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ABSTRACT 

In this thesis, Matroid and T-T Graph methods are compared. These are graphical 

methods which are used in kinematic analysis of mechanisms including gear trains. 

Both methods are based on Graph Theory. T-T graph method is developed by 

combining non-oriented graphs and oriented graphs. Whereas, incident matrix 

derived from oriented graph is used in Matroid. In order to perform kinematic 

analysis by using these two methods, a conventional Geared Robotic Mechanism 

(GRM) is considered as a sample mechanism. 

In Matroid, depending on the numbering links and joints, the digraph attached to 

kinematic chains is generated. Reduced incidence node-edge, spanning tree, path and 

cycle basis matrices are developed for this digraph. Equations for relative angular 

velocities of all turning and gear pairs are defined. Screw theory and plücker 

coordinates are defined to find the offset angles betwen z-axes of joints and z-axis of 

base. Twist intensities matrix is produced for turning and meshing pairs. 

Orthogonality condition for relative angular velocities is defined to acquire 

independent equations for relative velocities of turning pairs. Speed (teeth) ratio is 

used to express relative velocities of turning pairs as a function of input velocities. 

Finally, by using path and twist intensities matrices, link absolute angular velocities 

are determined in vectorial forms. 

In T-T, on the other hand, the graph associated to the mechanism is presented in 

terms of labeling of links, joints and axes of rotation. According to the graph, paths 

are stated. By investigating the level of axes of rotation, transfer vertices (carrier 
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arms) are determined. By considering each link as a rigid body, terminal equations of 

turning and gear pairs are stated and for each terminal equation, gear ratio is 

obtained. Fundamental circuit equations are directly written from the graph and 

coaxial conditions are used for further kinematic analysis.  Equations of output 

angular velocities in terms of input ones are developed in terms of gear ratios. Final 

results are obtained in vectorial forms by using Denavit-Hartenberg Convention. 

Finally, results of the relative and absolute angular velocities in both methods are 

identical. Differences are just related to how kinematic analysis is performed, how 

the final results are obtained and which definitions and techniques are used in both 

methods. Benefits and drawbacks of both methods are also specified. 

Keywords: Matroid Method, T-T Graph Method, Geared Robotic Mechanisms 

(GRMs), Kinematic analysis 
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ÖZ 

Bu tez çalışması Matroid ve T-T Grafik metodlarının karşılaştırılmasını içermektedir. 

Grafik Metodu‟na dayandırılmış yukarıda adı geçen grafik metodları dişli takımlarını 

de içeren mekanizmaların kinematik analizinde kullanılmaktadır. T-T grafik metodu 

yönsüz ve yönlü grafiklerin birleştirilmesiyle geliştirilmiştir. Buna zıt olarak, 

Matroid metodunda yönlü grafiklerden elde edilen çakışıklık matrisi 

kullanılmaktadır. Bu iki yöntemi kullanarak kinematik analiz uygulama amacıyla 

Dişli Robot Mekanizması (DRM) örnek bir mekanizma olarak nitelendirilmiştir. 

Matroid metodunda, bağlantı ve birleşme nokta sayısına bağlı olarak kinematik 

zincirlere bağlı olan yönlü grafik üretilmektedir. Bu yönlü grafik için azaltılmış etkili 

devre uçlu, kapsayan ağaç, yol ve döngü kaynaklı matriksler üretilmiştir. Tüm 

dönüşlü ve dişli çiftler için göreceli açısal hız denklemleri tanımlanmıştır. Bağlantı 

noktalarının ve tabanın z-eksenlerinin arasındaki uzaklık açılarını bulmak amacıyla 

vidalama teorisi ve plücker kordinatları tanımlanmıştır. Dönüşlü ve birbiri içine 

geçmiş çiftler için „Yoğun Dönüşlü Matriks‟ üretilmiştir. Göreceli açısal hız için 

dikgenlik koşulu tanımlanmış ve dönüşlü çiftlerin göreceli hızları için bağımsız 

denklemler elde edilmiştir. Dönüşlü çiftlerin göreceli hızlarını giriş hızı fonksiyonu 

olarak ifade etmek amacıyla hız (diş) oranı kullanılmıştır. Son olarak, yol ve döngü 

yoğunluklu matriksler ve  bağlantı koşullu hız vektörel formlarda belirlenmiştir. 

T-T metodunda ise mekanizmayla bağlantılı olan grafik bağlantıları, bağlantı 

noktaları ve devir eksenleri kapsamında sunulmuştur. Grafiğe göre yönler 

belirtilmiştir. Devir eksenlerinin düzeyini incelemekle, iletken köşe noktaları 
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(taşıyıcı kollar) belirlenmiştir. Her bir bağlantıyı sabit bir kısım olarak kabul etmekle, 

dönüşlü ve dişli çiftlerin nihai denklemleri belirtilmiş ve her nihai denklem için bir 

dişli oranı elde edilmiştir. Temel devre denklemleri doğrudan grafik aracılığıyla 

yazılmış ve eksendeş koşullar ek kinematik analiz için kullanulmıştır. Girişlerle ilgili 

açısal hız çıkışı denklemleri dişli oranları doğrultusunda üretilmiştir. Sonuçlar 

Denavit-Hartenberg kuralı kullanılarak vektörel form olarak elde edilmiştir.  

Sonuç olarak, göreceli ve koşullu açısal hız sonuçları her iki yöntemde de aynı 

sonuçları vermiştir. Farklılıklar sadece kinematik analiz uygulama şeklinde, en son 

bulguların elde edilme yönteminde ve her iki yöntemde kullanılan tanımlamalar ve 

tekniklerde ortaya çıkmıştır. Her iki yöntemin yararları ve eksiklikleri ayrıca 

belirtilmiştir. 

Anahtar Kelimeler: Matroid Metodu, T-T Grafik Methodu, Dişli Robot 

Mekanizmaları (DRM), Kinematik analiz 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

In recent decades, a number of methods and approaches i.e. either analytical or 

graphical have been released for kinematic analysis of mechanisms including gear 

systems. One of the widely used analytical methods for this kind of analysis is the 

Willis inversion method of motion [1]. Tabular methods [2-4] which are generated 

according to Willis‟ inversion method are easier to some extent. Vector-loop 

methods [5, 6] and matrix methods [7-9] can be also considered as examples of other 

analytical methods. 

On the other hand, a number of various graphical methods have been developed for 

modeling of the geared mechanisms such as Signal Flow Graphs [10], Bond Graphs 

[11-13], and Linear Graph representation [14-24]. Linear Graph model is widely 

used as graph representation of geared systems such that links and joints are modeled 

by vertices and edges respectively. Modeling based on graph representation is 

performed for analysis and synthesis of gear trains. The analysis might be either 

kinematic or dynamic or both of them and the synthesis is to create design models of 

gear trains. These methods are useful for analyzing a mechanism (gear train) with 

large number of links and joints as well as applying in computer algorithms. Indeed, 

graph-based methods can be efficiently considered as computer and Artificial 

Intelligent (AI) aided approaches for modeling of mechanisms [25-31]. By using 
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graph-based approaches, comparison of the results of kinematical analysis can be 

done within stages of design. Gear mechanism‟s atlases of design can be completely 

created by graphical methods [32] which cannot be prepared by using other 

approaches. 

Some of the above mentioned methods (e.g. Willis inversion method of motion and 

Tabular methods), in general, focus on input and output displacement and velocity 

whereas the motions of the planet gears are not perceived. What‟s more, these 

methods have a lack of generality and they are just applicable to the gear trains 

which consist of links with parallel axes of rotation i.e. Epicyclic Gear Trains 

(EGTs). Therefore, such gear trains which consist of links with non-parallel axes of 

rotation i.e. Bevel Gear Trains (BGTs) cannot be analyzed by these methods and 

kinematic analysis of these gear trains were excluded [6, 22] due to the complexity of 

the three-dimensional motion of links. This motion is generated by two independent 

rotations about two intersected axes plus a rotation of end-effector about its axis. 

BGTs [33-40] are included in Geared Robotics Mechanisms (GRMs) [41] in order to 

acquire any arbitrary orientation of the end-effector as well as increase the flexibility 

of the structure by generating non-parallel axes of rotation. 

Matroid Theory [42, 43] is one of the theoretical aspects in combinatorics which is a 

branch of pure mathematics and it was released by Hassler Whitney [44]. In this 

theory, linear algebra and graph theory are combined to generalize linear 

independence in vector space. Matroid was applied to study of electrical and 

mechanical systems [45]. By using the application of this theory, Talpasanu et al. 

[46-49] introduced Matroid method to kinematic and dynamic analysis of mechanical 

systems. 
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T-T Graph method is published by Uyguroğlu et al. [50, 51] to overcome weaknesses 

of non-oriented [15, 22, 35] and oriented graphs [52-54]. In this method, non-

oriented and oriented graphs are combined to analysis of geared mechanical systems. 

In fact, by inserting the advantage of non-oriented graph technique which is to find 

the carrier arm (transfer vertex) to the oriented graph technique, T-T graph method 

was proposed. In the oriented graph method, arrows are used to indicate the terminal 

ports between nodes as well as direction of a pair of meters for measuring a pair of 

complementary terminal variables [52]. A pair of complementary terminal variables 

is essential to represent the physical behavior of the mechanism [54]. The 

complementary terminal variables are terminal across and terminal through variables 

[52]. In mechanical systems, translational and rotational velocities are considered as 

the terminal across variables and forces and moments are considered as the terminal 

through variables. 

1.2 Thesis Overview 

This thesis is partitioned in four chapters: 

 Chapter 1: by reviewing literature of previous works states some analytical and 

graphical methods which are used in kinematic analysis of geared systems. Then, it 

mentions about BGTs and GRMs and their benefits. Finally, it reviews previous 

works on T-T Graph and Matroid methods, which will be compared. 

 Chapter 2: the fundamentals and definitions of both methods will be defined in this 

chapter as well as how it can be possible to model a geared mechanism by using 

these methods. 

 Chapter 3: in this chapter, first, the sample geared mechanism will be illustrated 

and all links and joints will be defined. Then, kinematic analysis of this mechanism 

will be done by applying two methods to it. 
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 Chapter 4: consists of comparison of results of both methods in addition to future 

works. 

1.3 Thesis Objectives 

In this thesis by considering a geared system with large number of links and joints 

first the kinematic analysis of this mechanism will be done by T-T Graph and 

Matroid methods and then results of these methods will be compared with each 

other. Besides, as will be explained and seen, Screw Theory and Denavit-Hartenberg 

Convention will be applied to Matroid and T-T respectively because of obtaining 

output velocities in vectorial forms thus these results also will be compared. Finally, 

the advantages and disadvantages of both T-T Graph and Matroid will be outlined. 
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Chapter 2 

GRAPH AND METHODS 

2.1 Introduction 

It is worthwhile to describe a mechanism as a linear graph in which links and 

kinematic pairs correspond to vertices and edges respectively. Labeling of edges is 

performed according to the type of pairing i.e. turning- or gear-pairs. In following 

sections, fundamental parts of both methods will be discussed and then in chapter 3 

(Mechanism and Kinematic Analysis) both methods will be applied to the desired 

mechanism and the final results will be obtained. 

In Section 2.2 of this chapter, Matroid method was expressed then T-T graph method 

will be expressed in Section 2.3. Both methods use the fundamental definitions of 

Graph Theory [47, 50]. However, Matroid Method uses Algebra and Matroid Theory 

beside this [49]. There exist some definitions which are applicable in both methods 

so first we define all of them in Matroid method and in T-T Graph method wherever 

they are needed we will refer to Matroid part. 

In addition, in both methods for defining all the final results as the vectorial 

quantities and distinguishing special cases we must use other theories as well, since 

graph-theoretic approaches give generic information. In fact, in Matroid method the 

initial steps are just some fundamentals definitions which are developed according to 

Graph and Algebra. So, for kinematic analysis Plücker coordinates and Screw theory 
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[55] is applied as a method to obtain final result. In T-T Graph method, although the 

kinematic analysis is performed in initial steps, the results are not in the vectorial 

form (the scalar of the results is obtained). Hence, the Denavit-Hartenberg 

Convention [56] will be used in this method to define the results in the vectorial form 

[51, 54]. 

2.2 Matroid Method 

2.2.1 Labeling Links and Joints 

In each mechanical structure, there are n number of links and k number of joints. For 

labeling [47], following steps are considered: 

I.  Functional schematic: 

a) Start from ground link (reference link) and 0 is assigned to this link. 

b) For other links i.e. gears and transform arms (carriers), we use 1, 2,…, n as labels. 

c) For labeling joints, we label k t c   pairs (t is the number of turning pairs and c 

is the number of gear pairs). 1,...,n n t   labels are considered for turning pairs and 

1 ,...,n t n k    labels are considered for gear pairs. 

II.  Digraph: 

a) Reference link is dedicated by node 0. 

b) Other links are illustrated by labeled nodes from 1, 2,…, n. 

c) Solid arrows are used to show turning pair joints. 

d) Dash lines are used to express gear pair joints. 

These steps will be applied on sample mechanism in Section 3.2.1 and associated 

digraph will be shown in Figure 3.2. 

For each structure, there exists a digraph, defined N = (D, E), which has a collection 

of 1n   nodes (one node for reference link and n nodes for links). This collection is 
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illustrated as N (D) = {0, 1, 2,…, n}. These nodes are connected by k directed edges, 

( ) { 1,..., , 1 ,..., }E D n n t n t n k       [42, 47]. Turning pairs are represented by t 

directed edges and gear pairs are represented by c directed dash edges, k t c  . 

Each set [tail,head] of nodes is assigned to a k directed edge which is an oriented 

arrow from tailn  to headn , for instance in Figure 3.2, edge 10 assigns to set [0,1]. 

According to fundamental definitions of Matroid theory, in mechanisms with the 

large number of links (nodes) and joints (edges), there exist some rules to find 

independent cycles. Although in sample mechanism, Figure 3.1, matroid theory is 

used, application of this theory is discussed rather than pure theoretical aspects. 

Therefore, by avoiding to pass the theory of Matroid, for finding independent cycle 

set, it will be sufficient to refer to Section 2.2.2. 

2.2.2 Path, Spanning Tree and Fundamental Cycles 

A sequence of nodes and edges where all nodes are different is defined as a Path. The 

path is called Cycle (circuit) if the last node coincides with the first one (each cycle 

is started from dash edge). In digraph D, by cutting the edges related to c gear pairs 

one could obtain spanning tree i.e. every node lies in the tree without any circuits 

(cycles). Edges of the digraph are divided into two sets, Tree (T) and Co-tree (B). 

E(T) and E(B) sets contain arcs (turning pairs‟ edges which belong to spanning tree) 

which are labeled from 1n   to n k c   and chords (gear pairs‟ edges which do not 

belong to spanning tree) which are labeled from 1n k c    to n k  respectively 

[22, 23]. 

Since the edges are partitioned into arcs and chords (solid and dash lines respectively 

in Figure 3.2) and if e is one of the chords from Co-tree set then { }T e  contains a 
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Fundamental Cycle (circuit). Adding each chord from Co-tree to Spanning tree 

separately will form the basis, C, for cycle space. So, other combination and 

possibilities of circuits will be linearly dependent to this basis. For each mechanism 

with n nodes and k edges (the spanning tree which is made up of arcs will have n 

nodes and 1n   edges) there will be c chords (gear pairs) as well as c fundamental 

cycles according to Euler‟s formula [46]: 

 c k n    (2.1) 

2.2.3 Incidence Node-Edge Matrix 

In the oriented graph, the Incidence Node-Edge matrix 0Γ  is a ( 1)n k   matrix. 

For each edge k there will be 1,0,and +1  entries [23]. If edge enters node, the entry 

will be +1 , it will be 1  if edge leaves node and otherwise it will be zero. In other 

words, each column will have just two entries related to two nodes which are 

connected with each other by respective edge and summation of entries is always 

equal to zero in each column. Columns and rows in Incidence matrix indicate joints 

and links respectively. It can be observed that in Incidence matrix rows are 

dependent. That is, by deleting the first row other rows will be independent. The first 

row can be acquired in terms of other rows‟ entries. It means, in each column if there 

is 1and +1 , the entry of first row in that column will be zero. It will be 1or +1  if 

in related column there is 1or 1   respectively. 

2.2.4 Reduced Incidence Node-Edge Matrix 

Deleting the row which is related to the ground link (link 0) from incident matrix 

Γ  will be result in the Reduced Incidence Node-Edge matrix. This matrix is divided 

into two sub-matrices because k t c   and t n : 

 
*   Γ G G  (2.2) 

where G  is an n n  matrix, which is associated with the arcs, and its columns are 
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labeled as the turning pairs (edges related to spanning tree) and an n c  matrix *G , 

which is associated with the chords, and its columns are labeled as the gear pairs 

(edges related to co-tree) of the mechanism. 

2.2.5 Path Matrix 

Path matrix Z  [49] is a t n  matrix and because t n  so it is a square matrix. This 

matrix comes from the spanning tree, where turning pair t and link n is presented in 

each row (the edge of spanning tree) and each column (the node of spanning tree) 

respectively. Here, again, ,t nz  can be 1,0,and 1  . Spanning tree consists of paths 

which are made up of edges related to turning pairs. As a result, if edge t belongs to 

one of these paths which are started from node n toward the ground link and its 

orientation is the same as path‟s direction, ,t nz  becomes +1. If it belongs to the path 

but the orientation is opposite, ,t nz  becomes 1 . , 0t nz   if edge does not belong to 

the related path. The path matrix will be used for determining the link absolute 

angular velocities. There exist following relations which are important for the 

kinematic analysis of the mechanism [46]: 

 and T T T T     ZG G Z U Z G G Z U  (2.3) 

2.2.6 Spanning Tree Matrix and Cycle Basis Matrix 

The Spanning Tree matrix [23, 47] is denoted by c tT , each fundamental cycle has  

its own row and the t turning pairs are considered as the columns. This matrix is 

obtained by product of *G  and path matrix: 

 *T T T G Z  (2.4) 

c kC  is the Cycle Basis matrix, each fundamental cycle and each directed edge are 

denoted in corresponding row and column respectively. As k t c  , this matrix 
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has two sub-matrices: c tT  with the turning pairs (arcs) as columns‟ labels (tree‟s 

edges) and unit matrix c cU  with the gear pairs (chords) as columns‟ labels (co-tree‟s 

edges): 

  C T U   (2.5) 

In each row of C , non-zero components indicate the edges which belong to the 

corresponding cycle. These elements can be positive, negative, and zero. 1  entries 

are related to the edges which have the same orientation as the cycle direction (in 

each fundamental cycle, cycle direction is determined according to the orientation of 

chord which exists in that cycle). Edges which their orientation is opposite of the 

cycle direction will have 1  entries. 0 entries are for those edges which do not 

belong to the cycle. 

2.3 T-T Graph Method 

2.3.1 Labeling Links, Joints, and Axes of Rotation 

By using the following steps the labeling of a mechanism with n number of links and 

k number of joints will be done in T-T Graph method [50]: 

I.  Functional schematic: 

1) Ground link is numbered by 0. 

2) Links are numbered from 1 to n. 

3) a, b, c,… are considered as labels of the turning pairs‟ axes. 

II.  Digraph: 

1) Vertex 0 refers to reference base. 

2) Each link is represented by corresponding numbered vertex. 

3) Turning pair is labeled by ji  and the label of axis location are indicated by 

oriented heavy edge. This edge orients from output vertex (link) j to input one i as 
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shown in Figure 2.1.  

4) Gear mesh and corresponding carrier arm is labeled by andik jk    and 

represented by oriented light edge which orients from vertices i and j to transfer 

vertex (carrier arm) k as shown in Figure 2.1. 

i

j

i
j

j

ωji

i

k

ω'ik

i

k

j

ω'jk

 

Figure 2.1: The representation of turning and gear pairs. 

The labeling steps of T-T Graph method will be applied on sample mechanism in 

Section 3.3.1 and associated digraph will be shown in Figure 3.5. 

2.3.2 Fundamental Circuits and Transfer Vertices 

In this method, directed heavy lines which represent the turning pairs make a tree 

(spanning tree) and called tree branches while directed light line which indicate the 

gear pairs constitute a complementary tree (co-tree) and called chords [52] (geared 

edges). In fact, a unique spanning tree will be acquired by deleting all chords from 

the graph. Therefore, by adding the chords one by one to the spanning tree 

fundamental circuits will be obtained. In other words, each fundamental circuit (f-

circuit) contains one chord (gear pair or meshing joint) so the number of f-circuits is 
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equal to the number of chords (gear pairs or meshing joints). In spanning tree a 

sequence of vertices which are connected by edges is called a path such that all 

vertices must be different (refer to Section 2.2.2 for more details). 

Determination of transfer vertex (carrier arm) in this method [50] is so important in 

order to obtain the terminal equations and make the procedure of analysis faster than 

Matroid. For doing this, after labeling the axes of turning pairs, by moving on each 

path of the spanning tree and go from starting vertex to the end vertex through 

branches, the transfer vertex will be determined. Indeed, a vertex is called transfer 

vertex such that the level of edges of one side is different from the level of edges of 

other side. Note that, there must exist a transfer vertex in each f-circuit. ( , )( )i j k  

indicates a gear pair and its carrier arm where i and j are the vertices of the gear pair 

and k is the transfer vertex. 

2.3.3 Terminal Equations and Coaxial Conditions 

For kinematic analysis of any gear train (included bevel gear) the terminal equations 

can be utilized [52, 54]. As explained above, let set ( , )( )i j k  be the gear pair and its 

carrier arm then the terminal equation can be derived as follows: 

 ( , )( ) : ik ji jki j k N    (2.6) 

where andik jk   represent the angular velocities of gears i and j respectively w.r.t 

the carrier arm k and jiN  is the gear ratio between those gears: 

 
j j

ji

i i

N d
N

N d

 
  

 
  (2.7) 

where ( )and ( )j j i iN d N d  are the number of teeth (or pitch diameter) of gears j and 

i. This ratio will be positive or negative according to the right-hand-screw rule. That 
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is, this ratio will be negative if clock-wise rotation of input gear i w.r.t carrier arm 

yields a counter clock-wise rotation of output gear j and it will be positive if clock-

wise rotation of input gear i w.r.t carrier arm yields a clock-wise rotation of output 

gear j. Following relations are defined for all gears i and j: 

 
1

andij ji ij

ji

N
N

      (2.8) 

The coaxial condition [35] is used for further kinematic analysis. Consider p, q, and r 

as three coaxial links then by following condition the relative angular velocities 

amongst these links can be obtained: 

 pq pr qr      (2.9) 

where pq  denotes the angular velocity of link p w.r.t link q.  
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Chapter 3 

3 MECHANISM AND KINEMATIC ANALYSIS 

3.1 The Mechanism 

In this chapter, Geared Robotic Mechanism (GRM) is considered as an example. 

GRMs are closed-loop configurations which are used to reduce the mass and inertia 

of the actuators‟ loads. Gear trains in GRMs are employed such that actuators can be 

placed as closely as possible to the base. Figure 3.1 shows functional schematic of 

desired GRM. It is a 3-DOF (Degree of Freedom) mechanism which has the same 

movement as arm and wrist. It is observed that links and joints (gear train) are used 

to transmit the rotation of the inputs to the end effector. The motion of end effector is 

produced by links 4, 5, and 6 as inputs. The end effector is attached to link 3 and 

carried by link 2. The rotation of link 3 is caused by M3 through 6 and 7 links and 

the rotation of links 1 and 2 is made by M1 through link 4 and M2 through link 5 

respectively. 
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 Figure 3.1: The GRM mechanism. 

3.2 Kinematic Analysis using Matroid Method 

3.2.1 Matroid Digraph and Corresponding Matrices 

The mechanism in Figure 3.1 consists of 7n   links and 11k   joints which the 

connections between links are supplied by turning and meshing joints. The following 
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labeling which is assigned to links and joints of sample mechanism is used in 

Matroid method: 

 0 is assigned to ground link. 

 1, 2, 3, 4, 5, 6, and 7 are assigned to gears and carriers. 

 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18 are assigned to joints. 

In this mechanism 4, 5, and 6 are sun gears (input links), 1 and 2 are carriers and 

3,7 ,and7   are planet gears. There exist joints such that 8, 9, 10, 11, 12, 13, and 14 

are turning pairs‟ labels ( 7t  ) and 15, 16, 17, and 18 are gear pairs‟ labels ( 4c  ). 

The labeling of this mechanism which is used in Matroid method is illustrated in the 

Figure 3.2: 

15

8

13

17 14

1612

10

11

9

18

0

5
4 1

2

37

6

 
Figure 3.2: Mechanism associated digraph. 

There is the corresponding digraph to mechanism in Figure 3.2. 

 ( ) 0,1,2,3,4,5,6,7N D   is the set of nodes of this digraph with 7 nodes (1, 2, 3, 4, 

5, 6, and 7) attached to the 7n   mobile links and one node (0) attached to the 

ground. These nodes are connected to each other by 11k   directed edges which 8, 

9, 10, 11, 12, 13, and 14, 7t  , are related to turning pairs and 15, 16, 17, and 18, 

4c  , correspond to gear pairs. 
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The pair set of  ( ) [0,1],[0, 4],[0,5],[1, 2],[1, 6],[2,3],[2, 7],[1, 4],[5, 2],[6, 7],[7,3]E D            

is assigned to the set of directed edges ( ) {8,9,10,11,12,13,14,15,16,17,18}E D  . In 

order to interpret relative angular velocities between links easily, each edge is 

oriented from its lower-level node to higher-level one. In other words, it is better that 

all edges connected to node 0 are oriented away from this node (8, 9, and 10 are 

away from node 0) and edges which are assigned to carriers and planets oriented 

toward the nodes (e.g. 13 and 14 are oriented toward 7 and 3 respectively) though it 

is possible for the directed edges to orient arbitrarily. 

The spanning tree of sample mechanism which was defined in Section 2.2.2 is 

illustrated in Figure 3.3 corresponding to Figure 3.2. 

8

13
14

12

10

11

9

0

5
4 1

2

37

6

 
Figure 3.3: Spanning tree of the digraph 

For sample mechanism and its digraph, the spanning tree has 

( ) {0,1,2,3,4,5,6,7}N T   and ( ) {8,9,10,11,12,13,14}E T   sets and the co-tree has  

( ) ( ) ( ) {15,16,17,18}E B E D E T    set. There exist fundamental cycle set 

15 16 17 18( ) { , , , }C D C C C C  which has 4c  cycles corresponding to meshing (transfer) 

joints. Fundamental cycles of desired mechanism are shown in Figure 3.4. That is,  

15 {15,8,10}C  , 16 {16,12,10,9}C  , 17 {17,13,12,11}C  , 18 {18,14,13}C  . 
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Figure 3.4: Fundamental cycles 

In the following the matrices which are defined in the Section 2.2 are acquired and 

after that the procedure of Matroid method and the kinematic analysis of desired 

mechanism using this method will be shown. 

For the digraph in Figure 3.2 the Incidence Node-Edge Matrix and the Reduced 

Incidence Node-Edge Matrix are: 

 

0

8 9 10 11 12 13 14 15 16 17 18

0 1 1 1 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 0 1 0 0 0

2 0 0 0 0 1 1 1 0 1 0 0

3 0 0 0 0 0 0 1 0 0 0 1

4 1 0 0 0 0 0 0 1 0 0 0

5 0 1 0 0 0 0 0 0 1 0 0

6 0 0 0 1 0 0 0 0 0 1 0

7 0 0 0 0 0 1 0 0 0 1 1

          

    
 

  
 
   
 

 
  
 

  
  
 

   

Γ

  (3.1)  
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0 0 1 1 1 0 0 1 0 0 0

0 0 0 0 1 1 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1 1

  
 

 
 
 
 

  
 
 

 
  

Г   (3.2) 

The Path Matrix for the spanning tree in Figure 3.3 is: 

 

1 2 3 4 5 6 7

8 0 0 0 0 0 01

9 0 0 0 0 0 01

10 0 01 1 1 1 1

11 0 0 0 0 0 01

12 0 0 0 01 1 1

13 0 0 0 0 0 0 1

14 0 0 0 0 0 01

      

 
 

  
      
 

   
    
 

  
   

Ζ

  (3.3) 

Finally, the Spanning Tree and the Cycle Basis Matrices of sample mechanism are: 

 

15

16

17

18

8 9 10 11 12 13 14

0 0 0 0 01 1

0 0 0 01 1 1

0 0 0 01 1 1

0 0 0 0 0 1 1

C

C

C

C

      

 
 

   
   
 

  

T

  (3.4) 

 

15

16

17

18

8 9 10 11 12 13 14 15 16 17 18

1 0 1 0 0 0 0 1 0 0 0

0 1 1 0 1 0 0 0 1 0 0

0 0 0 1 1 1 0 0 0 1 0

0 0 0 0 0 1 1 0 0 0 1

C

C

C

C

          

 
 

  
  
 

 

С

  (3.5) 
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3.2.2 Screw Theory and Equations for Relative Angular Velocities of Turning 

Pairs 

Screw matrix [55] (dual vector) 
0

,
ˆ

c ku  defines spatial displacement which is a 

combination of rotation about a line and translation along the same line. Indeed, kz  

axis of relative motion will be considered as the line which will define the geometry 

of each axis. This is a six-dimensional ( 6 1  column matrix) vector which is 

constructed by a pair of 3D vectors i.e. linear velocity and angular velocity. 

  
0

0

, , , ,0

,

ˆ
T

k
c k k k k c k c k c k

c k

L M N P Q R
 

   
 

u
u

r
   (3.6) 

Along each pair, the local frame ( , , )k k kx y z  is selected in terms of the orientation 

of kz  and they have unit vector  0 0 1
T

u  with respect to their local z-axis and 

unit vector  0 T

k k k kL M Nu  w.r.t base z-axis (reference frame). The 

orientation of each kz  (first vector in screw) can be obtained as follows: 

 0

0,k k u D u   (3.7) 

where 0,kD is transformation Matrix (orthogonal direction-cosine matrix): 

 

0 0 0

0 0 0

0 0 0

, , ,

0, , , ,

, , ,

cos cos cos

cos cos cos

cos cos cos

k k k

k k k

k k k

x x x y x z

k y x y y y z

z x z y z z

  

  

  

 
 

  
 
  

D   (3.8) 

After finding all angles between coordinates, 0,kD  can be defined as a pure rotational 

matrix about x-axes: 

 
0,

1 0 0

0 cos sin

0 sin cos

k k k

k k

 

 

 
 

 
 
  

D   (3.9) 

where k are offset angles between z-axis of base and z-axes of turning axes. 
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Since unit vectors w.r.t local z-axis (local frame) have the form: 

 0 0 1
T

u   (3.10) 

Then from Eq. (3.9) unit vectors w.r.t base z-axis (reference frame) will have the 

form: 

  0 T

k k k kL M Nu   (3.11) 

where 0kL  ; sink kM   ; cosk kN   since the u  vector just has z component 

so just third column of 0,kD  matrix is valid for 
0

ku  vector. 

0

,c kr  is the position vector of kz  (second vector in screw) and can be acquired as 

below: 

 0 0 0

, ,c k c k k r I u   (3.12) 

The distance vectors 0

,c kI (a lower index shows that I  has orientation from c to k and 

upper one indicates that this orientation is w.r.t. base) can be calculated by Eq (3.13): 

 

,

0

, ,

,

c k k c

c k c k k c

c k k c

x x x

y y y

z z z

     
     

       
    
    

I   (3.13) 

where , 0c kx   since all rotations are done about x-axis so there does not exist any 

displacement along this axis. 

Then from Eq. (3.12) and (3.13), one can conclude that:  

 0

, , , ,

T

c k c k c k c kP Q Rr  (3.14) 

Since the 0

,c kr  vector is denoted as the cross product of
0 0

, andc k kI u , by using the skew 

symmetric matrix of 0

,c kI  i.e. 
0

,c kΙ  and multiply it by 
0

ku  vector , , ,, andc k c k c kP Q R   

can be calculated as follows: 
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, , , ,

0 0

, , , , ,

, , , ,

0

0

0

c k c k k c k k c k k

c k k c k c k k c k k c k k

c k c k k c k k c k k

z y L z M y N

z x M z L x N

y x N y L x M

      
    

          
          

Ι u   (3.15) 

So 

 , , ,sin cosc k c k k c k kP z y     (3.16) 

Since sink kM    and cosk kN  and , , 0c k c kQ R   since , 0k c kL x  .

( , , )k k kx y z  trinaries are function of nd  (gear pitch diameters) and nA  (distances) 

which are measured between the gears and the fixed frame origins. 

For the desired mechanism in Figure 3.1, the components of screw, which are 

defined above, are specified in terms of ( 1,2,3,4,5,6,7 ,and 7 )nd n    and 

( 1,2, and 3)nA n   as below and the pairs‟ coordinates for the sample GRM with 4 

cycles are indicated in Table 1. Angles between fixed frame‟s z-axis and z-axes of 

revolute pairs are: 8 9 10 13 0        and 11 12 14 90      ° . So unit vectors 

of revolute joints w.r.t reference frame can be obtained by Eq. (3.7): 

 0 0 0 0

8 9 10 13 0 0 1
T

   u u u u  and  0 0 0

11 12 14 0 1 0
T

  u u u . 

Along each cycle, by using Table 1 and Eq. (3.16) the coefficients ,c kP  are defined as 

follows: 

Cycle 15C : 

15,8 15,8 8 15,8 8 15,8 15,8

4
15,8 15,8 15,8 8 15

sin cos (sin(0)) (cos(0))

(0) (1)
2

P z y z y

d
z y y y y

    

      
 

15,10 15,10 10 15,10 10 15,10 15,10

1
15,10 15,10 15,10 10 15

sin cos (sin(0)) (cos(0))

(0) (1)
2

P z y z y

d
z y y y y

    

     
 

15,15 15,15 15,150: and 0P y z  ; 
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Cycle 16C : 

16,9 16,9 9 16,9 9 16,9 16,9

5
16,9 16,9 16,9 9 16

sin cos (sin(0)) (cos(0))

(0) (1)
2

P z y z y

d
z y y y y

    

     
 

16,10 16,10 10 16,10 10 16,10 16,10

5
16,10 16,10 16,10 10 16

sin cos (sin(0)) (cos(0))

(0) (1)
2

P z y z y

d
z y y y y

    

     
 

16,12 16,12 12 16,12 12 16,12 16,12

2
16,12 16,12 16,12 16 12

sin cos (sin( 90 )) (cos( 90 ))

( 1) (0)
2

P z y z y

d
z y z z z

      

        
 

16,16 16,16 16,160: and 0P y z  ; 

Cycle 17C : 

17,11 17,11 11 17,11 11 17,11 17,11

6
17,11 17,11 17,11 17 11

sin cos (sin( 90 )) (cos( 90 ))

( 1) (0)
2

P z y z y

d
z y z z z

      

       
 

17,12 17,12 12 17,12 12 17,12 17,12

6
17,12 17,12 17,12 17 12

sin cos (sin( 90 )) (cos( 90 ))

( 1) (0)
2

P z y z y

d
z y z z z

      

       
 

17,13 17,13 13 17,13 13 17,13 17,13

7
17,13 17,13 17,13 13 17

sin cos (sin(0)) (cos(0))

(0) (1)
2

P z y z y

d
z y y y y

    


      
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Cycle 18C : 
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Table 1: Coordinates of turning and gear pairs 

5 7 71 4 1
2 1 1

6 32 2
1 1 1 2 3 1 1 3

8 9 10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 0 0 0 0 0

( )
0 0 0

2 2 2 2 2

0 0 0
2 2 2 2

k

k

k

x

d d dd d d
y B B B

d dd d
z A A A A A A A A

   

   
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After expressing all of the turning pairs screws, it is necessary to define velocity 

variables ( or )q d , for each revolute pair. In sample mechanism which is shown 

in Figure 3.1, because there exists just pure rotational displacement without any 

translational movement in mechanism‟s components (gears and carriers), there will 

be just angular velocity k . Furthermore, pitch, which is stated as a ratio between the 

angular and linear velocities, will be zero. k  is defined as a scalar which measures 

the rotational movement of  the head link w.r.t tail link. 

Twist about each screw points out the velocity as an angular velocity around the 

screw and linear velocity along the screw. The product between screw and velocity 

variables can be defined as a twist: 

 
0

0 0

, 0 0 0

, ,

ˆ ˆ k k
k c k k k

c k k c k k


 



   
              

u
s u

I u I
  (3.17) 

It can be noticed that in Eq. (3.17) there exist a dual vector. First is an angular 

velocity (rotation about screw) and second is linear velocity (sliding motion along 

screw). These two vectors are orthogonal to each other thus the projection of the 

linear part along the screw is zero and then the pitch will be zero as well. 
,1kθ  in Eq. 

(3.18) is twist intensities 1k   matrix which its entries are relative velocities of 

turning and gear pairs: 

 ,1

t

k

c





 
  
 
 

θ   (3.18) 

This matrix can be divided into two sub-matrices, one for entries related to turning 

pairs t  and the other for entries corresponding to gear pairs c . Since k edges 

indicate the relative movement between the tail link and head so angular velocities of 

pairs can be: 



 
 

26 
 

 
head tailk n n    (3.19) 

In Figure 3.1, for example, the twist intensities matrix is  

  11,1 8 9 10 11 12 13 14 15 16 17 18

T

          θ   (3.20) 

where  8 9 10 11 12 13 14

T

t       θ  and  15 16 17 18

T

c    θ  are 

revolute and gear pairs twist intensities respectively. In addition, pairs‟ velocities are: 

8 4 0 9 5 0 10 1 0 11 6 1

12 2 1 13 7 2 14 3 2 15 1 4

16 2 5 17 7 6 18 3 7

; ; ; ;

; ; ; ;

; ; .

       

       

     

   

   

  

  (3.21) 

By applying Hadamard entry-wise product on cycle-basis C  and screw 0

,
ˆ

c ku  matrices 

given by Eq. (3.5) and (3.6), which have same dimension, Eq. (3.22) is obtained 

which is pointed out the relative angular velocities equations: 

 0

, ,1 ,1
ˆ[ ]c k k c C u θ 0   (3.22) 

where ,1c0  is a column matrix with all zero entries. For sample mechanism in Figure 

3.1, these equations are defined in Eq. (3.23):
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  (3.23)
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The orthogonality conditions for relative velocities and relative velocity moments 

must be satisfied in order to Eq. (3.23) holds true: 

 The sum of kθ  (twist intensities) in each cycle in the cycle basis must equal to 

zero. 

Since 
0 0

k head tail θ ω ω so in each cycle each absolute velocity 
0 0andhead tailω ω  will 

appear twice with opposite sign so the sum will be zero. 

According to orthogonality condition for relative velocities, Eq. (3.24) can be written 

for sample mechanism in Figure 3.1. As it was discussed in Section 3.2, the desired 

mechanism has 4 fundamental circuits hence Eq. (3.24) can just express equations of 

these f-circuits such that each row illustrates relations between the relative angular 

velocities of turning pairs and gear pair corresponding to each cycle. Actually, if the 

relative angular velocity of gear pairs at the contact point of two gears is desired, it 

will be necessary to use Eq. (3.24) in order to acquire these velocities in terms of 

input angular velocities. 
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 The sum of 0

,c k kI θ  (moments of relative velocities) in each cycle in the cycle 

basis must equal to zero w.r.t gear pair c. 

Since the sum of twist intensities, according to previous condition, is zero in each 

cycle so cθ  can be defined as the resultant twist of the turning twists tθ . Because 0

,c kI
 

of the twist resultant is zero so the moment of that will be zero as well. Therefore, the 

sum of the moment of the turning twists will be also zero. 

Again, according to orthogonality condition for moments of relative velocities, Eq. 

(3.25) can be written for desired mechanism in Figure 3.1. 
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  (3.25) 
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In Eq. (3.25) according to Eq. (3.15) all , ,andc k c kQ R  entries will be zero and from 

Eq. (3.13) 15,15 16,16 17,17 18,18, , ,and 0P P P P   as well. 

3.2.3 Independent Equations for Relative Velocities of Turning Pairs 

The Eq. (3.25) can be written in the following form: 

  , ,

t

c t c c c

c

 
       

 

θ
P 0 0

θ
  (3.26) 

As it was shown above, by Hadamard entry-wise product of cycle-basis and screw 

matrices, relative angular velocities are obtained. After substituting the parameters, 

the , ,c t c c
  P 0  is acquired which has two sub-matrices: the c t  Coefficient matrix  

P  and the c c zero matrix. Here, the coefficient matrix is defined as following: 

 
0

,
ˆ

c t k
   P T u   (3.27) 

where T  and 
0ˆ
ku  are c t  spanning tree and screw matrices defined in Eq. (3.4) and 

(3.6) respectively. 

By row-column operations, one can obtain independent equations for relative angular 

velocities of only turning pairs. Since rank of Matroid is invariant to these 

operations, c independent equations are made by them. Deleting columns and rows 

with all zero entries as row-column operations are allowed for any Matroid. In Eq. 

(3.25), by deleting zero rows where are related to , ,andc k c kQ R  entries and zero 

columns 15, 16, 17, and 18 and corresponding cθ  entries, Eq. (3.26) can be 

simplified to the following form: 

 , ( ) ( )c t t c
    P θ 0   (3.28) 

For sample mechanism in Figure 3.1, Eq. (3.28) can be written as follows: 
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 16,10

17,12

8

915,8 15,10

10
16,9 16,12

11

17,11 17,13

12

18,13 18,14
13

14

0 0 0 0 0
0

0 0 0 0 0

0 0 0 0 0

00 0 0 0 0

P P

P P P

P P P

P P















 
 

   
 

                       
     
   

 
 

  (3.29) 

Eq. (3.29) is a final result for independent equations of relative angular velocities and 

,c tP  are scalar coefficients. These equations have an analogy with Willis equations 

but Willis equations are used in absolute angular velocities as scalar equations. 

Substituting values of ,c tP  in Eq. (3.29) yields below equations which express 

relative velocities in terms of pitch diameter nd : 

 

4 1 8

9

5 5 2
10

11

6 6 7

12

13
7 3

14

0 0 0 0 0
2 2

0
0 0 0 0

02 2 2

0
0 0 0 0

2 2 2 0

0 0 0 0 0
2 2

d d

d d d

d d d

d d















   
    
   

 
     
           
     
     
   
    

  

  (3.30) 

Since Eq. (3.30) is written in terms of pitch diameters, one can point it out as 

functions of tooth ratio. It is a positive number for each meshing joint c. Indeed, in 

digraph D it is weight of edge c where tail and head links are connected together: 

t t

h h

n n

c

n n

d N
i

d N
    (3.31) 

where 
tnN  and 

tnd  are the number of teeth and pitch diameter of input gear and 
hnN  

and 
hnd  are related to output gear. Each row of the ,c tP  matrix contains two pitch 

diameters one related input gear of gear pair and the other related to output gear of 

gear pair (according to dash line in each cycle). For writing this matrix in terms of 
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tooth ratio, each row must be divided by the pitch diameter of the output gear (the 

head node of the dash line in each cycle). 

In Figure 3.1, for instance, following tooth ratios can be defined: 

 5 6 74
15 16 17 18

1 2 7 3

; ; ;
d d dd

i i i i
d d d d


   


  (3.32) 

3.2.4 Solution of Relative Velocities of Turning Pairs 

Eq. (3.30) can be written in terms of tooth ratio so ,c tA  matrix is obtained: 

    ,c t t c
    A θ 0   (3.33) 

According to Kutzbach criterion [46], the total number of Degree of Freedom (DOF) 

is expressed in Eq. (3.34): 

 3 2E n t r     (3.34) 

where 3n is the total number of mobility and each turning joint and gear pair has one 

and two DOF respectively. As a result, in the case of gear trains because t n , Eq. 

(3.34) will be 

 E n r    (3.35) 

Eq. (3.35) states that there is a relation between DOF ( )E  i.e. input velocities 

(known variables), turning pairs ( )t n  and the rank of cycle-basis matrix (r) i.e. 

output velocities (unknown variables). In other words, from Eq. (3.35), it can be 

concluded that the number of turning pairs is equal to the summation of DOF and 

rank of cycle-basis matrix. In fact, in each mechanism, the number of input and 

output variables must be equal to the number of DOF and rank of C  matrix 

respectively. In the sample mechanism, Figure 3.1, as it was said in Section 3.2 the 

number of input and output velocities are 3 and 4 respectively. Now, this statement 

can be verified since 3 and 7 and 4E t n r    . 
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According to the relations between number of links, fundamental cycles and DOF, 

Eq. (3.33) can be partitioned as following: 

  , ,
E

r E r r r

r

 
     

 

θ
A A 0

θ
  (3.36) 

Hence, solutions for output relative velocities 
rθ  can be defined as functions of input 

relative velocities Eθ : 

        
1

r r E E


   θ A A θ   (3.37) 

Note that in digraph D, Figure 3.2, according to labeling since 8, 9, and 11 edges are 

considered as inputs, and outputs are determined by other edges i.e. 10, 12, 13, and 

14, the order of third and fourth columns in A  matrix and third and fourth rows in 

θ  vector must be changed as in Eq. (3.38): 

 

8

9

15

11

16 16

10

17 17

12

18

13

14

0 0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1 0

i

i i

i i

i















 
 
     
    

               
    
     
 
 
 

  (3.38) 

 

1

1510

8

16 1612

9

17 1713

11

1814

1 0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0 0

i

i i

i i

i













      

      
                    

               

  (3.39) 

 

1510

8

16 15 1612

9

17 16 15 17 16 1713

11

18 17 16 15 18 17 16 18 1714

0 0

0

i

i i i

i i i i i i

i i i i i i i i i












   
    

             
            

  (3.40) 

Eq. (3.40) expresses the equations of output relative angular velocities in terms of 

input relative angular velocities. In the next section (Section 3.2.5), these equations 
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are used to determine absolute angular velocities of links. 

3.2.5 Links Absolute Angular Velocities 

0

nω  is 3 1n   Absolute Velocity Matrix which has n vectorial entries (each entry is a 

3-component vector) equal to the number of links. 

 

 0 0 0 0 0 0 0 0 0

0 0 0 0

1 2

1 1 1 2 2 2 7 7 7

T

n

T
x y z x y z x y z        





ω ω ω ω
  (3.41) 

The entries of this matrix are the absolute velocities of links (vertices of digraph) of 

the mechanism (gears, carriers, and planets) w.r.t. reference frame. The differences 

between absolute velocities of head links 0

hnω  relative to tail links 0

hnω  yield relative 

velocities kθ : 

 0 0

h tk n n θ ω ω   (3.42) 

For desired mechanism:

 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7

T

T
x y z x y z x y z x y z x y z x y z x y z                    





ω ω ω ω ω ω ω ω  

 (3.43) 

Each absolute velocity 
0

nω  is produced by summing the relative velocities of turning 

pairs t which exist in path n from node 0 to node n. By using path matrix Z , Eq. 

(3.3), and relative velocities of turning pairs, tθ , the absolute velocity matrix can be 

calculated as in Eq. (3.44): 

  0 0T

n t t
    ω Z u θ   (3.44) 

It is necessary to note that because links (nodes of digraph) velocities are desired, TZ  

as an n t  transposed matrix of Z , which connects the nodes-edges of spanning 

tree, is used. Moreover, since absolute velocities are vectorial quantities, Hadamard 
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entry-wise product of TZ  and unit vectors 
0

tu  defined in Eq. (3.7) (orientation of z-

axis of each turning pair) is applied in order to determine that which relative 

velocities can have effect on each of absolute velocities and in which orientation 

w.r.t. fixed frame. 

For Figure 3.1: 
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0 0 0
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0 0 0 0
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u u

u u u

u

u

u u

u u u

 

 

 

 

 

 

 

    
    
    
    
    

     
    
    
    
   

     


  (3.45) 

By solving these equations vectorial absolute velocity of each link can be obtained: 

 Angular velocity of ink 1 w.r.t. link 0: it has just z-component in terms of 8  

0 0

1 10 10

10

15 8

0

0

1

0

0

u

i

 







 
 

  
 
 

 
 

  
  

  (3.46) 

 Angular velocity of link 2 w.r.t. link 0: it has y-component in terms of 8  and 9  

and also z-component in terms of just 8  

0 0 0

2 10 10 12 12

10 12

16 15 8 16 9

15 8

0 0

0 1

1 0

0

u u

i i i

i

  

 

 



 

   
   

    
   
   

 
 

   
  

  (3.47) 
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 Angular velocity of link 3 w.r.t. link0: it has y-component in terms of 8 , 9 , and 

11  and also z-component in terms of just 8  

 

   

0 0 0 0

3 10 10 12 12 14 14

10 12 14
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15 8

0 0 0

0 1 1

1 0 0
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1 1
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i i i i i i i i i

i
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  

  



  

     
     

       
     
     

 
 

      
  

  (3.48) 

 Angular velocity of link 4 w.r.t. link 0 : it is one of input velocity ( 8 ) 

 

0 0

4 8 8

8

8

0

0

1
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0
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
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

 
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  
 
 

 
 

  
 
 

  (3.49) 

 Angular velocity of link 5 w.r.t. link 0: it is one of input velocity ( 9 ) 

0 0

5 9 9

9

9

0

0

1

0

0

u 







 
 

  
 
 

 
 

  
 
 

  (3.50) 

 Angular velocity of link 6 w.r.t. link 0: it has y-component in terms of just 11  and 

also z-component in terms of just 8  
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   

 
 

  
  

  (3.51) 

 Angular velocity of link 7 w.r.t. link 0: it has y-component in terms of 8  and 9  

and also z-component in terms of input velocities ( 8 , 9 , and 11 ) 
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     

       
     
     

 
 

   
     

  (3.52) 

3.3 Kinematic Analysis Using T-T Graph 

3.3.1 T-T Graph and Unkown Angular Velocities 

The functional representation of sample mechanism is illustrated in Figure 3.1 this 

mechanism has 7 links ( 7)n  , 7 turning pairs and 4 gear pairs ( 11)k  . In each 

mechanism the number of links must be equal to the number of turning pairs. The 

labeling procedure of the T-T Graph method on the desired mechanism results in: 

 0 is assigned to the reference link. 

 Links are numbered as 1, 2, 3, 4, 5, 6, and 7. 
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 Turning pairs are indicated by 
10 40 50 21 61 72 32

and, , , , , ,        labels. 

 Gear meshes and related carrier arms are labeled by

10 40 21 51 62 72 72 32
and, , , , , , ,               . 
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Figure 3.5: T-T graph of the mechanism. 

In the following the paths (there exist more paths in this graph but for finding the 

transfer vertex, those paths where demonstrate the change in the level of axis 

location are considered) of the T-T graph, which is illustrated in Figure 3.5, are 

expressed so in this graph the transfer vertices are: 

 Path 1 (4 0 1)a b  : vertex 0 (pair axes a, b), 

 Path 2 (5 0 1 2)b b c   : vertex 1 (pair axes b, c), 

 Path 3 (6 1 2 7)c c d   : vertex 2 (pair axes c, d), 

 Path 4 (7 2 3)
d e

  : vertex 2 (pair axes d, e). 

The sets of gear pair and corresponding carrier arm are

(4,1)(0), (5,2)(1), (6,7)(2), and (7,3)(2)  and the axis locations of the turning pairs 

are as follows: 

 Axis a: pair 0 4 , 
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 Axis c: pairs 1 2 and 1 6  , 

 Axis d:pair 2 7 , 

 Axis e: pair 2 3 . 

As it was discussed above, the sample mechanism shown in Figure 3.1 contains four 

gear pairs. In a systematic way, the transfer vertices related to these gear pairs are 

acquired from Figure 3.5. As a result, following terminal equations, which express 

the angular velocities of the gears w.r.t. carrier arms, can be defined: 

 1
40 10

4

(4,1)(0) :
N

N
      (3.53) 

 2
51 21

5

(5,2)(1) :
N

N
      (3.54) 

 7
62 72

6

(6,7)(2) :
N

N
 


     (3.55) 

 3
72 32

7

(7,3)(2) :
N

N
  


  (3.56) 

As it was discussed in Section 2.3.3, by applying the right-hand-screw rule, the ratio 

is negative in the Eq. (3.53) to (3.55) since a positive rotation of input gear produces 

a negative rotation of output gear. While, in Eq. (3.56), ratio is positive because a 

positive rotation of input gear yields a positive rotation of output gear. 

According to coaxial condition and Figure 3.5, it can be stated that: 

 51 50 10       (3.57) 

 62 61 21       (3.58) 

 40 40     (3.59) 

 10 10     (3.60) 
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 21 21     (3.61) 

 72 72     (3.62) 

 72 72     (3.63) 

 32 32     (3.64) 

It is observed that Eq. (3.57) to (3.64) are circuit equations which can be written 

from the graph directly and also Eq. (3.57) and (3.58) can be stated according to 

coaxial condition. 

In the T-T graph shown in Figure 3.5, 10 21 32 72, , , and     are unknown angular 

velocities which can be obtained in terms of 40 50 61, , and    as inputs by using Eq. 

(3.53) to (3.64). Eq. (3.53) to (3.56) indicate the inputs angular velocities in terms of 

output ones in gear pairs. In order to find unknown velocities in terms of inputs it is 

necessary to change the order of these equations by using Eq. (2.8): 

 10 41 40N      (3.65) 

 21 52 51N      (3.66) 

 72 67 62N      (3.67) 

 32 7 3 72N     (3.68) 

where 5 6 74
41 52 67 7 3

1 2 7 3

, , and
N N NN

N N N N
N N N N

 


   


. 

Unknown velocities are obtained as follows: 

Substituting Eq. (3.59) and (3.60) into Eq. (3.65) yields: 

 10 41 40N     (3.69) 

Substituting Eq. (3.57), (3.61) and (3.69) into Eq. (3.66) gives: 
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21 52 50 10

52 50 52 10

( )N

N N

  

 

  

  
 

        21 52 50 52 41 40N N N       (3.70) 

Substituting Eq. (3.62), (3.58) and (3.70) into Eq. (3.67) results in: 

72 67 61 21

67 61 67 21

67 61 67 52 50 52 41 40

( )

( )

N

N N

N N N N N

  

 

  



 

 

  

  

    

 

 72 67 61 67 52 50 67 52 41 40N N N N N N           (3.71) 

Substituting Eq. (3.63), (3.64), and (3.71) into Eq. (3.68) yields: 

32 7 3 72

7 3 67 61 67 52 50 67 52 41 40( )

N

N N N N N N N

 

  



   



   
 

       32 7 3 67 61 7 3 67 52 50 7 3 67 52 41 40N N N N N N N N N              (3.72) 

In above equations, unknown angular velocities were defined in terms of inputs 

velocities and gear ratios. In the following, these velocities are indicated in the 

matrix form in terms of inputs and gear ratios: 

 

10 41

40

21 52 41 52

50

32 7 3 67 52 41 7 3 67 52 7 3 67

61

72 67 52 41 67 52 67

0 0

0

N

N N N

N N N N N N N N N

N N N N N N












     

  

   
    

               
     

     

  (3.73) 

For better comparison of results in T-T Graph and Matroid, same notations are used 

for gear ratios as tooth ratios which were defined in Section 3.2.3. 

 15 41 16 52 17 67 18 7 3, , andi N i N i N i N       (3.74) 

 

10 15

40

21 16 15 16

50

32 18 17 16 15 18 17 16 18 17

61

72 17 16 15 17 16 17

0 0

0

i

i i i

i i i i i i i i i

i i i i i i












   
    

               
     

     

  (3.75) 
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3.3.2 Denavit-Hartenberg (D-H) Convention 

Up to here, kinematic analysis is done by using T-T Graph method and the unknown 

velocities are calculated in magnitude form. So by using these results and the D-H 

convention [56] more general analysis will be done in the following and unknown 

absolute velocities will be obtained in vectorial form rather than scalar form. Eq. 

(3.76) indicates the General Homogenous Transformation Matrix, 
1i

i


T , which is 

utilized as a tool for defining link i  w.r.t link 1i   in the D-H convention: 

 

1 1

1

, 1 , 1 , 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1

0 1

cos sin cos sin sin cos

sin cos cos cos sin sin

0 sin cos

0 0 0 1

i i

i ii

i

i i i i i i i i i i i i i i

i i i i i i i i i i i i i i

i i i i i i

a

a

d

     

     

 

 



      

      

  

 
  
  

 
 


 
 
 
  

R P
T

  (3.76) 

As it is observed from Eq. (3.76), the 
1i

i


T  is made up of two submatrices: 

1i

i


R  

which is 3 3 matrix indicating the orientation of link i w.r.t link 1i   and 
1i

i


P  

which is 3 1  matrix indicating the position of link I w.r.t link 1i  . Rotational 

submatrix is just used for kinematic analysis of sample mechanism so just 
1i

i


R  will 

be used instead of 
1i

i


T  as transformation matrix. D-H parameters, , , , andd a  , 

are introduced as follows: 

 , 1 :i i   joint angle measured from 1ix   axis to ix  axis about 1iz   axis, 

 , 1 :i id   translational displacement along 1iz   axis, 

 , 1 :i ia  joint offset length along common normal between  1iz   and iz , 

 , 1 :i i  joint twist angle measured from 1iz   axis to iz axis about 1ix   axis. 
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3.3.3 Equivalent Open-Loop Chain and Joint Coordinates 

However, for dynamic analysis the entire functional schematic of mechanism must 

be considered because the mass center of the rigid body is important, it is sufficient 

that using equivalent open-loop chain for kinematic analysis since kinematic 

parameters are the same on the all points of the rigid body. This chain consists of the 

mechanical parts (i.e. turning pairs) which have effect on the orientation and position 

of the end-effector.  Figure 3.6 indicates equivalent open-loop chain, which is used 

for defining joint coordinates, of the sample mechanism in Figure 3.1. 

3

2

7

1

H

0

 
Figure 3.6: Equivalent open-loop chain of sample mechanism 

According to Figure 3.6, joint coordinates can be defined. These coordinates are 

applied to the joints (turning pairs) and demonstrate the orientation of x-axes and z-

axes, which are used in obtaining D-H parameters, of the joint. It is remarkable to 

mention that for open-loop chain shown in Figure 3.6, there exists a special case of 

joint coordinates for link 7 as it will be discussed in Section  3.3.5 and illustrated in 
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Figure 3.8. In Figure 3.7, joint coordinates which are applied for determining D-H 

parameters is illustrated. Also, these parameters are specified in Table 2. 

ZH

YH

X3

Z3

Y2

Z2

X2

Z0,1

Y0,1
X0,1

θ2

θ3
3

2

7

1

H

0θ1

Y3

XH

 
Figure 3.7: Joint coordinates used for end-effector 

3.3.4 Applying D-H Convention 

According to D-H convention and as shown in Figure 3.7, the sample mechanism 

shown in Figure 3.1 has three main joint variables. These joint variables are defined 

as follows: 

 1 : joint angle between link 1 w.r.t link 0 10( ) , 

 2 : joint angle between link 2 w.r.t link 1 21( ) , 
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 3 : joint angle between link 3 w.r.t link 2 32( ) . 

Table 2: D-H parameters used for end-effector 

1 1

2 3 1

3

1 0 90

2 90 0 0

3 90 0 0 90

d a

A

A A

 









 

 

 

By inserting parameters from Table 2 into Eq. (3.76), all transformation matrices 

corresponding to Figure 3.7 can be determined as follows: 

 Link 1 w.r.t link 0: 10 1 10 1 10 10, , 0, and 90d A a        

 

1 1

1 10

1

1

cos 0 sin 0

sin 0 cos 0

0 1 0

0 0 0 1

A

 

 

 
 
 
 
 
 

T   (3.77) 

 Link 2 w.r.t link 1: 21 2 21 21 3 1 2190 , 0, , and 0d a A A         

 

2 2 3 1 2

2 2 3 1 21

2

sin cos 0 ( )sin

cos sin 0 ( )cos

0 0 1 0

0 0 0 1

A A

A A

  

  

 
 
  
 
 
 
 

T   (3.78) 

Transformation matrix of link 2 w.r.t link 0 is produced by pre-multiplying Eq. 

(3.77) to Eq. (3.78): 

 

1 2 1 2 1 3 1 1 2

1 2 1 2 1 3 1 1 20

2

2 2 3 1 2 1

cos sin cos cos sin ( )cos sin

sin sin sin cos cos ( )sin sin

cos sin 0 ( )cos

0 0 0 1

A A

A A

A A A

      

      

  

  
 

 
 
   
 
 

T   (3.79) 

 Link 3 w.r.t link 2: 32 3 21 21 2190 , 0, 0, and 90d a         
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3 3

3 32

3

sin 0 cos 0

cos 0 sin 0

0 1 0 0

0 0 0 1

 

 

 
 
 
 
 
 

T   (3.80) 

Post-multiplying of Eq. (3.79) by Eq. (3.80) results in transformation matrix of link 3 

w.r.t link2: 

 

1 2 3 1 1 2 3 3 1 1 2

1 2 3 1 1 2 3 3 1 1 20

3

2 3 2 3 3 1 2 1

cos cos( ) sin cos sin( ) ( )cos sin

sin cos( ) cos sin sin( ) ( )sin sin

sin( ) 0 cos( ) ( )cos

0 0 0 1

A A

A A

A A A

        

        

    

    
 

   
 
     
 
 

T   (3.81) 

As it was discussed at the first of Chapter 3, the GRM shown in Figure 3.1 has three 

input angular velocities (three DOF) as follows: 

 
40 50 61

40 50 61

0 0 0

0 , 0 and 0

  

     
     

       
     
     

ω ω ω   (3.82) 

These velocities are produced by 40 50 61, , and    which are joint angles of link 4 

w.r.t link 0, link 5 w.r.t link 0 and link 6 w.r.t link1 respectively. Eq. (3.82) illustrates 

these angular velocities in vectorial form and as it is observed, these inputs just have 

a component in their local z-axis. In other words, links 4, 5, and 6 just rotates about 

their local z-axis (i.e. joint angels of these links have just z-component w.r.t their 

local z-axis). 

Figure 3.7 indicates unknown joint angles ( 1, 2, and,3)i i  . Unknown angular 

velocities 10 21 32, , andω ω ω  correspond to 1 2 3, , and    respectively. Note that, 

however in Section 3.2.4 72ω  was considered as an unknown angular velocity, it is 

not necessary to consider any unknown joint angle (unknown angular velocity) for 

link 7. Because this link is an intermediate link (gear) and it does not have any effect 

on the calculation of the end-effector‟s velocity. In fact, by referring to Figure 3.6, it 
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can be observed that just links 3, 2, and 1 (i.e.
0 0 0

32 21 10, , andω ω ω ) have effect on the 

orientation and position of the end-effector. But for better comparison of methods, 

absolute velocity of link 7 will be obtained as it will be shown in Section 3.3.5 and 

7  will be considered as the joint angle of this link. It is significant to mention that 

these unknown angular velocities have just z-component w.r.t their local z-axes as it 

is observed in Eq. (3.83). 

10 21 32 72

10 21 32 72

0 0 0 0

0 , 0 , 0 and 0

   

       
       

          
       
       

ω ω ω ω   (3.83) 

In the following, by using 
1i

i


R  matrices as rotational submatrices of 

1i

i


T , which are 

defined above, and input angular velocities, first the unknown angular velocities will 

be obtained w.r.t reference frame and then all the links velocities can be obtained 

w.r.t base coordinate frame in the vectorial form:  

0

10 10

10

0

0



 
 

   
 
 

ω ω   (3.84) 

It is clear that 0

10ω  has just z-component w.r.t base since link 1 has just rotation 

about its local z-axis and this axis is parallel to the base z-axis. 

1 1 1 21

0 0

21 1 21 1 1 1 21

21

cos 0 sin 0 sin

sin 0 cos 0 cos

0 1 0 0

R

   

   



      
    

        
         

ω ω   (3.85) 

Since just 1  has effect on orientation of 
0

21ω  and changes of this angle will change 

the orientation of 
0

21ω  in 0 0x y  plane so it has only x and y components w.r.t the 

base. 
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1 2 1 2 1 1 32

0 0

32 2 32 1 2 1 2 1 1 32

2 2 32

cos sin cos cos sin 0 sin

sin sin sin cos cos 0 cos

cos sin 0 0

R

      

      

  

      
    

        
         

ω ω   (3.86) 

It is obvious that 2  does not have any effect on 
0

32ω  and changes of this angle 

cannot make any change in the orientation of
0

32ω . While, changes of 1  will change 

the orientation of 
0

32ω  in 0 0x y  plane so it has only x and y components w.r.t the 

base. 

In Eq. (3.84) to Eq. (3.86), the unknown angular velocities were calculated. In the 

rest, the links absolute velocities w.r.t the base will be obtained. 

 
0 0

1 10

10 15 40

0 0

0 0

i 

   
   

     
      

ω ω   (3.87) 

1 21 1 21

0 0 0

2 21 10 1 21 1 21

10 10

sin 0 sin

cos 0 cos

0

   

   

 

      
     

         
     
     

ω ω ω        

1 16 15 40 16 50

1 16 15 40 16 50

15 40

sin ( )

cos ( )

i i i

i i i

i

  

  



   
 

   
  

  (3.88) 

1 32 1 21 1 32 21

0 0 0 0

3 32 21 10 1 32 1 21 1 32 21

10 10

sin sin 0 sin ( )

cos cos 0 cos ( )

0 0

      

      

 

          
       

              
       
       

ω ω ω ω  

    

1 16 15 18 17 40 16 18 17 50 18 17 61

1 16 15 18 17 40 16 18 17 50 18 17 61

15 40

sin ( ( 1) ( 1) )

cos ( ( 1) ( 1) )

i i i i i i i i i

i i i i i i i i i

i

   

   



      
 

      
  

  (3.89) 

In Eq. (3.88) and Eq. (3.89), if the rest position 1( 0)   is considered, the results in 

these equations will be the same as the results in Eq. (3.47) and Eq. (3.48) 

respectively. 
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3.3.5 Different Case of Link 7 

Since the end-effector in the desired mechanism is attached to the link 3, it will be 

adequate to obtain the velocity of the link 3. As it was mentioned in Section 3.3.4 

and according to Eq. (3.89), angular velocity of link 3 is made up of 

0 0 0

32 21 10, , andω ω ω . Hence, it is well observed that link 7 has not any effect on 

velocity of end-effector. Figure 3.1 illustrates that link 7 is just used as an 

intermediate link to transfer input angular velocity from M3 to link 3. Therefore, the 

z-axis of the link 3 w.r.t. link 2 is parallel to the z-axis of link 2 w.r.t. link 1. As a 

result, in all of possible cases of displacements of the mechanism‟s links these to z-

axes are parallel to each other (as indicated in Figure 3.7). Though these two z-axes 

are parallel, the z-axis of the link 7 w.r.t. link 2 is perpendicular to them. That is, 

there exists 90  twist angle from z-axis of link 2 to z-axis of link 7 and 90  twist 

angle from z-axis of link 7 to link 3 (as indicated in Figure 3.8 and Table 3 ). This is 

the main reason to consider different joint coordinates and D-H parameters for link 7 

as defined in Figure 3.8 and Table 3. 

Z7'

Y7'
X7'

Z7

Y7
X7

Y2

Z2

X2

Z0,1

Y0,1

X0,1

θ1

θ2

θ7

2
7

1

0

 
Figure 3.8: Joint coordinates used for link 7 
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Consequently, by referring to Figure 3.5, it can be noticed that the angular velocity of 

link 7 w.r.t. 0 (
0

7ω ) is comprised of
0 0 0

72 21 10, , andω ω ω . 
0

10ω  is same as Eq. (3.84) 

since z-axis of link 1 is parallel to z-axis of the base and 
0

21ω  is same as Eq. (3.85) 

since same D-H parameters in both Table 2 and Table 3 are used in obtaining 
0

1R . 

Thus, it will be sufficient to pre-multiplying 
1

2R  by 72ω  to obtain 
0

72ω  as follows: 

Table 3: D-H parameters used for link 7 

1 1

2 2 1

7

1 0 90

2 0 90

7 0 0z

d a

A

A A

d

 









 
 

 Link 1 w.r.t link 0: 10 1 10 1 10 10, , 0, and 90d A a        

 

1 1

1 10

1

1

cos 0 sin 0

sin 0 cos 0

0 1 0

0 0 0 1

A

 

 

 
 
 
 
 
 

T   (3.90) 

 Link 2 w.r.t. link 0: 21 2 21 2 1 21 21, , 0, and 90d A A a         

 

2 2

2 21

2

2 1

cos 0 sin 0

sin 0 cos 0

0 1 0

0 0 0 1

A A

 

 

 
 
 
 
 
 

T   (3.91) 

Pre-multiplying Eq. (3.91) by Eq. (3.90) yields transformation matrix of link 2 w.r.t 

link 0: 
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1 2 1 1 2 2 1 1

1 2 1 1 2 2 1 10

2

2 2 1

cos cos sin cos sin ( )sin

sin sin cos sin sin ( )cos

sin 0 cos

0 0 0 1

A A

A A

A

     

     

 

   
 


 
 
 
 

T   (3.92) 

 Link 7 w.r.t link 2: 72 7 21 21 21, , 0, and 0zd d a       

 

7 7

7 72

7

cos sin 0 0

sin cos 0 0

0 0 1

0 0 0 1

zd

 

 

 
 
 
 
 
 

T   (3.93) 

Post-multiplying Eq. (3.92) by Eq. (3.93) results in transformation matrix of link 7 

w.r.t link 0: 

1 2 7 1 7 1 7 1 2 7 1 2 1 2 1 1 2

1 2 7 1 7 1 7 1 2 7 1 2 1 2 1 2 10

7

2 7 2 7

cos cos cos sin sin sin cos cos cos sin cos sin sin (A A )+d cos sin

sin cos cos cos sin cos cos sin cos sin sin sin d sin sin cos ( )

sin cos sin sin

z

z A A

              

              

   

   

   



T

2 1 2cos A d cos

0 0 0 1

z 

 
 
 
 
 
 

 

 (3.94) 

By using 
0

2R  which is rotational sub-matrix of Eq. (3.92) and pre-multiplying it by 

72ω  from Eq. (3.83), first 
0

72ω  and then 
0

7ω  will be obtained as follows: 

1 2 7 1 7 1 7 1 2 7 1 2 1

0 0

72 2 72 1 2 7 1 7 1 7 1 2 7 1 2

2 7 2 7 2 72

cos cos cos sin sin sin cos cos cos sin cos sin 0 (cos sin

sin cos cos cos sin cos cos sin cos sin sin sin 0

sin cos sin sin cos

R

            

           

     

     
  

        
     

ω ω

2 72

1 2 72

2 72

)

(sin sin )

(cos )

 

  

 

 
 
 
 
 

  (3.95) 

1 2 72 1 21 1 2 72 1 21

0 0 0 0

7 72 21 10 1 2 72 1 21 1 2 72 1 21

2 72 10 2 72 10

cos sin sin 0 cos sin sin

sin sin cos 0 sin sin cos

cos 0 cos

         

         

     

        
       

              
              

ω ω ω ω  

     

  

  

 

16 1 2 17 1 15 40 50 1 2 17 61

16 1 2 17 1 15 40 50 1 2 17 61

15 2 17 16 40 2 17 16 50 2 17 61

cos sin sin cos sin

sin sin cos sin sin

cos 1 cos cos

i i i i

i i i i

i i i i i i

       

       

     

    
 

     
     

  (3.96) 

By considering the rest position i.e. 1 2 0   , the results in Eq. (3.96) will be the 

same as the results in Eq. (3.52). 
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Chapter 4 

 8 CONCLUSIONS 

4.1 Conclusions 

In this thesis Matroid and T-T Graph methods, which are based on Graph Theory are 

considered for the kinematic analysis of geared robotic mechanism. Both methods 

use directed graphs. In Matroid method, links are represented by nodes (vertices) and 

revolute pairs and gear pairs are represented by bold and dash lines, respectively. The 

graph lines show only the kinematic structure of the mechanism and do not carry any 

other information. The incident and path matrices are obtained from the graph and 

cycle bases matrix is derived from these matrices.  On the other hand, each line in T-

T graph represents the terminal graph of the joint or gear pairs and therefore carries a 

pair of information (angular velocity and torque). The fundamental circuit or 

fundamental cut-set equations can be obtained from the T-T graph very easily. 

Matroid method, on the one hand, by combining Graph Theory and Algebra yields a 

long procedure since a number of matrices must be acquired. On the other hand, 

these matrices can be used for expressing any mechanism in more details. This 

method would be able to find the correct sign of teeth ratio (i.e. positive or negative 

sign) in a systematic way by using cycle matrix and pitch diameters. Matroid method 

does not use transfer vertex and therefore the determination of this vertex is not 

important in this method. In fact, the cycle bases in matroid are defined directly from 

associated graph and f-circuit equations are written from upper vector in dual vector 
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while these equations are not used in any step of analysis. By contrast, In T-T 

method, in order to write the terminal equations of the gear pairs, the transfer vertices 

should be determined by labeling the rotation axes. By using terminal equations and 

f-circuit equations, which are obtained from the graph, the kinematic equations of the 

mechanism are obtained. Determination of teeth ratio‟s sign is the main challenge of 

T-T because this sign is determined according to rotation of output link w.r.t. input 

link by using right-hand-screw. Finding correct sign of teeth ratio is so important 

since this ratio has effect in terminal equation. If the sign was not determined 

correctly, there exists a sign problem in final results. T-T method, however, not only 

is useful for modeling and analyzing of robotics mechanisms but also can be used to 

model and analyze any physical and dynamical systems. This is the main advantage 

of T-T method. 

Since some of the velocities in the geared robotic mechanism are not scalar and they 

are vectorial quantities, Matroid uses Plücker coordinates and Screw theory to 

determine these quantities. On the other hand T-T method uses either Network 

Model Approach developed by Tokad or D-H convention. D-H convention was used 

in this thesis.  If the results of D-H convention and Matroid method are compared, it 

is seen than Matroid method obtains the kinematic equations of the mechanisms in 

rest position ( 1 0  and for special case 1 2 0   ). However, the equations 

obtained from the D-H conventions are more general. That means, all possible 

rotations and positions of the mechanism are considered. 

4.2 Future Works 

As it was mentioned above, determining the sign of the gear ratio is a significant 

challenge in T-T Graph Method. In Matroid the sign of this ratio will be obtained 



 
 

56 
 

systematically according to Cycle-Basis matrix and gears‟ diameter whereas in 

another method this determination must be done according to Right-Hand-Screw rule 

manually. As a result, T-T Graph Method can be developed by inserting a systematic 

procedure in which the sign of gear ratio is determined. T-T Graph method not only 

can be considered as a powerful graphical method in kinematic and dynamic analysis 

of geared systems but also it will be able to speed up computer algorithms, which are 

used in modeling and simulation, if we can modify its challange. Hence, developing 

and applying this method as computer aided approach can be regarded as another 

future work. 
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