long-term deflection calculation by considering the creep 

transformed section concept in conjunction with incremental analysis. 

(2)  Extend the method to other loading and boundary conditions, including beams 

with applied end moments as well as loads along the member. 
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(3) Apply more refined constitutive laws for concrete to better represent the 

behavior of different concrete strengths. 

(4) Study the sensitivity of the method results to the tension-stiffening model and 

its parameters    
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Appendix A: User manual of using the working excel files 

The related excel files are attached in the CD. There are two files, the first one 

“General cross sectional analysis” which does the cross sectional analysis to find c and 

εcm, the second file “General Beam deflection” is to calculate I, Eeff, and δmax. 

Moreover, a sample containing solution for beam N-212-D1 is included in the CD too. 

The process of calculating the deflection is demonstrated in Figure 3.10.  

1. Open “General Beam deflection” file and fill the input part in “Section 

properties” tab. 

N.B. Don’t ever change the value of cells highlighted in grey. 

In “General Beam deflection” file, go to “Deflection calculation” sheet and fill 

the cells highlighted in light green. You can fill the cells depending on your 

need. To fill the light green cells related to each load case, you need to choose 

maximum moment corresponding to each loading case, then you should use 

the “General cross sectional analysis” file.  

N.B. Don’t ever change the value of cells highlighted in grey. 

2. To find the depth of neutral axis “c” and corresponding maximum compression 

strain in concrete” εcm”, the “General cross sectional analysis” file is used. 

When you open this file, there is single sheet. Fill the values of section and 

material properties in the first row of the table, it will be automatically 

replicated other the entire table. To make the iteration process easier, macro 

has been included in this excel file so make sure to enable the macro when you 

open the file. After filling all the properties, start assuming value for εcm. To 
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find the corresponding resistant moment, click on the corresponding “C-T” cell 

in the same row, and launch the iteration process by clicking on “Ctrl+g”. The 

value of the highlighted cell “C-T” will turn into zero, and you can read the 

resistant moment from the corresponding cell in the same row. Repeat this 

process until you reach your target moment. 

3. Copy the value of “c” and “εcm” to the corresponding light green cells in the 

“General Beam deflection” file, in “Deflection calculation” tab. 

4. Repeat the same process for Mavg following steps 3 and 4. 

5. After filling the corresponding cells, the values of moment of inertia and 

effective elastic modulus will be calculated considering the procedure 

explained in the proposed method part. Finally, the deflection is calculated. 

6. Repeat this process until you calculate the deflection for the corresponding 

load level cases. 

7. Summary of deflection output from the proposed method, CSA S806-12, and 

ACI Committee 440 methods are mentioned in “Deflection output” sheet. 

8. Graphical output can be also generated in “Full behaviour chart” sheet. It 

compares the predicted deflection of proposed method, CSA S806-12, and ACI 

Committee 440 methods. 

9. If the file will be used to compare the output of the methods with experimental 

data, the experimental data can be entered in “Experimental beam” sheet, and 

it will be included in the graphs automatically. 

10. Lastly, if comparison with experimental data is required, “Comparison” sheet 

can be used which compares the output of the deflection of proposed method, 

CSA S806-12, and ACI Committee 440 methods with experimental data. 
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It should be noted that the excel files are prepared for four-point-bending beams 

with bottom reinforcement only. Double reinforced beams are not included. 

However, the case of double reinforced FRP reinforced beams are not common. 

 

 

 


