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ABSTRACT 

In the last decade utilization of handheld video cameras have become quite popular 

however the videos captured by unprofessional users or by fixed and vehicle mounted 

cameras have resulted in shaky and unclear videos. In this work we aim to use a video 

stabilization algorithm using point feature matching technique to reduce the vibrations 

in acquired video sequences.  

The thesis presents motion estimation techniques, motion models, feature detection 

techniques, robust sampling consensus and mainly the RANSAC paradigm. 

Implementation of the feature points matching based stabilization algorithm was done 

using the MATLAB platform and applied to three different videos with jitter.  The 

quality improvement in the video sequences after stabilization are demonstrated by 

comparing the mean of stabilized and unprocessed shaky videos, the normalized sum 

of absolute differences (NSAD), an singular value decomposition (SVD) based image 

quality metric, peak signal to noise ratio (PSNR) and translation in x and y directions.  

Results indicate that the stabilization of the videos would improve PSNR, NSAD and 

M-SVD values and help reduce the amount of translation in x and y-directions.  After 

stabilization it was observed that PSNR values would improve on average by 5.3dB. 

Similarly NSAD and M-SVD values were respectively improved by 32.11 %, and 

37.88 %.  Finally the displacements in x and y directions were respectively reduced by 

91.21 % and 92.39%.  

Keywords: RANSAC, SVD, feature detection, robust sampling consensus, motion 

estimation, normalized sum of absolute differences, PSNR.  
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ÖZ 

Geçen yüzyıldan beri kişisel video kameraların kulanımı oldukça artmıştır. Fakat 

profesyonel olmayan kişilerin, sabit kameralar ve araçlara monte edilmiş kameralar- 

ca yakalanan birçok video sarsıntı ve bulanıklıga tabi kalmaktadır. Bu çalışmadaki 

hedefimiz öznitelik noktalasını çakıştıran bir video sabitleme algoritmesi kullanarak 

yakalanmış videolardaki ve bulanık oranlarını mümkün olduğunca azaltmaktadır. 

Bu tezde hareket kestirim teknikleri, hareket modelleri, özyinelik çıkarma teknikleri,  

gürbüz örnekleme ve RANSAC paradigması hakkında bilgi verilmiş ve önerilen 

öznitelik noktalarına bağlı sabitleme algoritması kullanılarak üç farklı sallantılı video 

dizinindeki sarsıntlar mümkün olduğunca sabitlenmeye çalışılmıştır. Özyinelik 

noktalarına bağlı sabitleme algoritması MATLAB platforumunda gerçekleştirilmiştir. 

Sabitleme sonrası videolarda nasıl bir iyileşme olduğu sabitlenmiş ve sabitlenmemiş 

videoların ortalaması kıyaslanarak, düzgelenmiş mutlak farkların toplamına (NSAD) 

bakılarak , tekil değer ayrışım metriği (SVD), doruk sinyal gürültü oranı (PSNR) ve x 

ve y yönlerindeki ortalama kayma oranlarına bakılarak belirlenmiştir. Sabitlenme 

sonrası PSNR, NSAD ve M-SVD değerlerinde iyileşmeler ve x ve y yönlerindeki 

kaymalarda ise azalma gözlenmiştir. PSNR değerlerindeki iyileşme ortalamada 5.3 dB  

iken NSAD ve M-SVD değerleri 32.11% ve 37.88% oranlarında iyileşmiştir. Yatay ve 

dikey konumlardaki kaymaların ise sabitleme sonrası ortalamada  91.21%  ve 92.39% 

azaldığı gözlemlenmiştir.  

Anahtar Kelimeler: RANSAC, SVD, öznitelik sezimi, gürbüz örnekleme ve uzlaşma, 

hareket kestirimi. 
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Chapter 1 

1. INTRODUCTION 

Video stabilization is a technique which is used by many different fields in today’s 

world to achieve a stable video sequence from a shaky video.  Medicine, military and 

robotics are three main fields in which video stabilization is heavily used. For example, 

in endoscopy and colonoscopy videos need to be stabilized to determine the exact 

location and width of the problem. Videos captured by aerial vehicles on a 

reconnaissance flight need to be stabilized for localization, navigation, target tracking, 

etc. [1].  Furthermore utilization of digital cameras has always been popular and hence 

video stabilization has entered our daily life with the aim of removing shaky motions 

from videos captured by non-professional users. Different approaches to stabilize 

shaky videos as follows. 

1.1 Different Approaches to Video Stabilization 

There are mainly three different approaches to stabilize a shaky video. These include 

mechanical, optical and digital stabilization methods. In this section each approach is 

briefly discussed.    

1.1.1 Mechanical Video Stabilization Technique 

Mechanical image stabilization systems using the vibration feedback of the camera which 

is detected via special sensors like gyros accelerometers etc. are the earliest developed 

stabilization techniques [2]. In mechanical methods, accelerometer and gyros sensors 

are used for motion detection and then the camera is moved against the movement 



2 

 

direction. Figure 1.1 demonstrates a camera with mechanical stabilizer where a 

gyroscope is attached to the camera. 

 
Figure 1.1: Camera with Mechanical Stabilizer [3] 

1.1.2 Optical Video Stabilization Technique 

Optical stabilization technique are developed few years after mechanical techniques. If 

instead of moving the whole camera just the pieces of the lens glass move, the 

stabilization technique is referred to as optical stabilization which is the most effective 

one and employs a moveable lens assembly that variably adjusts the path length of the 

light as it travels through the camera’s lens system [4] . In this technique angle and speed 

of the camera shake is detected by two gyro sensors. According to the movement 

direction of the entire lens, the select lens elements should be moved so the image 

passing through the lens can be steady and sharp when it hits the imaging sensor. 

Figure 1.2 illustrates the function of optical image stabilizer when the lens is jerked 

downward. Due to the downward movement of the camera the center of the image 
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moves downward on the focal plane. Shifting the optical Image Stabilizer lens group 

downward, the light rays are refracted so that the image center returns to the center of 

the focal plane [5].  

 
 

Figure 1.2: Optical Image Stabilizer Parallel Movement [5] 

1.1.3 Digital Video Stabilization Technique 

Digital video stabilization adopted by many companies for their products, is the least 

expensive and precise solution to remove unwanted motions from captured videos. In 

general, stabilizing a video by digital algorithms contains three main steps including 

motion estimation, motion smoothing and image composition. The transformation 
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parameters between two consecutive frames are derived in the first stage. The second 

stage filters out the unwanted motion and in the last stage the stabilized video will be 

reconstructed. In all video stabilization algorithms motion Estimation is the most 

important part which describes the transformation from one video frame to the 

subsequent one. 

1.2 Literature Review  

Many algorithms for Digital video stabilization have been proposed over the past two 

decades. Most of the proposed methods try to compensate for all motion producing a 

sequence with a motionless background [6] [7] [8]. In other techniques only the three 

dimensional motion of the camera is subtracted [9] [10]. The motion parameters 

between two frames of a video is frequently modeled using two dimensional affine or 

projective approaches [11] .Generally in two dimensional models, all the estimated 

affine motion parameters are compensated and subsequently the unwanted motion is 

removed from the input sequence [7] [8]. Three dimensional stabilization can be 

achieved by re-rotating the frame and generating a sequence which contains only the 

translational parameters. Duric et al. [9] uses a vehicle method to filter the high-

frequency components of the rotational parameters. To estimate the rotational 

parameters he applies a flow-based motion estimator to the distant points, and the 

solution is recursively refined to obtain smoothed motion. Fast implementations of 2D 

stabilization algorithms are presented in [7] [8]. Hansen et al. [8] proposes an image 

stabilization algorithm using a mosaic-based registration technique. Burt et al. [7] 

introduces an algorithm using a multi-resolution, iterative process that estimates affine 

motion parameters between levels of Laplacian pyramid images. 
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One of the first researches to stabilize an amateur digital video has been carried out by 

Ratakonda [12]. He used a single large template window and a small search window 

and the algorithm was capable to stabilize only the mild translational motions. The 

work achieved a real-time performance on a low resolution video stream using profile 

matching and sub-sampling.   

A fast and robust implementation of a digital video stabilization algorithm described 

in this thesis is based on the two dimensional model where we apply an affine 

transformation incorporating translation, rotation and scaling. 

The developed algorithm is similar to the other algorithms based on the 2D rigid 

motion model [13].  

1.3 Thesis Objectives 

In this thesis a digital video stabilization algorithm is implemented using the 

MATLAB programming platform. The utilized feature based stabilization algorithm 

adopts RANdom SAmple Consensus (RANSAC) paradigm to estimate the motion 

model describing the displacement of points between consecutive frames.  Feature 

points achieved by smallest uni-value segment assimilating nucleus (SUSAN) corner 

detection algorithm play a key role in motion estimation.  

Three different videos are stabilized using the proposed algorithm and the mean of 

stabilized videos and unprocessed shaky ones are compared. The Singular Value 

Decomposition (SVD)-based Image Quality assessment method, Sum of Absolute 

differences between consecutive frames, PSNR and translation in x and y direction are 

also computed for fifty frames of each video and the results illustrated by pair 

processing graphs indicate a significant improvement in video quality. 
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1.4 Thesis Overview 

After a brief introduction provided in Chapter 1, Chapter 2 discusses the motion 

estimation techniques and motion models. Subsequently in chapter 3 robust estimation 

methods are shown with a focus on the RANSAC paradigm. Salient features detection 

methods are introduced in Chapter 4. Chapter 5 provides an effective algorithm for 

video stabilization. Simulation results are discussed and evaluated in Chapter 6 and 

Chapter 7 concludes the thesis and gives direction to future works. 
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Chapter 2 

2. MOTION ESTIMATION  

Motion estimation is an important step for video stabilization algorithms. It is the 

attempt for estimating the displacement of points between two successive video 

frames. In video frame’s motion is manifested as alteration in pixels intensity values 

which can be used to determine motion of objects. 

 Equation 2.1 presents a simple representation of the problem where 𝐼(𝑡) and  𝐼(𝑡 +

∆𝑡) are two consecutive video frames. As depicted in Figure 2.1 ∆𝑥 and ∆𝑦 are the 

motion vector components. 

𝐼 (𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) (2.1) 

 
Figure 2.1: Motion Vector Component 
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In order to find ∆𝑥 and ∆𝑦 the following equation should be solved. 

𝐼 (𝑥, 𝑦, 𝑡) − 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) = 0 (2.2) 

However the existence of noise, camera displacements and light alterations can prevent 

the zero difference. Direct and Indirect motion estimation techniques are two different 

approaches to the problem. After introducing different motion models for two 

dimensional images, direct and indirect motion estimation techniques are discussed. 

2.1 Principal Types of Motion Models 

Mathematical equations describing the mapping procedure of pixel coordinates 

between two images are referred to as motion models. Any pixel coordinate in an 

image can be described as; 𝒙 = (𝑥, 𝑦)  ∈ 𝑅2 . For most transformations non-

homogenous coordinates are sufficient however for perspective or projective 

transformations homogeneous transformations are needed.  In what follows we give 

examples for various transformation types. 

2.1.1 Translation transformation 

Equation 2.3 describes a two dimensional translations [14]. This transformation 

preserves the orientation. 

𝑥′ = 𝑥 + 𝑡  

or 

𝑥′ = [  𝐼        𝑡  ]𝑥̅   ,  where I is a (2×2) identity matrix 

(2.3) 

 

 

 

 

 

2.1.2 Euclidean transformation 
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Euclidean transformation which is the union of Translation and Rotation 

transformations can be expressed as the following equation [14]. 

𝑥′ = [  𝑅       𝑡  ]𝑥̅ 

𝑅 = [
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

] 

𝑅𝑅𝑇 = 𝐼 

|𝑅| = 1 

(2.4) 

2.1.3 Similarity transformation 

Equation 2.9 [14] describes similarity transform also known as scaled rotation. In this 

transformation angles between lines are preserved. 

𝑥′ = [  𝑠𝑅       𝑡  ]𝑥̅ = [
𝑎 −𝑏 𝑡𝑥
𝑏 𝑎 𝑡𝑦

] 𝑥̅ 
(2.5) 

Where 𝑠 is an arbitrary scale factor. 

2.1.4 Affine transformation 

Affine transformation described by the following equation preserves the parallelism 

between lines [14]. The parameter 𝐴 is an arbitrary 2 × 3 matrix. 

𝑥′ = 𝐴𝑥̅ = [  
𝑎00 𝑎01 𝑎02

𝑎10 𝑎11 𝑎12
  ] 𝑥̅ (2.6) 

2.1.5 Homography transformation 

Homography transformation which is also referred to as perspective or projective 

transformation operates on homogenous coordinate and can be described by equation 

2.7 [14]. 

𝑥 ′̃ = 𝐻 ̃𝑥̃ (2.7) 

𝐻 ̃is an arbitrary 3 × 3 homogenous matrix. The resulting homogenous 𝑥̃ should be 

normalized in order to obtain an inhomogeneous result x [14]. 
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𝑥′ =
ℎ00𝑥 + ℎ01𝑦 + ℎ02

ℎ20𝑥 + ℎ21𝑦 + ℎ22
 

𝑦′ =
ℎ10𝑥 + ℎ11𝑦 + ℎ12

ℎ20𝑥 + ℎ21𝑦 + ℎ22
 

(2.8) 

Table 2.1 represents an organized summary of different motion models.  

2.2 Direct Motion Estimation Technique 

In direct approach to estimate motion, all the pixels in the frame are in use to estimate 

the motion. Unlike feature based methods which are adopted in this research, in direct 

motion estimation methods unknown parameters are recovered directly from 

measurable image quantities such as intensity. 

The advantage of using direct methods is increasing the sub-pixel accuracy. These 

methods are also more efficient in handling the data which does not fit the model 

(outliers). In direct methods spatial derivatives in each frame are compared using an 

affine model.   
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Table 2.1: Motion Models 

Transform Preserved 

parameter 

2D coordinate 

transformations 

Example 

Translation Orientation 𝑥′ = 𝑥 + 𝑡 

 

Euclidean Length 𝑥′ = 𝑅𝑥 + 𝑡 

 

Similarity Angles 𝑥′ = 𝑠𝑅𝑥 + 𝑡 

 

Homograph

y 

Straight lines 𝑥′ = 𝐻𝑥 

 

Affine Parallelism 𝑥′ = 𝐴𝑥 + 𝑡 

 

 

The first step in most of direct methods is to determine brightness constancy constraint. 

Assuming I and J as two consecutive video frames we can write: 

𝐽(𝑥, 𝑦)= I (𝑥 + 𝑢(𝑥, 𝑦), 𝑦 + 𝑣(𝑥, 𝑦)) (2.9) 

Where (𝑢, 𝑣) represent pixel displacement between the frames. If (𝑢, 𝑣) are small 

enough and I is linearized around (𝑥, 𝑦) the following constraint can be obtained 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 

𝐼𝑡 = 𝐼 − 𝐽 

(2.10) 
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In this equation 𝐼𝑥 and 𝐼𝑦denote spatial derivatives of the brightness. There will be one 

such equation for every pixel in the frame.  

In the second step of direct motion estimation methods another constraint describing 

the image motion variations in the total image is also defined. In most of the direct 

methods the affine motion model is described as follows [15]. 

𝑢(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 

𝑣(𝑥, 𝑦) = 𝑎4 + 𝑎5𝑥 + 𝑎6𝑦 

(2.11) 

This model gives better results when the image depicts a distant scene. Substituting 

equation 2.11 in equation 2.10 we have. 

𝐼𝑥(𝑎1 + 𝑎2𝑥 + 𝑎3𝑦) + 𝐼𝑦(𝑎4 + 𝑎5𝑥 + 𝑎6𝑦) + 𝐼𝑡 = 0 (2.12) 

For each pixel of the image we have one constraint containing six parameters which 

are identical for all pixels so six constrains are adequate to solve the equation. 

2.3 Indirect Motion Estimation Technique 

In indirect motion estimation methods, image features are used with the purpose of 

estimating motion between frames. In these methods the first step is to find strong 

features of each frame. There are several methods to find feature points in an image. 

Harris and SUSAN corner detection are some examples. Generally corner points have 

higher chance to be in the next frame as well. 

 As each feature will have a distinct vector, a filter is required in indirect algorithms to 

filter out the outliners. RANSAC is a popular example.  

The following steps constitute the indirect algorithm to compute a two dimensional 

homographic transformation between two frames. 
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1. Corner point features are computed in sub-pixel precision. 

2. Considering the similarity and proximity of the neighborhood point intensity, 

a set of corner points matches is computed. 

3. RANSAC robust assessment for N samples 

 Selection of four random correspondences based on which the 

homography H is calculated. 

 For all the assumed correspondences a geometric distance error should 

be computed. 

 Choosing Correspondences with the geometric distance error less than 

a threshold value based on which number of inliers consistent with H 

is computed. 

4. Optimal re-estimation of H from the inliers.   

5. Determination of more corner point correspondences based on the H calculated 

in the previous step with the purpose of defining a search region around the 

transferred point position. 

Figure 2.2 depicts corner points in two consecutive video frames. 
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Figure 2.2: Corner Points for Two Consecutive Frames 
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Chapter 3 

3. ROBUST SAMPLING CONSENSUS 

Estimation of model parameters from an image is a very prevalent computational 

problem in vision. The name robust estimation is given to estimations which are 

tolerant to presence of outliers. In dictionary definition the word 'Outlier' means 

something that lies outside the main body or group that is a part of. In technical 

definition, if a data does not belong to the 'true' model defined by the 'true' set of 

parameters considering some threshold value, it will be referred to as outlier. 

Robust estimation targets to find a set of inliers from the correspondences. Many 

robust estimation algorithms are introduced in the literature. In this chapter we discuss 

some distinct robust estimation algorithms and we mainly focus on RANSAC which 

is adopted in this research to stabilize video.  

3.1 Random Sample Consensus (RANSAC) 

RANdom SAmple Consensus abbreviated as RANSAC targets to estimate a 

mathematical model parameters based on some observations including outliners. This 

paradigm has been developed by M. A. Fischler and R. C. Bolles [16] with the purpose 

of fitting a model to experimental data. In most of robust estimation techniques in order 

to obtain an initial solution, it's attempted to gather as much of the data as possible but 

in contrast RANSAC uses the minimum feasible data set and when possible tries to 

enlarge this set with consistent data. RANSAC paradigm is composed of two main 

steps repeated iteratively, hypothesize and test. First minimal sample sets (MSSs) are 
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randomly selected from the input dataset and the model parameters are computed using 

only the elements of the MSS. Then the RANSAC paradigm searches for consensus 

set (CS) containing elements of the dataset which are consistent with the model 

instantiated with the parameters estimated in the first step. [17].  

Consider 𝐷 = {𝑑1, … , 𝑑𝑁} is the input data set through which we want to estimate a 

model. If  𝜃({𝑑1, … , 𝑑𝑁}) is the parameter vector estimated by {𝑑1, … , 𝑑ℎ}, and h is 

greater than the minimum number of elements required to estimate the model, the 

model space ℳ of the parameter vector 𝜃 will be as follows [17]. 

ℳ(𝜃) = {𝑑 ∈ ℛ𝑑: ℱℳ(𝑑; 𝜃) = 0} (3.1) 

Where 𝜃 is a parameter vector and ℱℳis a smooth function. Considering the condition 

that ℱℳ is equal to zero, it will contain all points fitting the model.  

The distance from the datum d to the model ℳ represents the error 𝑒𝑀 [17]. Datum 

with an error value greater than a certain threshold value are not consistent with the 

model. 

 𝑒𝑀(𝑑, 𝜃) = min
𝑑′∈ℳ(𝜃)

𝑑𝑖𝑠𝑡(𝑑, 𝑑′) (3.2) 

So the CS is defined as:  

𝑆(𝜃) = {𝑑 ∈ 𝐷:  𝑒𝑀(𝑑; 𝜃) ≤ 𝛿} (3.3) 

Where 𝛿 is a threshold value which can be determined based on the nature of the 

automatically based on some hypothesis.   
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Figure 3.1: Model M and Inlier Boundries [17] 

In Figure 3.1 the model ℳ is depicted as the green surface and yellow surfaces show 

the threshold value determining the inliers boundaries. Blue dots represent some 

inliers. 

The RANSAC paradigm can be summarized as the following. 

1. In the first step of RANSAC paradigm a sample of s random data points, 

Minimal Simple Sets (MSSs) are chosen from which the model should be 

investigated.  

2. In second step the paradigm introduces 𝑆𝑖 as the Consensus Set (CS) of the 

sample. In fact 𝑆𝑖 contains the inliers of S. Inliers selection is conducted based 

on a distance threshold value t of the model. 

3. In third step of the paradigm another threshold value T is introduced. If there 

are more inliers than the value of T, all the points in 𝑆𝑖  should be in use to re-

approximate the model. 

4. If there is less number of inliers than the value of T, a new subset should be 

selected and the previous steps will be repeated.  
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The procedure will continue for N trials and finally the largest consensus set 𝑆𝑖  is 

chosen. All the points in this set are again in use to re-approximate the model. 

Figure 3.2 demonstrates different steps of RANSAC. 

Figure 3.2: Fundamentals of  RANSAC Iteration [17] 

3.1.1 Number of Iterations to Estimate the True Model 

Assume that sampling a MSS s which can result a precise approximation of model 

parameters, has the probability q, therefore the probability of sampling a MSS 

containing at least one outliner will be 1-q. Sampling h MSSs, (1 − 𝑞)ℎ will be the 

probability  that all of them contain outliers. The preference is to choose number of 

iterations large enough to reduce the probability (1 − 𝑞)ℎ less than a threshold value 

[17]. 

ℎ ≥ ⌈
log 𝜀

log 1 − 𝑞
⌉ 

(3.4) 

 

RANSAC ℎ𝑡ℎ iteration (keep the best CS) 
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So the threshold value for iterations can be set to: 

𝑇𝑖𝑡𝑒𝑟̂ = ⌈
log 𝜀

log 1 − 𝑞
⌉ 

(3.5) 

If the probabilities of selecting each elements of the dataset are equal then the 

probability of constructing a MSS containing just inliers is given by the following 

equation. 

𝑞 =
(𝑁𝐼

𝑘
)

(𝑁
𝑘
)

=
𝑁𝐼! (𝑁 − 𝑘)!

𝑁! (𝑁𝐼 − 𝑘)!
 

(3.6) 

In (3.6) the total number of inliers is presented by  𝑁𝐼 . In order to calculate q we need 

to have  𝑁𝐼 . 

3.1.2 Example of Using RANSAC 

In this section we present an example of using RANSAC paradigm to find the best line 

fitting some points as in Figure 3.3 (a). The minimum number of required points to 

form a line is two, so in first step the algorithm selects two random points as MSS and 

estimates the line passing them as shown in Figure 3.3(b). Then the error function in 

calculated and points inside a certain threshold value are selected. This loop will be 

repeated for some iteration until the model containing the most number of inliers is 

found.  
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Figure 3.3 : Example of Using RANSAC to Find a Line Passing a Finite Number of 

Points 

 

 

a b 

c d 

e f 
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3.2 Maximum Likelihood Estimation Sample Consensus (MLESAC) 

and M-estimator Sample Consensus (MSAC) 

If in RANSAC algorithm the threshold value determining inliers is considered very 

high, the robust estimation will be poor. Improving the quality of the consensus set is 

main idea of introducing MSAC and MLESAC algorithms [18]. 

3.2.1 Maximum Likelihood Estimation in the Presence of Outliers 

Considering two images corrupted by zero mean Gaussian noise with standard 

deviation 𝜎 the probability density function of data will be as follows. [18] 

𝑃𝑟(𝐷|𝑀) =  ∏ (
1

√2𝜋𝜎
)
𝑛

 𝑒
(∑ (𝑥𝑖

𝑗
−𝑥𝑖

𝑗
)
2
+(𝑦𝑖

𝑗
−𝑦𝑖

𝑗
)
2

𝑗=1,2 ) (2𝜎2)⁄

𝑖=1…𝑛

 (3.7) 

Where D represents the matches set, number of correspondences is denoted by n, and 

M is the transformation between the two images. The following equation represents 

the negative logarithm of likelihood for all correspondences. [18] 

−log (𝑃𝑟(𝑥𝑖
1,2|𝑀, 𝜎))=∑ ∑ (𝑥𝑖

𝑗
− 𝑥𝑖

𝑗
)
2

+ (𝑦𝑖
𝑗
− 𝑦𝑖

𝑗
)
2

𝑗=1,2𝑖=1…𝑛  (3.8) 

Defining the function C as a cost function, RANSAC algorithm finds the minimum 

value. 

𝐶 = ∑ 𝜌(𝑒𝑖
2)

𝑖
 (3.9) 

Where 𝜌 is 

ρ(𝑒2) = {0                        𝑒2 < 𝑇2

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡        𝑒2 ≥ 𝑇2  
 

So increasing the value of  𝑇2 there will be more solutions with the same value of C 

which results in poor estimation. Choosing T large enough all the matches will be 

inliers. We can minimize a new cost function instead of minimizing C.  

ρ2(𝑒
2) = {𝑒

2                        𝑒2 < 𝑇2

𝑇2                             𝑒2 ≥ 𝑇2  (3.10) 
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We target to minimize the negative logarithm likelihood using the mixing parameter 𝛾 

. In order to estimate 𝛾 , the Expectation Maximization algorithm is used. We introduce 

the parameter 𝜂𝑖 which is equal to zero if the ith correspondence is an outlier and if it 

is an inlier the parameter will be equal to one. Firstly we consider some value for 𝛾 

and using this value an expectation of  𝜂𝑖 is estimated. The estimated  𝜂𝑖 is again in 

use to re-estimate the value of 𝛾. This procedure is repeated until convergence [18]. 

Pr (𝜂𝑖 = 1| 𝛾) = 
𝑝𝑖

𝑝𝑖+𝑝𝑜
 =𝑧𝑖 (3.11) 

Where, 𝑝𝑖 is the likelihood of a datum to be inlier and 𝑝𝑜is the likelihood of a datum 

to be outlier.  

𝑝𝑖=(
1

√2𝜋𝜎
)
𝑘

𝑒𝑥𝑝 (−(∑ (𝑥𝑖
𝑗
− 𝑥𝑖

𝑗
)
2

+ (𝑦𝑖
𝑗
− 𝑦𝑖

𝑗
)
2

𝑗=1,2 ) (2𝜎2)⁄ ) (3.12) 

 

𝑝𝑜 = (1 − 𝛾)
1

𝑣
 (3.13) 

 

𝛾 =
1

𝑛
∑𝑧𝑖

𝑖

 (3.14) 

The following steps should be followed in MLESAC and MSAC algorithms by 

replacing 𝜌 with 𝜌2. 

1. Using a corner detection method corner features are detected. 

2. Using cross correlation and proximity, Corner points are matched. 

3. The previous steps are repeated for 500 iterations.  

 A minimal sample set (MSS) of correspondence is selected 

randomly.  

 The consistent Image relation with the MSS is estimated. 

 For each datum the error is calculated. 
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 𝑐2 is calculated for MSAC and 𝛾 is calculated for MLESAC 

4. The best solution among all samples is selected, i.e., the min (c2,–L). The 

MSS leading solution should be stored.  

5. The cost function C will be minimized for all correspondences. 
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Chapter 4 

4. SALIENT POINTS OF IMAGE 

In general, points containing the dominant information of an image are referred to as 

salient points. As mentioned in previous chapter the first step of any robust estimation 

technique is detecting the salient points. Corner points and edges of an image are the 

best candidates for salient points. In this chapter applied algorithms to detect salient 

points are discussed. 

4.1 Corner Points 

The intersection of two edges is referred to as a corner point. Corner detector 

algorithms are widely used in applications like image registration, object recognition, 

motion estimation etc. A large number of corner detector algorithms have been 

introduced in the literature. Some representative ones are as follow. 

4.1.1 Moravec Corner Detection Algorithm 

Moravec corner detector algorithm [19] developed in 1977 is one of the first 

techniques to find corner points. In this algorithm corner points are defined as points 

with enormous intensity alternation in all directions. Considering each pixel location 

as (𝑥, 𝑦) and its intensity as 𝐼(𝑥, 𝑦), Moravec algorithm runs as follow. 

1. The intensity variation for each pixel from the neighborhood pixel is calculated 

by equation 4.1 where 𝑎 and 𝑏 are the window size. 

𝑉𝑢,𝑣(𝑥, 𝑦)=∑(𝐼(𝑥 + 𝑢 + 𝑎, 𝑦 + 𝑣 + 𝑏) − 𝐼(𝑥 + 𝑎, 𝑦 + 𝑏))
2
 (4.1) 

2. Cornerness measure is calculated for each pixel by the following equation. 
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𝐶(𝑥, 𝑦) = 𝑚𝑖𝑛 (𝑉𝑢,𝑣(𝑥, 𝑦)) (4.2) 

3. All 𝐶(𝑥, 𝑦) less than a certain threshold values are set to zero. 

4. In order to find local maxima non-maximal suppression is performed. 

Finally all the remaining non-zero points are considered as corners. 

4.1.2 Harris corner detection algorithm 

In Harris and Stephens’s corner detection algorithm [20] which is an improved version 

of Moravec algorithm, rather than using shifted patches the differential of corner score 

with respect to the direction is considered. The corner score also referred to as 

autocorrelation is presented by equation 4.3 for the given shift (𝑥, 𝑦). In this equation 

(𝑥𝑖, 𝑦𝑖) is the corresponding point in the window centered at (𝑥, 𝑦) and 𝐼 is the image 

function. 

𝐶(𝑥, 𝑦) = ∑ [𝐼(𝑥𝑖, 𝑦𝑖) − 𝐼(𝑥𝑖 + ∆𝑥, 𝑦𝑖 + ∆𝑦)]2
𝑊

 (4.3) 

Using truncated Taylor expansion 𝐼(𝑥𝑖 + ∆𝑥, 𝑦𝑖 + ∆𝑦) can be approximated as follow. 

𝐼(𝑥𝑖 + ∆𝑥, 𝑦𝑖 + ∆𝑦) ≈ [𝐼(𝑥𝑖, 𝑦𝑖) + [𝐼𝑥(𝑥𝑖, 𝑦𝑖) 𝐼𝑦(𝑥𝑖, 𝑦𝑖)]] [
∆𝑥

∆𝑦
] (4.4) 

𝐼𝑥 and 𝐼𝑦 are partial derivatives. 

The auto-correlation matrix can be introduced as: 

M=[
𝐴 𝐶
𝐶 𝐵

] 

A=(
𝜕𝐼

𝜕𝑥
)
2

⨂𝑤 

B=(
𝜕𝐼

𝜕𝑦
)
2

⨂𝑤 

C=(
𝜕𝐼

𝜕𝑥
,
𝜕𝐼

𝜕𝑦
)
2

⨂𝑤 

(4.5) 

The corner score 𝐶(𝑥, 𝑦) can be written as: 
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𝐶(𝑥, 𝑦)=𝑑𝑒𝑡(𝑀) − 𝑘(𝑡𝑟𝑎𝑐𝑒(𝑀))
2
 

𝑑𝑒𝑡(𝑀) = 𝜆1𝜆2 = 𝐴𝐵 − 𝐻2 

trace(𝑀) = 𝜆1+𝜆2 = 𝐴 + 𝐵 

(4.6) 

The corner will be detected only if both 𝜆1and 𝜆2are large enough positive values these 

values are determined empirically. 

4.1.3 Noble corner detection algorithm 

In Noble corner detector algorithm [21] the corner score C is defined as a function of 

matrix M. This algorithm neglects the parameter k previously introduced in Harris 

algorithm and suggests the following equation as corner score  

C=
𝑑𝑒𝑡(𝑀)

𝑡𝑟𝑎𝑐𝑒(𝑀)+𝜀
 (4.7) 

The constant 𝜀 has entered the equation to prevent singularity if 𝑡𝑟𝑎𝑐𝑒(𝑀) is equal to 

zero. 

4.1.4 SUSAN corner detection algorithm 

SUSAN corner detector algorithm [22] firstly introduced by Smith and Brady uses a 

circular mask to detect corner points. In this algorithm the intensity of the nucleus of 

mask is compared with all other pixels in the mask and the area of mask with similar 

intensity as nucleus called USAN (Uni-value Segment Assimilating Nucleus) is 

chosen. The white area of each mask in Figure 4.1 presents USAN. Assuming 𝑚⃗⃗  is a 

point in the mask, 𝑚0⃗⃗ ⃗⃗  ⃗ is the nucleus and t is the radius, the comparison function and 

the area of USAN can be presented as following. 

𝐶(𝑚⃗⃗ )=𝑒
(𝐼(𝑚⃗⃗⃗⃗ )−𝐼(𝑚0⃗⃗⃗⃗ ⃗⃗  ⃗))

6

𝑡  

𝑛(𝑀) = ∑ 𝑐(𝑚⃗⃗ )

𝑚⃗⃗⃗ ∈𝑀

 

(4.8) 
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If  is the rectangular function, then  is the number of pixels in the mask which are 

within  of the nucleus. The response of the SUSAN operator is given by equation 4.9. 

𝑅(𝑀) = {
𝑔 − 𝑛(𝑀)      𝑛(𝑀) < 𝑔  
0                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.9) 

 

 
Figure 4.1: SUSAN Corner Detection Algorithm 

a) Four circular masks at different locations in a sample image 

b) USANs are shown as the white parts of the mask 

 

 

 

 

Figure 4.2 compares results of different corner detection algorithms. 
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Figure 4.2: Corner Detection Algorithms a) Harris b) Noble c) SUSAN [23] 

4.2 Edge points 

In a digital image edges are points where the intensity sharply changes. Finding edge 

points is an essential step for many image processing applications like pattern 

recognition and feature extraction.  

Many methods have been proposed in the literature for edge detection. Most of them 

can be classified in two major categories namely, search-based and zero-

crossing based. In search-based methods first of all a measure for edge strength is 

defined and then estimating the local orientation of the edge it will be checked if the 

pixel is local maximum along gradient direction. In zero-crossing based methods zero 

crossing in Laplacian of image is searched to find edges. 

a                                     b                                      c      

http://en.wikipedia.org/wiki/Zero_crossing
http://en.wikipedia.org/wiki/Zero_crossing
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Applying small modifications in many corner detection algorithms can change them 

to an edge detector. For example in previously explained Harris corner detector 

algorithm if 𝜆1 ≈ 0 and 𝜆1has a positive value the detected point is an edge or in 

SUSAN corner detector if the geometrical threshold g is chosen large enough the 

algorithm will work as an edge detector. 

4.3 Blob points 

In a digital image points with different properties such as different colors and 

brightness are referred to as blobs. Blob detection algorithms can be classified in two 

categories. Differential and local extrema based methods. Differential methods work 

using the function derivatives considering the position and local extrema based 

methods try to find the local minima and maxima of the function.  
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Chapter 5 

5. VIDEO STABILIZATION VIA POINT FEATURE 

MATCHING 

This thesis adopts RANSAC paradigm to stabilize a shaky video sequence. The input 

video frames are modified with the purpose of maintaining a stable image.  The 

implemented framework presented in Figure 5.1 will be discussed in this chapter.  

 

 

Figure 5.1: Video Stabilization Procedure 
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5.1 Reading Video Frames 

The first step of video stabilization algorithm is to read the first two consecutive frames 

(Frame A and Frame B) of the video as grayscale images.  

 
Figure 5.2: The First Two Frames of the Video 

5.2 Salient Points Collection  

The next step is to find salient points of each frame where SUSAN corner detection 

algorithm is used.  The following matrix is the circular mask introduced in previous 

chapter. 

[
 
 
 
 
 
 
0 0 1
0 1 1
1 1 1

1
1
1

1 0 0
1 1 0
1 1 1

1 1 1 1 1 1 1
1 1 1
0 1 1
0 0 1

1
1
1

1 1 1
1 1 0
1 0 0]

 
 
 
 
 
 

 (5.1) 

 

 

Frame A Frame B 
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The circular mask will be placed over all pixels in image to test whether the point is a 

corner point. Figure 5.2 depicts corner points detected by SUSAN algorithm in the two 

consecutive frames.  

 
Figure 5.3: Feature Points in Frame A and B 

5.3 Correspondences Selection between Points 

In order to stabilize a video sequence we mainly need to find a transformation which 

reduces the amount of distortion between frames. In this step the likely 

correspondences between the derived points of interest are selected. In order to find 

the correspondences between feature points we extract a 9 × 9 block centered on each 

point. Sum of Squared Differences (SSD) is then adopted as the matching cost between 

respective points.  

For two images 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦)  SSD can be defined as following. 

SSD(𝑑1, 𝑑2) = ∑ ∑ (𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔(𝑥 + 𝑖 − 𝑑1 , 𝑦 + 𝑗 −
𝑛2
𝑗=−𝑛2

𝑛1
𝑖=−𝑛1

𝑑2))
2
 

(5.2) 

Where the summation extends over a region of size (2𝑛1 + 1) × (2𝑛2 + 1) and as 

we have chosen a  9 × 9 block so 𝑛1= 𝑛2= 4. 
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There exists one point in Frame B which corresponds to the points in Frame A. When 

finding all possible matching costs the algorithm searches to find the lowest one which 

means the best cost. 

 
Figure 5.4: Initial Correspondences Between Frames A and B 

5.4 Transform Estimation from Noisy Correspondences 

Numerous correspondences achieved in the previous step are not acceptable. Using the 

Random Sample Consensus (RANSAC) algorithm, a robust estimate of transformation 

between Frame A and Frame B can be derived. Receiving the point correspondences 

from the previous step, the video stabilization algorithm searches to find effective 

inlier correspondences and afterward it derives the affine transformation mapping the 

inliers in Frame A to Frame B. This transformation is only capable to alter the image 

plane. 

 As mentioned in Chapter 2 the affine transform is a matrix of the following form. 

Initial corresponded points between the two frames
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[

𝑎1 𝑎3 𝑡𝑥
𝑎2 𝑎4 𝑡𝑦
0 0 1

] (5.3) 

Where 𝑡𝑥  and 𝑡𝑦  are translation parameters and 𝑎1, 𝑎2 , 𝑎3 and 𝑎4 describe sheering 

effect, rotation and scale. The affine transform targets to overlay the correspondence 

points on each other by warping the image.  

This geometric transformation is estimated several times and for each result a cost is 

calculated based on the Sum of Absolute Differences (SAD) between frame A and B. 

The best transform which minimizes the cost is selected. This procedure increases the 

robustness. 

SAD is the most commonly used algorithm which measures the distortion between 

two images by evaluating the similarity between image blocks. Equation 5.4 defines 

the SAD between elements in two image blocks. 

SAD = ∑ ∑ |𝑐𝑖,𝑗 − 𝑟𝑖,𝑗|
𝑁
𝑗=1

𝑁
𝑖=1  (5.4) 

 Where 𝑟𝑖,𝑗 represent elements in the first frame and 𝑐𝑖,𝑗 are the elements in the second 

one. 

In the color composite Figure 5.5 the re-projected Frame B is laminated on Frame A. 

As illustrated in the figure the inlier correspondences strongly match. The centers of 

the images are aligned where the red-cyan color composite is almost black and white.    
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Figure 5.5: Correct Correspondences Based on RANSAC Paradigm 

5.5 Transform Approximation and Smoothing 

Steps 1 to 4 can be used to estimate the distortion between two consecutive frames as 

affine transformations 𝐻𝑖  in a complete video sequence. The product of all 𝐻𝑖s as 

explained by equation 5.5 is the cumulative distortion of Frame i compared to the first 

one.  

𝐻𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑖 = ∏ 𝐻𝑖 
𝑖−1

𝑗=0
 (5.5) 

Kalman filtering and numerical optimization are two different ways to smooth the 

mentioned cumulative transform of images transforms. 

Convolution of the time sequence of  𝐻𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 parameters with a Gaussian filter 

can be a simpler approach for smoothing. This convolution can remove high-frequency 

noise referred to as camera jitters. 

Correct correspondences according to RANSAC
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For stability and numerical simplicity, the affine transform matrix 5.3 is replaced with 

the simpler following matrix containing scale, rotation, translation parameters. 

𝐻𝑠𝑅𝑡 = [
𝑠 × cos(𝑎𝑛𝑔) 𝑠 × −sin(𝑎𝑛𝑔) 𝑡𝑥
𝑠 × sin(𝑎𝑛𝑔) 𝑠 × cos(𝑎𝑛𝑔) 𝑡𝑦

0 0 1

] (5.6) 

Where s is the scale factor, 𝑡𝑥 and 𝑡𝑦  are the two translation parameters and the 

parameter ang is the angle describing the rotation. This matrix contains two translation 

factors, one angle and one scale. In order to show that the error of replacing the 

transform H with the equivalent transform given as equation 5.6 is minimal, we re-

projected the two processed Frame B on each other as a red-cyan composite which is 

depicted in Figure 5.6. The pixel-wise difference between images can be neglected and 

the image appears nearly black and white. 

5.6 Running the Full Video 

The last step of video stabilization algorithm is to run the above procedure in a loop 

for all frames in a video sequence. 

The transform H is calculated between consecutive frames in each step and the result 

is smoothed by fitting H as an s-R-t transform. Then the result in each loop is combined 

with the 𝐻𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 describing the entire camera motions. This transform is estimated 

in every loop. 
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Figure 5.6: Color Composite of Affine and s-R-t Transform Outputs 
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Chapter 6 

6. SIMULATION RESULTS 

In this work three shaky videos from different scenes are stabilized using point feature 

matching technique presented in Chapter 5. The stabilization technique is implemented 

using the MATLAB platform. The improvement in the quality of the stabilized videos 

are evaluated using mean of video frames, the normalized sum of absolute difference 

between consecutive frames and SVD based grayscale image quality assessment 

metric. The translation parameter in x and y directions are also computed for 50 frames 

of each video sequence. 

6.1 Comparison between Mean of Video Frames for Stabilized Video 

and Unprocessed Shaky Video 

Means for stabilized sequence and unprocessed shaky videos have been computed 

once the tested video sequences are stabilized using the point feature matching 

technique. Results obtained for three different videos have been compared in Figure 

6.1– 6.3 where the subfigure (a) depicts the mean of raw inputs and the subfigure (b) 

depicts the mean of the stabilized video sequences.  

Video A taken by a car shows a straight road where some other cars are moving. The 

difference between video frames is mainly caused by the camera vibration so the 

stabilization algorithm is rather efficient and the mean of stabilized video frames has 

almost no distortion. 
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(a) 

 

 
(b) 

Figure 6.1: Video Sequence A 

a) Mean of Unprocessed Shaky Video 

b) Mean of Stabilized Video Sequence 

Video B from the entrance of the Eastern Mediterranean University is distorted only 

by the camera vibration and the stabilization algorithm is quite efficient resulting a 

clear video mean. 

Mean of Unprocessed Shaky Video
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(a) 

 

 
(b) 

Figure 6.2: Video Sequence B 

a) Mean of Unprocessed Shaky Video 

b) Mean of Stabilized Video Sequence 

Video C from a pathway is distorted only by the camera vibration and the stabilization 

algorithm is quite efficient resulting in a clear video mean where the cobblestone lines 

become visible. 

Mean of Unprocessed Shaky Video

Mean of Stabilized Video Sequence
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(a) 

 

 
(b) 

Figure 6.3: Video Sequence C 

a) Mean of Unprocessed Shaky Video 

b) Mean of Stabilized Video Sequence 

 

 Mean of Unprocessed Shaky Video

 Mean of Stabilized Video Sequence
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6.2 Comparison between Normalized Sum of Absolute Difference 

between Consecutive Frames for Stabilized Video and Unprocessed 

Shaky Video 

In this section we estimate the normalized sum of absolute difference Error (NSAD) 

between consecutive frames of unprocessed shaky video and stabilized video 

sequences. The results are then compared using pair processing graphs. NSAD is 

calculated using equation 6.1. 

𝑁𝑆𝐴𝐷 =
∑ ∑ |𝑐𝑖,𝑗 − 𝑟𝑖,𝑗|

𝑀
𝑗=1

𝑁
𝑖=1

𝑁 × 𝑀
 

(6.1) 

Where c and r are two consecutive frames and M and N represent the image size in 

horizontal and vertical directions. Figures 6.4 - 6.10 illustrate the NSAD for video 

sequence A-C respectively. 

These diagrams show higher NSAD values for unprocessed shaky videos which means 

that the video frames in unprocessed videos are more different to each other. The video 

stabilization algorithm decreases the NSAD value between consecutive frames. As 

depicted in Figures 6.6- 6.10 in videos B and C the different between consecutive 

frames is considerably reduced and there is no interaction between NSAD graph of 

stabilized and shaky videos. The reason is that in these two videos the camera does not 

have any forward movement and only shakes in its position. 
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Figure 6.4: Normalized Sum of Absolute Difference for Video-A 

 

In Video A the mean value of the Normalized Sum of Absolute Differences for 50 

frame is reduced from 0.0366 to 0.0288. 

 
Figure 6.5: Normalized Sum of Absolute Differences for Video-B 

In Video B the mean value of the NSAD for 50 frames are reduced from 0.0206 to 

0.0106. 
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Figure 6.6: Normalized Sum of Absolute Difference for Video-C 

In Video C the mean value of the Normalized Sum of Absolute Differences for 50 

frame is reduced from 0.0250 to 0.0134. 

6.3 SVD Based Image Quality Assessment  

Most of the video stabilization algorithms mainly target to satisfy human perception. 

However in this work the SVD based grayscale image quality assessment method is 

also adopted to evaluate the quality of the output video.  

The quality of distorted videos and images can be expressed using the recently 

developed measurement technique based on SVD. This method presented by 

Shnayderman introduces both a scalar value measurement called 𝑀 − 𝑆𝑉𝐷 and a two 

dimensional graphical measurement to determine the image quality [24]. 

As we know any real Matrix A can be decomposed as follows.  

𝐴 = 𝑈𝑆𝑉𝑇 (6.2) 
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Where, 

𝑈𝑇𝑈 = 𝐼 

𝑉𝑉𝑇 = 𝐼 

S = diag(𝑠1, 𝑠2, … ) 

 

6.3.1 SVD-Based Graphical Measure between Consecutive Frames for Stabilized 

Video and Unprocessed Shaky Video 

In graphical measure technique the gray scale image of the first frame and last frame 

are decomposed in smaller blocks (in this work 8 × 8) and for each block the singular 

value is computed. Then according to equation 6.3 the distance between the singular 

values is measured. 

𝐷𝑖 = [∑(𝑠𝑖 − 𝑠̂𝑖)
2

𝑛

𝑖=1

]

1

2

 (6.3) 

Where n is the block size. Considering an image of size 𝑘 × 𝑘 number of blocks can 

be obtained as (𝑘 𝑛⁄ ) × (𝑘 𝑛⁄ ). 

We compute all 𝐷𝑖𝑠 related to each block. The obtained 𝐷𝑖𝑠 will form a new matrix of 

size  (𝑘 𝑛⁄ ) × (𝑘 𝑛⁄ )  which introduces the Graphical Measurement of video. When 

there is less distortion between two images the distance between the singular values 

will be less. If we obtain the graphical measure of an image with itself the result is a 

zero matrix of size  (𝑘 𝑛⁄ ) × (𝑘 𝑛⁄ ) i.e. a black image.  

Table 6.1 provides the SVD based Graphical measurement between the first two 

frames of the three selected videos for unprocessed shaky and stabilized videos. As the 

stabilized videos have less distortions between the consecutive frames, the graphical 

measure has less values which means lower intensities.  
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Table 6.1: SVD-Based Graphical Measurement  

 Stabilized Video Unprocessed Shaky Video 

Video A 

  

Video D 

  

Video E 
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6.3.2 SVD-Based Numerical Measure between Consecutive Frames for        

Stabilized Video and Unprocessed Shaky Video 

The numerical value known as 𝑀 − 𝑆𝑉𝐷 is derived from the previously presented 

graphical method. The 𝑀 − 𝑆𝑉𝐷 value is calculated using equation 6.4.  

𝑀 − 𝑆𝑉𝐷 =
∑ |𝐷𝑖 − 𝐷𝑚𝑖𝑑|

(𝑘 𝑛⁄ )×(𝑘 𝑛⁄ )
𝑖=1

(𝑘 𝑛⁄ ) × (𝑘 𝑛⁄ )
 (6.4) 

Where 𝐷𝑚𝑖𝑑  is the midpoint of sorted 𝐷𝑖 values. 

M-SVD values between consecutive frames are estimated before and after stabilization 

for the three selected videos and the results are compared in Figure 6.7- Figure 6.9. 

The M-SVD values for stabilized videos are less than shaky ones which shows less 

distortion between frames. As also indicated by the mean of video frames video B and 

C where the difference between video frames are produced only by camera vibration 

the stabilization algorithm is more efficient and the quality of stabilized video is highly 

improved. 

 
Figure 6.7: M-SVD Measure for Consecutive Frames of Video-A 
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In Video A the mean of estimated M-SVD values is reduced from 19.9301 to 13.9512. 

 
Figure 6.8: M-SVD Measure for Consecutive Frames of Video-B 

In Video-B the mean of estimated M- SVD values is reduced 16.6378 to 9.9928. 

 
Figure 6.9: M-SVD Measure for Consecutive Frames of Video-C 

  In Video-C the mean of estimated M- SVD values is reduced 15.3051 to 8.3011. 

6.4 Peak Signal-to-Noise Ratio Improvement for Stabilized Video  
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As the results confirm the video stabilization algorithm has the highest efficiency for 

videos A, D and E where the differences between frames are resulted only by the 

camera vibration. In this section the Peak Signal-to-Noise Ratio (PSNR) are computed 

for these videos and the results are presented in Figures 6.16- 6.19. 

The PSNR between consecutive frames can be considered as a measure of the 

departure from the optimal case, or as a measure of the overlap between two frames. 

The PSNR value which is maximized for identical video frames is computed using 

equation 6.5 [25].  

PSNR (𝐼1,𝐼0) = 10 log
2552

𝑀𝑆𝐸((𝐼1,𝐼0))
 (6.5) 

Where 255 is the maximum intensity for grayscale images. 𝐼1  and 𝐼0  are two 

consecutive frames and the Mean Squared Error (MSE) is calculated using equation 

6.6. 

MSE = 
1

𝑀𝑁
∑ ∑ (𝐼1 − 𝐼0)

2𝑁
𝑚=1

𝑀
𝑛=1  (6.6) 

M and N are the image size. 

 
Figure 6.10: PSNR for Consecutive Frames of Video-A 
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In video A the mean value of PSNR between consecutive frames is increased from 

49.1601 to 51.5108. 

 
Figure 6.11: PSNR for Consecutive Frames of Video-B 

In video B the mean value of PSNR between consecutive frames is increased from 

61.6273 to 68.2914. 

 
Figure 6.12: PSNR for Consecutive Frames of Video-C 
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In video C the mean value of PSNR between consecutive frames is increased from 

61.9572 to 68.8203. 

6.5 Translation Parameters in x and y Directions between 

Consecutive Frames for Stabilized Video and Unprocessed Shaky 

Video 

The video stabilization algorithm removes the undesired translations in x and y 

direction. The scale, rotation, translation matrix described in Equation 5.6 is used to 

find 𝑡𝑥 and 𝑡𝑦 between consecutive frames for shaky videos and stabilized ones and 

the results are provided in Figure 6.13-6.18.  The results indicate a significant 

reduction in translation parameters in stabilized videos. 

 
Figure 6.13: Translation in x Direction for Video-A 

In Video-A the variance of translation parameter in x direction is reduced from 

5.4030× 103  to 38.5628 and the deviation from zero is reduced from 68.9897 to 

2.9443. 
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Figure 6.14: Translation in y Direction for Video A 

In Video-A the variance of translation parameter in y direction is reduced from 

1.4147× 103 t 13.6498 and the deviation from zero is reduced from 39.3373 to 1.5470. 

 
Figure 6.15: Translation in x Direction for Video-B 
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In Video-B the variance of translation parameter in x direction is reduced from 

1.4938× 105 to 1.3631× 103 and the deviation from zero is reduced from 243.3358 

to 35.5892. 

 

 
Figure 6.16: Translation in y Direction for Video-B 

In Video-B the variance of translation parameter in y direction is reduced from 

3.4720× 104 to 354.8653 and the deviation from zero is reduced from 138.8844 to 

18.4567. 
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Figure 6.17: Translation in x Direction for Video C 

In Video-C the variance of translation parameter in x direction is reduced from 

5.4288× 104to 992.2415 and the deviation from zero is reduced from 183.5995 to 

5.0150. 

 
 Figure 6.18: Translation in y Direction for Video-C 
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In Video-C the variance of translation parameter in y direction is reduced from 

2.7828× 103  to 80.8687 and the deviation from zero is reduced from 59.6336 to 

1.5227. 

Table 6.2 provides NASD, M-SVD, PSNR measurements and specifies amounts of 

translations in x and y directions for the stabilized and shaky videos used in this study. 

The table indicates that the stabilization algorithm improves the PSNR value on 

average by 5.3dB. NSAD and M-SVD were also improved by 32.11 % and 37.88. 

Finally it can be observed that translations in x and y directions were on average 

reduced 91.21 % and 92.39% respectively.  

Table 6.2: Comparison Between Stabilized and Shaky Videos 

 Video A Video B Video C 

 Processed 

Video 

Shaky 

Video 

Processed 

Video 

Shaky 

Video 

Processed 

Video 

Shaky 

Video 

NSAD 0.0288 0.0366 0.0106 0.0206 0.0134 0.0250 

M-SVD 13.9512 19.9301 9.9928 16.6378 8.3011 15.3051 

PSNR 51.5108 49.1601 68.2914 61.62 68.8203 61.9572 

x 

Translation 

(Deviation 

from zero) 

2.9443 68.9897 35.5892 243.3358 5.0150 183.5995 

y 

Translation 

(Deviation 

from zero) 

1.5470 39.3373 18.4567 183.8844 1.5227 59.6336 
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 Chapter 7  

7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In this work a point feature matching technique based on RANSAC paradigm has been 

adopted to stabilize shaky videos. Finding the feature points using SUSAN corner 

detection algorithm in each frame we estimated the motion between the subsequent 

frames and then video frames have been warped to remove the jitters. 50 frames of 

three different video sequences are stabilized using the explained algorithm. Mean of 

stabilized videos and unprocessed shaky ones are compared and for all videos the 

image core has less distortion than foreground objects. 

The NSAD, the SVD based graphical and numerical measurements, the peak signal to 

noise ratio and translation in x and y directions have been utilized to evaluate the 

quality of stabilized videos. NSAD diagram indicated a 32.11% improvement in 

stabilized videos. M-SVD based graphical measurement resulted in darker images for 

stabilized video which shows less distortion between consecutive frames. The 

numerical measurements were also lower in stabilized sequences for 37.88%. The 

PSNR is improved on average by 5.3 dB and the translations in x and y directions were 

reduced by 91.21 % and 92.39% respectively. 
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Comparing the complete stabilized and shaky video also confirmed that the processed 

videos highly satisfy the human perception. Results indicate a remarkable elimination 

of high jittery from shaky videos. 

7.2 Future Works 

As future work we can carry out background estimation to detect only the moving 

foreground objects. Then select the salient points for the moving foreground objects 

and determine the correspondence points between those FG objects in two consecutive 

frames. This will help reduce the computational complexity and speed up the 

computations. 

Also, when the transformations in different frames are corrected the outside borders of 

each frame will become black due to corrections in rotation angle and inevitably when 

the video is reconstructed its outside borders are not perfect.  In the future it is possible 

to address this problem through use of image inpainting which we believe will further 

improve PSNR values.  
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