
i

Secure True Random Number Generator
in

Wireless Network (Ad hoc)

Seyed Masoud Alavi Abhari

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University
July 2013

Gazimağusa, North Cyprus

ii

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of
Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah
 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Assoc. Prof. Dr. Alexander Chefranov
 Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Zeki Bayram---------------------------------------

2. Assoc. Prof. Dr. Alexander Chefranov

3. Asst. Prof. Dr. Gürcü Öz ---

http://cmpe.emu.edu.tr/chefranov/
http://cmpe.emu.edu.tr/chefranov/
http://cmpe.emu.edu.tr/bayram/
http://cmpe.emu.edu.tr/bayram/
http://cmpe.emu.edu.tr/chefranov/
http://cmpe.emu.edu.tr/chefranov/
http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/gurcu/

iii

ABSTRACT

During last decade, Wireless LAN (WLAN) has been very important and developed area

of technology and science. Nowadays a level of security that can exceed the security of a

WLAN is provided by using security protocols. Not only the security of WLAN can

increase by cryptography algorithms their own, but also will be more powerful if True

Random Numbers are being used in Cryptography algorithms. Today it is hardly

possible to disregard the vital role of random numbers in Cryptography consequently

security of wireless Networks in case of key exchange algorithms or nonce to convince

the other part is trusted.

The aim of thesis is generating secure true random numbers in context of Ad hoc

WLAN. To this aim, Diffusion RNGLigth technique, which is modification of Scatter

RNGLigth technique that produced true random numbers using sensory reading on

Wireless Sensor Network (WSN) [1], is implemented. These modifications consist of

adding and changing some parts of the secure frameworks and using AES and Triple-

DES instead of DES in encryption/decryption and CMAC. In addition, produced random

numbers using Diffusion RNGLigth are evaluated by NIST statistical test. The results

show that p-values of Diffusion RNGLigth using AES 60% have improved in comparison

with Diffusion RNGLigth using Triple-DES, also p-values of Diffusion RNGLigth using

Triple-DES 60% have improved in comparison with Scatter RNGLigth.

Keywords: Ad hoc, Wireless Local Area Network (WLAN), Network Security, True

Random Number Generator (TRNG), Multicasting, Diffusion RNGLigth

iv

ÖZ

Son on yılda, Kablosuz LAN (WLAN) teknoloji ve bilim çok önemli ve gelişmiş bir

alan olmuştur. Günümüzde WLAN güvenlik aşabilir güvenlik düzeyi güvenlik

protokolleri kullanılarak sağlanır.WLAN güvenlik Sadece kendi şifreleme algoritmaları

ile artırabilir, ama gerçek Rasgele Sayılar Kriptografi algoritmaları kullanılıyor ise de

daha güçlü olacaktır. WLAN güvenlik Sadece kendi şifreleme algoritmaları ile

artırabilir, ama gerçek Rasgele Sayılar Kriptografi algoritmaları kullanılıyor ise de daha

güçlü olacaktır. Bugün dolayısıyla kablosuz ağları güvenlik anahtar değişimi

algoritmaları veya nonce diğer kısmı ikna etmek durumunda güvenilir Kriptografi

rastgele sayı hayati bir rol göz ardı etmek pek mümkün değildir. Tezin amacı, Geçici

WLAN bağlamında güvenli gerçek rasgele sayılar oluşturuyor. Bu amaçla, Difüzyon

RNGLigth tekniği için, hangi Kablosuz Algılayıcı Ağ (KAA) [1], uygulanan duyusal

okuma kullanarak gerçek rasgele sayılar üretti Dağılım RNGLigth teknik değişiklik

olduğunu. Bu değişiklikler ekleme ve değiştirme güvenli çerçeveler bazı parça ve

şifreleme / şifre çözme ve CMAC yerine DES AES ve Triple-DES kullanarak oluşur.

Buna ek olarak, Difüzyon RNGLigth kullanarak rasgele sayılar NIST istatistik testi ile

değerlendirilir üretti. Sonuçlar AES 60% kullanarak Difüzyon RNGLigth p-değerleri de

Triple-DES, Triple-DES 60% kullanarak Difüzyon RNGLigth p-değerleri Dağılım

RNGLigth ile karşılaştırıldığında düzeldi kullanarak Difüzyon RNGLigth ile

karşılaştırıldığında daha iyi olduğunu göstermektedir.

Anahtarkelimeler: Ad hoc, Kablosuz Yerel Alan Ağı (WLAN), Ağ Güvenliği, Gerçek

Random Number Generator (TRNG), Multicasting, Difüzyon RNGLigth

v

DEDICATION

Dedicated to my family

vi

ACKNOWLEDGMENTS

First and foremost, I offer my sincerest gratitude to my supervisor, dear Dr. Alexander

Chefranov, who has supported me throughout my thesis with his patience and

knowledge. I attribute the level of my Master degree to his encouragement and effort

and without him this thesis, too, would not have been completed or written. One simply

could not wish for a better or friendlier supervisor.

I would like to express my deepest gratitude and appreciation to Dr. Zeki Bayram and

Dr. Gürcü Öz for the useful comments, remarks through the learning process of my

Master degree. Last, but not least, I am greatly indebted to my lovely parents for their

invaluable supports. I also owe special gratitude to my dear friend Maryam Farajzadeh

for her constant encouragement.

http://cmpe.emu.edu.tr/gurcu/
http://cmpe.emu.edu.tr/gurcu/

vii

TABLE OF CONTENTS

ABSTRACT ..iii

ÖZ .. iv

DEDICATION ... v

ACKNOWLEDGMENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xii

1 INTRODUCTION ... 1

2 DEFINITIONS AND RELATED WORKS .. 4

 2.1 Definitions .. 5

 2.1.1 Ad hoc Networks -Wireless Security .. 5

 2.1.2 Data Encryption Standard (DES) .. 7

 2.1.3 Advanced Encryption Standard (AES) ... 8

 2.1.4 Triple DES .. 10

 2.1.5 SHA-1 ... 11

 2.1.6 Message Authentication Code .. 11

 2.1.7 Salt .. 12

 2.1.8 Nonce .. 12

 2.1.9 True and Pseudo-Random Number Generators .. 12

viii

 2.2 Introduction to NIST Statistical Test ... 14

 2.2.1 General Discussion ... 15

 2.2.2 How to Apply the Tests .. 15

 2.2.3 Randomness Measurements .. 19

 2.2.4 Random Number Generation Tests ... 21

 2.3 Related Work ... 26

 2.4 Problem Definition ... 27

3 DIFFUSION RNGLIGHT IMPLEMENTATION IN WLAN 28

 3.1 Ad hoc WLAN Prefaces .. 31

 3.2 Diffused ARCLight Message Structure .. 31

 3.2.1 Encryption Type .. 32

 3.2.2 Type and Payload Length ... 32

 3.2.3 IP Address ... 33

 3.2.4 Payload .. 33

 3.2.5 Encrypted Part ... 33

 3.3 Diffusion RNGLight Organization ... 35

 3.3.1 Multicasting Request .. 36

 3.3.2 Receiving .. 37

 3.3.3 True Random Number Generation (TRNG) ... 39

ix

4 RANDOMNESS QUALITY OF GENERATED RANDOM NUMBERS BY

DIFFUSION RNGLIGHT ... 43

5 CONCLUSION .. 47

6 REFERENCES .. 48

APPENDICES ... 52

 Appendix A: Programming Part .. 53

 Appendix B: User Guide .. 70

x

LIST OF TABLES

Table 1: Conclusion Derived from a Usage of the Testing Procedure 16

Table 2: Some Neccessory Deffinition Related to NIST ... 20

Table 3: The Input Values of the Statistical Tests ... 44

Table 4: Comparison of the Expected and Observed Results .. 44

Table 5: The Improvement P-values of the Different Usage of Diffusion RNG 46

xi

LIST OF FIGURES

Figure 1: Ad hoc Network ... 6

Figure 2: Data Encryption Standard (DES) ... 8

Figure 3: Advanced Encryption Standard (AES) ... 9

Figure 4: Illustration of Triple-DES .. 10

Figure 5: Communication Pattern Between Laptop “A” and “B” 30

Figure 6: Fields of the Diffused ARCLight Message (Diffused Frame) 32

Figure 7: Pair of Nonce and Hash Code Derived from Encrypted Part 34

Figure 8: Categories of the Implementation .. 35

Figure 9: Structure of Diffusion RNGLight Implementation ... 36

Figure 10: Illustration of the Diffused Frame for Request that the Payload Field was

Eliminated .. 37

Figure 11: Reply Frame, Which Obviously Include Payload Field 39

Figure 12: Illustration of Enhanced RNG Module .. 41

xii

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

DES Data Encryption Standard

BB Buffer Block

CMAC Cipher based Message Authentication Code

PRNG Pseudo Random Number Generator

TRNG True Random Number Generator

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

RB Register Block

LC Local Clock

1

Chapter 1

INTRODUCTION

Over the past few years, wireless communications has been fast growing with many

devices like laptops, PDAs, and Pocket PCs. It starts to change many aspect of our life,

some of these are our approach to business interaction, emails, private communication

for mobile or E-commerce; all of these require wireless technology. However, studies

indicate that the growth of wireless networks is restricted by their perceived insecurity.

Today the essential need of Wireless Local Area Network (WLAN) security is

noticeable. However needs of protecting of such networks are increased while

encryption algorithms have a fundamental role in information systems security [2].

Encryption methods and cryptography algorithms require a source of random data, even

some symmetric ciphers (where the secret is shared), to generate new either private or

public key pairs, for nonce, for session keys, for padding, or for any other reasons [3, 4,

5]. Actually, many Methods for Random Number Generation (RNG) have been

invented, physical methods, Computational methods or Generation from a probability

distribution.

Random numbers are divided in two categories. Some produced by Pseudo Random

Numbers Generators (PRNG) base on a formula, they are very seldom truly random, and

they are generally pseudo random also guessable by cryptanalysis. In other words, they

2

appear random, but are not random absolutely. On the other hand, there are also some

others called True Random Numbers Generator (TRNG), which produces random

numbers measured with some physical phenomenon that is expected to be random.

Moreover, true random numbers are unpredictable and aperiodic. Not only the security

of WLAN can increase by cryptography algorithms their own, but also will be more

powerful if true random numbers are being used in Cryptography algorithms. Thus, the

methods related to secure TRNGs is obviously needed. In addition, a technique that

implemented earlier is named Scatter RNGlight. It is about distributed true random

number generator in Wireless Sensor Network (WSN). In this case, random numbers

derived from the distributed sensor readings are collected using secure frameworks.

Accordingly, DES algorithm and SHA-1 are used for providing the data integrity and

authenticity for security of the frameworks. After collecting the random numbers, they

are authenticated, and then random numbers received from other sensors are combined

in the requester side to generate a random number [1].

The main purpose of this study is generating secure true random numbers by using

laptops in an Ad hoc WLAN due to Diffusion RNGLight, and then evaluating randomness

of them by NIST statistical tests. To achieve these aims an Ad hoc WLAN is established

to prepare a full graph of communication between all available laptops, then the laptop

which needs a random number, multicast its request to other laptops, thus the others

answer the request by replying a message in form of a protected frame. Finally, the

demandant laptop after collecting the authenticated replies, generate a true random

number.

3

Moreover, for the implementation three modifications are applied on Scatter RNGLight;

Firstly, AES and Triple-DES mentioned in [6] are used in scramble function and for

messages encryption instead of DES used in Scatter RNGLight. Secondly, the IP address,

which is used in this study, contains 32 bits, while 12 bits is used for IP address in

Scatter RNGLight. Finally, 4bits are reserved in message to declare which type is used for

encryption of a frame. Furthermore, randomness of the outputs of Diffusion RNGLight

will be tested. A reliable test to evaluate the randomness of these random numbers

should cover most of statistical tests. In addition, there are some techniques to test

randomness for a binary sequence. One of them called NIST test suite provided in

National Institute of Standards Technique [7]. The quality of Diffusion RNGlight in terms

of the randomness of the produced number sequences is assessed and the results

represent that the number of P-values in Diffusion RNGLight using Triple-DES is 60%

greater than the P-values of Scatter RNGLight, while Diffusion RNGLight technique using

AES achieved 60% greater P-values than Diffusion RNGLight using Triple-DES.

This study divided in four chapters, which, chapter 2 is about related works, and

definitions, which will be used in this study. Chapter 3 describes Diffusion RNGLight

development in WLAN, while chapter 4 provides discussion about randomness quality

of the generated random numbers. After finalizing this study in Conclusion, in Appendix

running procedure of the program and the whole view of developed codes are presented.

4

Chapter 2

DEFINITIONS AND RELATED WORKS

In this chapter, Ad-hoc WLAN is debated in section 2.1.1 to prepare a mesh topology

that all laptops in the network are capable of communicating with each other.

Then some issues about cryptography algorithms definitions are explained; Section

2.1.2, the Data Encryption Standard (DES), section 2.1.3 the Advances Encryption

Standard (AES) and section 2.1.4, triple DES. These algorithms are used to modify the

secure framework for transferring generated random numbers. In addition, one-way

function Sha-1 using for message digest and data integrity will be discussed in section

2.1.5. Moreover, section 2.1.6 is about CMAC, which stands for Cipher based Message

Authentication Code, is used in random number generation module for assurance

authenticity and integrity. In section 2.1.7 true and pseudo random number generators

are discussed. However, apart from how random numbers is produced, the quality of

generated random numbers in purpose of randomness is a matter of debate. Thus, NIST

statistical test (provided by National Institute of Standard and Technology); assesses the

random numbers to be sure that they are truly random enough; will be discussed in

section 2.2.

Section 2.3 focus on wide variety of parameter that is used and provided based on

various processes to generate random number and some related works will be brought

up. Moreover, in section 2.4, the needs for TRNG and secure transferring of random

5

numbers in context of Ad hoc Wireless Network are considered and the problem is

defined. Actually all these requirements are determined in Diffusion RNGLight technique.

2.1 Definitions

Security is a major critical field in the wireless Local Area Network (WLAN), because it

is more flexible than LAN for connection of any laptops, so any cracker and

cryptanalysis can connect with a little trouble. For this reason and for increasing

Intrusion Detection to prevent cracker and cryptanalysis sabotages, User Authentication,

reliability of access control, Data Integrity and confidentiality and so on, security

requires for any wireless connection such WLAN. However, Network Security &

Cryptography is a concept to protect network and data transition over WLAN.

During the security review, encounter to WEP and WPA is inevitable, thus, to

understand these concepts is preferred to be familiar with Wireless security, add-hock

networks and wireless sensor networks.

2.1.1 Ad hoc Networks -Wireless Security

Actually there exist many ways to establish a wireless networks these networks

introducing as followed.

According to the similarity of characteristic between mesh topology and Ad hoc in

comparison with WSN, which is implemented in the [1], it was decided to use Ad hoc in

WLAN. In this type one Laptop (node) prepares a context of WLAN used Mesh

topology such a full graph illustrated in Figure1. Therefore, the other nodes will be able

to connect to this network.

http://en.wikipedia.org/wiki/Data_transmission

6

In ad hoc networks, the communicating nodes do not necessarily rely on a fixed

structure or formation, which needs to define and consider the necessary security

architecture they apply. In addition, as ad hoc networks are often constructed for

particular environments and expected to operate with full availability even in difficult

conditions, security solutions applied in more networks that are traditional may not be

adequate for protecting them. However, Wireless security is the prevention of

unauthorized access or damage to computers using wireless networks. Wired Equivalent

Privacy or WEP and Wi-Fi Protected Access, which is called (WPA), are the most

general kind of wireless security. WEP is a weak security standard. A common laptop by

help of an available software tools usually can brock the passwords in a few minutes

(Figure1).

According to [16] WEP is an old IEEE 802.11 standard from 1999, which was abolished

in 2003 by WPA. Moreover, WPA or Wi-Fi Protected Access was a safer replacement to

improve security over WEP. While WPA2 is the current and most popular standard;

some hardware cannot support WPA2 without firmware upgrade or replacement.WPA2

Figure 1: Ad hoc Network

7

uses an encryption method encrypting the network with a 256-bit key; because of the

longer key length, security of WPA2 has been improved against WEP.

Nowadays there exist many different methods and algorithms for retaining WLAN

security, which rely strongly on cryptographic techniques. In other words, cryptography

algorithm and techniques divided into some parts, Asymmetric and Symmetric

algorithms (such AES, DES and Triple DES), one-way functions (i.e. SHA-1 and MD5

called Hash function) comes to provides security in WLAN. In the following these

issues will be discuss in details.

2.1.2 Data Encryption Standard (DES)

DES is one of the most widely used encryption algorithm is based on the Data

Encryption Standard adopted in 1977 by NIST [6]. The input data in DES encryption

Algorithms are encrypted in 64-bit blocks using 56-bit key. The procedure transforms

64-bit input into a 64-bit output after passing a series of step using eight substitution

tables and S-boxes in each iteration, with the similar key in both encryption or

decryption process. However, there are two inputs to the encryption function or for the

reverse of it, the plain text (the cipher text) and a 56-bit key as shown in Figure 2.

 In addition, there are two important methods of cryptanalysis: Differential cryptanalysis

and linear cryptanalysis. DES has been illustrating that is qualified and highly resistant

to these kind of attack. DES considered avalanche effect, In other words a small change

in one bit of the plaintext or even in one bit of key should produce a significant change

in cipher text. Although multiple symmetric ciphers have been expanded and improved

8

since DES was introduced, and although its aim is to be replaced by the Advanced

Encryption Standard (AES), DES stays the most serious and principal such algorithm

[6].

Figure 2: Data Encryption Standard (DES) [6]

2.1.3 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is symmetric block cipher was published by

the National Institute of Standards and Technology (NIST) in 2001 [6]. It is intended to

exchange as the approved standard for a vast majority of applications instead of DES.

AES uses a 128-bit block size and a key size of 128, 192, or 256 bits, Figure 3 illustrates

AES. In comparison with DES, instead of using a Feistel structure [6], each full round of

AES consists of four separate functions: byte substitution, permutation, arithmetic

operations over a finite field, and XOR with a key.

9

Shift Rows

Substitute Bytes

R
O

U
N

D
 1

Mix columns

Add Round key Add round key

Inverse mix cols

Inverse sub Bytes

Inverse shift rows

R
O

U
N

D
 9

Add round key

Inverse mix cols

Inverse sub bytes

Inverse shift rows

R
O

U
N

D
 1

 Shift Rows

Substitute Bytes

R
O

U
N

D
 9

Mix columns

Add Round key

Inverse sub Bytes

Inverse shift rows

Add round key R
O

U
N

D
 10

Shift rows

Add round key

Substitute Bytes

R
O

U
N

D
 1

0
Add round key

Add round key

….

….

Plaintext

Ciphertext

a) Encryption b) Decryption

Key

W[0, 3]

Expand

W[4, 7]

W[36, 39]

W[40, 43]

Figure 3: Advanced Encryption Standard (AES) [6]

10

2.1.4 Triple DES

In Triple DES algorithm [6] as its name suggests, the encryption algorithm is used

multiple times, the structure of Triple DES Illustrated in Figure 4; thus, the plaintext is

converted to the cipher text then the cipher text is used again as an input for the

encryption algorithm. It is clear that the process of Triple DES continues in three steps.

Actually, each step makes use of DES algorithm.

Triple DES needs two or three keys. Obviously, by using three different keys in three

different step of encryption Triple DES counter to the “meet in the middle” attack.

One of the most important features of this algorithm is a mode of operation. There are

five modes of operation that can be used with DES and AES, which are symmetric block

ciphers: Electronic Code Book Mode, Cipher Block Chaining (CBC) mode, Cipher Feed

Back (CFB) mode, Output Feed Back (OFB) mode and Counter mode.

D E E

 D E D

Encryption

Decryption

K1

 K1 K2 K1

 K2 K1

Plaintext

Plaintext

Ciphertext

Ciphertext

Figure 4: Illustration of Triple-DES [6]

11

2.1.5 SHA-1

SHA-1 is cryptographic hash function. SHA stands for secure hash algorithm have been

most widely used during last years [6]. SHA-1 is called secure because it is

computationally impossible to find two different messages which that generate similar

message digest. Sha-1 accepts a message of any length less than 264 bits as an input,

then produces 160-bit output is called a message digest. Usually the message digest is

used for signature verification, authentication.

In the study Sha-1 is applied in secure frameworks to assure that the receiving and

sending frames are authenticated and the data has not changed, thus not only the security

but also the integrity of data is provided by sha-1. In addition, it is used in process of

generating true random number to make a secure fixed number of bits for buffer block

will discuss later.

2.1.6 Message Authentication Code

Message authentication Code (MAC) is used to authenticate a message and providing

data integrity [6]. In other words, it is used to verify the integrity of a message to assure

that receiving data are not altered during transferring data and there is no modification or

deletion and insertion so that it is exactly as the sending data. However, the sender

should be authenticated and valid. MAC requires a secret key K and a variable length

message M to generate a fixed length output T to detect both accidental and intentional

modifications of the data.

T  =  MAC (K, M)

12

An approach of forming a MAC to outputs a fixed length of data for any arbitrary length

input data is using symmetric block cipher. Cipher-based Message Authentication Code

(CMAC) is defined by NIST is keyed hash function duo to a symmetric key block cipher

such as AES.

2.1.7 Salt

Salt is a sequence of zero and ones defined due to the time for performing a permutation

during encryption process. The purpose of using salt in database is for distinguishing

two similar passwords that set by two users. Actually, salts provide security as increase

the length of passwords that make it so hard for attacker to guess [6].

 2.1.8 Nonce

Nonce is an arbitrary number defined to prevent reply attack. During a communication

between two computers, it increases one time for every transmitting message. Therefore,

if a computer receives a message two times it will understand that the message is

received two times and finally it will reject the second message to prevent replay attack

[6].

2.1.9 True and Pseudo-Random Number Generators

In the view of random number generating, there are two approaches, computational and

physical.

Pseudo Random Number Generators (PRNGs) treat as functions or formulas that

produce random numbers based on the initial state, which is called the seed:

13

𝑠0 = 𝑠𝑒𝑒𝑑, 𝑠𝑖+1 = 𝑓(𝑠𝑖), 𝑖 = 0,1,2,3,⋯

Moreover selecting a good seed for a given algorithm is often a matter of debate. The

PRNG will repeat at some point based on the finite state, and the period of a random

numbers is considerable in security algorithms. It is completely clear that starting a

PRNG with the same seed allows repeatable random sequences. Apart from the negative

impact that the periodicity of PRNG has on the cryptography, it is very useful for

debugging among other things by following the generation pattern. While, pseudo

random numbers are repeated after a period, they are guessable so that it is not reliable

to use for cryptography applications [8].

True Random Number Generators (TRNG) measures some physical phenomenon to

produce a value as random numbers. Moreover, it is not possible to reproduce the

generated sequence of true random numbers. As they are aperiodic and it is difficult to

guess the next generated number, they are good choices for cryptography usage. Some

examples of TRNG are semiconductor noise, clock jitter in digital circuits [8].

However many aspects of cryptography require true random numbers. For instance in

producing keys of cryptographic algorithms, or initial values that are used in many

cipher modes such as Counter, Cipher Block Chaining (CBC), and Cipher Feed Back

(CFB) mode. In addition, TRNG is used for nonce, which is an arbitrary large number

use only ones in cryptographic communications for preventing replay attacks. As well

as, TRNG takes in to account for the purpose of One-time pads and Salts.

14

2.2 Introduction to NIST Statistical Test

 NIST tests includes fifteen different statistical tests [7] to determine whether a TRNG is

appropriate for a particular cryptographic usage or not while in the view of

cryptographic application we need to meet stronger requirements than for other usages.

The outputs of TRNG need to be unpredictable and the generated random numbers

should be in an acceptable quality level of randomness. According to NIST test, it is

easily understood that the result of TRNG is reliable or not.

Nowadays demanding of Random numbers used in cryptographic algorithm is increased.

Some crypto algorithms need a key, which must be generated as a random number.

Suitable generators used in cryptographic algorithms should meet more insurance and

requirement over time and their random numbers should be unpredictable. As well as

many cryptographic protocols use true random numbers and pseudo random numbers as

an input. This section is going to explain a set of statistical test checking the

randomness.

It is proved by the National Institute of Standards and Technology (NIST) that these

tests are useful enough for detecting the deviation and randomness of a bit sequence [7].

A NIST test also is able to recognize and attend that an obvious deviation from

randomness caused by a week design generator or anomalies occurred in the tested

binary sequence.

15

2.2.1 General Discussion

Actually, TRNG and PRNG are two basic generators. TRNG and PRNG are both

generate a sequence of zeroes and ones for cryptographic algorithms. This sequence as a

stream could be assessed into subsequence or blocks contain zero s and ones in random.

2.2.2 How to Apply the Tests

There are many statistical tests to apply to a sequence for comparing the evaluation of

the sequence whether are generated truly random or not. It is clear that the randomness

is a probabilistic feature; which means the attribute of a random sequence can be

presented and specified in probability field. There are too many statistical tests, to assess

the presentment and absence of a template, in that recognizing the randomness of the

sequence. Existing too many tests to judge that is the sequence random or not, caused to

there is not any particular complete set of tests. So that, the results of statistical tests

should be presented by consider of some computational accuracy and error, to achieve a

correct conclusion for a special generator. All statistical tests are defined to test a null

hypothesis (H0). In content of NIST test, the sequence, which has been tested, called as

the tested null hypothesis. Related to the null hypothesis, when a sequence is not

random, hypothesis will be alternative hypothesis (Ha). Therefor in each tests decision

about to accept or reject null hypothesis makes based on the produced sequence.

The randomness statistic should be defined and applied to specify the acceptance or

rejection of the null hypothesis. A test statistic value is derived from a computation on

the tested sequence, during a statistic test. If the tested statistic value is not greater (in

the other hand, equal or less) than the critical value, the null hypothesis for randomness

16

will not be rejected (in some situation will be accepted). Otherwise, if the critical value

becomes less than the test statistic value the null (the randomness) hypothesis for

randomness will be rejected. Statistical hypothesis testing works because the critical

value and the reference distribution are related. If the computed test statistic value

becomes greater than the critical value, then according to the statistical hypothesis

testing, inherently, the low probability event should not happen. Therefore, in situation

that the critical value is equal or less than the computed test statistic, the conclusion will

be determined in terms of the assumption of randomness is doubtful or beaten. Statistical

hypothesis testing in this position yields the followed conclusions: rejection H0 and

concurrently acceptance of Ha.

Statistical hypothesis testing is a procedure of conclusion-generation procedure that has

two possible consequences, acceptance of H0 (the sequence is random) or acceptance of

Ha (the sequence is non-random). Table1 is related to an unknown (true) position of the

sequence to the conclusion inferred from the applied testing procedure.

Table 1: Conclusion Derived from a Usage of the Testing Procedure

Conclusion
True Situation

Data is random (H0 is true) Data is not random (Ha is true)

To accept H0 (rejection of Ha) No error Type II error

To accept Ha (rejection of H0) Type I error No error

17

Firstly, the conclusion will be named a Type I error, when the sequence, in fact, be

random and then a conclusion for rejection the null hypothesis occurs a small percentage

of the time. Secondly, if the sequence is, non-random, then a conclusion deducted to

reject the alternative hypothesis, it is named a Type II error. Thirdly, if the sequences are

really non-random or random, then the conclusions reject or accept H0, the inference will

be correct.

The probability related to a Type I error is named the level of significance of the test.

The probability is presented by 𝛼 . 𝛼 In the statistical test is a probability that the

sequence is not random, although it is actually random. In other words, it produced by a

good generator even though the sequence represented as non-random. In cryptography

usage, the value of α often is around 0.01. In addition, it is clear that the Type II error

has probability. The value 𝛽 is the probability of a Type II error. In the statistical test 𝛽

is the probability that the sequence is random, although it is non-random. On the other

hand although the sequence represented as random sequence, it produced by a bad

generator. Possible values for 𝛽 are infinite, in that there are many ways that the

sequence is non-random, and every way have a different 𝛽. While so many ways exists

for producing non-random number, the conclusion of 𝛽 is much more difficult than the

conclusion of 𝛼 . One of the basic aims of the statistical tests is reducing 𝛽 value as

much as possible.𝛼 and 𝛽 are rely on each other. For a tested sequence with size of n in

a way that each of 𝛼 and 𝛽 defined, the new value is specified. Scientists normally use

a value for the level of significance 𝛼 and a normal size 𝑛 and an essential point for a

given test, which will produce the minimum the probability of a Type II error (𝛽).

18

Every statistical test depends on a statistic value. The critical value and the test statistic

value is presented by 𝑡 and 𝑆. Therefore the probability of Type I error is:

𝑝(𝑆 > 𝑡 ∥ 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) = 𝑝(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0𝑡𝑟𝑢𝑒)

Moreover, the probability of the Type II error is:

𝑝(𝑆 ≤ 𝑡 ∥ 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒) = 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0𝑖𝑠 𝑓𝑎𝑙𝑠𝑒)

The other most important value is P-value. The P-value, which defines the resistance of

the demonstration antagonistic the null hypothesis, is computed by the use of test

statistic. If a P-value becomes equal to one, then the sequence will be completely

random. Otherwise, if a P-value becomes zero, then the sequence will be perfectly non-

random.

It is clear that the probability of the Type I error presented by 𝛼. In each test 𝛼 can own

different or arbitrary values. Normally the interval of 𝛼 in the statistical test is

considered as [0.001, 0.01].

We can make a decision due to the relevance of P-value and 𝛼 , which are, firstly the

null hypothesis is rejected when P-value becomes less than 𝛼 (𝑃 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼) in other

words the sequence seems to be non-random and secondly the null hypothesis is

accepted when P-value becomes equal or greater than𝛼 (𝑃 − 𝑣𝑎𝑙𝑢𝑒 ≥ 𝛼), in other

words the sequence seems to be random. By considering the previous definitions it is

possible to inference the two followed conclusions.

19

• By assuming 𝛼 as 0.001, it is expected that if a sequence is random, then the

sequence should be rejected in 1000 sequences. If a P-value were equal or greater than

0.001, then the sequence with 99.9% confidentiality would be random. In addition, if a

P-value were less than 0.001, then the sequence with 99.9% confidentiality would be

non-random.

• By assuming 𝛼 as 0.01, it is expected that if a sequence is random, then the

sequence should be rejected in 1000 sequences. If a P-value is equal or greater than

0.001, then the sequence with 99% confidentiality would be random .also if a P-value

were less than 0.001, then the sequence with 99% confidentiality would be non-random.

2.2.3 Randomness Measurements

a) Uniformity

Generation of a sequence of True random or pseudorandom bits, in every situation the

probability to encounter a zero or one is equally likely and definitely is 1/2, i.e., the

probability of each is exactly 1/2. In the other hand if the length of sequences were n,

then it will anticipated the number of zeros or ones be n/2.

b) Scalability

If a test is be implemented for a sequence, also it is applicable for the subsequences,

which are random. Therefore if there existed a random sequence, then every

subsequences of the sequence should be random. For the results, every subsequent must

pass total test for randomness.

20

c) Consistency

 The generator must be hardly dependent on starting values (seeds). It is inadequate to

test a PRNG based on the output from a single seed, or an RNG because of an output

produced from a single physical output.

Table 2: Some Neccessory Deffinition Related to NIST

Bernoulli Random Variable
A variable which randomly gives one with probability p

or zero with probability 1-p

Entropy

A measure of the disorder or randomness in a closed

system

Binary Sequence A stream of zeros and ones

Bit String

A sequence of bits

Block

A subsequence of a bit stream

A block has a predefined length

Cumulative Distribution

Function (CDF) F(x)

A function giving the probability that the random variable

X is less than or equal to x, for every value x

That is, F(x) = P(X ≤ x)

Kolmogorov-Smirnov Test

A kind of statistical test which is used recognize if a set of

data comes from a particular probability distribution

Probability Density

Function (PDF)

A function which produce the "local" probability

distribution of a test statistic

Run An uninterrupted sequence of like bits

Seed

A primary value of a pseudo random number generator

By using different seeds with the same generator, it

generates different pseudorandom sequences

21

2.2.4 Random Number Generation Tests

One type of statistical tests including 15 tests is NIST test. NIST implemented to test the

randomness of binary sequences, which generated by hardware or software based

random number generator. The tests derived from NIST are specified as follow.

a) The Frequency (Monobit) Test

This test works on compute the congruence of ones and zeros for an entire sequence.

The purpose of the test is to specify whether the number of appeared zero and ones are

as the same as expected. On the other hand, it tests randomness of the sequence by

checking that the probability of zeros and ones is equal to 1
2
 or not. By considering the

sequence length at least 100 bits, results that are more reliable will be achieved.

b) Frequency Test within a Block

This test computes the ratio of ones in M-bit block of a sequence. This test specifies

whether the frequency of ones in M-bit block is almost M/2 or not. By considering the

sequence length at least 100 bits, results that are more reliable will be achieved.

c) The Runs Test

This testis about total runs number in a sequence. A run is a continuous sequence of bits.

It focus on the question whether the number of runs of zeros and ones is as the same as

attended for a random sequence. In the other hand, the test specifies too slow or too fast

switches between zeros and ones in the sequence. By considering the sequence length at

least 100 bits, results that are more reliable will be achieved.

22

d) Tests for the Longest-Run-of-Ones in a Block

 This test is about the longest runs of ones of M-bit blocks. In the test, the aim is about

specifying none quality between the length of longest run of ones in a sequence and the

expected length of runs of ones in a random sequence. By considering the sequence

length at least 100 bits, results that are more reliable will be achieved.

e) The Binary Matrix Rank Test

This test concentrate in testing the rank of disjoint sub-matrices of a sequence. . It also

wants to determine the linear dependency among fixed length subsequences of the

original sequence. By considering the sequence length at least 100 bits, results that are

more reliable will be achieved.

f) Discrete Fourier Transform (Specral) Test

This test belongs to spectral methods, which is a class of procedure. Actually, Discrete

Fourier transform is the base of this test. Periodic features of the bit sequences are

specified by the Fourier transform test. The features demonstrate a deviation derived

from randomness assumption. By considering the sequence length at least 100 bits,

results that are more reliable will be achieved.

g) The Non-overlapping Template Matching Test

The aim of the test is to decline sequences from a given periodic pattern, presenting

much many or very few happening. This test also can be used for decline sequences

from a given non-periodic pattern, presenting much many or very few happening. By

23

considering the sequence length at least 100 bits, results that are more reliable will be

achieved.

h) The Overlapping Template Matching Test

The purpose of the test not only is declining the bit streams presenting much many or

very few happening of m-runs from ones, but also reclaiming for finding irregular

happening of any alternative pattern 𝐵. By considering the sequence length at least 106

bits, results that are more reliable will be achieved.

i) Maurer's "Universal Statistical" Test

This test introduced in 1992 by Ueli Maurer. The aim of the test is the possibility of

compressing the sequence without losing any information (i.e. the sequence which are

compressible is non-random). It was suggested the tested sequence length to be chosen

as a long bit sequence.

j) The Linear Complexity Test

In this test, leaner complexity is used for testing randomness. By considering the

sequence length at least 106 bits, results that are more reliable will be achieved. For

achieving reliable results the other variables such N and M in order should be in the

ranges 𝑁 ≥ 200 and500 ≤ 𝑀 ≤ 5000.

k) The Serial Test

According to the fact that a random series have the feature of uniformity, which means

that the chance of happening for m-bit pattern is equal to the chance of any other m-bit

24

pattern occurrence, the aim of the serial test is to understand if the number of accidental

events is close to the expected random series. In other words, the test evaluate the period

of all possible overlapping m-bit subsequences in comparison with the sequence. By

considering variable m at less than�log2 𝑛� − 5, results that are more reliable will be

achieved.

l) The Approximate Entropy Test

This test conditionally related to the reiterated models is the bit sequence. By

considering variable m at less than�log2 𝑛� − 5, results that are more reliable will be

achieved.

m) The Cumulative Sums (Cusums) Test

This test relates to the greatest amount derived from fragmentary sums of indicated from

the stream defined in the mode of ±1. Big statistic values represent existence of much

many ones or zeros at the sequence primary steps. However, tiny values represent

viewed combined zeros and ones accidentally. By considering the sequence length at

least 100 bits, results that are more reliable will be achieved.

n) The Random Excursions Test

The test is based on the number of cycles which is visited K times in a cumulative sum random

walk. It should be considered that the sequence of zero and one is mapped to the suitable minus

one and one sequence due to partial sums. By considering the sequence length at least 106

bits, results that are more reliable will be achieved.

25

o) The Random Excursions Variant Test

This test is based on the number of a special case, which is frequently happened in a

random visit cumulative sum. In other words the aim is computing deviation, by sing the

ideated times of encountering different conditions from random visiting. By considering

the sequence length at least 106 bits, results that are more reliable will be achieved.

In conclusion, to be sure that our random numbers are good enough, the P-value and

ratio for all tests should be considered. In other words, P-value and ratio of different test

should be compared with the expected P-value, expected ratio, and have to pass

acceptable and reliable number of tests among the tests that have been running. If the

tested P-value becomes less than 0.01, then conclude that the sequence is non-random.

Otherwise, we can conclude that the sequence is random and the result is reliable.

Actually if the P-value amount is equal or more than 0.01 or 0.001 we can be sure that

the generated random numbers pass the tests with the level confidence more than 0.99 or

0.001, in other words the result will be accurate with 99% or 99.9% level of confidence.

The randomness of random numbers produced in bit sequences, by Diffusion RNG Light

technique, which is discussed in this study, can be assessed by NIST test.

In addition, it is noticeable that for getting reliable results from NIST, size of a block

where 𝑛 represents the length of the sequence must be equal or less than ⌊log2 𝑛⌋.

Another important measure is the ratio that represents the number of sequences with P-

value, which is equal or greater than a certain measure 𝜃. This value should be in range

of [0.001 , 0.01]. The restriction for the least ratio is:

26

𝑟𝑎𝑡𝑖𝑜 > 𝑝 − 3�
𝑝(1 − 𝑝)

𝑠
 , 𝑝 = 1 − 𝜃

2.3 Related Work

Actually, many proposals have wide concentration about formation of TRNGs and they

have short view about TRNG physical approaches.

In the view of sources of randomness some proposals focus on finding a source, which

provides a variations, also it is important to be sure that generated random numbers of

the specific source are not repeatable. For instance in [9] a Xilinx Digital Clock

Manager’s (DCM) jitter which is combined with a high frequency clock plays a

fundamental role in producing a random sequence. While [9] have some problems in

handling predictable results, the [10] makes some modification to create a replacement.

Although the source of both [9] and [10] are based on two clocks the aim of [10] is a

development on [9]. In some other cases, the generator measures the response time

distance of the hard disk readings and the speed of disk drive as a true random number

[11]. Although in [12] photons derived from Light rays supply a source of random

numbers, [13] uses the Received Strength Signal Indicator (RSSI) that measures the

radio waves power. In addition, environmental readings often consist of some noises that

can be used in TRNG modules [14]. Also, thermal noise is considered as a source to

obtain true random numbers, in fact while the electricity flow pass through a resistor, a

random thermal movement of electrons happens which can be used as true random

number [15].

27

It is clear that the role of physical measurements and sensory component is inevitable to

provide a source of true random numbers [16, 17]. An approach to collect and produce a

trail of true random numbers in WSN is by means of a sensory component as it is

implemented in [1]. However based on the fact that each laptop in WLAN can be

considered as a sensory node in WSN, the implementation of TRNGs in context of ad

hoc WLAN should be considered.

However apart from different types of physical measuring for providing true random

numbers source, it is necessary to protect the generation process to reduce the

probability of manipulating the random numbers. Although the produced sequences are

aperiodic, some mechanisms are needed to create a secure transmission [1].

2.4 Problem Definition

Therefore, this study is going to implement a modification of Scatter RNGLight

implemented in Wireless Sensor Network (WSN) also is described in [1]. The

modification includes some revision on the formation of the frames. In addition, some

cryptographic equipment is considered to achieve security to produce true random

numbers. For instance, usage of AES, Triple DES and SHA-1 for encryption and

decryption of the transmitted frames, applying CMAC combined with the mentioned

cryptographic algorithms in TRNG module are considered instead of DES and RC2

represented in [18]. However, these modifications, which are implemented in Ad hoc

WLAN, called Diffusion RNGLight explained and evaluated in Chapter 3 in details.

Furthermore, randomness of the true random numbers produced by Diffusion RNGLight

will be evaluated in comparison with Scatter RNGLight by NIST tests [7] in Chapter 4.

28

Chapter 3

DIFFUSION RNGLIGHT IMPLEMENTATION IN WLAN

The purpose of this chapter is the implementation of Diffusion RNGlight technique. It is

performed in context of Ad-hoc WLAN and it insists on generation of true random

numbers in a secure way. Although this technique caused time consumption, the

technique provides security. Each participant node can multicast a request to others in a

form of encrypted frame for collecting some true random numbers. All nodes, which

receive the request, after decryption and authentication, generate a random number by

measuring some physical parameters. Then they make encrypted reply message and send

it back to the demandant node. In the end requester, use the collection of all received

random number to generate the true random number with a scrambling function.

Subsequently the details of these concepts are discussed in three sections. The first

section addresses the structure of Diffused authentication Reading Collection (Diffused

ARCLight) message. The second section is about the organization of multicasting frames

for requests and collecting frames for replies. The last section is related to generate true

random numbers by using enhanced RNG protocol, which depends on SHA-1 (one-way)

function and Cypher-based Message Authentication Code (CMAC). In this study, Visual

C#.Net (which is the subset of Visual Studio.net) has been applied as the programming

languages.

29

In the view of implementation, the modular interface is required. Figure 5, as a modular

representation, illustrate the process of generating a true random number. In the figure

laptop A and B that are available in context of an Ad hoc WLAN called Diffusion are

assumed. Laptop A, playing demandant role, wants to multicast its request to available

laptops in Diffusion network. Laptop B, which is available in the network, received the

request as an encrypted frame named Request frame, then Discriminator function

according to the type of the frame (which is equal to one) recognizes that the frame is

Request frame, thus inserts it in Request queue. Respondent thread in B-side, after

extracting the frame from Request queue, firstly, authenticates it and reads some

physical measurement (i.e. CPU temperature). Then the thread inserts a produced

random number derived from the measurements in to the frame. Finally, the thread after

changing type of the frame (to zero); sends it back to laptop A as Reply frame.

Discriminator in A-side after checking Type of the frame (which is equal to zero); insert

it to Request queue. In addition, Authentication Collection function (A.C. function)

extracts the frame and authenticates the frame then passes the extracted random number

from the frame to Scramble function (which is sub function of A.C. function). Finally,

Scramble function after getting all extracted random number from received frames,

produced a true random number.

30

Sender function

Receiver thread

Reply queue Request queue

Discriminator

 A.C. function Respondent thread

Sender function

Receiver thread

Reply queue Request queue

Discriminator

 A.C. function Respondent thread

Laptop A Laptop B

Scramble
function

Scramble
function

Get CPU
temperature

and
physical
memory

 Get CPU
temperature

and
physical
memory

Secure True Random Number

R
eply fram

e

R
equest fram

e

Type = 1 Type = 0 Type = 0 Type = 1

Figure 5: Communication Pattern Between Laptop “A” and “B”

31

3.1 Ad hoc WLAN Prefaces

According to the previous information, this study is going to implement of Diffusion

RNGlight. Although, there exist many ways to establish a wireless networks but

according to the similarity between characteristics of WSN, which is applied by Scatter

RNGLight [1] and Ad hoc WLAN, Diffusion RNGLight is implemented in the context of

Ad hoc WLAN. In this type one Laptop (node) prepares a context of WLAN used Mesh

topology such a full graph. Therefore, the other nodes will be able to connect to this

network called in this study Diffusion (the codes are represented in A.1).

Diffusion WLAN is a dynamic network and has some benefits. Firstly all nodes are able

to establish Diffusion WLAN on their own, secondly, As soon as the Diffusion WLAN

is interrupted, every nodes has enough potential to establish the Diffusion WLAN, the

main point for this operation is every node which is more quick will establish the

Diffusion. The third advantage of the Diffusion comes from the characteristic of Ad hoc

every node can prepare a request for others in purpose of random numbers and able to

answer to these requests as sending a random number to the demanding node.

3.2 Diffused ARCLight Message Structure

By the use of symmetric concept, these benefits could be prepared in this

implementation. Diffusion RNGlight technique is implemented symmetrically and

simultaneously, so that nodes prepare their requests and answers named Diffused

ARCLight message (Diffused frame) illustrating in figure 6.

32

Diffused frames, which contains seven fields called; Encryption Type, Type, Payload

length, IP address, Payload, Encrypted part discussed below on detail.

Encryption
Type
4bit

Type
1bit

Payload length
3bit

IP address
32bit

Payload
48bit

Encrypted part
64 or 128bit

Figure 6: Fields of the Diffused ARCLight Message (Diffused Frame)

3.2.1 Encryption Type

The first field reserved by Encryption Type declared the algorithm used for digital

signature or encrypting /decrypting the amount of Nonce and Hash code together called

Encrypted part in the Last field. Actually, these fields reserved for another purpose to

alter the size of Diffused frame to a sequence of Octets. Therefore, 4-bit space is

necessary to consider this field.

3.2.2 Type and Payload Length

The second and the third fields contain Type (1 bit) and Payload length (3 bit). Type

determines the type of diffused ARCLight message; when the frame is a request, the value

of Type is zero otherwise, for reply this value is set to one.

Payload length represented the length of Payload derived from the third field, also the

size of the field is 3 bit (because for introducing the size of a field in octet by the size of

48 = 6 ∗ 8 we need to reserve at least 3 bit). Payload length is used because the length

of the payload is changeable and flexible. Payload length value shows how many octets

the Payload contain.

33

3.2.3 IP Address

The fourth field is related to IP address for the demandant or the node replies to the

requests. This field is necessary because when nodes multicast their requests, or their

replies, the nodes should recognize who send the messages. In [1] the author used 12 bit

for the field but in this study for showing IP address in an Ad hoc WLAN (which

structured like the example 254.255.255.255) every nodes are inevitable to reserve

leastwise 32 bit in the frame to recognize IP address.

3.2.4 Payload

The fifth field includes Payload containing 48 bit. It is the random number generated as

measured with some physical phenomenon by the use of two numbers, CPU temperature

[19] and capacity of physical memory [20]. In other words, the current amount of CPU

temperature multiplied by the amount of free space in RAM at that moment is injected to

the payload as a bit sequence. To avoid repetition of the measured value of CPU

temperature, least significant bits of the multiplication are being fed in to the payload.

3.2.5 Encrypted Part

Finally, the Encrypted part is derived from the last field of Diffused ARCLight message.

Actually, this frame divided in two parts each of which are used to increase the security

of the frame. In other words, these two categories are used for Authentication of the

demanding and guaranteeing the Integrity of the frame. The amounts of Nonce and Hash

code are encrypted. This study used AES and Triple DES algorithms in mode of Cypher

Block Chaining (CBC) to encrypt/decrypt the pair of Nonce and Hash code in terms of

34

Encrypted part. The total size of this field by using AES encryption/decryption set to

128 bits and by using Triple-DES encryption/decryption set to 64 bits (figure 7).

Encrypted part
64 or 128bit

Nonce
8bit

Hash code
56 or 120bit

Figure 7: Pair of Nonce and Hash Code Derived from Encrypted Part

a) Nonce

Nonce field considerate to threaten and prevent replay attacks. The size of the Nonce

containing a constant will be increase by the destination node (who will send a random

number to the demandant) is 8 bit.

b) Hash Code

By considering the size of Nonce and the Input (Plaintext) used for two encryption

algorithms (AES and Triple DES) Hash code size to have a reliable plaintext for AES or

Triple DES in order is needed to be leastwise 120 or 56 bit. On the other hand, this part

contains, a transform of the 120 or 56 least significant bits of computed digest derived

from concatenated of the other field with Nonce together using SHA-1.

According to the previous information about structure of frames and the fields it is

appeared that the field relating to the payload can be eliminated in the request frames.

35

3.3 Diffusion RNGLight Organization

This study categorizes Diffusion RNGlight in three phases:

• Sending request

• Receiving

• True Random Number Generation (TRNG)

Note that the third phase is a subset of the second phase but in this study because of the

importance of the Generating Random number, it determines as a separate phase. By the

way, these phases can be presented in two categories, multicasting and collecting

illustrating in figure 8. In fact, the composition of these phases is Diffused ARCLight

protocol.

Figure 8: Categories of the Implementation

 b. Multicasting a. Collecting

36

After establishing the WLAN and connecting the nodes are accessible by the WLAN

nodes can freely ask some requests and reply them, so this implementation is Symmetric

and synchronous for the sake of symmetric and synchronous it is unavoidable to send

request and receive reply in parallel in programing. The structure of implemented

Diffusion RNGLight is illustrated in Figure 9.

Figure 9: Structure of Diffusion RNGLight Implementation

3.3.1 Multicasting Request

Particularly the first part of the study is about sending request. This part also is defined

and programed as a function. The function is responsible for the role of multicasting

requests named Sender. Sender function prepares Diffused ARCLight message (Diffused

frame) of requests to notify the other available nodes that it needs some Random

Numbers.

SE
N

D
ER

Discriminator

Receiving frames

R
es

po
nd

en
t

A
.C

. f
un

ct
io

n

37

These requests based on the previous discussions includes; Encryption Type, Type,

Payload length, IP address, Encrypted part (contains encryption of the pair of Nonce and

Hash code).it is obvious that, the Payload field is eliminated, because it is unnecessary

and makes redundancy.

Sender after filling the first four Fields and generating a Nonce it starts to compute a

message digest (Hash code) from the concatenation of the first 4 fields and 8bit Nonce

(Figure 10). Now the input of the Encrypted part field containing the pair Nonce and

Hash code are ready. After encrypting, the pair it will inserted to the field. Finally, the

frame is ready to multicast (the related code is presented in A.2).

Encryption
Type
4bit

Type
1bit Payload

Length
3bit

IP
address

32bit

Encrypted part
64 or 128bit

For request
frame is set 1

Nonce
8bit

Hash code
56 or 120

bit

Figure 10: Illustration of the Diffused Frame for Request that the Payload Field was
Eliminated

37B3.3.2 Receiving

This phase is created to receive the frames and preparing reply fames. Receiving phase

can be detached in some categories.

38

a) Received Frames

In this part, there exists a thread called Receiving frame. This thread will receive the

frames by listening to the other nodes. The technique was applied for listening is the

UDP socket programming.

b) 63BDetachment of Requested and Replied Frames

As it was clear in figure 9, there is a function named Discriminator inside Receiver

thread. Receiver thread always received two kind of frame, which are deferred by the

Type field, thus requiring a function to divide these two kinds of frame is felt. Actually,

this function works until the Receiving frame thread works. Discriminator function has

duty to recognize the received frames are a request frames or is reply frames. According

to this recognition, Discriminator inserts the request frames in a queue named Request

queue and reply frames in the other queue named Reply queue.

c) Responding to the Requests

After inserting frames in a request queue, another thread should be defined for executing

in parallel with the Receiving thread. The other reason is about lifetime. Every node

after ordering a request set a time as life time to increase the security, it leads to create a

thread being in parallel with Receiving frames thread. This thread named respondent.

For responding the frames, firstly, Receiving frame thread should authenticate the

requesters and its frame. For authentication, Respondent frame should decrypt the last

field of a frame using AES or Triple DES algorithms in Cypher Block Channing mode.

The four first fields, Nonce and Hashcode using decryption should be retrieved,

therefore by computing a message digest of concatenation of the first four fields with

39

Nonce field together by the using of SHA-1, then compare with the Hash code the

integrity and authentication of the frame can be assessed. Secondly, the reply frames will

be constructed follow this order; the Type and IP address fields should be replaced by

zero and IP address of itself respectively. The Payload filled by generating random

number, which was discussed before. Nonce field replaced by increasing its previous

value one time. After preparing these parts Hash code will computed from them, then

the Nonce and the transformed output of the Hash code will encrypted by the use of

AES and Triple DES in Cypher Block Channing (CBC) mode (figure 11). After

constructing the reply frame, finally, the frame will send back to the demandant IP. In

addition, UDP socket programming applied for sending the reply, by knowing the

destination IP address retrieved from IP addresses field of the request frame.

Notice that for sending the reply to the demandant IP address, applying the UDP

multicast in Socket programming we should insert the demandant IP address instead of

169.255.255.255 (UDP codes are defined in A.2).

Encryption
Type
4bit

Type
1bit Payload

Length
3bit

IP
address

32bit

Payload
48bit

Encrypted part
64 or 128bit

For Reply-
frame is set 0

Nonce
8bit

Hash
code
56 or
120bit

Figure 11: Reply Frame, Which Obviously Include Payload Field

3.3.3 True Random Number Generation (TRNG)

This phase want to determine after receiving reply frames what would be happens in the

programming. In this study, a function named Authentication Collection (A.C.) is

defined to collect, authenticate and check the integrity of reply frames. Actually, it is

40

declared that all these duties lead to generate a true random number. To this aim, this

phase is categorized in the two followed parts.

a) Collecting the Frames

As it was mentioned in section 3.3.2, Reply queue, which was filled by Discriminator

function after a specified lifetime, will be released by the function for A.C. function to

collect the frames. While extracting frames from Reply queue, their integrity and

authenticity should be investigated. In fact, the way that discussed in section 3.3.2 and

these procedures are totally related to Diffused ARCLight protocol.

b) Generating a True Random Number

After collecting Authenticated frames and extracting the Payload fields of the frames.

Payload values will be fed as inputs in a function, named Scramble function. The output

of the function will be the generated true random number.

As it was mentioned at the beginning of this chapter also in section 3.3, Diffused

ARCLight protocol is the core of the Diffusion RNGLight. It is clear that the basic RNG

module has been enhanced in Diffusion RNGlight, which is added Local Clock (LC) and

Digest Block, as represented in Figure 12.

41

Figure 12: Illustration of Enhanced RNG Module

In this section, First of all value of the Payload field is extracted in size of the value of

the Payload length field. Scramble function accepts as input the concatenation of the

Payload value authenticating in section 3.4.1and are binary. Actually, Scramble function

is based on the enhanced RNG.

Mixer after receiving its input computes160 bit digest of the concatenation of reading

sets used SHA-1.

𝑌 = 𝑆𝐻𝐴 − 1(𝑋1 ∥ 𝑋2 ∥ ⋯ ∥ 𝑋𝑛)

The equation below depicted the Hash code (Y) will be added to the 160 bits non-

circular left shifted value of the Buffer Block (BB). Therefore when the value of BB

ADC
Reading

Digest Block

Buffer Block
(BB)

CMAC

Clock
(LC)

Register Block
(RB)

True Random

42

including 256-bit is shifted is shifted 160-bits, caused that, 96 least significant bits of BB

to be replaced by Y (the output of the hash code). Actually, (≪) is an operator

illustrating the bitwise left-shift.

𝐵𝐵 = (𝐵𝐵 ≪ 160) + 𝑌

The next step is fed output of Buffer Block in to Cipher-Based Message Authentication

Code (CMAC) which is discussed in [6]; XOR of the 16 least significant bits of Local

Clock (LC) and 64-bit vale of Register Block (RB) is applied for the Key of CMAC. It is

noticeable the primary RB and BB includes set of ones.

According to CMAC algorithm Illustrated in Figure 12, the outcomes of this step will be

XOR by the 64-bit Register Block Value. Finally, the result of the operation is True

Random Number (TRN). The next formulas depict the sequence of TRNG in

summarize.

𝑇𝑅𝑁 = 𝐶𝑀𝐴𝐶(𝐵𝐵,𝐾𝑒𝑦)⨁𝑅𝐵

𝐾𝑒𝑦 = 𝑅𝐵⨁𝐿𝐶

43

Chapter 4

RANDOMNESS QUALITY OF GENERATED RANDOM

NUMBERS BY DIFFUSION RNGLIGHT

After implementation and execution of Diffusion RNGLight in C#.Net, some bit

sequences as random numbers are achieved. These sequences which are out comes of

the protocol are applied in NIST test to assess the quality of randomness [7]. First of all

after obtaining the random numbers and saving them immediately one after one in a file,

a long bit sequences stored in a file is gained. It is clear that the file containing long bit

sequences are applied in NIST test. As it was mentioned in Chapter 3 to gain qualified

results from NIST test, the sequence length should be at least 106.

In this study after executing the program on five laptops containing Intel Core i5 CPU

and 2GB RAM and Windows 7 as Operating System, which were in distance of around

3 meters far from each other, consequence of results in length of 4 × 107was gained in

two days. However, each day every laptop produced 4 × 106binary bits which means

that 2 × 107binary bits are achieved from the five laptops. Totally, in two days about 40

MB random bits saved in a file. Therefore, in the test the length of sequence and the

number of tested sequences (runs) are assumed in order 106 and 40. Secondly, after

preparing the file (long length sequence) and arranging the inputs, NIST tests were

applied in the long length sequences produced as results by Diffusion RNGLight. Table 3

and Table 4 illustrate the inputs and outcomes of the NIST test.

44

Table 3: The Input Values of the Statistical Tests
Parameter Value

Length of each sequences(L) 106

Number of tested sequences(s) 40

Threshold for P-value 0.01

Ratio value 0.942

Table 4: Comparison of the Expected and Observed Results

Test name

Scatter RNG

In WSN [1]

Diffusion TNG

In WLAN

Triple DES used

Diffusion TNG

In WLAN

AES used

P-value Ratio P-value Ratio P-value Ratio

Frequency 0.1223 0.9834 0.4465 0.989 0.5786 0.995

Block Frequency 0.3508 0.9910 0.6931 0.988 0.3565 0.943

Runs 0.1223 0.9811 0.2927 0.987 0.2565 0.978

Longest Run 0.5341 0.9916 0.5120 0.989 0.8932 0.997

Binary Matrix Rank 0.7351 0.9853 0.7727 0.992 0.7823 0.997

Discrete Fourier Transform 0.2135 0.9910 0.4812 0.991 0.5253 0.994

Non Overlapping template

matching
0.4602 0.9893 0.5241 0.990 0.723 0.991

Overlapping template matching 0.3509 0.9831 0.2733 0.991 0.0751 0.980

Maurer’s Universal Statistical 0.8065 0.9996 0.7834 0.950 0.1296 0.945

Linier Complexity 0.8965 0.9923 0.9013 0.96 0.1973 0.954

Serial 0.5348 0.9974 0.7702 0.998 0.7943 0.999

Approximate entropy 0.7451 0.9959 0.7435 0.988 0.9863 0.997

Cumulative sums 0.7392 0.9882 0.8662 0.989 0.8798 0.99

Random excursion 0.6402 0.9811 0.4719 0.984 0.6714 0.987

Random excursion variants 0.7502 0.9941 0.6246 0.985 0.0356 0.961

45

Because, NIST test program are implemented in GCC and according that the LINUX

operating systems containing GCC compiler, it was unavoidable to use Linux to execute

NIST tests.

Finally, earned results from NIST test indicate that P-value of every test (such as

Frequency test) are greater than 0.01 (value of 𝛼 called null-hypothesis) assumed as

default. Consider the Table 4 two inferences are achievable. Comparisons of the three

techniques are discussed in three parts.

According to the p-values of diffusion RNGLight using Triple DES it can be easily

understood that all these values are greater than 0.01 and they passed all fifteen tests.

However by comparison of diffusion RNGLight using Triple DES with Scatter RNGLight in

case of p-values, the produced random number of diffusion RNGLight using Triple DES

are more random than Scatter RNGLight.

Obviously, the results show that for Frequency, Block frequency, discrete furrier

transform and serial tests the p-values in Triple DES have the growth rate more than 0.2

in comparison with Scatter. While p-values for Runs, Binary matrix rank, Non-

overlapping template matching, Linier complexity and Cumulative sums are not

increasing considerably. In other words, Triple DES in 60% (nine tests out of fifteen

tests) achieved more randomness than Scatter. In the view of ratio, approximate entropy

and Random excursion variants tests have a significant decrement while totally in eight

out of fifteen test (53%) Triple DES appears more successful than Scatter.

46

Considerably, the p-values of diffusion RNGLight using AES are greater than 0.01, thus

they passed all the fifteen tests.

As it represented in Table 4 the p-values and ratios in all tests for diffusion RNGLight

using AES is growing in comparison with Scatter except Block frequency, Runs,

Overlapping template matching, Maurar ‘s universal statistical, Linier complexity and

random excursion variants tests which means that entirely 60% improving.

Table 5: The Improvement P-values of the Different Usage of Diffusion RNG

Diffusion RNG
in WLAN

Triple DES used

Diffusion RNG
in WLAN
AES used

Minimum improved values 0.0048 0.0057

Maximum improved values 0.3423 0.4563

Mean of improved values 0.1747 0.2045

(number of improved values >
Mean) % 44% 54%

Therefore, the Table 5 shows 44% of the improved P-values of Diffusion RNG using

Triple DES become more than mean value, also among the improved P-values of

Diffusion RNG using AES, 54% of them are more than mean value. In conclusion, the

improvement percentage of Diffusion RNG using AES is 10% more than Diffusion

RNG using Triple DES.

47

Chapter 5

CONCLUSION

According to the previous discussion, WLAN security will not be achievable, unless by

preventing attacks and threats of WLAN. Accordingly, it is unavoidable to use

cryptographic algorithms and for additional assurance, hash codes to improve the

security. Respectively random numbers used by some cryptographic algorithms as

session key, nonce or salt play a critical role in security of WLAN.

In this study, Diffusion RNGLigth technique, which is modification of Scatter RNGLigth

technique, is implemented. Although Scatter RNGLigth technique is performed on sensor

nodes in a Wireless Sensor Network (WSN) to generate true random numbers, Diffusion

RNGLigth technique is implemented on distributed laptops in context of Ad hoc WLAN.

Moreover, the secure framework is remodeled in some parts also DES is replaced with

AES and Triple-DES for encryption/decryption and CMAC application. Furthermore,

the random numbers produced by Diffusion RNGLight have been qualified by some

statistical tests named NIST such as experimenting in [1]. Accordingly, the results show

that the number of P-values in Diffusion RNGLight using Triple-DES is 60% greater than

the P-values of Scatter RNGLight, while Diffusion RNGLight technique using AES

achieved 60% greater P-values than Diffusion RNGLight using Triple-DES.

48

REFERENCES

[1] L. R. Giuseppe, M. Fabrizio and O. Marco, "Secure Random Number Generation in

Wireless Sensor Networks," SIN '11 Proceedings of the 4th international

conference on Security of information and networks, p. 175-182, Sydney, NSW,

Australia, November 14 - 19, 2011.

[2] W. Terrill, "WLAN Security Today:Wireless more Secure than Wired," Siemens

Enterprise Communications, München, Germany, July 2008, p. 4-9.

[3] S. A. Camtepe and B. Yener, "Key Distribution Mechanisms for Wireless Sensor

Networks: a Survey," Rensselaer Polytechnic Institute , Computer Science

Department, 2005, p.1-5.

[4] G. Anastasi, G. Lo Re and . M. Ortolani, "WSNs for Structural Health Monitoring

of Historical Buildings," IEEE 2nd confrence on Human System Interactions (HSI),

p. 574-576, Catania, Italy, May 21-23, 2009.

[5] Z. Benenson, N. Gedicke and O. Raivio, "Realizing Robust User Authentication in

Sensor Networks," ACM, Workshop on Real-World Wireless Sensor Networks

(REALWSN05), p. 65-72, Stockholm, Sweden, June 20-21, 2005.

49

[6] W. Stallings, "Cryptography and network security," Prentice Hall, 5th edition, 900

p.

[7] A. Rukhin, J. Soto, J. Nechvata and M. Smid, "A Statistical Test Suite for Random

and Pseudorandom Number Generators for Cryptographic Application,"

Information Technology Laboratory (ITL), no. National Institute of Standards and

Technology (NIST), p. 1-1 to 5-8, April, 2010.

[8] C. Paar and J. Pelzl, "Understanding Cryptography," Springer, 2010, 372 p.

[9] S. M. Kwok and E. Y. Lam, "FPGA-based High-spead True Rando Number

Generator for Cryptographic Aplications," TENCON 2006. 2006 IEEE Region 10

Conference, p. 1-4, Hong Kong, November 14-17, 2006.

[10] K. Tsoi, K. Leung and P. W. Leong, "High performance physical random number

generator," IET Computer & Digital Techniques, vol. 1, no. 4, p. 349-352, July,

2007.

[11] M. Jakobsson, E. Shriver, B. Hillyer and A. Juels, "A Practical Secure Physical

Random Bit Generator," 5th, ACM on Computer and Communications Security

(CCS), p. 103-111, San Francisco, CA, USA, November 02 - 05, 1998.

50

[12] A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard and . H. Zbinden, "Optical

Quantum Random Number Generator," Journal of Modern Optics, vol. 47, no. 4, p.

595–598, 2000.

[13] R. Latif and M. Hussain, "Hardware-based Random Number Generation in

Wireless Sensor Networks (WSNs)," Advances in Information Security and

Assurance,Third International Conference and Workshops, vol. 5576, p. 732-740,

Seoul, Korea, June 25-27, 2009.

[14] V. Gaglio, A. De Paola, M. Ortolani and G. Lo Re, "A TRNG Exploiting Multi-

Source Physical Data," the 6th ACM workshop on QoS and security for wireless

and mobile networks, p. 82-89, Bodrum, Turkey, October 17 - 21, 2010.

[15] B. Jun and P. Kocher, "The INTEL Random Number Generator," Cryptography

Research Inc. white paper, San Francisco, California, 1999. [Accessed 4 July 2013].

[16] S. Callegari, R. Rovatti and G. Setti, "Embeddable ADC-based True Random

Number Generator for Cryptographic Applications Exploiting Nonlinear Signal

Processing and Chaos," IEEE Transactions on Signal Processing, vol. 53, no. 2, p.

793-805, 2005.

[17] I. Vasyltsov, E. Hambardzumyan, Y. S. Kim and B. Karpinskyy, "Fast Digital

TRNG Based on Metastable Ring Oscillator," Cryptographic Hardware and

51

Embedded Systems–CHES, vol. 5154, no. Samsung Electronics, SoC R&D Center,

System LSI, Korea, p. 164-180, 2008.

[18] H. Alavizadeh, "Distributed Random Number Generator," Eastern Mediterranean

University, Master Thesis, 1 July 2013.

[19] "ACPI Thermal Zone," Microsoft Developer Network (MSDN), 2006. [Online].

Available: http://msdn.microsoft.com/en-

us/library/aa939962(v=WinEmbedded.5).aspx. [Accessed 25 05 2013].

[20] "PhysicalMemory Class," Microsoft Developer Network (MSDN), [Online].

Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa394347(v=vs.85).aspx. [Accessed 25 05 2013].

52

APPENDICES

53

Appendix A: Programming Part

The table below is a short view on the programing formation of the study:

Component Subject Description

A.1

Initialization

Ad-hoc WLAN

• An ad-hoc wireless network is made

automatically that each laptop can join or

leave the network.

A.2

UDP

Sending

• UDP protocol is used to multicast a

request for random numbers in a

network

• For replying to demanding IP

Receiving • For receiving a frame from a specific IP

A.3

Threads

Receiver Thread

• The thread always listening to the port

for received frames

• Divides the receiving frames due to their

Type (request=1 / reply=0)

• Puts them in a related queue

Responder

Thread

• The thread always checking the queue if

any request frame is received;

54

• Authenticate the frame;

• Measure some specific parameter to

produce random number;

• make a frame to reply;

• Encrypt(AES/Triple DES) and send it to

the requester

Queues

Request Queue
The queue contains of the received request

frames.

Reply Queue The queue contains of the received reply frames.

A.4

Timer

Life Time

• It shows the expected time for collecting

random numbers

• It starts to work when a request is sent

• When it is expired then the Reply Queue

is locked and no reply message is

accepted and the collecting random

numbers are prepared

Network Timer

• The timer is defined to refresh the list of

all available laptops which joined or

leaved the network

55

A.5

Authentication

Reading

Collection

Authentication

collection

• Before the expiration of the timer

collects all reply frames then

decrypt(AES/Triple DES) and

authenticate them

Scramble

function

• Use achieved random numbers as an

input, using Hash function, CMAC and a

combination methods to generate a

secure true random number

A.1 Initialization

First and the most an ad-hoc wireless network should be established that the nodes or

laptops could communicate with each other. The ad-hoc network is named “Diffusion”.

In this purpose, some initialization should be done. The most important part of

initialization code is related to set the “Diffusion” profile and connect to it. In addition,

the threads, P1 and P3, are defined as a receiver and a responder respectively:

private void Form1_Load(object sender, EventArgs e)
{
count = 0;
avrage = 0;
File = new System.IO.StreamWriter("..//Results.txt");
File2 = new System.IO.StreamWriter("..//Results2.txt");
//--
sending_end_point = new IPEndPoint(send_to_address, 11000);
//--
IPHostEntry myHostInfo = Dns.Resolve(Dns.GetHostName());
IP = myHostInfo.AddressList[0].ToString();
lblIP.Text = IP;
lblName.Text = Dns.GetHostName();
//--

56

foreach (WlanClient.WlanInterface wlanIface in client.Interfaces)
{
string xml_Diffusion = "<?xml version=\"1.0\"?>\r\n<WLANProfile
xmlns=\"http://www.microsoft.com/networking/WLAN/profile/v1\">\r\n\t<name>Diffusi
on</name>\r\n\t<SSIDConfig>\r\n\t\t<SSID>\r\n\t\t\t<hex>446966667573696F6E</hex>\
r\n\t\t\t<name>Diffusion</name>\r\n\t\t</SSID>\r\n\t\t<nonBroadcast>false</nonBro
adcast>\r\n\t</SSIDConfig>\r\n\t<connectionType>IBSS</connectionType>\r\n\t<conne
ctionMode>manual</connectionMode>\r\n\t<MSM>\r\n\t\t<security>\r\n\t\t\t<authEncr
yption>\r\n\t\t\t\t<authentication>open</authentication>\r\n\t\t\t\t<encryption>n
one</encryption>\r\n\t\t\t\t<useOneX>false</useOneX>\r\n\t\t\t</authEncryption>\r
\n\t\t</security>\r\n\t</MSM>\r\n</WLANProfile>\r\n";
wlanIface.SetProfile(Wlan.WlanProfileFlags.AllUser, xml_Diffusion, true);

wlanIface.Connect(Wlan.WlanConnectionMode.Profile, Wlan.Dot11BssType.Any,
"Diffusion");
}

//-------------------cpu information------------//
m_CPUCounter = new System.Diagnostics.PerformanceCounter();
m_CPUCounter.CategoryName = "Processor";
m_CPUCounter.CounterName = "% Processor Time";
m_CPUCounter.InstanceName = "_Total";
float cpu = m_CPUCounter.NextValue();
//--//

temp.Text = GetTemperature (1);
p1 = new Thread(new ThreadStart(receiver));
p3 = new Thread(new ThreadStart(responder));
p1.Start();
p3.Start();

//--------------------------------------

}

In addition, a list of all available laptops in the network is provided and presents in the

list box:

void net_view()
{
nb = new NetworkBrowser();
lstNetworks.Items.Clear();
string nbh = "";
foreach (string pc in nb.getNetworkComputers())
{
try
{
addresslist = Dns.GetHostAddresses(pc);
foreach (IPAddress address in addresslist)
{
nbh = address.ToString();

57

}
}
catch (Exception)
{
nbh = "No direct neighbour";
}

ListViewItem item = new ListViewItem(pc);
item.SubItems.Add(nbh);
lstNetworks.Items.Add(item);
nbh = "";
}
}

When a laptop is joined to the network, is added to the available laptop list. Actually, it

is possible to multicast a request to gather random numbers. These codes show how a

laptop encrypts a frame as a request and sends it to all others, by using UDP protocol:

private void btn_cnt_Click(object sender, EventArgs e)
{

collect_flag = false;
listBox1.Items.Add("--");
string Sframe = "";
if ((Convert.ToByte(txt_pl.Text) > 6)||(Convert.ToByte(txt_pl.Text) == 0))
txt_pl.Text = "6";
byte pl =Convert.ToByte(txt_pl.Text);
byte[] Type_payload = new byte[1];
byte []Sender=new byte[4];
byte[] Nonce = new byte[1];
byte[] Hash = new byte[7];
Nonce[0] = 1;
Type_payload[0] = 0x08;

Type_payload[0] = (byte)(Type_payload[0] | pl);
string crypto_type = "";
crypto_type = cmb_Crypto_type.Text;
switch (crypto_type)
{
case "AES":
Type_payload[0] = (byte)(Type_payload[0] | (0x10));
break;
case "Triple DES":
Type_payload[0] = (byte)(Type_payload[0] | (0x30));
break;
default:
MessageBox.Show("Choose crypto type!");
break;
}
for (int i = 0; i < 4; i++)
Sender[i] = Convert.ToByte(IP.Split('.')[i]);

58

//------------------ Hash Code And Encryption is provided:

string test = Encoding.ASCII.GetString(Sender);
string Hashcode = h(1, Encoding.ASCII.GetString(Type_payload) +
Encoding.ASCII.GetString(Sender) + Encoding.ASCII.GetString(Nonce));

byte[] transform = Encoding.ASCII.GetBytes(Hashcode);
for (int i = 0; i < 7; i++)
Hash[i]=transform[i];
string plaintext =
Encoding.ASCII.GetString(Nonce)+Encoding.ASCII.GetString(Hash);
byte[] encrypted = EncryptStringToBytes(plaintext,crypto_type);

//-------------------- Preparing a frame to send:
byte[] send_buffer = new byte[5+encrypted.Length];
send_buffer[0] = Type_payload[0];
for (int i = 1; i < 5; i++)
send_buffer[i] = Sender[i-1];

for (int i = 5; i < 5+encrypted.Length; i++)
send_buffer[i] = encrypted[i-5];
lifetime.Interval = Convert.ToInt32(textBox1.Text);

//-------------------- multicasting:
listBox1.Items.Add("Multicasting");
multi_send(send_buffer);
listBox1.Items.Add("DONE");
listBox1.Items.Add("LifeTime Timer is started");
listBox1.Items.Add("DONE");

}

The function bellow gets a frame as an input and encrypts it due to encryption types,

AES or Triple DES, then make an output as a string of bytes:

static byte[] EncryptStringToBytes(string plainText,string Encr_type)
{
byte[] encrypted;
switch (Encr_type)
{
//--//
case "AES":
using (AesCryptoServiceProvider tdsAlg = new
 AesCryptoServiceProvider())
{
tdsAlg.Key = Encoding.ASCII.GetBytes("_Who_Can_guess_the_Key!?");
tdsAlg.IV = Encoding.ASCII.GetBytes("towish_is_toable");
tdsAlg.Mode = CipherMode.CBC;
// Create a decrytor to perform the stream transform.
ICryptoTransform encryptor = tdsAlg.CreateEncryptor(tdsAlg.Key, tdsAlg.IV);
// Create the streams used for encryption.

59

using (MemoryStream msEncrypt = new MemoryStream())
{
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor,
CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
//Write all data to the stream.
swEncrypt.Write(plainText);
}
encrypted = msEncrypt.ToArray();
}
}
}
return encrypted;
//--//
case "Triple DES":
using (TripleDESCryptoServiceProvider tdsAlg = new
TripleDESCryptoServiceProvider())
{
tdsAlg.Key = Encoding.ASCII.GetBytes("_Who_Can_guess_the_Key!?");
tdsAlg.IV = Encoding.ASCII.GetBytes("big_bang");
tdsAlg.Mode = CipherMode.CBC;
tdsAlg.BlockSize = 8;
ICryptoTransform encryptor = tdsAlg.CreateEncryptor(tdsAlg.Key, tdsAlg.IV);
using (MemoryStream msEncrypt = new MemoryStream())
{
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor,
CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
swEncrypt.Write(plainText);
}
encrypted = msEncrypt.ToArray();
}}}
return encrypted;
default:
return encrypted=Encoding.ASCII.GetBytes("Default Error");
}}

A.2 UDP Programming

Moreover, Lifetime timer starts counting a particular amount that is set to this timer,

when the request frame is multicast in the network. The codes related to the UDP for

multicasting a message to all reachable IP are as followed:

// to define a socket object which is the fundamental device used to network

60

Communications

Socket sending_socket = new Socket(AddressFamily.InterNetwork,
SocketType.Dgram,ProtocolType.Udp);

// to define an address object and populate it with the IP address.
// the particular address which ends in 255 means for sending to all devices
whose address begins with 169.254.

IPAddress send_to_address = IPAddress.Parse("169.254.255.255");
IPEndPoint sending_end_point;

private void multi_send(byte[] send_buffer)
{
try
{

if (btn_cnt.Enabled == true)
{
lifetime.Enabled = true;
sending_socket.SendTo(send_buffer, sending_end_point);
if (checkBox1.Checked)
{

sending_end_point = new
IPEndPoint(IPAddress.Parse(broadcast.Text), 11000);
sending_socket.SendTo(send_buffer,
sending_end_point);

}
btn_cnt.Enabled = false;
}
}
}
catch (Exception send_exception)
{
Console.WriteLine(" Exception {0}", send_exception.Message);
}

try
{
}
catch (Exception ex)
{
MessageBox.Show(ex.Message);
}}

A.3 Thread

Immediately after connecting to the network, Receiver Thread and Responder Thread

start working. The receiver thread receives the frames and calls Discriminator function:

61

void receiver()
 {
 request_rear = 0;
 reply_rear = 0;
 request_front = 0;
 reply_front = 0;

 while (true)
 {
 receive_byte_array = listener.Receive(ref groupEP);

 received_data = Encoding.ASCII.GetString(receive_byte_array,0,
receive_byte_array.Length);

 Discriminator(receive_byte_array);

 }
 }

The Discriminator function checks the Type of the frames and categorizes them in two

queues. Actually Discriminator puts the reply frames in Reply Queue and the request

frames in Request Queue if the Lifetime is not expired. The codes related to this part are

below:

void Discriminator(byte[] frame)
{

if (((byte)(frame[0] & (0x08)) / 8) == 1)
{
request_queue[(request_rear++) % 10000] = frame;
if (p3.ThreadState == ThreadState.Suspended)
p3.Resume();
}
else if (((byte)(frame[0] & (0x08)) / 8) == 0)
{
if (lifetime.Enabled == true)
reply_queue[(reply_rear++) % 10000] = frame;
}
else
{
MessageBox.Show("Incorrect Received!");
}
}

62

Note: if the request queue is empty, responder will be suspended until any new request

frame is added to the queue.

The Responder Thread checking the Request Queue whether the requests frame is

available or not. If any frame is available then take the frame from the queue. After

authentication, measure the specific parameters to create a Payload. Then make a reply

frame and set it with appropriate values, send it back to the demandant IP.

void responder()
{
//responder_flag = true;

IPEndPoint sending_end_point;
double random_value=0;
//-----------------------//
while (true)
{
if (request_front != request_rear)
{
byte[] Current_frame = new byte[request_queue[(request_front) % 10000].Length];
Current_frame = request_queue[(request_front) % 10000];
request_front++;
string hashcode = "", nonce_hashcode = frame_read(Current_frame,
"nonce_and_hash");
for (int i = 0; i < 7; i++)
hashcode += nonce_hashcode[i + 1];
nonce[0] = Convert.ToByte(nonce_hashcode[0]);
type_payload[0] = Current_frame[0];
for (int i = 1; i < 5; i++)
sender[i - 1] = Current_frame[i];
//---//
byte[] hash = new byte[7];
string H = h(1, Encoding.ASCII.GetString(type_payload) +
Encoding.ASCII.GetString(sender) + Encoding.ASCII.GetString(nonce));
byte[] transform = Encoding.ASCII.GetBytes(H);
for (int i = 0; i < 7; i++)
hash[i] = transform[i];
if (hashcode == Encoding.ASCII.GetString(hash))//frame authenticated!
{
byte pl = Convert.ToByte(frame_read(Current_frame, "payload_length"));

//---//
double t1 = Convert.ToDouble(temperatue(0));
double m1 = Convert.ToDouble(GetPshysicalMemory());
random_value = ((double)(t1 * m1));
if (random_value == 0)
{

63

int i = 4;
}
byte[] Type_payload = new byte[1];//Convert.ToByte(0x08);
byte[] Sender = new byte[4];
byte[] Payload = new byte[pl];
byte[] Nonce = new byte[1];
byte[] Hash = new byte[7];
Nonce[0] = 1;
Type_payload[0] = (byte)(Current_frame[0] & (0xf7));//set type as '0' means reply
for (int i = 0; i < 4; i++)
Sender[i] = Convert.ToByte(IP.Split('.')[i]);
Nonce[0] = ++nonce[0];
//--//
double random = (random_value % (Math.Pow(2,pl*8)));
string true_int_number = random.ToString().Split('.')[0];
random=Convert.ToDouble(true_int_number);
Payload = NumberToOctet(random, pl);
//Payload = Encoding.ASCII.GetBytes("100"); //It is not a good way to use ASCII
string Hashcode = h(1, Encoding.ASCII.GetString(Type_payload) +
Encoding.ASCII.GetString(Sender) + Encoding.ASCII.GetString(Payload) +
Encoding.ASCII.GetString(Nonce));
byte[] Transform = Encoding.ASCII.GetBytes(Hashcode);
for (int i = 0; i < 7; i++)
Hash[i] = Transform[i];
//--//
string plaintext = Encoding.ASCII.GetString(Nonce) +
Encoding.ASCII.GetString(Hash);
byte[] encrypted = EncryptStringToBytes(plaintext,
frame_read(Current_frame,"Crypto_type"));
//---//
byte[] send_buffer = new byte[5 + pl + encrypted.Length];
send_buffer[0] = Type_payload[0];
for (int i = 1; i < 5; i++)
send_buffer[i] = Sender[i - 1];
for (int i = 5; i < 5+pl; i++)
send_buffer[i] = Payload[i - 5];
for (int i = 5+pl; i < 5+pl+ encrypted.Length; i++)
send_buffer[i] = encrypted[i - (5 + pl)];
//------------------------------sending--------------------------------//
sending_end_point = new IPEndPoint(IPAddress.Parse(frame_read(Current_frame,
"sender")), 11000);
try
{
sending_socket.SendTo(send_buffer, sending_end_point);
}
catch (Exception send_exception)
{
Console.WriteLine(" Exception {0}", send_exception.Message);
}
}
}
else
{
p3.Suspend();
}}}

64

The Random Value, which is produced in Responder Thread, relies on the CPU

temperature and the available physical memory at that moment. The codes related to

finding these parameters are as follows:

string GetTemperature(byte t)
{
Double temper = 0;
decimal t1 = 0, t2 = 0, t3 = 0, t4 = 0;
//byte[] result = new byte[8];
decimal f_result = 0;
ManagementObjectSearcher searcher = new ManagementObjectSearcher(@"root\WMI",
"SELECT * FROM MSAcpi_ThermalZoneTemperature");
foreach (ManagementObject obj in searcher.Get())
{
temper = Convert.ToDouble(obj["CurrentTemperature"].ToString());
if (t != 0) temper = (temper - 2732) / 10.0;
else
{
temper *= m_CPUCounter.NextValue();
t1 = m_CPUCounter.NextSample().RawValue;
//t2 = m_CPUCounter.NextSample().SystemFrequency;
t3 = m_CPUCounter.NextSample().TimeStamp;
t4 = m_CPUCounter.NextSample().TimeStamp100nSec;
t1 = Convert.ToDecimal(Inverse(t1.ToString()));
t3 = Convert.ToDecimal(Inverse(t2.ToString()));
t4 = Convert.ToDecimal(Inverse(t3.ToString()));

f_result = t1 + t3 + t4 + (decimal)temper + ((decimal)temper * t1 * t2 * t3);

File2.Write(f_result + "\r\n");
}
}
return (f_result.ToString());
}

string GetPshysicalMemory()
{
//----------------memory available--------------//
System.Diagnostics.PerformanceCounter m_memoryCounter;

m_memoryCounter = new System.Diagnostics.PerformanceCounter();
m_memoryCounter.CategoryName = "Memory";
m_memoryCounter.CounterName = "Available MBytes";
//--//
double totalMB = 0;
foreach (ManagementObject mObj in new ManagementObjectSearcher("select * from
Win32_PhysicalMemory").Get())
totalMB += Convert.ToDouble(mObj["Capacity"]);

return ((totalMB / 1024 / 1024) + (m_memoryCounter.NextValue())).ToString();
}

65

A.4 Timer

When the lifetime timer is expired then it is time to evaluate the collecting random

numbers:

private void lifetime_Tick(object sender, EventArgs e)
 {
 lifetime.Enabled = false;
 Authentication_Collection();
 btn_cnt.Enabled = true;
 }

In addition, the list of available laptops in a Diffusion Network is updated based on a

timer:

private void timer1_Tick(object sender, EventArgs e)
{
IPHostEntry myHostInfo = Dns.Resolve(Dns.GetHostName());
IP = myHostInfo.AddressList[0].ToString();
lblIP.Text = IP;
temp.Text = GetTemperature(1);
//--//
if (checkBox2.Checked == true)

net_view();

}

A.5 Authentication Reading Collection

In Authentication Collection function, after decrypting and checking the authentication

of the reply frames the archived random numbers used as an input for Scramble

function:

void Authentication_Collection()

66

{
listBox1.Items.Add("LifeTime Timer is expired");
listBox1.Items.Add("Collecting Random numbers");
int reply_number = 0;
byte[] ADCs = new byte[Math.Abs(reply_rear - reply_front) *
Convert.ToByte(txt_pl.Text)];
while (reply_front != reply_rear)
{
byte[] Current_frame = new byte[reply_queue[(reply_front) % 10000].Length];
Current_frame = reply_queue[(reply_front) % 10000];
reply_front++;
byte pl = (byte)(Current_frame[0] & (0x07));
byte[] type_payload = new byte[1];//Convert.ToByte(0x08);
byte[] sender = new byte[4];
byte[] payload = new byte[pl];
byte[] nonce = new byte[1];
byte[] hash = new byte[7];
//---
string hashcode = "", nonce_hashcode = ""; //= frame_read(Current_frame,
"nonce_and_hash");
string[] C_type = new string[5];
C_type[0] = "AES";
C_type[2] = "Triple DES";
//------------------------------Decryption based on AES or Triple DES

byte[] decrypt = new byte[Current_frame.Length - (5 + pl)];
for (int i = 0; i < 16; i++)
decrypt[i] = Current_frame[5 + pl + i];
nonce_hashcode = DecryptStringFromBytes(decrypt, C_type[((Current_frame[0] &
(0xf0)) >> 4) - 1]);
//--Authentication
for (int i = 0; i < 7; i++)
hashcode += nonce_hashcode[i + 1];
nonce[0] = Convert.ToByte(nonce_hashcode[0]);
type_payload[0] = Current_frame[0];
for (int i = 1; i < 5; i++)
sender[i - 1] = Current_frame[i];
for (int i = 5; i < 5 + pl; i++)
payload[i - 5] = Current_frame[i];
//byte[] hash = new byte[7];
string H = h(1, Encoding.ASCII.GetString(type_payload) +
Encoding.ASCII.GetString(sender) + Encoding.ASCII.GetString(payload) +
Encoding.ASCII.GetString(nonce));
byte[] transform = Encoding.ASCII.GetBytes(H);
for (int i = 0; i < 7; i++)
hash[i] = transform[i];
if (hashcode == Encoding.ASCII.GetString(hash))//frame authenticated!
{
listBox1.Items.Add(sender[0] + "." + sender[1] + "." + sender[2] + "." +
sender[3] + " " + OctetToNumber(payload));
if (OctetToNumber(payload) == 0)
{
MessageBox.Show("");
}
//--collecting numbers//
for (int i = 0; i < pl; i++)
{
ADCs[(reply_number * pl) + i] = payload[i];

67

}
reply_number++;
replyN.Text = reply_number.ToString();
}
}

//----------------------------------Scramble Function //
decimal TrueRND=OctetToDecimal(scramble(ADCs));
string StringRND=TrueRND.ToString();

string InvRND = TrueRND.ToString();

decimal T_RND = Convert.ToDecimal(InvRND);
T_RND = (T_RND / MAX);
TRND.Text = T_RND.ToString();
listBox1.Items.Add("Generated True Random Number:");
listBox1.Items.Add(T_RND.ToString());

hs.Text = InvRND;
hs2.Text = StringRND;

try
{
count++;
}
catch (Exception e)
{
}
avrage += (ulong)reply_number;
lcount.Text = count.ToString();
listBox1.Items.Add("RESULTS SAVED IN A FILE");
}

private string Inverse(string InvRND)
{
string st = "";
for (byte i = 0; i <InvRND.Length; i++) // Inverse
st += InvRND[InvRND.Length - i-1];
return st;
}

For decryption a frame, the first four bit should be achieved to determine the type of

decryption, AES or Triple DES. Decryption function code is explained bellow:

static string DecryptStringFromBytes(byte[] cipherText,string Decr_type)
{
string plaintext = null;
// Create an TripleDESCryptoServiceProvider object
// with the specified key and IV.
switch (Decr_type)
{
//---//
case "AES":

68

using (AesCryptoServiceProvider tdsAlg = new AesCryptoServiceProvider())
{
tdsAlg.Key = Encoding.ASCII.GetBytes("_Who_Can_guess_the_Key!?");
tdsAlg.IV = Encoding.ASCII.GetBytes("towish_is_toable");
tdsAlg.Mode = CipherMode.CBC;
// Create a decrytor to perform the stream transform.
ICryptoTransform decryptor = tdsAlg.CreateDecryptor(tdsAlg.Key, tdsAlg.IV);
// Create the streams used for decryption.
using (MemoryStream msDecrypt = new MemoryStream(cipherText))
{
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor,
CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
{
// Read the decrypted bytes from the decrypting stream
// and place them in a string.
plaintext = srDecrypt.ReadToEnd();
}
}
}
}
return plaintext;
//---//
case "Triple DES":
using (TripleDESCryptoServiceProvider tdsAlg = new
TripleDESCryptoServiceProvider())
{
tdsAlg.Key = Encoding.ASCII.GetBytes("_Who_Can_guess_the_Key!?");
tdsAlg.IV = Encoding.ASCII.GetBytes("big_bang");
tdsAlg.Mode = CipherMode.CBC;
ICryptoTransform decryptor = tdsAlg.CreateDecryptor(tdsAlg.Key, tdsAlg.IV);
using (MemoryStream msDecrypt = new MemoryStream(cipherText))
{
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor,
CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
{
plaintext = srDecrypt.ReadToEnd();
}
}
}
}
return plaintext;
//-----------------------//
default:
return plaintext = "Decryption Error";
}
}

69

The codes related to the scramble function that is used hash function and CMAC are as

follows:

private byte[] scramble(byte[] ADCs)
{
byte[] key = new byte[8];
byte[] LC = new byte[2];
byte[] TrueRND = new byte[8];
byte[] TempRND = new byte[8];
byte[] hash = new byte[16];
string sh = h(1, Encoding.ASCII.GetString(ADCs));
hs.Text = sh;
hash = FromHexToOctet(sh);
for (byte i = 0; i < 16; i++)
{
BB[i] = BB[i + 16];
BB[i + 16] = hash[i];
}

string temp = DateTime.Now.ToString("ffffff");
LC = NumberToOctet(Convert.ToDouble(temp), 2);
key[7] = (byte)(RB[7] ^ LC[1]);
key[6] = (byte)(RB[6] ^ LC[0]);

TempRND = CMAC(BB, key);
for (byte i = 0; i < 8; i++)
{
TrueRND[i] = (byte)(TempRND[i] ^ RB[i]);
File.Write(NumberToBinary(TrueRND[i]));
RB[i] = TrueRND[i];
}
return TrueRND;
}

private byte[] CMAC(byte[] BB, byte[] key)
{
// byte[] keyBytes = new byte[16];
double k2 = OctetToNumber(RB);
//string temp=k2.ToString()
var keyBytes= NumberToOctet(Convert.ToDouble(OctetToNumber(key).ToString() +
(k2.ToString())),16);
var mac = new MACTripleDES(keyBytes);
var macResult = mac.ComputeHash(BB);
return macResult;
}

70

Appendix B: User Guide

Upon the application is run, Diffusion Ad-hoc WLAN is established and added to the list

of available wireless networks. Moreover, main window is opened and the computer

Name and IP, which is set in a proper text box, is presented.

As the figure bellow shows, it is possible to set some

parameters such as the expected response time, payload

length and the desired encryption method. Actually, a list of

all reachable laptops that are connected to Diffusion network

is represented in the window; these laptops are distinguished

by their IP address.

71

After clicking on Requesting Random Number Button,The request sends to all laptops in

a list and the process of collecting and generating true random number is shown in

Result box:

As the results in the box shows, the process is done successfully. However, if any error

in encryption or decryption and authentication happens, it will illustrate in the box.

In the End, by clicking on Collect Results Button all generated true random numbers

save in a file named Results in Byte:

72

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	DEFINITIONS AND RELATED WORKS
	2.1 Definitions
	2.1.1 Ad hoc Networks -Wireless Security
	2.1.2 Data Encryption Standard (DES)
	2.1.3 Advanced Encryption Standard (AES)
	2.1.4 Triple DES
	2.1.5 SHA-1
	2.1.6 Message Authentication Code
	2.1.7 Salt
	 2.1.8 Nonce
	2.1.9 True and Pseudo-Random Number Generators

	2.2 Introduction to NIST Statistical Test
	2.2.1 General Discussion
	2.2.2 How to Apply the Tests
	2.2.3 Randomness Measurements
	a) Uniformity
	b) Scalability
	c) Consistency

	2.2.4 Random Number Generation Tests
	a) The Frequency (Monobit) Test
	b) Frequency Test within a Block
	c) The Runs Test
	d) Tests for the Longest-Run-of-Ones in a Block
	e) The Binary Matrix Rank Test
	f) Discrete Fourier Transform (Specral) Test
	g) The Non-overlapping Template Matching Test
	h) The Overlapping Template Matching Test
	i) Maurer's "Universal Statistical" Test
	j) The Linear Complexity Test
	k) The Serial Test
	l) The Approximate Entropy Test
	m) The Cumulative Sums (Cusums) Test
	n) The Random Excursions Test
	o) The Random Excursions Variant Test

	2.3 Related Work
	2.4 Problem Definition

	DIFFUSION RNGLIGHT IMPLEMENTATION IN WLAN
	3.1 Ad hoc WLAN Prefaces
	3.2 Diffused ARCLight Message Structure
	b) Hash Code

	3.3 Diffusion RNGLight Organization
	3.3.1 Multicasting Request
	3.3.2 Receiving
	b) Detachment of Requested and Replied Frames

	3.3.3 True Random Number Generation (TRNG)
	a) Collecting the Frames
	b) Generating a True Random Number

	RANDOMNESS QUALITY OF GENERATED RANDOM NUMBERS BY DIFFUSION RNGLIGHT
	CONCLUSION
	REFERENCES
	APPENDICES
	Appendix A: Programming Part
	A.1 Initialization
	A.2 UDP Programming
	A.3 Thread
	A.4 Timer
	A.5 Authentication Reading Collection

	Appendix B: User Guide

