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ABSTRACT 

Considering two types of turbulent separating and impinging internal forced 

convection flows, the main goal of this study is to evaluate the performance of 

various two-equation turbulent models. For this aim, the most applied Low Reynolds 

Number k   and k   models are implemented. A comparison of the 

appropriateness of different Low Reynolds k   and k   models is carried out. 

Among the internal forced convection flow models, backward-facing step and 

confined impinging slot jet models are studied. Using different global parameters 

such as Nusselt number, skin friction coefficient and the position of the reattachment 

point, the results are compared with those of experimental data available in the 

relevant literature. 

Governing partial differential equations are transformed to algebraic equations by 

finite-volume method over unstructured grids. Semi-Implicit Method for Pressure 

Linked Equations (SIMPLE) is used to solve pressure-velocity coupling fields. In 

addition Linear Upwind Difference (LUD) and Upwind differencing schemes are 

used to solve convection terms. The results indicate that Menter-SST k   model is 

superior among the implemented models. 

Keywords: Turbulence modeling, Backward facing step, Impinging jet, Heat 

transfer, Nusselt number, Skin friction coefficient, Lam & Bremhorst, Wilcox, 

Menter SST.  
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ÖZ 

Bu çalışmanın asıl amacı, farklı iki denklemli türbülans modellerinin performansını, 

türbülanslı zorlanmış konveksiyon akımları içeren uygulamalar için incelemektir. Bu 

amaç için, en fazla kullanılan düşük Reynolds sayılı k   ve k   modelleri 

incelenmıştır. Farklı düşük Reynolds sayılı k   ve k   modellerinin 

uygunluğunun belirlenmesi için bir karşılaştırma yapılmıştır. İç zorlanmış 

konveksiyon akım modeller arasında, geriye bakan basamaktan akım ile 

sınırlandırılmış jet akımı üzerinde çalışılmıştır. Elde edilen sonuçlar Nusselt sayısı, 

sürtünme katsayısı ve yatışma noktası konumunu kullanarak, literatürdeki mevcut 

deneysel verilerle karşılaştırılmıştır.  

İlgili kısmi diferansiyel denklemler yapılandırılmamış ızgaralar üzerinde sonlu hacim 

yöntemi ile cebirsel denklemlere dönüştürülmüştür. Hız-basınç bağlantılı denklemler 

SIMPLE metodu kullanılarak çözülmüştür. Konveksiyon ile ilgili terimler lineer 

upwind farkı (LUD) yöntemi ile ayrıklaştırılmıştır. Sonuçlar, Menter-SST k   

modelinin, uygulanan diğer modellerden daha üstün olduğunu göstermiştir. 

Anahtar Kelimeler: Türbülans modelleme, Geri dönük adım, Çarpmalı jet, Isı 

transferi, Nusselt sayısı, Cilt sürtünme katsayısı, Lam ve Bremhorst, Wilcox, Menter-

SST. 
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Chapter 1  

INTRODUCTION 

1.1 Computational Fluid Dynamics 

Computational fluid dynamics (CFD) is an area of fluid mechanics that deals with 

algorithms and numerical methods to solve and study the fluid flows. Computers are 

used to perform the calculations required to simulate the interaction of liquids and 

gases with surfaces defined by boundary conditions. With high-speed 

supercomputers, better solutions can be achieved. Ongoing research yields software 

that improves the speed and accuracy of complex simulation scenarios such as 

turbulent or transonic flows. 

One of the advantages of CFD is that it is a very convincing, non-intrusive, virtual 

modeling technique with powerful visualization capabilities. Moreover, engineers 

can calculate the performance of a wide range of different system configurations on 

the computer without having to go the physical site, thereby saving much time and 

money. 

CFD has seen dramatic development through the last several decades. This 

technology has been applied to various engineering applications such as 

oceanography, aircraft and automobile design, civil engineering and weather science. 

Today, the HVAC/IAQ industry is one such field that has initiated utilizing CFD 

techniques widely and rigorously in its design. 
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1.2 Turbulence modeling 

In fluid dynamics, turbulence is a flow regime, characterized by chaotic property 

changes, which include momentum diffusion, convection and rapid variation of 

pressure and velocity in space and time. 

Laminar flow is a condition where kinetic energy extinct due to the action of fluid 

molecular viscosity. Although there is no theorem relating the non-dimensional 

Reynolds number (Re) to turbulence, flows at Re greater than 5,000 are typically (but 

not necessarily) turbulent, while those at lower Reynolds numbers Re<5,000 usually 

remain laminar. 

In turbulent flow, unsteady vortices appear on numerous scales and interact with 

each other. Drag increases due to boundary layer skin friction. The structure and 

location of boundary layer separation often change which sometimes reduces the 

overall drag. Although Reynolds number does not govern laminar-turbulent 

transition, it occurs if the density of the fluid is increased or the size of the object is 

gradually increased, or the viscosity of the fluid is decreased. Nobel Laureate 

Richard Feynman (2006) described turbulence as "the most important unsolved 

problem of classical physics." 

Turbulence modeling is of the three crucial elements in Computational Fluid 

Dynamics (CFD). Accurate mathematical theories have been developed for the other 

key elements: algorithm development and grid generation. Since it is creating a 

mathematical model that approximates the physical behavior of turbulent flows, far 
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less precision is achieved in turbulence modeling. It is not a surprising incident since 

the objective has been to approximate very complicated phenomenon. 

In the following sections, an overview of the subject is presented, covering the 

relevant studies of various flows. 

1.3 Impinging Jet Flows 

Impinging Jets (IJ) became a well-established object of investigation during recent 

years for their reason of increasing importance in both fundamental and applied fluid 

mechanics. 

Impinging jets have been frequently used in industrial heat and mass transfer 

applications for improving or damping localized heat transfer rates where high rates 

of convective heat transfer is necessary. Also, it is very useful since it can be quickly 

moved to the location of interest with minimum cost. In a turbulent flow, thin 

boundary layers are located inside the stagnation zone, helping for further cooling, 

heating or drying processes. 

Applications of such systems include tempering and melting of some non-ferrous 

metals and glass, Gas turbine components cooling and the outer wall of electronic 

equipment and combustors. Other applications of IJs are in freezing of tissue, surface 

coating, cleaning, metal cutting and forming, veneer, paper and film materials, fire 

testing, building materials and aircraft wings heating application. They also have 

been used in aerospace applications e.g. VTOL (Vertical Takeoffs and Landing) 

aircraft and lubrication. Effective designs can be achieved for engineering systems in 

such applications if the necessary knowledge for this kind of flow is well-understood. 
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Rapid cooling is mostly achieved by forced cooling systems. This method increases 

components safety and improves the efficiency of the components. Heat transfer 

coefficient (h-value) has to be the highest possible amount to reduce the cooling 

time. High transfer rates may further enhance by the use of through flow at the 

impingement surface, which may involve the application of suction beneath this 

surface. The combination of both impinging jets and through flow demonstrated for 

the drying of newsprint in a pilot plant and a full-size mill in Canada (Burgess et al. 

1972a) 

Recently, many researches have carried out experimental and numerical 

investigations of impinging jet under various conditions like Single or multiple jets 

with cross-sections of round, annulus or slot-jets with or without confinement 

surface, which depending on the application can be selected. Likewise, alternate 

designs for the flow of the spent fluid from the system after impingement provide a 

further design parameter. 

To enhance the global transfer rates, often, banks of nozzles are used in the industry. 

To avoid high pressure in the impingement region, Low Reynolds Number (LRN) 

jets are preferred. Moreover, impinging jets offer the potential of fine and fast control 

of local transfer rates by varying the jet velocity, size of the nozzle opening and the 

impingement distance. 

1.3.1 Description of impinging jets 

‘Impingement’ means ‘collision’ that the coolant flow strikes into the target surface 

and creates a thin stationary boundary layer at the stagnant core for coolant hitting 

the hot surface without damping. 
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Impinging jet is a high-velocity coolant mass which is driven out from a slot or a 

different shape hole and impinges on the desired heat transfer surface; as a result, it 

gives a concentrated high-value rate of heat transfer between the fluid and the wall. 

(Figure  1.1) 

 
Figure  1.1: An impingement jet (Osama M. A. Al-aqal, 2003) 

Although the geometry of jet impingement heat transfer is simple, physics of the 

flow is complex due to the shear-layer development at the free jet and wall 

boundaries, boundary-layer development at the impingement surface, and very high 

streamline curvature near the impingement location. Due to the complex interaction 

of the flow entrainment and vortex formation, flow separation along the surface, 

vortex breakdown and high streamline curvature, numerical modeling of jet 

impingement flow and heat transfer is very challenging. Consequently, the choice of 

the turbulence model is vital in the numerical analysis of the impinging jet heat 

transfer process. 

Drying paper and textiles by jets involves the use of jets which are confined by a 

hood, which is also the nozzle plate. Geometric and process variables direct the 

design of such a confined IJ system. Geometric variables include the shape, size, 
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pitch, and spacing of Nozzles, the distance between the nozzle exit and the 

impingement surface, exhaust port location, turbulence generation and confinement 

type. Important process variables are jet Reynolds number ( Rew ), jet to impingement 

surface (H/W), temperature differential ( T ), jet humidity, speed of the 

impingement surface i.e. of the wet sheet relative to the jets and fluid properties. 

1.3.2 Configuration of impinging jets 

Two types of flow configurations are considered in impinging jets: submerged and 

free impinging jets (Figure  1.2). In submerged impinging jets, the exiting fluid from 

the nozzle is the same as the surrounding fluid; however, in free impinging jets the 

fluids are different. 

 
Figure  1.2: a) a submerged jet; b) a free impinging jet (Osama M. A. Al-aqal, 2003) 

There are also different types of jets in regards of geometry: a planar case with jet 

exiting from a slot and an axisymmetric case with a round nozzle. Similarly, other 

geometries are also possible, like jets issuing from square, elliptical, rectangular 

nozzles or oblique jets. The nozzle geometry is believed to have a significant effect 

on the heat transfer to the IJs. Several studies attribute inconsistencies between 

reported data and their research to slight differences in the nozzle geometries. For 

this reason, the effect of nozzle geometry on heat transfer has attracted much 
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research. An important aspect of the nozzle geometry is confinement. An unconfined 

IJ is when a nozzle issuing a jet into an open space, though, it is called semi-confined 

in a case when a nozzle is machined into the plate. Confined jets that are popular in 

industrial applications cause the recalculation of the flow around the jet (Figure  1.3). 

 
Figure  1.3: a) an unconfined impinging jet; b) a confined impinging jet 

(Osama M. A. Al-aqal, 2003) 

1.3.3 Characteristic zones 

The flow field can be separated in three characteristic regions (Figure  1.4): 

impingement, the free jet and wall jet regions. Furthermore, the free jet consists of 

two parts: the stagnation zone, jet zone, and the wall jet zone. 

The jet zone is located directly underneath the nozzle. The fluid entering from the 

nozzle combines with the motionless surrounding fluid and creates a flow field. In 

most applications, the nozzle-to-plate distance is very small to develop the jet flow 

condition. A shear layer forms around the jet and its properties depend strongly on 

the nozzle type. The shear layer thickness becomes comparable with the jet diameter 

downstream, and the behavior of the layer changes significantly. 



8 

 
Figure  1.4: Characteristic zones in impinging jets (Osama M. A. Al-aqal, 2003) 

Depending on Reynolds number and the type of the nozzle, the flow entering from 

the nozzle is either laminar or turbulent. The initial laminar flow experiences 

transition to turbulent flow. The transition begins in the unstable shear layer. The 

vortices are conveyed downstream by the flow. They lose symmetry, grow pair and 

finally break up in eddies, and turbulent flow is developed. 

A potential core is formed in the center of the jet when the velocity profile in the 

nozzle exit is sufficiently flat. It is the flow region, in which the mean velocity is still 

the same as that at the nozzle exit. In this part, the fluid inside the core has not yet 

transferred its momentum to the surroundings. In the core region, stagnation Nusselt 

number increases slightly by increasing in H/W ratio for different values of Reynolds 

number. The potential core flow is inviscid that can be solved by used potential flow 

theories. 
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1.3.4 Heat and mass transfer 

The impinging jet heat transfer distribution (quantified by the Nusselt number, Nu) is 

strongly influenced by the dynamics of the unsteady velocity field. The transfer of 

heat to the wall may be divided into contributions from (1)The mean flow, (2)chaotic 

structures (turbulence), (3)molecular diffusion and (4)coherent structures. If the flow 

is strongly convective (diffusion being negligible) heat behaves as a tracer. Under 

these circumstances, smoke visualizations can be used to characterize the dynamics 

of the flow. If diffusive effects need to be accounted for, i.e. diffusive time-scale 

comparable to the convective, smoke visualizations do not provide the correct picture 

of the flow. It is the case also in the wall region of convection dominated flows, 

where diffusive effects are dominant. 

Promotion of vortex pairing resulted in shorter potential core and thus higher Nu for 

small H/D and lower Nu for large H/D. Suppression of vortex pairing gave the 

opposite effect. Furthermore, the secondary maximum (for H/D = 4) moved 

downstream as vortex pairing was suppressed. 

As described before about Nu number, the geometrical parameter H/D is of great 

importance. If the spacing is greater than the length of the potential core, a fully 

developed jet will impinge onto the wall, i.e. turbulent jet impingement. Maximum 

heat transfer is achieved at the stagnation point Due to a high level of turbulent 

kinetic energy (k) within the center region of the axial jet. Downstream the 

stagnation point, Nu decreases monotonically. If the potential core is longer than 

H/D, the initial region of the wall jet becomes laminar-like, including small values of 

k. Thus, Nu experiences a local minimum at the stagnation point. As the laminar-like 

wall jet accelerates wall shear increases, due to thinning of the velocity boundary 
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layer, and a local maximum skin friction coefficient ( fC ) is obtained at 

approximately r/D=1/2. The maximum in wall friction is accompanied by a 

maximum in wall heat transfer since the flow is laminar. Downstream this maximum, 

the Nu decreases. Furthermore, the ranges of scales grow large, and the wall jet 

becomes turbulent. This results in a second maximum of Nusselt number. In 

addition, the second maximum is influenced by large organized structures. Maximum 

stagnation heat transfer is attained when the H/D is about 6-8 nozzle diameters long. 

A change in Reynolds number for small H/D has a greater influence on wall heat 

transfer than for large H/D. As shown by Angioletti et al. (2003) when Re was 

changed from 1500 to 4000 for H/D=4.5, stagnation point heat transfer increased by 

15% and for H/D=2 resulted in a 56% increase. A second peak of Nu was only 

obtained for the higher Reynolds case. 

In order to assess high wall heat transfer, it is important to pay attention to the inflow 

conditions (disturbances and mean profile) and the nozzle-to-plate spacing of the 

impinging jet. Further improvements of the wall heat transfer can be achieved by 

installing perforated plates prior to impingement or modification of the surface 

conditions. The shape of the outlet nozzle also has a major effect on the wall heat 

transfer, mostly for small H/D. 

1.4 Separated flows 

Flow separation and following reattachment of a sudden expansion or compression in 

the flow channels such as backward and forward facing steps, play an important role 

in the design of a variety of engineering applications where heating or cooling is 

required. These heat transfer applications appear in cooling systems for combustion 
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chambers, electronic equipment, energy systems equipment and chemical processes, 

cooling passages in turbine blades, high-performance heat exchangers and 

environmental control systems. Mixing of high and low energy fluid occurs in the 

reattached flow region of these devices that affect their heat transfer performance. 

For this reason, the problem of laminar and turbulent flow over forward and 

backward-facing step geometries in natural, forced, and mixed convection have been 

widely investigated numerically and experimentally. 

Separation, recirculation and reattachment occur whenever a fast-flowing fluid is 

required to bypass an obstacle or when a confining wall undergoes a rapid change in 

orientation to form a strongly curved convex surface. 

The objectives followed in different studies have varied significantly. However, the 

emphasis has been on understanding and capturing the separation process. 

Particularly on resolving recirculation zone, the structure of the separated shear layer 

it envelops, describing the location of reattachment, understanding and predicting the 

processes governing the flow recovery in the wake region following reattachment. 

All these issues are sufficiently important to be familiar to the most of practical and 

idealized laboratory flows, and therefore studies tended to concentrate only because 

of the availability of experimental data suitable for validation. For example, Kim et 

al. (1980), Eaton & Johnston (1980) and Driver & Seegmiller (1985) have obtained 

particularly widespread and precise experimental data for backward-facing step flow.  

The discovery of boundary layer theory by Ludwig Prandtl in the early twentieth 

century was the beginning to the extensive research on separated flows. Separated 

flows are common in numerous engineering applications such as turbine and 
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compressor blades, buildings or cars, aircraft wings, diffusers and over airfoils, 

suddenly expanding pipes and combustors. Flow recirculation is also used as an 

efficient way to stabilize flames in premixed combustion. The characteristics of a 

separated flow have been studied for decades by experimentalists to understand the 

physics of the separated shear layers and their instability mechanisms. The 

instabilities in the free shear layers are the source to distinctly visible large coherent 

structures. The existence of coherent structures in almost every turbulent flow has 

been well documented, and this makes it even more interesting to study such 

separated shear flows. 

Besides the academic interests, knowledge of separated flows can also be applied to 

many practical applications. Two of their main applications include the automobile 

and aircraft industries, which are developing fuel efficient designs to reduce 

consumption of the rapidly-depleting non-renewable resource and minimize 

greenhouse gas emission. In an aerodynamic perspective, drag is considered as one 

of the primary reason for inefficient fuel consumption. Studies by Roos and 

Kegelman (1986) demonstrated that by actively controlling the flow at separation, 

characteristics of the coherent structures can be modified and consequently alter the 

drag characteristics. These aspects of the flow make it necessary to understand the 

instabilities and characteristics of coherent structures for controlling flow dynamics 

to achieve significant drag reduction or lift enhancement. Apart from drag reduction, 

understanding the fluid-structure interactions of these separated shear layer 

instabilities can be very useful in controlling the noise and vibration characteristics 

of such flows. 
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1.4.1 Characteristics of separating flows 

Among the internal separated flows, the backward-facing step (BFS) flow has 

received much attention over the past decades, and it has served as a test case for 

numerical methods. BFS flow was chosen because it has a simple geometry, but 

contains many flow regimes relevant to practical engineering. In addition, the BFS 

has perhaps the most extensive literature base of any benchmark flow, with several 

reliable datasets for comparison. 

Flow over a backward-facing step produces recirculation zones where the fluid 

separates and forms vortices. For turbulent flow, the fluid separates at the step and 

reattaches downstream, as shown in Figure  1.5. Only a single recirculation zone 

develops for turbulent flow, and the reattachment point is believed to be independent 

of the Reynolds number and depend only on the ratio of inlet height to outlet height. 

To simplify the flow characteristics, researchers conducted experiments on various 

geometries, which include fence, rib, suddenly expanding pipes, bluff body with a 

splitter plate or blunt leading edges, cavities, forward and backward facing steps. 

 
Figure  1.5: Flow characteristics behind a BFS (Driver et al. 1987) 
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The backward-facing step is considered as the ideal official separated flow geometry 

due to its single fixed separation point and the wake dynamics that are not affected 

by the downstream disturbances. A diagram of the wake characteristics behind a 

backward-facing step is shown in Figure  1.6. 

 
Figure  1.6: Backward-facing step flow features (J. Rajasekaran 2011) 

The wake of a backward-facing step has unique features mainly in two regions: the 

free shear layer and low-velocity re-circulating bubble. Due to instabilities, the 

vortices in the shear layer roll up and pair with the adjacent vortices to form larger 

coherent structure. These vortices entrain fluid from the region below and trigger the 

recirculation. The free shear layer reattaches at the bottom wall due to adverse 

pressure gradient in the wake of the step. 

In the separation of the flow, a curved and highly turbulent free shear layer composes 

first. In this layer, turbulence anisotropy will not normally be as large as in the 

boundary layer prior to separation, yet it can have a greater effect on mean flow 

characteristics than that in the parent boundary layer. Curvature tends to reduce the 

shear stress and hence the level of fluid entrainment into the shear layer with an 
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interaction that dictates the intensity of curvature in the shear layer and hence the 

reattachment position. Additionally, gradients of normal stresses contribute 

significantly to momentum transport. As the flow approaches reattachment, it is 

subjected to severe average strain, yet this can be shown not to contribute 

measurably to the turbulence-generation process; here too, normal-stress anisotropy 

plays a crucial role. Apart from provoking severe flow curvature, associated with the 

impingement process, the wall tends to attenuate turbulent fluctuations normal to it 

and to enhance wail-parallel components, the result being an unusually high level of 

normal-stress anisotropy. Finally, within the recirculation zone, curvature is high and 

affects the turbulence structure through the same mechanism identified above in 

relation to the free shear layer following separation. 

1.5 Objective and Overview of the Thesis Work 

The objective of the current study is to investigate the heat transfer and flow 

characteristics of impinging slot jet and backward-facing step flows by using various 

two-equation turbulence models. 

The fluid-thermal and skin friction characteristics of the two cases of jet 

impingement and a backward-facing step model are investigated numerically, 

utilizing a finite volume method based FORTRAN unstructured code with a low 

Reynolds version of k   and three versions of k   turbulence models. Through 

numerical analyses, a detailed description of two-dimensional fluid flow pattern is 

obtained. The distribution of Nusselt number and skin friction are calculated on the 

bottom surface and the reattachment points are calculated for the backward-facing 

step case in addition. These numerical results are validated with experimental data 



16 

obtained from literature. The effect of the Turbulence intensity variation on the heat 

transfer and flow characteristics of test cases is also reported. 

Nusselt number and skin friction distribution are compared for two cases of 

impinging jets with different Reynolds numbers of 10,400 and 8,100. Skin friction 

and reattachment length are computed for a backward-facing step model with 

Reynolds number 28,000. 
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Chapter 2  

LITERATURE SURVEY 

2.1 Impinging slot jet flow 

During the past years, various experimental and numerical models have been studied 

on jet impingement flow structure or heat and mass transfer procedure. Considerable 

effort has been devoted toward the development of efficient cooling schemes while 

attempting to understand the related flow and transfer mechanisms. Gardon and 

Akfirat (1966), Sparrow and Wong (1975) achieved the most wide-ranging 

experimental data on submerged, confined jet impingement. Their heat and mass 

transfer data for two-dimensional slot jets impinging normally on a flat plate of 

constant temperature are still commonly used. The primary concerns in the design of 

an impinging jets system are the regime of flow, flow rate, jet configuration, jet-to-

target surface, spacing and any other geometric parameters. Gordon and Akfirat 

(1966) presented pressure and heat transfer coefficient distribution along the 

impingement solid surface for jet Reynolds number ranging from 450 up to more 

than 20,000 and with nozzle-to-wall spacing H/W from 2 to 32. Sparrow and Wong 

(1975) focused on laminar slot jets and reported mass transfer rates in addition to 

heat transfer coefficients. Both papers have demonstrated that transfer rates decrease 

as H/W increases and increase as Reynolds number increases, consistent with the 

understanding that transfer rates are enhanced when there is greater flux. Meanwhile, 

the later paper also concluded that velocity profile has a significant effect on the 
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transfer characteristics near the impinging region, although the total transfer 

coefficient along the wall is mostly unaltered. 

Martin (1977) provided the first summary review of the studies on impinging gas 

jets. The report covered basic topics such as hydrodynamics of impingement flow, 

definition of local properties of jets, influences of boundary conditions, turbulence 

promotes and swirling jets. There were also brief comments on complex geometries 

and angled impingement in that paper. There have been many subsequent 

experimental results for either laminar or turbulent regular impinging jets. They 

reproduce the heat transfer rates reported by Gardon and Akfirat (1966). It is 

observed that transfer coefficients show a secondary local peak at some distance 

downstream the stagnation point by the time the Reynolds number is greater than a 

certain value, typically 900, in comparison with the monotonic distribution along the 

wall for lower Reynolds jet flow. Stevens and Webb (1991) have reported this 

secondary peak at high Re as well. Downs and James (1987) has presented a detailed 

literature survey of impingement jet experiments, in which research findings related 

to jet impingement characteristics were summarized and significant physical, as well 

as geometric parameters examined in earlier studies, were classified and listed. 

Aside from the experimental studies, a number of efforts have also been devoted to 

numerical computation of jet impingement. The essential tasks have been to predict 

jet impingement and the induced recirculation flow structure: and to calculate the 

heat transfer rate along the impingement wall. Varieties of schemes have been 

implemented for turbulent and laminar jet flow. Primary studies have been concerned 

with normal impingement, either with or without confinement. Looney and Walsh 

(1984) have investigated mean-flow and turbulent characteristics of free and 
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impinging jet flows numerically by solving Navier-Stokes equations first two-

dimensional model of laminar and turbulent IJ for altered ratios (H/W) of the nozzle 

height (H) to nozzle width (W). A correlation between stagnation Nusselt number, 

Reynolds number and H/W has been proposed for stagnation zone heat transfer. 

Polat et al. (1989) have carried out a detailed review of the numerical methods and 

computational results for flow and heat transfer under jet impingement on flat 

surfaces. Mostly, the computations can capture some of the measured quantities 

reasonably well, such as the distribution of pressure and Nusselt number Nu nearby 

the impingement region and the velocity profiles along the jet axis. However, 

unresolved issues remain. Only a couple of studies report computations for large 

nozzle-to-wall spacing, either clue to numerical instability or the steady flow 

assumption; numerical results never reveal the secondary peak of Nusselt number 

along the wall as reported in experiments at higher jet Reynolds numbers. This later 

problem still exists even when different turbulence models are implemented for 

turbulent jet flow. In addition, since there is a lack of flow field measurements inside 

a jet impingement system sometimes numerical computations from various studies 

present contradictory predictions particularly about the secondary recirculation 

bubble off the impingement wall downstream of the primary recirculating vortex. 

According to Polat et al. (1989), a recirculating bubble may act as an insulator 

between the jet flow and the plate, therefore causing a drastic reduction in heat 

transfer. Meanwhile, others argued that the local hump corresponds to the point at 

which turbulence has been fully developed (Liu et al. 1991), or it is attributed to the 

transition from a laminar to turbulent boundary layer in the parallel flow region along 

the plate. 
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Polat et al. (1989) gave a comprehensive literature review in experimental and 

numerical aspects of impingement heat transfer, highlighting that the standard k   

model with different wall functions fails to predict the stagnation heat transfer 

accurately. 

Yin et al. (1990) developed a model that was originally based on low-Reynolds 

number k   model to predict turbulent natural convection boundary layers. In the 

model, they divided the velocity into two components, i.e., a forced convection 

component and a buoyancy-influenced component. A two-equation model for the 

energy equation by Nagano and Kim (1988) has been used for the calculation of the 

temperature field. They found that the combination of the modified low-Reynolds 

number k  and the two-equation model for the energy equation be the best way to 

predict natural convection.  

Heyrichs. K., Pollard. A (1995) have investigated heat transfer in separating and 

impinging turbulent flows. The performance of k   and k   turbulence models 

is evaluated, especially the low Reynolds number regions. In the k   model, six 

low Reynolds number and three wall functions assessed. The results indicate that the

k  model is numerically is easy to implement and reveals better performance for 

prediction of convection heat transfer in complex turbulent flows. 

Hosseinalipour and Mujumdar (1995) performed a comparative assessment of 

various turbulent models for a confined impingement configuration with an aspect 

ratio of H/W=1.5. Concluded that the predicted local Nusselt numbers achieved 

using low Reynolds number k   models in the stagnation region are in good 
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agreement with the experimental data, but the stagnation zone is difficult to predict 

accurately with any k   models. 

Behnia, M, et al. (1998) have studied on the problem of cooling of a heated plate by 

an axisymmetric isothermal fully developed turbulent jet. Computations were 

performed with the normal-velocity relaxation turbulence model (
2v f  model). 

Local heat transfer predictions were compared to the available experimental data. 

Computations also performed with the widely used k   model for comparison. The 

2v f  heat transfer predictions are in excellent agreement with the experiments 

whereas the k   model does not adequately resolve the flow features significantly 

over-predicts the rate of heat transfer and produces physically unrealistic behaviors. 

Behnia, M. et al. (1999) have studied on an elliptic relaxation turbulence model 

2(  model)v f  to simulate the flow and heat transfer in circular confined and 

unconfined impinging jet configurations. The model has been validated against 

available experimental data sets. Results have been obtained for a range of jet 

Reynolds numbers and jet-to-target distances. The effect of confinement on the local 

heat transfer behavior has been determined. It has been shown that confinement leads 

to a decrease in the average heat transfer rates, but the local stagnation heat transfer 

coefficient is unchanged. The effect of confinement is only significant in very low 

nozzle-to-plate distances (H/D<0.25). In contrast, the flow characteristic in the 

nozzle strongly affects the heat transfer rate, especially in the stagnation region. 

Quantitative (up to 30% difference) and qualitative differences have been obtained 

when different nozzle velocity profiles were used. 
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Sezai and Mohamad (1999) have studied the flow and heat transfer characteristics of 

impinging laminar slot jets issuing from rectangular slots of different aspect ratios 

numerically through the solution of three-dimensional Navier-Stokes equations in 

steady state. Furthermore, Soong et al. (1999) have performed time-dependent 

computations to investigate the flow structure, bifurcation and flow instability 

involved in confined plate twin-jet flows numerically. 

Shi et al. (2002) systematically studied the effects of turbulence models, near wall 

treatments, turbulent intensity, jet Reynolds number and boundary conditions on the 

heat transfer under a turbulent slot using the standard k   and RSM (Reynolds 

Stress Model) models. Their results indicate that both standard k   and RSM 

models predict the heat transfer rates inadequately, especially for low H/W aspect 

ratios. For wall-bounded flows, large gradients of velocity, temperature and turbulent 

scalar quantities exist in the near wall region and thus to incorporate the viscous 

effects it is necessary to integrate equations through the viscous sublayer using finer 

grids with the aid of turbulence models. 

S.J. Wang, A.S. Mujumdar (2005) have compared Five versions of low Reynolds 

number k   models with the available experimental data for the prediction of the 

heat transfer under a two- dimensional turbulent slot. A correction model proposed 

which was named as “Yap correction” for reducing the turbulence length scale in the 

near wall region. This correction was tested with low Reynolds number k   models 

and found that for most of the models it is capable of improving the predicted local 

Nusselt number in a good agreement with the experimental data in wall jet and 

stagnation regions. Effects of the magnitudes of the turbulence model constants were 
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also carried out for two low Reynolds number k   models. They found that the set 

of model constants identical to those in the high Reynolds number k   model 

performs better than the original ones for jet impingement configurations. 

M. A. R. Sharif and K. K. Mothe (2009) have evaluated the performance of several 

turbulence models in prediction of impingement slot jet onto flat and concave 

cylindrical surfaces, against experimental data. The accuracy of heat transfer 

prediction near the impingement region depends greatly on the jet-to-target surface 

distance. When the impingement surface is within the potential core of the jet, the 

turbulence models grossly overpredict the Nusselt number in the impingement 

region, but in the wall jet region the Nusselt number prediction is fairly accurate. The 

two-layer near-wall treatment significantly improves the Nusselt number prediction 

accuracy compared to the equilibrium wall function approach. Overall, M. A. R. 

Sharif and K. K. Mothe (2009) concluded that the RNG k   model with the two-

layer near-wall treatment and the Menter-SST k   model predict the Nusselt 

number distribution better than the other models for the flat plate as well as for the 

concave surface impingement cases. 

2.2 Backward facing step flow 

The BFS flow has been studied intensively for at least four decades and is possibly 

the most popular benchmark flow. Literature is extensive, with contributions from 

experimental, theoretical and computational fluid dynamics. Eaton and Johnston 

(1981) explain that the BFS is popular because it is the “simplest reattaching flow 

with a region of separation and reversed flow”. Despite this geometric simplicity, the 

BFS flow is complex and composed of many regions of different flow regimes that 

make for a thorough test of PIV and CFD techniques, particularly turbulence models. 
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Thangam and Hur (1991) note that “the BFS is often used for analyzing the 

efficiency of CFD algorithms and turbulence models, since it embodies several 

crucial aspects of turbulent separated flows”.  

Understanding of the BFS flow has improved with advances in fluid measurement 

technology. The recirculating and highly unsteady BFS flow presents a considerable 

challenge for most experimental techniques (Adams and Eaton 1988). Early studies 

relied on flow visualization methods, such as oil, smoke, ink or tufts (Armaly et al. 

1983, Kim et al. 1978) and experiments were limited to low speed laminar regions. A 

few studies investigated the turbulent BFS, but measurements were limited to low 

turbulence regions outside of the recirculation region (Kline 1959, Kim et al. 1980, 

Bradshaw and Wong 1972). PIV has recently revealed the global BFS flow, at higher 

resolution than previously possible (Scarano and Riethmuller 1999, Shen and Ma 

1996, Kasagi and Matsunaga 1995).  

Reliable CFD routines, such as Large Eddy Simulation (LES) and Direct Numerical 

Simulation (DNS) are also contributing to BFS research. They are revealing the 

behavior of the complex, unsteady, 3D BFS flow structures (Le et al. 1997, 

Kobayashi et al. 1992). BFS knowledge is well-summarized in the reviews by Eaton 

and Johnston 1981, Eaton and Johnston 1980, Adams et al. 1984, Simpson 1996, 

Kim et al. 1978. 

A detailed experimental study for an expansion ratio close to 2 and a downstream 

aspect ratio close to 18, also raising the question of three-dimensionality of step flow, 

was conducted by Armaly et al. (1983). Three dimensionality manifests itself in a 

discrepancy in primary recirculation zone length between experiments and two-
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dimensional simulations for Reynolds numbers above Re ≈ 400. As, at this Reynolds 

number range, a secondary recirculation region appears at the channel upper wall, 

Armaly et al. (1983) suggested that the discrepancy in primary recirculation zone 

length could be attributed to the secondary recirculation region destroying the two-

dimensional character of the flow. 

Numerical simulation studies of step flow including sidewalls started about a decade 

ago (see Jiang et al. 1993, and references therein). More recently, Williams & Baker 

(1997) performed three-dimensional numerical simulations of laminar flow over a 

step, with sidewalls, for the same geometry as in Armaly et al. (1983) and for 

Reynolds numbers up to 800. They found that the presence of sidewalls results in the 

formation of a wall-jet, located at the channel lower wall and pointing from the 

sidewall towards the channel mid-plane. This wall-jet is already present at low 

Reynolds numbers (Re = 100), its strength increasing with Reynolds number. Chiang 

& Sheu (1999) performed detailed three-dimensional simulations of laminar flow, for 

the same expansion ratio as Armaly et al. (1983), for various Reynolds number and 

aspect ratio values. They found that at Re = 800, the flow structure in the channel 

mid-plane is similar to that of two-dimensional flow only for outflow channel aspect 

ratios of the order of 50 and higher. Chiang & Sheu (1999) also gave a discussion of 

streamwise vortex development. Barkley et al. (2002) have shown that, for an 

expansion ratio of 2 and in the absence of sidewalls, the flow structure becomes 

three-dimensional (and steady) around Re=1000, due to a three-dimensional 

instability. Flat streamwise rolls lying within the primary recirculation zone 

characterize the critical eigenmode responsible for this three-dimensional transition. 
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Thangam & Knight (1989) investigated the influence of the step expansion ratio on 

the reattachment length of laminar flow, 33 ≤ Re ≤ 600. The expansion ratios 

considered were in the range 1.33 ≤ r ≤ 4, where r is defined as the ratio of the 

outflow channel height to the height of the inlet channel. It was found that the non-

dimensional (normalized by the step height H) reattachment length increases at 

increasing expansion ratio. For Re=200, an approximately 65% longer reattachment 

length was reported for r=4, compared to r=1.49. Interestingly enough, the 

dependence of normalized reattachment length on expansion ratio followed the 

opposite trend in the turbulent regime. This was observed in the experiments of 

Ötügen (1991), who conducted experiments in closed backward-facing step 

geometry with varying expansion ratios, while keeping the inflow conditions 

unaltered. The Reynolds number was 16,600 based on free stream velocity and 

inflow channel height. Most measurements were done at expansion ratios of r=1.5, 

2.0, and 3.13. Ötügen (1991) observed an increase in turbulence intensity at 

increasing expansion ratio; thus, Ötügen concluded that the observed decrease in 

normalized reattachment length with expansion ratio is the consequence of higher 

turbulence intensities. Based on a review of the literature on turbulent flow over a 

step, Eaton & Johnston (1981) summarized five parameters which, to a large extent, 

define the flow structure downstream of the sudden expansion: (i)freestream 

turbulence level, (ii)aspect ratio of the channel, (iii)initial boundary layer state, 

(iv)pressure gradient and (v)initial boundary layer thickness. Isomoto & Honami 

(1989) have since confirmed a strong negative correlation of the recirculation region 

length with maximum turbulence intensity near the wall at separation. For the fully 

turbulent flow, Papadopoulos & Ötügen (1995) report an aspect ratio (AR) invariant 

reattachment length for AR>10. However, spanwise-dependent flow in terms of 
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velocity and wall pressure was observed downstream of reattachment, even for larger 

aspect ratios. This observation was attributed to the presence of a streamwise vortex 

close to each channel sidewall. 

Several experimental studies have been reported in the last decades. For example, 

those carried out by Eaton and Johnston (1980), Vogel and Eaton (1985), Kim et al. 

(1980) and Driver and Seegmiller (1985). Most of them have then been numerically 

simulated. For example, Heyerichs and Pollard (1996) studied the configuration of 

Vogel and Eaton (1985), and presented results for global parameters i.e. Nusselt and 

Stanton number for several linear eddy viscosity models. Park and Sung (1995) 

applied a new model to this case and compared mean velocity, normal turbulent 

stresses at two positions and skin friction coefficient along step wall. Thangam and 

Speziale (1992) used the experimental data by Kim et al. (1980) to evaluate standard 

k   and (Nonlinear Eddy Viscosity Model) NLEVM models with different 

approaches near solid walls. They presented results for mean velocity, shear stress 

and global variables. 

Eaton & Johnston (1980), Westphal et al. (1984), Adams & Johnston (1988), and 

Driver & Seegmiller (1985) all measured the skin friction coefficient fC  on the step 

wall. Although there is a large variation in Reynolds number and expansion ratio 

among these experiments, they all reported a high level of skin friction magnitude 

fC in the recirculation region. The present study showed that the peak value of fC

can be significantly higher at low Reynolds numbers. This finding prompted a 

companion experimental investigation at the same Reynolds number and expansion 

ratio as the present numerical study (Jovic & Driver 1994). 
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Kuehn (1980), Durst & Tropea (1981), Ötügen (1991), and Ra & Chang (1990) 

studied the effects of expansion ratio (ER) on the reattachment length. The 

reattachment length was found to increase with ER in these studies. Armaly et al. 

(1983) studied the effect of Reynolds number on the reattachment length. They found 

that reattachment length increased with Reynolds number up to Re 1200H 

(Reynolds number based on step height and inlet free-stream velocity 0U ), then 

decreased in the transitional range 1200< ReH <6600, and remained relatively 

constant when the flow became fully turbulent at ReH >6600. Their findings agreed 

well with experiments by Durst & Tropea (1981) and Sinha, Gupta & Oberai (1981). 

Other parameters affecting reattachment length were also investigated: upstream 

boundary layer profile (Adams et al. 1984), inlet turbulence intensity (Isomoto & 

Honami 1989), and downstream duct angle (Westphal el al. 1984). 

Investigations of the flow velocity profiles and turbulence intensities in the recovery 

region were conducted by Bradshaw & Wong (1972), Kim, Kline & Johnston (1978), 

Westphal et al.(1984), and Adams et al.(1984). These experiments showed that, even 

though the mean streamwise velocity profiles were not fully recovered at more than 

50 step heights behind the separation, a full recovery of the log-law profile near the 

wall was attained as early as 6 step heights after the reattachment. 

Several numerical simulations of the backward-facing step flow were also conducted, 

but largely confined to two-dimensional calculations (Armaly et al. 1983; Durst & 

Pereira 1988; Kaiktsis et al. 1991). Three-dimensional calculations were also 

performed by Kaiktsis et al. (1991) and by Friedrich & Arnal (1990) using the large-

eddy simulation technique.  
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Chapter 3  

UNSTRUCTURED DISCRETIZATION OF NAVIER- 
STOKES EQUATION 

3.1 Introduction 

Many engineering problems involve complex geometries that do not fit exactly in 

Cartesian co-ordinates or one of the other systems. When the flow boundary does not 

coincide with the co-ordinate lines of a structured grid, it could be proceeded by 

approximating the geometry. For most of the complex geometries, it may be required 

to use many cells, and the logical extension of this idea is the unstructured grid. This 

gives infinite geometric flexibility and uses the computing resources efficiently for 

complex flows, so this technique is now widely used in industrial CFD. An 

unstructured grid can be thought of as a limiting case of a multi-block grid where 

each individual cell is treated as a block. The advantage of such an arrangement is 

that the grid imposes no implicit structure of co-ordinate lines – hence the name 

unstructured – and the mesh can be easily concentrated where necessary without 

wasting computer storage. Moreover, control volumes may have different shapes, 

and there are no restrictions on the number of neighboring cells. In practical CFD, 

triangles or quadrilaterals are most often used for 2D problems and tetrahedral or 

hexahedral elements in 3D ones. Figure  3.1 shows a triangular unstructured mesh for 

the calculation of a 2D flow over an airfoil. 
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Figure  3.1: A triangular grid for a three-element airfoil (Versteeg 2007) 

The best advantage of the unstructured mesh is that it allows the calculation of flows 

in or around geometrical features of arbitrary complexity without spending a long 

time on mesh generation and mapping. Grid generation is fairly straightforward 

(especially with triangular and tetrahedral grids), and automatic generation 

techniques, originally developed for finite element methods, are now widely 

available. Furthermore, mesh refinement and adaption (semi-automatic mesh 

refinement to improve resolution in regions with large gradients) are much easier in 

unstructured meshes. In the following sections, the unstructured methodology is 

explored in more detail as it is now the most popular technique and included in all 

commercial CFD codes on the market today. 

3.2 Discretization in unstructured grids 

Unstructured grids are the most general form of grid arrangement for most complex 

geometries. In the cell-centered method the nodes are placed at the centroid of the 

control volume as shown in Figure  3.2a. In the vertex-centered method, the nodes are 

placed on the vertices of the grid. This is followed by a process known as median-
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dual tessellation, whereby sub-volumes are formed by joining centroids of the 

elements and midpoints of the edges, as illustrated in Figure  3.2b. The sub-volume 

surrounding a node then forms the control volume for discretization. Both cell-

centered and vertex-centered methods are used in practice. Developing the ideas of 

discretization in unstructured grids for the cell-centered method, which is simpler to 

understand, and, since a control volume always has more vertices than centroids, it 

has slightly lower storage requirements than the vertex-centered method. 

 
Figure  3.2: Control volume construction in 2D unstructured meshes: 
(a) cell-centered control volumes; (b) vertex-based control volumes 

A brief summary of the discretization process used in the original code is given 

below. Detailed information can be found in the lecture notes of I. Sezai (2013). 

The discretization in unstructured meshes can be developed from the general steady 

state transport equation which is given by: 

( ) ( ) cddiv div grad s s     v   (2.1) 
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where s is the source term due to body forces and pressure for the case of 

momentum equations, or energy generation per unit volume in the case of energy 

equation. In general, it can be written in linearized form as 

eqn eqn
c ps s s     (2.2) 

The term cds is the diffusion source terms involving cross derivatives in the 

momentum equations. The cross derivative source terms cds  are zero for 

incompressible fluids if μ is constant. 

Integrating and applying the Gauss' divergence theorem gives 

Convection term Diffusion term Cross derivative diffusion termSource term

( ) ( ) ( )i

A A CV A

d grad d s dV grad dA            v A A u e n

  
     (2.3) 

where ei is the unit vector in direction i, (ex, ey, ez for x-, y- and z-momentum 

equations, respectively). 

Approximating the surface integrals in terms of summations gives 

1 ( )

Convection term Diffusion term Source term

.
fPn

cd
f f f f f

f f nb P CV

m s dV S  
 

      A

  

  (2.4) 

Or 

1 ( )

fPn
conv dif cd
f f

f f nb P CV

J J s dV S 
 

       (2.5) 

where the cross derivative diffusion source term cdS  are: 

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

cd x x x x y x z
u f f f f f f

f nb PS

cd y y x y y y z
v f f f f f f

f nb PS

cd z z x z y z z
w f f f f f f

f nb PS

S dA u A v A w A

S dA u A v A w A

S dA u A v A w A

   

   

   







        

        

        







u n

u n

u n

  (2.6) 
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where, ,x y
f fA A and z

fA  are the x, y and z- components of the surface area vector. The 

convective flux at the cell faces conv
f f fJ m    can be written as the sum of the upwind 

value and other higher order terms (i.e. LUD) which are evaluated at the previous 

iteration n–1 as 

1( )conv U H U n
f f f f f f fJ m m             (2.7) 

where H
f  is the face value of   obtained from a higher order method and U

f fm   is 

found from upwind method expressed in a compact form as: 

max( ,0.) min( ,0.)U
f f f P f Nm m m     

  (2.8) 

Substituting U
f fm   from Equation (2.8) into Equation (2.7) 

max( ,0.) min( ,0.)

max( ,0.) min( ,0.)

conv
f f P f N

oldH
f f f P f N

J m m

m m m

 

  

 

    

 

  
  (2.9) 

 
Figure  3.3: Diffusion flux across a surface (Sezai I. 2013) 

The calculation of the diffusion flux at an internal face is given by 

orthogonal term non-orthogonal term

' '
.dif d dN P N P

f f f f f f f f

PN PN

J A A
d d

   


    
     

NN PP
A

 

  (2.10) 

according to Figure  3.3: 
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' ( )

' ( )

d
f f f

PN f

f f

f f

A

d






  

  

A A

A PN

PP Pf Pf n n

NN Nf Nf n n

  (2.11) 

The orthogonal term is treated implicitly whereas the non-orthogonal term is treated 

explicitly.  

Writing the convection and the diffusion terms in a deferred correction manner, 

Equation (2.4) can be written as 

 

( ) ( )

1 1

1( ) ( )

1 1

1( )

1

max( ,0.) min( ,0.)

( ) ' '

max( ,0.) min( ,0.)

f f

f f

f

n P n P

f P f N
f f

nn P n P

F d F d
N P N P

f fPN PN

nn P

H cd
f f f P f N P

f

m m

A A

d d

m m m s V S 

 

   

  

 



 







  
       

 

      

 

 



NN PP

 

  

  (2.12) 

which can be written in the general form of: 

( )
P P N N

N nb P

a a S 


    (2.13) 

where 

eqn dc pres cd
c PS s V S S S     

( )

min , 0 ,        ,
f d o eqn

N f P N P p P
N nb PPN

A
a m a a a s V

d 


           

 

( )
1

1

1( )

1

max( ,0.) min( ,0.)

' '

f

f

n P
ndc H

f f f P f N
f

nn P

F d
N P

f PN

S m m m

A

d

  

 









     

 
     

 



 NN PP

  
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1
non-conservative

conservative

1
non-conservative

conservative

( )       for -momentum equation

( )       for -momentum equation

f

f

n
x x
P P f f

f

pres

n

y y
P P f f

f

p V p x

S

p V p y






    




 
    







A

A







 
cdS = cross derivative diffusion term defined in Equations (2.6). 

 = source terms per unit volume in the differential equation

      = body forces per unit volume in momentum equations

      = energy generation rate per unit volume in energy equation

s

 

nb(P) → refers to the neighbor nodes of node P, 

nf(P) → neighbor faces of the control volume of node P, 

dc → deferred correction (diffusion and convection source terms resulting from the 

 deferred correction procedure used during discretization of the differential 

 equation) 

pres → pressure 

(n–1) → previous iteration 

Generally, the source terms are linearized as in equation c pS S S    where Sc is 

added to S and (–Sp) is added to aP. 

In order to improve the convergence characteristics of the steady flow equations 

underrelaxation is usually applied. After relaxation, Equation (2.13) becomes 

( )

1 1 n
P P N N P P

N nb P

a a S a


  
 


     (2.14) 

where n
P  is the previous iteration value of  . 

Calculation of f  for Convection Terms: 
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Upwind difference method (UD): 

   for   0

   for   0

f P f

f N f

m

m

 

 

 

 




  (2.15) 

Linear Upwind Difference Scheme (LUD) 2nd order Upwind Difference Scheme 

(SOU): 

LUD formulation along a line in 1-D is: 

1

2
U P U

f f x
x

 
 

 
   

 
  (2.16) 

 
Figure  3.4: Linear Upwind Difference Scheme (LUD) illustration (Sezai I. 2013) 

where subscript U refers to upwind node and it is illustrated in Figure  3.4. This can 

be extended to 3D space using Taylor series expansion around point U: 

U
f f U U    r   (2.17) 

according to Figure  3.4 

,   ,        for  0

,   ,        for  0

U
f P U P U Pf f P

U
f N U N U Nf f N

m

m

   

   

       

      

r r r r

r r r r




  

or 
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      for  0

      for  0

f P P Pf

f N N Nf

m

m

  

  

   

   

r

r




  (2.18) 

The pressure correction equation can be written as:  

( )

( )

*

( ) ( )

( )

( )

( )
( )

( )
       ( ) '

p p p
P P N N P

N nb P

f f fp
N f
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P N

N nb P
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P P f f f f t f
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f f f

f N P
f nb P f

a p a p b

a

a a

b V m p
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p p



 




  





 





 



  









     




    







 



D A A

A PN

D A

D A A
PP

A PN



  (2.19) 

Mass correction given can be written as 

( ) ( ' ')p p
f N N P N N Pm a p p a p p            NN PP   (2.20) 

After solving the p' field from Equation (2.19) the mass flow rate at the surfaces are 

corrected by using Equation (2.20) 

* ( ) ( ' ')p p
f f N N P N N Pm m a p p a p p           NN PP    (2.21) 

The nodal velocities are corrected as: 

* *
P P P P P Pp     v v v v D   (2.22) 

Pressure field is corrected by using: 

*
P P p Pp p p     (2.23) 

P  = pressure under-relaxation factor 

SIMPLE Algorithm: 

The SIMPLE algorithm, which was implemented in the code, is using the following 

steps for solving pressure-velocity fields coupling: 
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Step 1: Solve the discretized transport Equation (2.14) for  = u and  = v 

1

( )

(1 )
P nP

P N N P
N nb P

a a
a S   

 




      

Step 2: Calculate mass flow rate at cell faces: 

 ( ) ( ' ')p p
ff f f f f f f N N P N N Pm p a p p a P P              v A D A NN PP   

Step 3: Solve pressure correction Equation (2.19) 

( )

p p p
P P N N P

N nb P

a p a p b  



     

Step 4: Correct velocities and pressure at points P using Equations (2.22) and (2.23) 

* * *
P P P P P P P P p Pp p p p        v v v v D   

Step 5: Correct mass flow rate using Equation (2.21) 

* ( ) ( ' ')p p
f f N N P N N Pm m a p p a p p           NN PP    

Step 6: Solve the discretized transport Equation (2.14) for other unknowns (i.e. for   

= Temperature) 

1

( )

(1 )
P nP

P N N P
N nb P

a a
a S   

 




      

Step 7: Repeat steps 1 to 6 until convergence. 
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Chapter 4  

TURBULENCE MODELING EQUATIONS 

4.1 Introduction 

The ability to predict turbulent flow and associated heat transfer by mathematical 

modelling is of considerable practical value. Lately, there has been extensive 

improvement in Computational Fluid Dynamics (CFD), where it is possible to 

predict the performance of the system and optimize its goals efficiently by solving 

numerical computation with fewer experiments. 

In general terms, the criteria for a nice turbulence model are: (1)minimum 

complexity (i.e. contain a minimum number of differential equations; (2)empirical 

constants and functions but still provide sufficiently accurate and physically realistic 

results); (3)robustness (i.e. promote stable convergence and not have difficulty 

resolving the steep gradients in near-wall regions); (4)possess extensive universality 

(i.e. can be applied to a large variety of flows without adjusting the empirical 

constants). For practical engineering calculations, two-equation turbulence models 

have become the most popular since they are relatively simple to program and place 

much lower requirements on computer resources than other more complicated 

models (e.g. algebraic and Reynolds stress models). Consequently, when cost 

effective, timely solutions of flows spanning large domains with complicated 

geometries are required, only two-equation models are currently practical. The main 

difference between two-equation models is the treatment of near-wall regions and 
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choice of the length scale variable, the equation for the transport of turbulence 

kinetic energy (k) being common to all. As well, a significant problem with the 

selection of a turbulence model is that it is often difficult to assess those models 

available since they have been tested on different test cases using a variety of grid 

sizes and numerical schemes. Therefore, it is not clear which proposed models 

provide the best performance, especially in the case of complex flows that involve 

impingement or boundary separation and reattachment.  

 This dissertation attempts to resolve small part of this issue by applying and 

comparing various two-equation turbulent models to different test cases (impinging 

and separating flows), which all use a standard numerical scheme and identifying 

preferred methods of predicting various cases performance. 

4.2 Momentum Transport Governing Equation 

The Reynolds number of a flow gives a measure of the relative importance of inertia 

forces (associated with convective effects) and viscous forces. In experiments on 

fluid systems, it is observed that at values below the so-called critical Reynolds 

number Recrit  the flow is smooth and adjacent layers of fluid slide past each other in 

an orderly fashion. If the applied boundary conditions do not change with time the 

flow is steady. This regime is called laminar flow. 

At values of the Reynolds number above Recrit  a complicated series of events takes 

place which eventually leads to a radical change of the flow character. In the final 

state the flow behavior is random and chaotic. The motion becomes intrinsically 

unsteady even with constant imposed boundary conditions. The velocity and all other 

flow properties vary in a random and chaotic way. This regime is called turbulent 
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flow. The characteristics of turbulence are diffusive, random, dissipative and three-

dimensional. Figure  4.1 shows the time history of turbulent velocity. 

 
Figure  4.1: Typical point velocity measurement in turbulent flow (Versteeg 2007) 

The random nature of a turbulent flow precludes an economical description of the 

motion of all the fluid particles. Instead, the velocity in Figure  4.1 is decomposed 

into summation of a steady mean value U with a fluctuating component ( )u t  

superimposed on it. 

( ) ( )u t U u t   (3.1) 

This is called the Reynolds decomposition. A turbulent flow can be considered as the 

sum of mean values of flow properties (U, V, W, P etc.) and some statistical 

properties of their fluctuations (u′, v′, w′, p′ etc.). 

By assuming that fluid density  is constant, the instantaneous continuity and steady 

Navier-Stokes equations (1827 & 1845) in Cartesian co-ordinate system can be 

defined as: 
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Continuity 0

( )
Momentum

i

i

i j ji

i i i j i

u

x

u u uup

x x x x x









    
             

  (3.2) 

where p P p   is the instantaneous pressure and   is dynamic viscosity. 

Since it is necessary to investigate the effects of fluctuations on the mean flow using 

the Reynolds decomposition given in Equation (3.2) and replace the flow variables u 

(hence also u, v and w) and p by the sum of a mean and fluctuating component. Thus 

by substituting the variables ; , , ,u U u v V v w W w p P p             u U u  

into Equation (3.2) and time averaging individual terms in momentum equations, it 

finally yields the time-averaged momentum equations and placing these terms on the 

right hand side gives the following equations for continuity and momentum: 

Continuity 0

( )
Momentum

i

i

i j ji
i j

i i j j i

U

x

U U UUP
u u

x x x x x


 






    
               

  (3.3) 

The extra stress terms i ju u   results from six other stresses, three normal stresses, 

and three shear stresses. These additional turbulent stresses are termed the Reynolds 

stresses, which are all non-zero and appears because of the nonlinearity of the 

Navier-Stokes equation. 

The primary task of turbulence modeling is to develop computational procedures to 

predict these extra terms. (Reynolds stresses and scalar transport terms). 
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To compute the Reynolds stresses with the turbulent k   model, Boussinesq 

relationship (1877) is used which indicates that Reynolds stresses might be 

proportional to mean rates of deformation: 

2
Reynolds stress

3

ji
i j t ij

j i

UU
u u k

x x
   

 
        

  (3.4) 

where, k  represents turbulent kinetic energy and ij  represents the Kronecker delta 

function. 

Substituting Equation (3.4) into Equation (3.3) derives final Turbulent Momentum 

Equation: 

*( )
( )i j ji

t

i j j i i

U U UU P

x x x x x


 

    
             

  (3.5) 

while * 2

3
P P k  . 

Applying dimensional analysis, the eddy viscosity can be specified with a relation 

between turbulent viscosity t  to the turbulence kinetic energy, k, and the turbulence 

dissipation rate,   using equation below: 

2

Turbulent viscosity t

k
C 




  (3.6) 

where C is a dimensionless constant and considered as constant for high Reynolds 

number. For a simple flow, such as pipe flow or channel flow, the Reynolds stress 

term can be modeled by a simple Prandtl mixing length model called zero-equation 

model. The zero-equation model can be modeled directly without any additional 

differential equations. However, more general and complex flow needs to have a 
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more sophisticated model that includes k and  . This is referred to as the second-

order closure problem. 

4.3 Energy Transport Governing Equation 

Similar to the momentum equation, the energy equation has an extra term which is 

called Reynolds flux: 

( )i
i

i i i

U T T
u T

x x x

 




   
   

   
  (3.7) 

The turbulent heat flux can be obtained using a gradient diffusion model: 

t
i

t i

T
u T

x







   


  (3.8) 

Using the Equation (3.8) the steady-state Reynolds averaged energy equation can be 

derived as follow: 

( )i t

i i t i

U T T

x x x

 

 

    
   

    
  (3.9) 

This energy equation is strongly coupled with the momentum equation so that all the 

numerical calculations for the governing equations can be performed simultaneously. 

4.4 Standard k   models 

The standard k   model (originally developed by Launder and Spalding 1974) is 

the most popular used and approved turbulence model, which has achieved great 

successes in calculating thin shear layer and recirculating flows without the 

requirement of individual adjustment of the model constants. It performs particularly 

well in confined flows where the Reynolds shear stresses are most important. This 

includes a wide range of flows with industrial engineering applications, which 

explains its popularity. 
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As previously mentioned in Equation (3.6), kinetic energy and its dissipation rate are 

introduced to calculate eddy viscosity. The standard k   model has been applied to 

many different flows, such as plane jets, mixing layer, boundary layer flows, and so 

forth. Despite the existence of more advanced turbulent models, such as Direct 

Numerical Simulation (DNS), Large Eddy Simulation (LES) or Reynolds Stress 

Model (RSM), the standard k   model has been studied by many researchers 

because of its easy adaptivity and smaller computational cost. This model was 

developed on the assumption that the flow is fully turbulent and there is a local 

equilibrium where rate of production of turbulent stress, kP , equals rate of turbulent 

dissipation rate,  , near the wall. The assumption of fully turbulent flow requires the 

local turbulent Reynolds number 2Re /t k  , to be high. For this reason, the 

standard k   model is sometimes called the high-Reynolds number k   model, 

compared to the low-Reynolds number k   model in which calculation is carried 

out up to the wall including the viscous sublayer. It is necessary for standard k   

model to have the first calculation point far away from the wall where the local 

Reynolds number is large enough to satisfy the above assumption. 

In spite of the numerous successes, the standard k   model shows only moderate 

agreement in unconfined flows. The model is reported not to perform well in weak 

shear layers (far wakes and mixing layers), and the spreading rate of axisymmetric 

jets in stagnant surroundings is severely over predicted. In large parts of these flows 

the rate of production of turbulent kinetic energy is much less than the rate of 

dissipation and the difficulties can only be overcome by making ad hoc adjustment to 

model constants. 
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The turbulent model, including buoyancy term, originally developed by Launder and 

Spalding (1974), is described by the following equations: 

( k)
( )j t

k

j j k j

U k
P

x x x

 
  



   
    

    
  (3.10) 

2

1 2

( )
( )j t

j j j

U
C C

x x x k k
 



     
  



   
    

    
  (3.11) 

where 

jt i i
k

j i j

UU U
P

x x x





  
      

  

The empirical constants are assigned their usual values, these are 

1 20.09, 1.44, C 1.92, 1.0, 1.3kC C        
  

Equations (3.10) and (3.11) are valid only in high Reynolds number regions. They 

are not applicable in regions close to solid walls where viscous effects predominate 

over turbulent ones. Usually Two methods are used in dealing with near-wall 

regions: low Reynolds number modeling or wall functions. Of interest is the low 

Reynolds number modeling since wall functions are not recommended for impinging 

jets and they all perform poorly in the stagnation region where the assumptions used 

in their derivation are certainly not valid (Heyerichs and Pollard 1996). 

4.4.1 Low Reynolds Number (LRN) k   modeling 

Efforts have been made in the past for better approximation of refining the near-wall 

grids without using a wall function. This led to the development of the Low 

Reynolds versions of k   model. A summary in presented by Patel et al. (1985), 

compared nine different versions for performance comparison. 
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The Reynolds number is based on the distance from the wall. In the near-wall region, 

the flow velocity and distance to the wall are low and the result is a low Reynolds 

number. Then, low Reynolds number models refer to turbulence models that can 

simulate the flow in near-wall region where the viscous effects dominate, by 

integrating the equations right to the wall, without resorting to wall functions. 

In low Reynolds number flows, very rapid changes occur in the distribution of k  and 

  by reaching the buffer layer between the viscous sublayer and fully turbulent 

region. To force the rapid changes to k  and  , the constants of the high Reynolds 

number model are multiplied by exponential damping functions which require large 

number of grid points to resolve the changes. As a result, the system of equations 

becomes stiff which makes the numerical solution difficult to converge. 

Jones and Launder (1972) proposed the first LRN k   model. This model includes 

damping functions based on the local turbulent Re number. The attempt has been 

made to predict the appropriate values of the eddy viscosity and the dissipation near 

the wall where turbulent Reynolds number is small. LRN k   by Lam and 

Bremhorst (1981), Abid (1993), and Lars Davidson (1990) developed new models to 

investigate the proper behavior of the turbulent shear stress and the kinetic energy 

and its dissipation near a solid wall. Chien (1982) was one of the researchers who 

improved the LRN k   model by applying the Taylor series expansion technique to 

investigate the proper behavior of the turbulent shear stress and the kinetic energy 

and its dissipation near a solid wall. Craft et al. (1996) proposed a non-linear LRN 

model that has a nonlinear relation between strain-stress and vorticity that includes 

quadratic and cubic terms. Nagano and Tagawa (1990) developed the LRN k   
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model to satisfy the physical requirements of wall and free turbulence. Chang et al. 

(1995) developed the LRN k   model to satisfy the physical requirements of wall 

and free turbulence. For a flow over backward-facing step, experimental data by Kim 

et al. (1987), Driver and Seegmiller (1985), and Vogel and Eaton (1985) are 

frequently used to verify the models. For an impinging jet flow, experimental data by 

Van Heiningen (1982), is frequently used to verify the models. Unlike experimental 

data, DNS data are often used to develop new turbulence models because of its 

detailed information of flow quantities even very close to the wall. 

For the time being Lam and Bremhorst (1981) model will be discussed which is 

mainly preferable and popular for a number of reasons. First, it has seen application 

to a variety of different flows by a number of independent researchers. Also 

comparing with other LRN k   models, tests have shown that it is among the best 

at predicting the characteristics of fully turbulent flow. 

The general forms of k   group of models are: 

( k)
( )j t i

i j

j j k j j

u uk
u u

x x x x

 
  



   
     

     
  (3.12) 

2

1 1 2 2

( )
( )j t i

i j

j j j j

u u
f C u u f C

x x x k x k
 



     
  



   
     

     
  (3.13) 

The steady state equations of the k   group of models are defined in Equations 

(3.12) and (3.13). 

The coefficients, wall damping functions and constants used for the Lam & 

Bremhorst model are defined below: 
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2

Turbulent viscosity t

k
C f 


   (3.14) 

2

3

2
1 2

20.5
1 exp( 0.0165 ) 1

Damping functions  
0.05

1 1 exp( )

y

t

t

f Re
Re

f f Re
f





  
       

 


 
       

 

  (3.15) 

1 20.09, 0.9, 1.00, 1.30, 1.44, 1.92t kC C C          
 

2

t y

k k y
Re Re

 

 
 

 

where y is the minimum distance to the nearest wall. 

Defining the boundary conditions, for inlet in internal flows, if no k and   are 

available, crude approximations could be attained from the Characteristic length L 

(equivalent pipe diameter) and Turbulence intensity iT  which are defined in 

Table  4.1: 

Table  4.1: Boundary Conditions in Lam & Bremhost model 

Inlet  
3/2

2 3/43
and , 0.07

2
in ref i in

k
k U T C L  


  

Outlet or symmetry axis 0 0
k

and
n n

 
 

 
 

Solid walls 0 0wallk and
y


 


 

 

The low Reynolds number k   model equations can be written in generic form: 

( )
( ) ( ) cddiv div grad s s

t
 


 


    


v   (3.16) 
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In Equation (3.16) s is the source term due to body forces and pressure for the case 

of momentum equations, or energy generation per unit volume in the case of energy 

equation. The term
cds is the diffusion source terms involving cross derivatives in the 

momentum equations. 

The variables ( ,   and S ) for Momentum, Energy, k  and   equations are shown 

in Table  4.2. 

Table  4.2: Low Reynolds Number equations (Generic form) 

Equation     S  
Continuity 1 0 0 

X-Momentum U eff
 

*

eff eff eff

U V W P

x x y x z x x
  

           
       

             

Y-Momentum V eff
 

*

eff eff eff

U V W P

x y y y z y y
  

           
       

             

Z-Momentum W eff
 

*

eff eff eff

U V W P

x z y z z z z
  

           
       

             

Energy T 
t

t



 


 
0 

Turbulence K 
t

k







 
kP   

Dissipation   
t









 

2

1 1 2 2kC f P C f
k k

 

 
  

 

2 2 22 2 2
1 1 1

2 2 2
ij ij

U V W U V W U V W
S S

x y z y x x z z y

                  
                  

                  

 

2
* 2

2
3

eff t t k t ij ij

k
C f P P k P S S       


 

      
 

2
p

t y

Ck k y
Re Re Pr

k

 


 
   

  

Linearization of source terms: 
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One of the basic rules require that when the source term is linearized as 

C P PS S S      (3.17) 

The quantity PS  must not be positive for a convergent iterative solution, which 

ensures diagonal dominance of the coefficient matrix. However CS must be positive 

to obtain all positive   values. Often source terms are the cause of divergence of 

iterations and that proper linearization of the source term frequently holds the key to 

the attainment of a converged solution. 

When source S depends on  , the dependence is expressed in a linear form given by 

Equation (3.17). This is done because first, our nominally linear framework would 

allow only a formally linear dependence, then the incorporation of linear dependence 

is better than treating S as a constant. 

When S  is a nonlinear function of  , it must be linearized, i.e. specify the values of

CS and PS which may themselves depend on  . During each iteration cycle, CS  and 

PS  would then be recalculated from the new values of  . The linearization of S

should be a good representation of S and   relationship. 

Both k and   are strictly positive quantities. So, to obtain always positive results for 

k and  , the source terms should be formulated such that CS  is positive and PS  is 

negative for k and   equations. 
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For k  equation source term by inserting equation 
2

t

k
C f  


  in the turbulent 

source term: 

2

2
k k k

t

S
C f

P P k 



      (3.18) 

2Kinetic energy source terms

Ck k

Pk

t

S P

C f
S k 




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





  (3.19) 

For  source term: 

2

1 1 2 2kS C f P C f
k k

  

 
    (3.20) 

Rewriting source terms in terms of eddy viscosity t : 

2 2

,t

t t

C f k C f k C f k

k k

         
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  
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Gives: 

1 1

2 2

Dissipation source terms

C k

t

P

t

C f k
S C f P

C f k
S C f

 
 
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













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

  (3.21) 

In order to avoid negative values for k  and  , and division by zero, t  is limited to 

a small fraction of laminar viscosity l by using: 

2
4Turbulent viscosity limitation max ,10t l

k
C f   


 

  
 

  (3.22) 

4.5 Wilcox k   models (2006) 

The standard k   model was originally proposed and developed by Wilcox. In this 

model, two transport equations for the kinetic energy of turbulence k and its specific 

dissipation rate   are solved. One major advantage of the k   model are that the 
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transport equations for k and   are solved right across the boundary layer, all the 

way to the wall, through the viscous sublayer, and a low Reynolds number 

modification using an extra damping term is not required. However, the original 

k   model of Wilcox has one main drawback: the results depend on the free-

stream value of the turbulence variables (in particular ) even at very low free-

stream eddy-viscosity levels. This free-stream dependence seems to be the strongest 

for free shear layers, but is also significant for boundary layers, whereas the k   

model is insensitive to the free-stream turbulence. 

As described above, the k   turbulence model is similar to the low Reynolds 

number k   model with   replaced by   which represents the frequency of the 

vorticity fluctuations and the relation defined by Wilcox (2006) is given below: 

* k     (3.23) 

It is initially attracted attention because it does not require wall-damping functions 

nor the computation of wall distances, and it is less stiff than k   models in the 

near-wall region. 

The turbulent eddy viscosity t  is expressed in terms of   as: 

ˆt

k



   (3.24) 

This Equation shows that the eddy viscosity t  is indeterminate or infinite as 0  , 

so a small non-zero value of   must be specified. 

lim *

2
ˆ max , ij ijS S

C 


 
 
  

  (3.25) 
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1

3
k

ij ij ij

k

u
S S

x



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
  (3.26) 

The Reynolds stresses are computed from Boussinesq expression: 

2 2
2

3 3

ji
ij i j t ij ij t ij

j i

UU
u u S k k

x x
       

 
           

  (3.27) 

The transport equations for k -  steady state turbulent flows are: 

*
( )j

k

j j j

U k k k
P k

x x x

 
   



    
     
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  (3.28) 

2
( )j d

j j j j j

U k k
P

x k x x x x


     
  

 
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      
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  (3.29) 
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The model constants and equations are described below: 
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 
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 
   



 
   

   
   

  
     

                

  (3.30) 

The tensors ij and ijS are the mean-rotation and mean-strain-rate tensors. As can be 

easily verified the quantity   is zero for two-dimensional flows. 

For the boundary conditions, many CFD codes employ the approximate   wall 

boundary condition from Menter for this model (Equation (3.56)) which is defined in 

Table  4.3 again. 
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At inlet boundaries the values of k  and   can be obtained from characteristic length 

L (pipe diameter) and turbulence intensity iT . 

Table  4.3: Boundary Conditions in Wilcox k   model (2006) 

Inlet 

 
3/2

2 3/43
and , 0.07

2

0.09

in ref i in

in
in

in

k
k U T C L

k






  






 

Outlet or symmetry axis 0 0
k

and
n n

 
 

 
 

Solid walls 2
1

6
0 10

0.075 ( )
wall wallk and

y





 

  
 

as 1 0y  , where 1y  is the distance to the nearest wall. 

In Table  4.4 the Wilcox k  (2006) model equations are written in generic form. 

Table  4.4: Wilcox k   model (2006) equations (generic form) 

Equation     S  
Continuity 1 0 0 

X-Momentum U eff
 

*

eff eff eff

U V W P

x x y x z x x
  

           
       

             

Y-Momentum V eff
 

*

eff eff eff

U V W P

x y y y z y y
  

           
       

             

Z-Momentum W eff
 

*

eff eff eff

U V W P

x z y z z z z
  

           
       

             

Energy T 
t

t



 


 
0 

Turbulence K k

k






  *2

2 ( )
3

t ij ij

U V
S S k k

X Y
   

 
  

 
 

Dissipation   
k







  2 ( )d k k
P

k X X Y Y

  




   
  

   
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* 2
2

3
eff t t ij ijP P k P S S    

 
     

   

Linearization of the source terms according to the Equation (3.17) is as follows: 

k equation: 

*2
2 ( )

3
tk ij ij

U V
k k

X
S S S

Y
   

 



  


  (3.31) 

The linearized source terms are: 

2
2 ( )

3
t jk ijc i

U V
S S kS

X Y
 

 
 

 
   (3.32) 

*
pkS     (3.33) 

and for   equation: 

2 ( )d k k
S P

k X X Y Y


  




   
   

   
  (3.34) 

The linearized source terms are: 

( ) 2 ( )d d
c t ij ij

k k k k
S P S S

k X X Y Y k X X Y Y


      


 

       
     

       
  (3.35) 

pS   
  (3.36) 

4.5.1 Low Reynolds Number version of Wilcox (2006) 

This model is the same as Wilcox (2006) model with the minor changes which is 

named as Wilcox2006-LRN. 

In constants of Equation (3.30), instead of 
* 0.09   following is used: 

 
 

4

0*

4

100 27 Re
0.09

1 Re

T

T

R

R








 
 
  

  (3.37) 

where ReT

k


 , 8R   and 0 0.0708  . 
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also, the same applies to 
13

25
   which is replaced by 

 
1*0 Re13

25 1 Re
T

T

R

R





 

 
  

 
  (3.38) 

where 
*

* 0 Re

1 Re
T k

T k

R

R








, *

0 0 3  , 0

1

9
  , 2.61R   and 6kR  . 

Instead of 
ˆt

k



 following will be used 

*

ˆt

k
 


   (3.39) 

Replacing Equation (3.25) ̂  with lim * *
0

2
ˆ max , ij ijS S

C 
 

 
 
  

  

while *
0 0.09    

Finally in Equations (3.28) and (3.29) instead of k  and   diffusion terms 

k

k
 



 
 

 
 and 

k



 



 
 

 
 following will be replaced: 

*
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
 

 
 
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  (3.40) 

* k



 




 
 

 
  (3.41) 

4.6 Revised Menter-SST k   model (2003) 

In practice, the k   models are generally more accurate in shear type flows and are 

well behaved in the far field. The k   models are more accurate and much more 

numerically stable in the near wall region. Recognizing that each model has its 

strength and weakness and that the forms of the equations are similar, Menter (1992) 
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noted that the results of the k   model are much less sensitive to the (arbitrary) 

assumed values in the free stream, but its near-wall performance is unsatisfactory for 

boundary layers with adverse pressure gradients. He suggested a hybrid model using 

a transformation of the  model into  model in the near-wall region and the 

standard  model in the fully turbulent region far from the wall. 

Menter (2006) developed the shear-stress transport SST k   model, which 

effectively blends the robust and accurate formulation of the k   model in the 

near-wall region with the free-stream independence of the k   model in the far 

field. To achieve this, the k   model is converted into a k   formulation. The 

standard k   model and the transformed k   model are both multiplied by a 

blending function, and the two models are added together. The blending function is 

designed to be one in the near-wall region, which activates the standard k   

model, and zero away from the surface, which activates the transformed k   

model. The SST model also incorporates a damped cross-diffusion derivative term in 

the   transport equation. The definition of the turbulent viscosity is modified to 

account for the transport of the turbulent shear stress, and the modeling constants are 

different. These features make the SST k   model more accurate and reliable for a 

wider class of flows (e.g., adverse-pressure-gradient flows, airfoils, transonic shock 

waves) than the standard k   model. 

Here, the complete formulation of the latest SST model in steady state is given, with 

the limited number of modifications to the original model.  

 *( )i
k k t

i i i

u k k
P k

x x x


    

   
    

   

   (3.42) 

k  k 

k 
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  (3.43) 

where the blending function 1F  is defined by: 

4

2
1 * 2 2

4500
tanh min max , ,

k

kk
F

y y CD y






   

      
      

       

  (3.44) 
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max 2 ,10k

i i
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x x
 
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


  

  
  

 and y  is the distance to the nearest wall. 

1F  is equal to zero away from the surface ( k   model), and switches over to one 

inside the boundary layer ( k   model).  

The turbulent eddy viscosity is defined as follows: 
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  (3.46) 

where S is the invariant measure of the strain rate and 2F  is a second blending 

function defined by: 

2

2 * 2

2 500
tanh max ,

k
F

y y



   

   
          

  (3.47) 

A production limiter is used in the SST model to prevent the build-up of turbulence 

in stagnation regions: 
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All constants are computed by a blend from the corresponding constants of k   and 

k   model via  1 1 2 11F F      etc. 

The constants for this model are: 

*
1 2 1 2

1 2 1 2 1

5
0.09, , 0.44, 0.075, 0.0828

9
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    

   

    

    
  (3.49) 

In Table  4.5 the Revised Menter-SST k   model (2003) equations are written in 

generic form. 

Table  4.5: Revised Menter-SST k   model (2003) equations (generic form) 

Equation     S  
Continuity 1 0 0 

X-Momentum U eff
 

*

eff eff eff

U V W P

x x y x z x x
  

           
       
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Y-Momentum V eff
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Linearization of the source terms: 
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k  equation: 

*
k kS P k     (3.50) 

The source terms are: 

c kS P    (3.51) 

*
pS      (3.52) 

  equation: 
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Results of the linearization are: 
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pS     (3.55) 

The recommended boundary conditions for smooth walls are mentioned: 
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
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  (3.56) 

as 1 0y  , where 1y  is the distance to the nearest wall. 

Hellsten, A. (1998) has suggested a simplified rotation/curvature model, which is the 

same as Menter’s SST (2003) method except that the destruction term in the   

equation is multiplied by the function 4F  described below: 

4

1

1

( 1)

RC i

i

F
C R

W W
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S S




 

  (3.57) 

The strain rate S is defined previously in Equation (3.46). 
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  (3.58) 

1.4RCC    (3.59) 

This corrected model is referred as (SST-2003RC-Hellsten). 

F. R. Menter (2010) has also developed a model called the scale adaptive simulation 

model. This model has been derived from the exact transport equation for the 

correlation kL of the turbulence kinetic energy k and the integral length scale of 

turbulence L, which offers a profound starting point for the modeling of the relevant 

terms and finally leads to the introduction of the Von Karman length scale vkL  into 

the turbulence scale equation. Because the turbulence scale equation in statistical 

two-equation turbulence models can be transformed from one variable to another 

(e.g., kL to specific dissipation rate ω), the new model is transformed into the k   

shear stress transport (SST) framework, yielding an additional source term SASQ  in 

the ω equation: 

2

2
2 2 2

2 1 1
max max , ,0SAS SAS

vk j j j j

L k k k
Q S C

L x x k x x

  


 

       
               

  (3.60) 

with the strain rate S  defined in Equation (3.46) and the constants 2 1.47  , 

2SASC   as well as 2 / 3  . The turbulence length scale L can be calculated with 

the help of the two variables of the underlying turbulence model via 

 1/2 1/4/L k C  and the corresponding constant 0.09C  . The generalized 

formulation of the Von Karman length scale vkL is based on the second derivative of 

the velocity field and is given by 
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  
  (3.61) 

while the Von Karman constant value is 0.41  . If the flow field exhibits sufficient 

inherent instabilities, the source term will be activated, leading to an increased 

production of the specific dissipation rate in these areas. This results in lower levels 

of eddy viscosity and eventually leads to the resolution of turbulent fluctuations. On 

the other hand, in stable flow regimes such as attached boundary layers, the source 

term remains inactive, thus allow treating these areas efficiently with the standard 

RANS capabilities of the SST turbulence model.  
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Chapter 5  

RESULTS AND DISCUSSIONS 

5.1 Introduction 

In order to solve the governing equations for turbulent flow, turbulence models are 

written in FORTRAN code and added to an existing unstructured flow solver 

developed in the Mechanical Engineering Department by I. Sezai. For pressure-

velocity decoupling, SIMPLE algorithm is employed, and the turbulence models are 

solved in conjunction with the Reynolds-averaged momentum and energy equations 

using a control volume method. In discretization of the convection term, upwind 

scheme is used for turbulence terms while Linear-Upwind-Differencing (LUD) 

scheme is used for discretizing momentum convection equations. For better 

resolution near the wall, nonuniform grids are used so that fine meshing is applied 

near the walls and stagnation region. 

Various turbulence models are applied for two turbulent flows configurations; 

backward facing step and impinging jet, with altered Reynolds numbers and 

compared to experimental values. These geometrically simple test cases contain 

stagnation and recirculation zones, which provide stringent conditions for testing 

turbulence models. 
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5.2 Validation 

5.2.1 Impinging slot jet 

A single turbulent confined impinging air slot jet is numerically studied at two 

different Reynolds numbers and Nozzle-to-impingement surface spacing (H/W), and 

the Nusselt number results are compared to experimental values of Van Heiningen 

(1982). 

Figure  5.1 shows the geometric configuration of the problem. Only the flow field of 

the half domain is solved due to geometric and physical symmetry of the impinging 

slot jet. The channel length is extended so that the flow variables become fully 

developed at exit plane.  

 
Figure  5.1: The impinging slot jet test case and boundary conditions 

(Heyerichs 1996) 

General boundary conditions are described in Figure  5.1; however, turbulent 

boundary conditions relating to different models were also described previously. The 

bottom impinging plate is an isothermal wall of temperature 310k; a constant 

temperature of 300k was set on the inlet flow and top confinement wall; a uniform 
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velocity, turbulent kinetic energy, energy dissipation rate and temperature profiles 

were presumed at the nozzle exit; at outlet and symmetry planes an outflow and 

symmetry boundary conditions were assumed; at the confinement walls, the no-slip 

condition was specified. Length scale and Turbulence intensity at the nozzle exit 

were set to be 0.07W and 2% respectively. 

For the accuracy of the results, the convergence criteria were specified as maximum 

residuals of momentum equations must be 610  while for turbulence equations (k, ,

 ) is 510 . To resolve the near wall region with large gradients satisfactorily, finer 

computational grids were set near the walls. Grid distributions are depicted in 

Figure  5.2 andFigure  5.3. 

 
Figure  5.2: Grid distribution for Impinging slot jet H/W=2.6, 21680 Grids 
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Figure  5.3: Grid distribution for Impinging slot jet H/W=6, 21680 Grids 

5.2.2 Backward facing step 

Numerical computation has been performed for turbulent flow over a backward-

facing step studied by Vogel and Eaton (1985) which is frequently used in 

benchmarking the performance of turbulence models for separating and reattaching 

flows. Besides, it includes a region with adverse pressure gradient and shear-layer 

mixing process. The computation domain was set to 35H in the streamwise direction. 

The Reynolds number based on the step height for the experiment are given as ReH

=28,000 and the expansion ratio (ER) / inlet 1.33outlet  . The inlet boundary layer 

is 1.1H   which is shown in Figure  5.4. No-slip condition was specified on the 

walls. Symmetry boundary condition was assumed at the top. Length scale and 

Turbulence intensity at the inlet were set to be 0.07W and 1% and respectively; at the 

exit, zero-gradient boundary conditions are assigned for temperature, velocities, and 

turbulent quantities. 



68 

 
Figure  5.4: Backward facing step test case and boundary conditions 

(Heyerichs 1996) 

For the accuracy of the results, the convergence criteria were specified the same as 

previous case which maximum residuals of momentum equations must be 610 , 

while for turbulent equations (k,  , ) is 510 . To resolve the near wall region with 

large gradients satisfactorily, the mesh has been clustered near the step end and in the 

recirculation region. Grid distribution is shown in Figure  5.5. 

 
Figure  5.5: Grid distribution for Backward facing step (17580 Grids) 
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5.3 Grid sensitivity analysis 

To ensure the attainment of grid-independent results, the sensitivities of the 

numbering grids was tested for each case. Figure  5.6 toFigure  5.15 shows effects of 

grid sizes on the predicted Nusselt number and skin friction coefficient distribution. 

Typically, a grid density of 21680 provides a satisfactory solution for the impinging 

slot jet model with 17280 vertices and 17573 total elements, and 17580 is suitable 

for the backward facing step flow containing 14256 vertices and 14510 total 

elements. 

 
Figure  5.6: Effect of grid size on the predicted Nusselt number for Impinging jet 

k   model, Re=8,100, H/W=6. 
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Figure  5.7: Effect of grid size on the predicted skin friction coefficient for Impinging 

jet k  model, Re=8,100, H/W=6. 

 
Figure  5.8: Effect of grid size on the predicted Nusselt number for Impinging jet 

k   model, Re=8,100, H/W=6. 
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Figure  5.9: Effect of grid size on the predicted skin friction coefficient for Impinging 

jet k  model, Re=8,100, H/W=6. 

 
Figure  5.10: Effect of grid size on the predicted Nusselt number for Impinging jet 

k  model, Re=10,400, H/W=2.6. 
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Figure  5.11: Effect of grid size on the predicted skin friction coefficient for 

Impinging jet k  model, Re=10,400, H/W=2.6. 

 
Figure  5.12: Effect of grid size on the predicted Nusselt number for Impinging jet 

k  model, Re=10,400, H/W=2.6. 
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Figure  5.13: Effect of grid size on the predicted skin friction coefficient for 

Impinging jet k  model, Re=10,400, H/W=2.6. 

 
Figure  5.14: Effect of grid size on the predicted skin friction coefficient for 

Backward facing step k  model, Re 28,000H  . 
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Figure  5.15: Effect of grid size on the predicted skin friction coefficient for 

Backward facing step k  model, Re 28,000H  . 

5.4 Velocity Streamlines 

5.4.1 Impinging slot jet 

Two cases of experimental data of the jet impingement flows were selected from the 

available literature based on how detailed the authors described the experimental 

setup and procedures and the boundary conditions required. First case with lower 

nozzle to plate spacing (H/W=2.6) and Re 10,400W  , second one with high nozzle 

to plate spacing (H/W=6.0) and Re 8,100W   where the Reynolds numbers are based 

on inlet width of the jet. 

Figure  5.16 andFigure  5.17 compare the velocity streamline patterns for different 

turbulence models. It is observed that k   models predict similar reattachment 

lengths for the vortex at the confinement plate which is about 20X   (for H/W=2.6) 

and 40X  (for H/W=6), while k   LB model shows this distance about 12X   

(for H/W=2.6) and 30X   (for H/W=6). It can be realized from the streamlines that 
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k   models can predict much more efficient cooling effects of the impinging jet 

than low Reynolds LB k   model. 

 
Figure  5.16: Magnified Streamlines comparison for Impinging slot jet, Re=10,400, 
H/W=2.6 ( (i)Wilcox2006, (ii) k   LB, (iii)Wilcox2006-LRN, (iv)Menter-SST ) 
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Figure  5.17: Streamlines comparison for Impinging slot jet, Re=8,100, H/W=6 

( (i)LB, (ii)Wilcox2006, (iii)Wilcox2006-LRN, (iv)Menter-SST ) 

5.4.2 Backward facing step 

The backward facing step evaluates the quality of turbulence models for predicting a 

flow that involves reattachment of separated turbulent boundary level. All turbulence 

models have predicted the vortex behind the step in 2D, and the streamlines are 

shown in Figure  5.18. 

In addition to the primary recirculation zone, there exists a secondary bubble in the 

step corner at approximately 0 1X   called as corner eddy that is hardly visible in 

streamlines of Figure  5.18 (iv)Menter-SST. Friedrich & Arnal (1990) reported that 

the rapid secondary recirculation regions located in the corner were three-

dimensional bubbles. 
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Figure  5.18: Streamlines comparison for Backward facing step, ReH =28,000, 

/ 1.1H  . ( (i)LB, (ii)Wilcox2006, (iii)Wilcox-LRN, (iv)Menter-SST ) 

5.5 Nusselt number and skin friction coefficient 

5.5.1 Impinging slot jet 

Figure  5.19 andFigure  5.20 compare the Nusselt numbers and friction coefficients 

predicted by the different turbulence models with the experimental data of Van 

Heiningen (1982), for first test case with Re=8,100 and H/W=6. It is observed that 

both Wilcox2006 and Menter of k   model family predict Nusselt number better 

in correlation with the experimental data. Although these two models slightly 

underpredict Nu around the secondary peak, where a boundary layer develops along 

the impingement plate, and is located at / 7X W   in experimental data. The other 

two models (Wilcox-LRN and LB k   model) overpredict excessively the value of 

the Nusselt number in the secondary peak. This is because of the fact that the 
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constants and the damping functions of k   models are not tuned correctly at the 

wall and are tuned by free shear flow and wake flows, while k   family have a 

better agreement with the experimental data near the solid walls. 

There exists a stagnation region along the impingement plate, which forms a wall jet. 

All models have a high correlation with the experimental data in stagnation region. 

At the stagnation point, 0fC   and Nu is a maximum ( 48 ). This is because of the 

impingement of large-scale eddies that form during jet development. Around the 

stagnation point, the fluid is caused to alter its direction, experiencing strong 

acceleration, which results in a rapid increase in fC  downstream impingement. 

Decreases in the values of fC and Nu result from flow deceleration with distances 

farther removed from impingement with a gradual decrease with Nu 15  at

/ 20X W  . 

 
Figure  5.19: Comparison of predicted Nusselt number, Re=8,100, H/W=6. 
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Figure  5.20: Comparison of predicted skin friction coefficient, Re=8,100, H/W=6. 

 
Figure  5.21: Comparison of predicted Nusselt number, Re=10,400, H/W=2.6. 
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Figure  5.22: Comparison of predicted skin friction coefficient, Re=10,400, H/W=2.6. 

Figure  5.19 toFigure  5.22 compare the local Nusselt numbers and friction coefficient 

distributions for Re=10,400, H/W=2.6 case. The results are somehow similar with 

the previous case that obviously Nu profile of Menter-SST k   model has better 

agreement to the data set. Lam & Bremhorst model extremely overpredicts Nu at the 

stagnation point. The Nu profiles might be influenced by the initial step rise and the 

stagnation peak is shown by the profiles in fC  diagram. Therefore, Low Reynolds 

number k   model is not appropriate for heat transfer prediction near a stagnation 

point especially in lower distances of impingement to plate. 

All models predict poorly both the magnitude and location of the secondary peak in 

Nu distribution; considering that the profiles of Nu and fC are similar. Once more, 

Menter-SST model has the strongest correlation among others to the data set. It 

predicts Nu in this region better than other models while Wilcox2006 model has 

similar result. 
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Far downstream (X/W>20) the predicted fC and Nu profiles of all models converge 

to a similar value. It appears that fC and Nu predictions in this area are strongly 

affected by the capability of a model to catch the physical behavior upstream of this 

region. 

The impinging slot jet test case shows that among the models taken into account; 

only the Menter-SST k   turbulent model gives a satisfying prediction of 

convection heat transfer in a flow deceleration. In addition, k   low Reynolds 

number models that calculate the near-wall turbulence based on distance from the 

wall perform poorly and are not recommended for this type of flow. 

5.5.2 Backward facing step 

Skin-friction coefficient predictions for different models are presented in 

Figure  5.23. The simulated flow domain here along the wall can be divided in three 

general regions with alternating fC  signs: forward flow region (positive fC , 

Approx. X/H>7.0); recirculation region or reverse flow (negative fC , Approx. 0.0< 

X/H<6.0); secondary bubble which is not visible in LB k   model (positive fC , 

Approx. 0.0<X/H<1.0);  
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Figure  5.23: Comparison of the predicted skin friction coefficient with 

experimental data, Re 28,000H  . 

Reattachment length is a commonly used parameter to determine the ability of a 

turbulence model for simulating the flow correctly over backward facing step. 

Prediction of the reattachment point is a key measure of the computational accuracy 

of any numerical scheme. It is the distance from the step to the position at 

downstream of the channel, where the velocity sign changes from negative to 

positive. Table  5.1 illustrates the comparison of predicted reattachment lengths by 

various turbulence models with the Vogel and Eaton (1984) experimental data. The 

experimental reattachment point is located at 6.67H downstream of separation. At 

reattachment fC  changes the sign from negative to zero and positive, then increases 

downstream. 
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Table  5.1: Reattachment length based on step height for different turbulence models 

backward facing step, Re 28,000H   

Turbulence Model Used 
Reattachment length 

(H = step height) 

LB 4.69 H 

Wilcox2006 6.05 H 

Wilcox LRN 5.97 H 

Menter-SST 6.47 H 

Experimental data 
(Vogel & Eaton 1984) 

6.67 H 

 

Figure  5.23 and Table  5.1 indicates that the Low Reynolds number k   model fails 

to predict backward facing step flow in terms of fC and reattachment length. It 

substantially overpredicts fC after the reattachment region and underpredict in 

recirculating flow region. Other k   models have similar correlation to the data set 

as they have poor performance in predicting fC in the recirculation zone. According 

to Table  5.1 Menter-SST model, calculates the reattachment length most accurately. 

All three k   models predict fC well beyond reattachment along the impingement 

plate where a boundary layer starts to develop; however, Wilcox-LRN gives a better 

correlation in the redeveloping region. 

The backward facing step test proves that among the test cases, k   models predict 

the flow better while Menter-SST has better correlation similar to the impinging test 

case while k   models have poor prediction in both cases. 
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5.6 Effects of turbulence intensity 

Figure  5.24 toFigure  5.33 show the effect of inlet turbulence intensity on the Nu and 

fC  distribution for impinging jet and backward-facing step configurations. In all 

cases, the turbulence intensity is varied between 1% and 8%. Mean value of 1m/s is 

assumed according to Figure  5.1 andFigure  5.4. All models are sensitive to 

turbulence intensity value. In impinging jets test cases, it is much more noticeable 

that in k   models skin friction coefficient and local Nusselt number increase 

around stagnation section, and the secondary peaks tend to disappear. Still, on k   

models, the change is less observable. The Nusselt number and skin friction 

coefficient value increases in the stagnation region until the secondary peak and right 

after secondary peak the values decrease. As a final point, it must be considered that 

in experimental measurements, the turbulent intensity can be easily determined for 

impinging jet cases. 

 
Figure  5.24: Turbulence Intensity effects on impinging slot jet Nusselt number, 

Re=10,400, H/W=2.6, k  model. 
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Figure  5.25: Turbulence Intensity effects on impinging slot jet skin friction 

coefficient, Re=10,400, H/W=2.6, k  model. 

 
Figure  5.26: Turbulence Intensity effects on impinging slot jet Nusselt number, 

Re=10,400, H/W=2.6, k  model. 
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Figure  5.27: Turbulence Intensity effects on impinging slot jet skin friction 

coefficient, Re=10,400, H/W=2.6, k  model. 

 
Figure  5.28: Turbulence Intensity effects on impinging slot jet Nusselt number, 

Re=8,100, H/W=6, k  model. 
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Figure  5.29: Turbulence Intensity effects on impinging slot jet skin friction 

coefficient, Re=8,100, H/W=6, k  model. 

 
Figure  5.30: Turbulence Intensity effects on impinging slot jet Nusselt number, 

Re=8,100, H/W=6, k  model. 
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Figure  5.31: Turbulence Intensity effects on impinging slot jet skin friction 

coefficient, Re=8,100, H/W=6, k  model. 

 
Figure  5.32: Turbulence intensity effects on backward facing step skin friction 

coefficient, k  model 
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Figure  5.33: Turbulence intensity effects on backward facing step skin friction 

coefficient, k  model 

In Figure  5.32 andFigure  5.33 the effects of varied iT  on friction coefficient in 

backward-facing step can be observed. It is clear that values of skin friction 

coefficient and the reattachment length are transformed as the reattachment length 

decreases in both k   and k   models, the absolute value of skin friction 

increases. Finally, it is observed that in both turbulent models, turbulent intensity 

increments overpredict the friction factor coefficient value while underpredicting the 

reattachment length. 

5.7 Programming consideration 

As a programmer, the k   models have several advantages. It does not include 

extra terms as in k   models. Thus, it decreases the amount of coding. The Menter-

SST k   model converged faster than other available models. One of the reasons 

can be the  -equation boundary condition (i.e.  is static at the wall) or the reason of 

better performance of the damping functions used for LRN models. It is more vital in 
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a very close region to the wall (i.e. 5y   where y
 is the dimensionless distance 

/y u y   ). The main asset of k   models is that the damping functions are all 

bounded between ‘reasonable’ values. Moreover, the damping function f  used in 

LB model is not bounded. In the process of solution, tR  becomes very small and this 

results to a greater than unity value for f , which results in unrealistic values of t . 

The boundary condition of  -equation that is used in conjunction with LB is a zero 

gradient boundary condition at outlet, symmetry and solid walls. The value of w  is 

determined during the solution process and does not have the stabilizing effect of a 

statically fixed wall boundary condition. In addition, the LB model’s 1f  term is not 

bounded. Therefore, f become very small resulting in a large value of 1f , causing a 

large positive source term for  -equation.  
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Chapter 6  

CONCLUSION AND FUTURE WORKS 

The main concern of this study is the accuracy assessment of several LRN k   and 

k   turbulence models by various Reynolds numbers on several test cases, which 

are popular due to their complex separating and impinging flow characteristics using 

the Finite Volume Method (FVM) unstructured discretization in a FORTRAN code 

developed in Mechanical Engineering department. The results were compared to 

available experimental data. It was concluded that Menter-SST (2003) k   

turbulence model gave better correlation in predicting of heat transfer in turbulent 

separating and reattaching flows compared to their related experimental data. 

Menter-SST model also gives faster convergence among other models and produces 

less oscillation in residuals during simulation. It can be reasoned to the bounded near 

wall damping functions and the Dirichlet wall boundary condition applied to the 

equation. 

It is also sensible that the evaluation of BFS looks somehow vague. There are some 

inconsistencies between shear stress wall distributions and mean velocities in some 

models. In details, according to skin friction data, the reattachment length is 

predicted as to occur at 6.05H for Wilcox2006 model. However, the velocity 

streamlines suggest this location is at approximately 5.5H. 
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The schemes used here for discretizing momentum convection equations are upwind 

and Linear-Upwind-Differencing. These are first order schemes, and the results are 

not very accurate. The reason is that the turbulence models are highly unstable to 

higher order schemes, though using them resulted in unstable results and 

convergence did not occur. This problem might overcome by refining the mesh 

(especially in boundary layers), but it will consume more time and resources. 

Compared to k   models, implementing and programming the Wilcox k   

model is easier, since it is not required to consider the wall shear stress, additional 

equation terms or distance from the wall. 

Lam & Bremhorst (1981) has a poor performance in all test cases and is not 

recommended in these kinds of flows. 

It is also planned to extend this work on Three-Dimensional models since there have 

been numerous new experimental data published for 3D models of these test cases 

and can be validated with the available code. 

Additional results might also be added to the current work by varying the Reynolds 

number and visualizing the effects on the cases, as well as illustrating the effects of 

increasing or decreasing jet-to-impingement distance (H/D) on heat transfer 

coefficient. 

The same simulations are also achieved by Ansys Fluent as the most popular 

commercial CFD solver to compare the results with available FORTRAN code. 
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Furthermore, there is an ongoing process of simulating the same models on 

OPENFOAM (an open source CFD solver) as future work for comparison. 

A novel model, which is recently developed by F. R. Menter (2010) as the Scale 

Adaptive Simulation (SAS) model. The model is a transformed form of Menter-SST 

framework with an additional source term, which results in lower levels of eddy 

viscosity and leads to the resolution of turbulent fluctuations. It is of interest to assess 

the capabilities of this model on different complex transient models since this model 

is already implemented in the available FORTRAN code. 

An adaptive grid system is recommended to be developed to obtain the required y
 

along the walls, or the obstacles. In addition, the stability of the multiblock grid 

system should be studied to secure stable convergence. 
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