
 

On Continued Fractions 

 

 

 

Mahmoud Jafari Shah Belaghi 

 

 

 

 

 

Submitted to the 
Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the Degree of 
 
 
 
 
 
 
 

Doctor of Philosophy 
in 

Mathematics  
 
 
 
 
 
 
 
 

Eastern Mediterranean University 
January 2013 

Gazimağusa, North Cyprus 



 

Approval of the Institute of Graduate Studies and Research 
 
          
           
           
           Prof. Dr. Elvan Yılmaz 
                  Director  
 
 
I certify that this thesis satisfies the requirements as a thesis for the degree of 
Doctor of Philosophy in Mathematics. 
 
 
         
 
           
      
                   Prof. Dr. Nazim Mahmudov 
                        Chair, Department of Mathematics 
 
 
 
 
We certify that we have read this thesis and that in our opinion it is fully adequate 
in scope and quality as a thesis for the degree of Doctor of Philosophy in 
Mathematics. 
 
 
 

 

                                   
                                                                               Prof. Dr. Agamiza Bashirov 
                                                                                 Supervisor 
          
     
      
 

               Examining Committee 

1.  Prof. Dr. Adiguzel Dosiyev                
       
2.  Prof. Dr. Agamiza Bashirov 

3.  Prof. Dr. Alexey Lukashov       

4.  Prof. Dr. Oktay Veliev 

5.  Assoc. Prof. Dr. Mehmet Ali Özarslan 



iii 

ABSTRACT 

In this thesis we concern two problems related to continued fractions. 

 

Euler's differential method: we apply Euler's differential method, which was not 

used by mathematicians for a long time, to derive a new formula for a certain kind 

continued fraction depending on a parameter. This formula is in the form of the ratio 

of two integrals. In case of integer values of the parameter, the formula reduces to the 

ratio of two finite sums. Asymptotic behavior of this continued fraction is 

investigated numerically and it is shown that it increases in the same rate as the root 

function. 

 

Bauer-Muir transform: we define a transformation of a certain kind of continued 

fractions to the same kind of continued fractions. This transformation is obtained by 

multiple application of the Bauer-Muir transform and then using the limiting process. 

It is shown that a double application of this transformation is the identity 

transformation. The obtained result is applied to some classic continued fractions due 

to Euler and Ramanujan. As a result a new transformation was found which in some 

special cases infinite continued fraction can be transformed to finite continued 

fraction. 

 

Keywords:  Continued fractions, Euler’s differential method, Bauer-Muir transform. 
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ÖZ 

Bu tezde sürekli kesirlerle alakalı iki konu çalışıldı. 

 

Euler’in differensiyel metodu: Matematikçilerin uzun zamandır kullanmadığı Euler 

diferensiyel metodunu kullanarak, bir parametreye bağlı sürekli kesirler için yeni bir 

formül bulundu. Bu formül iki integralin oranı formundadır. Parametrelerin tam sayı 

olduğu durumlarda bu formül iki sonlu toplamın oranı şeklinde değişir. Bu sürekli 

kesirlerin asimptotik davranışları üzerinde yapılan sayısal çalışmalar sonunda, kök 

fonksiyonu ile aynı oranda büyüdükleri görüldü.  

 

Bauer-Muir dönüşümü: Belirli bir türden olan sürekli kesirleri yine aynı türe 

çeviren bir dönüşüm tanımlandı. Bu dönüşüm, birçok kez Bauer-Muir dönüşümü ve 

daha sonra limit işlemleri uygulanarak bulundu. Dönüşümün iki kez uygulandığı 

durumlarda birim dönüşüm elde edildiği görüldü. Elde edilen dönüşüm Euler ve 

Ramanujan’ın sürekli kesirlerine uygulandı. Sonuç olarak, belirli parametreler için 

sonsuz sürekli kesirleri sonlu sürekli kesirlere çeviren bir dönüşüm bulundu.  

 

Anahtar Kelimeler: Sürekli kesirlerle, Euler diferensiyel metodunu, Bauer-Muir 

dönüşümü.  
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Chapter 1

INTRODUCTION

1.1 Historical Background

Continued fractions belong to classical research areas of mathematics. Elements

of continued fraction were used in Euclid’s Elements (300b.c.). Indian mathe-

matician Aryabhata (475�550) used continued fractions to solve linear equations.

Specific examples of continued fractions were considered by Italian mathemati-

cians Rafael Bombelli and Pietro Cataldi in the 16th century. An intensive study

of continued fractions started since John Wallis and Lord Brouncker. Many great

mathematicians such as Leonhard Euler, Karl Jacobi, Oscar Perron, Charles Her-

mit, Karl Friderich Gauss, Augustin Cauchy, Thomas Stieltjes etc. investigated

continued fractions. We refer to the books Cuyt et al [6], Jones and Thron [15],

Khrushchev [16], Lorentzen and Waadeland [18], Olds [23], Wall [30], etc. for the

present state of the theory.

In this section we will see how a continued fraction appears. Continued fraction

is used when there is repeated division and also can be used for solving equations.

• Continued fractions appear by ”repeated divisions”. Take for instance,

243
88 , we can write 243

88 as: 243
88 = 2+ 67

88 . By inverting the fraction 67
88 , we will

1



have

243

88
= 2 +

1
88
67

.

Repeating the above process for 88
67 , give us

88
67 = 1+ 21

67 = 1+ 1
67/21 . Therefore

we can write 243
88 in the di↵erent form

243

88
= 2 +

1

1 + 1
67
21

.

Again we can rewrite 67
21 as 67

21 = 3 + 1
21/4 . Hence

243

88
= 2 +

1

1 + 1
3+ 1

21
4

.

Since 21
4 = 5 + 1

4 , we will have

243

88
= 2 +

1

1 + 1
3+ 1

5+1
4

.

Since 4 is an integer number, this process stops.

• Continued fractions appear by solving equations. Let us try to solve

the equation x

2�2x�3 = 0, (3 is the only positive solution). We can write

x

2 � 2x� 3 = 0 as x2 = 2x+ 3 and dividing the both sides by x, we get

x = 2 +
3

x

or, since x = 3, 3 = 2 +
3

x

.

Since x = 2 + 3/x, by substituting 2 + 3/x into the denominator of 3 =

2



2 + 3/x, we obtain

3 = 2 +
3

2 + 3
x

.

By iterating, we have

3 = 2 +
3

2 + 3
2+ 3

2+...
+ 3

x

.

Repeating this process infinity many times, we get

3 = 2 +
3

2 + 3
2+ 3

2+ 3
2+ 3

2+...

.

Following example (see [16], page 18) show us how we can write the golden ratio

(� = 1+
p
5

2 ) as continued fractions form.

Example 1.1.1 Consider the equation x

2 � x � 1 = 0. Since 1+
p
5

2 is the only

positive solution, we can write �2 � �� 1 = 0.

By rewriting the equation, we will get � = 1 + 1
� and by substituting � into the

denominator of right-hand side. By iterating this process infinity many times, we

can write

� = 1 +
1

1 + 1
1+ 1

1+ 1
1+ 1

1+...

.

3



Remark 1.1.2 Many false rumours have been spread around about the golden

ratio[20].

1.2 Definition of Continued Fractions.

Let {x
k

}n
k=0 be a decreasing finite sequence of all positive integers, such that

x0 = b0x1 + x2,

x1 = b1x2 + x3,

x2 = b2x3 + x4, (1.2.1)

...

x

n�2 = b

n�2xn�1 + x

n

,

x

n�1 = b

n�1xn

,

where b

j

2 N, j = 0, 1, . . .. Eliminating x

k

from (1.2.1) we obtain

x

k�1

x

k

= b

k�1 +
1
x

k

x

k+1

, k = 1, 2, . . . ,

which transform x0/x1 into a finite simple continued fraction

x0

x1
= b0 +

1

b1 +
1

b2+...
+ 1

b

n�1

.

The following notation was proposed by Rogers [28] which is written in line form:

x0

x1
= b0 +

1

b1 +

1

b2 + ...+

1

b

n�1
.

4



By multiplying nonzero coe�cients a
j

to the x
j+1 on the right-hand side of (1.2.1)

and letting the number of equations be infinite, we obtain

x0 = b0x1 + a1x2

x1 = b1x2 + a2x3 (1.2.2)

x2 = b2x3 + a3x4

...

Eliminating x

k

, from (1.2.2) we obtain

x

k�1

x

k

= b

k�1 +
a

k

x

k

x

k+1

, k = 1, 2, . . . ,

which transform x0/x1 into a general continued fraction

x0

x1
= b0 +

a1

b1 +
a2

b2+
a3

b3+...

,

and by using the Rogers’ notation we can write it as

x0

x1
= b0 +

a1

b1 +

a2

b2 +

a3

b3 + ...

.

In general, we can give a definition of continued fraction (see [16], page11) which

is a fraction as follows

b0 +K

1
k=1

✓
a

k

b

k

◆
= b0 +

a1

b1 +
a2

b2+
a3

b3+...

(1.2.3)

5



where b

k

’s and a

k

’s are real numbers. Here K stands for Kettenbruch, the

German word for ”continued fraction”. This is probably the most compact and

convenient way to express continued fractions. The numbers a
k

and b

k

are called

the k-th partial numerators and denominators of (1.2.3), respectively.

More precisely, for every n 2 N, we can stop the process in (1.2.3) at the term

a

n

/b

n

and perform all algebraic operations without cancellations. Then

c

n

=
P

n

Q

n

⌘ b0 +K

n

k=1

✓
a

k

b

k

◆
(1.2.4)

is called the n-th convergent to the continued fraction (1.2.3). The continued

fraction converges if the limit lim
n!1 c

n

, exists and is finite.

Simple (or regular) continued fraction is a continued fraction where all a
k

’s

are 1 and b

k

’s are positive integers.

Positive continued fraction is a continued fraction where a
n

, b

n

’s are positive

real numbers for all n � 1.

Nonnegative continued fraction is a continued fraction where b

n

> 0, a
n

�

0 for all n � 1.

1.3 Convergents and Recurrence Relations.

Consider the continued fraction

b0 +K

1
k=1

✓
a

k

b

k

◆
, (1.3.1)

6



with convergents {P
n

/Q

n

}
n�0. Therefore the sequences {Pn

}
n�0, {Qn

}
n�0 satisfy

the Euler-Wallis formulas (see Euler [8] and Wallis [31])

8
>>><

>>>:

P

n

= b

n

P

n�1 + a

n

P

n�2

Q

n

= b

n

Q

n�1 + a

n

Q

n�2 ,

(1.3.2)

where P�1 = 1, P0 = b0, Q�1 = 0 andQ0 = 1. The zero-th and first convergents

of the continued fraction (1.3.1) are c0 = b0 =
P0
Q0

and c1 = b0+
a1
b1

= b1b0+a1
b1

= P1
Q1

,

respectively.

Theorem 1.3.1 [see[16], page 12] Let { P

n

Q

n

}
n�1 be a sequence of convergents of

the following continued fraction

b0 +
a1

b1 +

a2

b2 +

a3

b3 +···

a

n

⇠

,

where ⇠ is any positive real number. Then we have

b0 +
a1

b1 +

a2

b2 +

a3

b3 +···

a

n

⇠

=
⇠P

n�1 + a

n

P

n�2

⇠Q

n�1 + a

n

Q

n�2
, n = 1, 2, 3, . . . . (1.3.3)

The equation (1.3.3) can be proven by induction. For the case n = 1;

b0 +
a1

x

=
b0x+ a1

x

=
xP0 + a1P�1

xQ0 + a1Q�1
,

since P�1 = 1, P0 = b0, Q�1 = 0andQ0 = 1. Assume that (1.3.3) is true for the

case n.

7



For the case n+ 1, we have

b0 +
a1

b1 +

a2

b2 +

a3

b3 + ...+

a

n

b

n

+

a

n+1

x

= b0 +
a1

b1 +

a2

b2 +

a3

b3 + ...+

a

n

y

where y := b

n

+ a

n+1

x

= xb

n

+a

n+1

x

.

Then by induction hypothesis, we have

b0 +
a1

b1 +

a2

b2 +

a3

b3 +···

a

n

b

n +

a

n+1

x

=
yP

n�1 + a

n

P

n�2

yQ

n�1 + a

n

Q

n�2

=

⇣
xb

n

+a

n+1

x

⌘
P

n�1 + a

n

P

n�2
⇣

xb

n

+a

n+1

x

⌘
Q

n�1 + a

n

Q

n�2

=
x(b

n

P

n�1 + a

n

P

n�2) + a

n+1Pn�1

x(b
n

Q

n�1 + a

n

Q

n�2) + a

n+1Qn�1

=
xP

n

+ a

n+1Pn�1

xQ

n

+ a

n+1Qn�1
.

Theorem 1.3.2 The following identities hold ( see [16], page 14):

8
>>><

>>>:

P

n

Q

n�1 � P

n�1Qn

= (�1)n�1
a1a2 · · · an for n � 1,

P

n

Q

n�2 � P

n�2Qn

= (�1)na1a2 · · · an�1bn for n � 2.

(1.3.4)

First equality in (1.3.4) can be proven by induction. For the case n = 1, we

obtain

P1Q0 � P0Q1 = (b1b0 + a1).1� b0b1 = a1.

8



Assume that the equality holds for the case n. We have to show that it also holds

for the case n+ 1. By Euler-Wallis Formulas (1.3.2), we obtain

P

n+1Qn

� P

n

Q

n+1 = Q

n

(b
n+1Pn

+ a

n+1Pn�1)� P

n

(b
n+1Qn

+ a

n+1Qn�1)

= �a

n+1(Pn

Q

n�1 � P

n�1Qn

)

= �a

n+1.(�1)n�1
a1a2 · · · an

= (�1)na1a2 · · · anan+1.

Similarly, we can prove the second equality in (1.3.4).

Corollary 1.3.3 [13] Consider the simple continued fraction

b0 +K

1
k=1

✓
1

b

k

◆
,

with convergents { P

n

Q

n

}
n�0. The P

n

and Q

n

are relatively prime for all n � 0.

This corollary can be proved by use of Euler-Wallis formula (1.3.2) for simple

continued fraction. Indeed, we have

P

n

Q

n�1 � P

n�1Qn

= (�1)n�1
.

If there exist any integer number to divide both P

n

and Q

n

, then it must divide

P

n

Q

n�1 � P

n�1Qn

also, therefore it must divide (�1)n�1 = ±1.

9



Theorem 1.3.4 ( see [16], page 14) Let { P

n

Q

n

}
n�0 be a sequence of convergents

of b0 +K

1
k=1

✓
a

k

b

k

◆
, then P

n

and Q

n

satisfy

P

n

P

n�1
= b

n

+
a

n

b

n�1 +

a

n�1

b

n�2 + ...+

a1

b0
,

Q

n

Q

n�1
= b

n

+
a

n

b

n�1 +

a

n�1

b

n�2 + ...+

a2

b1
.

This theorem can be proved by applying Euler-Wallis formulas (1.3.2) to the

left-hand sides of the equations, iteratively.

1.4 Transformation of Continued Fractions.

It this section we will see how one continued fraction can be transformed to

another one. The following example shows this transformation.

Example 1.4.1 Consider the finite continued fraction

⇠ = b0 +
a1

b1 +
a2

b2+
a3
b3

,

where b

k

’s and a

k

’s are real numbers. Assume that ⇢1, ⇢2, ⇢3 are nonzero real

numbers. Then multiplying the numerator and denominator of the first fraction

by ⇢1, we obtain

⇠ = b0 +
⇢1a1

⇢1b1 +
⇢1a2

b2+
a3
b3

.

10



Multiplying the numerator and denominator of the second fraction by ⇢2 gives

⇠ = b0 +
⇢1a1

⇢1b1 +
⇢1⇢2a2

⇢2b2+
⇢2a3
b3

.

Finally, multiplying the numerator and denominator of the last fraction by ⇢3

gives

⇠ = b0 +
⇢1a1

⇢1b1 +
⇢1⇢2a2

⇢2b2+
⇢2⇢3a3
⇢3b3

.

In summary,

b0 +
a1

b1 +

a2

b2 +

a3

b3
= b0 +

⇢1a1

⇢1b1 +

⇢1⇢2a2

⇢2b2 +

⇢2⇢3a3

⇢3b3
.

In general, Two continued fractions are said to be equivalent if and only if they

have the same sequence of convergents. This example leads us to the following

theorem (see [15], page 31).

Theorem 1.4.2 (Equivalence Transform). For any real numbers {a
k

}1
k=1,

{b
k

}1
k=0 and nonzero constants {⇢

k

}1
k=1, the following equation holds:

b0 +
a1

b1 +

a2

b2 +

a3

b3 +···

a

n

b

n +···
= b0 +

⇢1a1

⇢1b1 +

⇢1⇢2a2

⇢2b2 +

⇢2⇢3a3

⇢3b3 +···

⇢

n�1⇢nan

⇢

n

b

n +···
.

By using Euler-Wallis formulas (1.3.2) one can prove the theorem by simple in-

duction.

11



1.5 Convergence Theorems

Consider the following continued fraction

b0 +K

1
k=1

✓
a

k

b

k

◆
.

By using the Theorem 1.3.2, which is

8
>>><

>>>:

P

n

Q

n�1 � P

n�1Qn

= (�1)n�1
a1a2 · · · an

P

n

Q

n�2 � P

n�2Qn

= (�1)na1a2 · · · an�1bn,

we will prove the following monotonicity properties of the c

n

’s, which is an im-

portant part in the study of continued fractions (see [16], page 14).

Theorem 1.5.1 Convergents of positive continued fractions, satisfy the following

inequalities:

c0 < c2 < c4 < · · · < c2n < · · · < c2n�1 < · · · < c5 < c3 < c1.

That is, the sequence of even and odd convergents are strictly increasing and

decreasing, respectively.

12



By using Theorem 1.3.2, we can expand the following equation for c
n

� c

n�2,

c

n

� c

n�2 =
P

n

Q

n

� P

n�2

Q

n�2

=
P

n

Q

n�2 � P

n�2Qn

Q

n

Q

n�2

=
(�1)na1a2 · · · an�1bn

Q

n

Q

n�2
.

By substituting 2n instead of n in the above equation for c
n

� c

n�2, we obtain

c2n � c2n�2 =
(�1)2na1a2 · · · a2n�1b2n

Q2nQ2n�2
=

a1a2 · · · a2n�1b2n

Q2nQ2n�2
> 0.

This shows that c2n�2 < c2n for all n � 1 and hence, c0 < c2 < c4 < · · · .

Similarly, by substituting 2n� 1 instead of n in the above equation for c
n

� c

n�2,

we will have c2n < c2n�1 for all n � 1 and hence c1 > c3 > c5 > · · · .

The easiest way to prove the convergence is to apply a simple old theorem by

Pringsheim [27].

Theorem 1.5.2 Let b
n

> 0, a
n

> 0 for all n � 1, and

1X

n=1

b

n

b

n+1

a

n+1
= 1.

Then the continued fraction b0 +K

1
k=1

✓
a

k

b

k

◆
converges.

This theorem can be proved by use of Euler-Wallis formulas (1.3.2). Indeed, we

13



have

Q

n�1 = b

n�1Qn�2 + a

n�1Qn�3 � b

n�1Qn�2,

since a

n�1Qn�3 � 0. By using Euler-Wallis formulas (1.3.2), for n � 2 we can

write

Q

n

= b

n

Q

n�1 + a

n

Q

n�2

� b

n

(b
n�1Qn�2) + a

n

Q

n�2

= Q

n�2(bnbn�1 + a

n

).

Therefore, we have

Q

n

� Q

n�2(bnbn�1 + a

n

), for all n � 2.

Applying this formula n-times, we find that for any n � 1,

Q2n � Q2n�2(b2nb2n�1 + a2n)

� Q2n�4(b2n�2b2n�3 + a2n�2)(b2nb2n�1 + a2n)

� ...

� Q0(b2b1 + a2)(b4b3 + a4) · · · (b2nb2n�1 + a2n).

Similarly, we can find that for any n � 2,

Q2n�1 � Q1(b3b2 + a3)(b5b4 + a5) · · · (b2n�1b2n�2 + a2n�1).

14



Therefore, for any n � 2, we have

Q2nQ2n�1 � Q0Q1(b2b1 + a2)(b3b2 + a3) · · · (b2n�1b2n�2 + a2n�1)(b2nb2n�1 + a2n)

= Q0Q1a2a3 · · · a2n
⇣
1 +

b2b1

a2

⌘⇣
1 +

b3b2

a3

⌘
· · ·

⇣
1 +

b2nb2n�1

a2n

⌘
.

By easy simplification we can write that

a1a2 · · · a2n
Q2nQ2n�1

 a1

Q0Q1
.

1
Q2n�1

k=1

⇣
1 + b

k

b

k+1

a

k+1

⌘
.

Now recall that a series
P1

k=1 ↵k

of positive real numbers converges if and only if

the infinite product
Q1

k=1(1 + ↵

k

) converges. Therefore,
Q1

k=1

⇣
1 + b

k

b

k+1

a

k+1

⌘
= 1,

since
P1

k=1
b

k

b

k+1

a

k+1
= 1 is given. so the right-hand side of inequality vanishes as

n ! 1.

Corollary 1.5.3 (see [16], page 20) Simple continued fractions always converge.

Consider a simple continued fraction, therefore

1X

n=1

b

n

b

n+1

a

n+1
=

1X

n=1

b

n

b

n+1 = 1,

since all the b

n

’s are positive integers and a

n

’s = 1.

Theorem 1.5.4 [19] Let b0+K

1
k=1(

a

k

b

k

) be a positive continued fraction such that

P1
n=1

b

n

b

n+1

a

n+1
= 1. Let ⇠

n

is also defined as

⇠0 = b0 +
a1

b1 +

a2

b2 +

a3

b3 +···

a

n

⇠

n

,

15



which is a positive infinitely often. Then ⇠0 and b0 +K

1
k=1(

a

k

b

k

) are equivalent.

By Theorem 1.5.2, the continued fraction b0+K

1
k=1(

a

k

b

k

) converges, since
P1

n=1
b

n

b

n+1

a

n+1
=

1. Let {c
n

}
n�0 be a sequence of convergents of b0 +K

1
k=1(

a

k

b

k

). Let " > 0 and by

using Theorem 1.5.2, observe that there exist an N such that

8 n > N =) |c
n

� c

n�1| =
a1a2 · · · an
Q

n

Q

n�1
< ".

Fix n > N and write out ⇠
o

to the n-th term:

⇠0 = b0 +
a1

b1 +

a2

b2 +

a3

b3 +···+

a

n�1

b

n�1 +

a

n

⇠

n

.

Let {c0
k

=
P

0
k

Q

0
k

} be a sequence of convergents for this finite continued fraction.

Therefore on can see that Q
k

= Q

0
k

and P

k

= P

0
k

for all k  n � 1 and ⇠0 = c

0
n

.

Then, by using Theorem 1.3.2, we can write

|⇠0 � c

n�1| =
���c

0

n

� c

0

n�1

��� =
a1a2 · · · an
Q

0
n

Q

0
n�1

=
a1a2 · · · an
Q

0
n

Q

n�1
.

By the Euler-Wallis formulas (1.3.2), we have

Q

0

n

= ⇠

n

Q

0

n�1+a

n

Q

0

n�2 =

✓
b

n

+
a

n+1

⇠

n+1

◆
Q

n�1+a

n

Q

n�2 > b

n

Q

n�1+a

n

Q

n�2 = Q

n

.

Hence,

|⇠0 � c

n�1| 
a1a2 · · · an
Q

0
n

Q

n�1
<

a1a2 · · · an
Q

n

Q

n�1
< ".

16



Therefore ⇠0 = lim c

n�1, Since " > 0 was arbitrary.

1.6 Continued Fractions and Some Series

Convergents of some continued fractions coincide with partial sums of series. This

phenomenon was first studied in detail by Euler [7].

Theorem 1.6.1 [5] The sequence {d
n

}
n�0 is the sequence of convergents to a

continued fraction q0+K

1
n=1(

p

n

q

n

) if and only if d0 6= 1,d

n

6= d

n�1, n = 1, 2, 3, . . ..

Let d
n

= P

n

Q

n

, n = 0, 1, 2, . . . , be a sequence of convegents to a continued fraction,

then d0 = q0 6= 1 and by Theorem 1.3.2 we have

P

n

Q

n�1 � P

n�1Qn

= (�1)n�1
p1p2 · · · pn 6= 0.

Therefore Q

n�1 and Q

n

cannot both vanish. Similarly, if Q
n

= 0 then P

n

6= 0.

This shows that d
n

6= d

n�1.

To prove the converse we assume that the numerators of the convergents are d

n

and the denominators of the convergents all equals 1. Let all the d

n

be finite.

Then the Euler-Wallis formulas (1.3.2) takes the form

d

n

= q

n

d

n�1 + p

n

d

n�2,

1 = q

n

+ p

n

.

17



The determinant of this linear system in two unknowns p
n

and q

n

is d
n�1�d

n�2 6=

0. It follows that

p

n

=
d

n�1 � d

n

d

n�1 � d

n�2
, q

n

=
d

n

� d

n�2

d

n�1 � d

n�2
, n = 2, 3, . . . . (1.6.1)

The initial values are q0 = d0, p1 = d1 � d0, q1 = 1. If, say, d
n

= 1 then by

the assumption both d

n�1 and d

n+1 are finite. We put P

n

= 1, Q
n

= 0 and by

Euler-Wallis formulas (1.3.2) obtain the system

1 = q

n

d

n�1 + p

n

d

n�2,

0 = q

n

+ p

n

.

The second equation shows that q
n

= �p

n

, and

p

n

=
1

d

n�1 � d

n�2
, q

n

=
1

d

n�1 � d

n�2
, n = 2, 3, · · ·

follows from the first.

Following theorems are given by Euler (see [7] and [11]) which are about relation

between convergents of continued fraction and partial sums of a given series.

Theorem 1.6.2 [11] Let {↵
k

}1
k=1 be a sequence of real numbers such that ↵

k

6= 0

18



and ↵

k

6= ↵

k�1 for all k, then

1X

k=1

(�1)k�1

↵

k

=
1

↵1 +

↵

2
1

↵2 � ↵1 +

↵

2
2

↵3 � ↵2 +

↵

2
3

↵4 � ↵3 +···
.

The theorem can be proved by induction. One can show that the equality holds

for the case n = 1. Assuming that it holds for the case n, we can prove that it

holds for the case n+ 1. we have

n+1X

k=1

(�1)k�1

↵

k

=
1

↵1
� 1

↵2
+ · · ·+ (�1)n�1

↵

n

+
(�1)n

↵

n+1
.

By writing the last two terms together, we obtain sum of n terms.

n+1X

k=1

(�1)k�1

↵

k

=
1

↵1
� 1

↵2
+ · · ·+ (�1)n�1

⇣ 1

↵

n

� ↵

n+1

⌘

=
1

↵1
� 1

↵2
+ · · ·+ (�1)n�1 1

↵

n

↵

n+1

↵

n+1�↵

n

.

Now, we can apply the induction hypothesis and obtain

n+1X

k=1

(�1)k�1

↵

k

=
1

↵1 +

↵

2
1

↵2 � ↵1 +

↵

2
2

↵3 � ↵2 +

↵

2
3

↵4 � ↵3 +···

↵

2
n�1

↵

n

↵

n+1

↵

n+1�↵

n

� ↵

n�1

1

↵1 +

↵

2
1

↵2 � ↵1 +

↵

2
2

↵3 � ↵2 +

↵

2
3

↵4 � ↵3 +···

↵

2
n�1

↵

n

(↵
n+1�↵

n

)+↵

2
n

↵

n+1�↵

n

� ↵

n�1

1

↵1 +

↵

2
1

↵2 � ↵1 +

↵

2
2

↵3 � ↵2 +

↵

2
3

↵4 � ↵3 +···

↵

2
n�1

↵

n

� ↵

n�1 +
↵

2
n

↵

n+1�↵

n

1

↵1 +

↵

2
1

↵2 � ↵1 +

↵

2
2

↵3 � ↵2 +

↵

2
3

↵4 � ↵3 +···

↵

2
n�1

↵

n

� ↵

n�1 +

↵

2
n

↵

n+1 � ↵

n

.

Theorem 1.6.3 [11] Let {↵
k

}1
k=1 be a sequence of real numbers such that ↵

k

6=

19



0, 1. The following equality holds

1X

k=1

(�1)k�1

↵1 · · · ↵k

=
1

↵1 +

↵1

↵2 � 1+

↵2

↵3 � 1+···

↵

n�1

↵

n

� 1+···
.

The theorem can be proved by induction. One can show that the equality holds

for the case n = 1. Assuming that it holds for the case n, we can prove that it

holds for the case n+ 1. We have

n+1X

k=1

(�1)k�1

↵1 · · ·↵k

=
1

↵1
� 1

↵1↵2
+ · · ·+ (�1)n�1

↵1 · · ·↵n

+
(�1)n

↵1 · · ·↵n+1
.

By writing the last two terms together, we obtain sum of n terms.

n+1X

k=1

(�1)k�1

↵

k

=
1

↵1
� 1

↵1↵2
+ · · ·+ (�1)n�1

↵1 · · ·↵n�1

✓
1

↵

n

� 1

↵

n

↵

n+1

◆

=
1

↵1
� 1

↵1↵2
+ · · ·+ (�1)n�1

↵1 · · ·↵n�1

✓
1

↵

n

↵

n+1

↵

n+1�1

◆
.

By applying the induction hypothesis, we obtain

n+1X

k=1

(�1)k�1

↵1 · · · ↵k

=
1

↵1 +

↵1

↵2 � 1+

↵2

↵3 � 1+···

↵

n�1
↵

n

↵

n+1

↵

n+1�1 � 1
+···

.

Since

↵

n

↵

n+1

↵

n+1 � 1
� 1 =

↵

n

(↵
n+1 � 1) + ↵

n

↵

n+1 � ↵

n

� 1

= ↵

n

� 1 +
↵

n

↵

n+1 � 1
,
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we have

n+1X

k=1

(�1)k�1

↵1 · · · ↵k

=
1

↵1 +

↵1

↵2 � 1+

↵2

↵3 � 1+···

↵

n�1

↵

n

� 1 + ↵

n

↵

n+1�1 +···

.

Theorem 1.6.4 [7] Let {c
n

}
n�0 be a sequence of nonzero numbers, then

nX

k=0

c

k

=
c0

1 �

c1/c0

1 + c1/c0 �

c2/c1

1 + c2/c1 �... �

c

n

/c

n�1

1 + c

n

/c

n�1
. (1.6.2)

Apply Theorem 1.3.2 to d

n

=
P

n

k=0 ck, n � 0. Since c

n

6= 0, we have d

n

6= d

n�1

for n = 1, 2, . . .. Next, d0 = c0 6= 1. Since d

n

6= 1, formula (1.6.1) shows that

p

n

=
d

n

� d

n�1

d

n�2 � d

n�1
= � c

n

c

n�1

q

n

=
d

n

� d

n�2

d

n�1 � d

n�2
=

c

n

+ c

n�1

c

n�1
n = 2, 3, . . . .

Since q0 = d0 = c0, p1 = d1 � d0 = c1, q1 = 1, Theorem 1.6.1 shows that

nX

k=0

c

k

= c0 +
c1

1 �

c2/c1

1 + c2/c1�

c3/c2

1 + c3/c2� ...�

c

n

/c

n�1

1 + c

n

/c

n�1
. (1.6.3)

The application to (1.6.3) of the elementary identity

c0 +
c1

1 + w

=
c0

1 �

c1/c0

1 + c1/c0 + w

proves (1.6.2).
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If we put

⇢0 = c0, c

k

= ⇢1⇢2 · · · ⇢k, for k = 1, 2, . . . ,

then (1.6.3) and (1.6.2) turn into the following formula

nX

k=0

⇢0⇢1 · · · ⇢k =
⇢0

1 �

⇢1

1 + ⇢1� ...�

⇢

n

1 + ⇢

n

.

Following example is the application of Theorem1.6.2,

Example 1.6.5 [17] Continued fraction for ⇡: Consider the following tele-

scoping series

1X

n=1

(�1)n�1
⇣ 1
n

+
1

n+ 1

⌘
=
⇣1
1
+

1

2

⌘
�
⇣1
2
+

1

3

⌘
+
⇣1
3
+

1

4

⌘
� · · · = 1,

and

⇡

4
=

1

1
� 1

3
+

1

5
� 1

7
+ · · · = 1�

P1
n=1

(�1)n�1

2n+1 .

By multiplying the second series by 4, we get

⇡ = 4� 4
1X

n=1

(�1)n�1

2n+ 1
,
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and using the first telescoping series, we obtain

⇡ = 3 + 1� 4
1X

n=1

(�1)n�1

2n+ 1

= 3 +
1X

n=1

(�1)n�1
⇣ 1
n

+
1

n+ 1

⌘
� 4

1X

n=1

(�1)n�1

2n+ 1

= 3 +
1X

n=1

(�1)n�1
⇣ 1
n

+
1

n+ 1
� 4

2n+ 1

⌘

= 3 + 4
1X

n=1

(�1)n�1

2n(2n+ 1)(2n+ 2)
.

Now, We apply Theorem 1.6.2 with ↵

n

= 2n(2n+1)(2n+2). We can write the k-th

partial denominator of continued fraction in Theorem 1.6.2 as ↵
n

�↵

n�1 = 24n2.

Therefore by applying Theorem 1.6.2, we obtain

4
1X

n=1

(�1)n�1

2n(2n+ 1)(2n+ 2)
= 4

✓
1

24.(12)+

(2.3.4)2

24.(22) +

(4.5.6)2

24.(32) +···

◆
.

Hence,

⇡ = 3 +
1

6+

(2.3.4)2

24.(22) +

(4.5.6)2

24.(32) + ···+

⇣
2(n� 1)(2n� 1)(2n)

⌘2

24.(n2) + ···
.

Using the equivalence transformation rule from Theorem 1.4.2:

b0 +
a1

b1 +

a2

b2 +

a3

b3 + ···+

a

n

b

n + ···
= b0 +

⇢1a1

⇢1b1 +

⇢1⇢2a2

⇢2b2 +

⇢2⇢3a3

⇢3b3 + ···+

⇢

n�1⇢nan

⇢

n

b

n + ···
.

By setting ⇢1 = 1 and ⇢

n

= 1
4n2 forn � 2, we see that

⇢

n�1⇢nan

⇢

n

b

n

=

1
4(n�1)2 .

1
4n2 .

⇣
2(n� 1)(2n� 1)(2n)

⌘2

1
4n2 .24.n2

=
(2n� 1)2

6
.
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Thus,

⇡ = 3 +
12

6 +

32

6 +

52

6 +

72

6 + ···+

(2n� 1)2

6 + ···
,

or

⇡ = 3 +
12

6 + 32

6+ 52

6+ 72

6+
...

.

The following example is the application of Theorem1.6.3.

Example 1.6.6 (see [16], page 161) Continued fractions for e: By using

the power series for exponential function we obtain

1

e

= e

�1 =
1X

n=0

(�1)n

n!
= 1� 1

1
+

1

1 · 2 � 1

1 · 2 · 3 + · · · ,

so

1� 1

e

=
1

1
� 1

1 · 2 +
1

1 · 2 · 3 � 1

1 · 2 · 3 · 4 + · · · .

Now, we apply Theorem 1.6.3 with ↵

k

= k to get

1� 1

e

=
1

1+

1

1+

2

2+

3

3+···
.
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By inverting both sides, we obtain after simple calculations,

1

e� 1
=

1

1+

2

2+

3

3+···
.

Inverting again and adding 1 to both sides, we obtain

e = 2 +
2

2+

3

3+

4

4+···
. (1.6.4)

1.7 Irrationality

In this section we are going to see how continued fraction represent irrational

number.

Theorem 1.7.1 [22] Let {a
n

}1
n=0, {bn}1n=1 be sequences of positive rational num-

bers such that for all su�ciently large n, a

n

and b

n

be positive integers and

a

n

 b

n

, and also
P1

n=1
b

n

b

n+1

a

n+1
= 1. Then the real number

⇠ = b0 +
a1

b1 +

a2

b2 +

a3

b3 +···
is irrational.

By using Theorem 1.5.2, the continued fraction defining ⇠ converges, since
P1

n=1
b

n

b

n+1

a

n+1
=

1. Suppose thatm > 0 and 0 < a

n

 b

n

for all n � m+1. Consider the following

continued fraction

⌘ = b

m

+
a

m+1

b

m+1 +

a

m+2

b

m+2 +

a

m+3

b

m+3 +···
.
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By using Theorem 1.5.2, the continued fraction ⌘ converges, then ⌘ > b

m

> 0

and we have

⇠ = b0 +
a1

b1 +

a2

b2 +

a3

b3 + ···+

a

m

⌘

.

By using Theorem 1.3.1, we can write that

⇠ = b0 +
a1

b1 +

a2

b2 +

a3

b3 +···+

a

m

⌘

=
⌘P

m

+ a

m

P

m�1

⌘Q

m

+ a

m

Q

m�1
.

Also, we can write that

⇠ =
⌘P

m

+ a

m

P

m�1

⌘Q

m

+ a

m

Q

m�1
() ⌘ =

⇠a

m

Q

m�1 � a

m

P

m�1

P

m

� ⇠Q

m

.

Note that⇠ 6= P

m

/Q

m

, since ⌘ > b

m

. It is clear that both ⇠ and ⌘ are rational or

irrational, Since all the b

n

, a

n

’s are rational. Therefore, we have to show that ⌘

is irrational. Assume, by way of contradiction, that ⇠ is rational. Let us define

positive continued fraction

⇠

n

:=
a

n

b

n +

a

n+1

b

n+1 +

a

n+2

b

n+2 +···
, for all n 2 N.

Then we can write it as

⇠

n

=
a

n

b

n

+ ⇠

n+1
=) ⇠

n+1 =
a

n

⇠

n

� b

n

. (1.7.1)
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The continued fraction ⇠

n

is a positive continued fraction ( ⇠
n

> 0 ), since {b
n

}1
n=0

and {a
n

}1
n=1 are sequences of positive rational numbers, then we have

⇠

n

=
a

n

b

n

+ ⇠

n+1
<

a

n

b

n

 1,

which implies that 0 < ⇠

n

< 1 for all n. By assumption of contradictory, ⇠1 is

rational. Assuming that ⇠
n

is rational, We have to show that ⇠
n+1 is also rational.

Since 0 < ⇠

n

< 1 for all n, then we can write ⇠

n

= s

n

/t

n

where t

n

> s

n

> 0 for

all n (t
n

and s

n

are relatively prime). By using (1.7.1) we have

s

n+1

t

n+1
= ⇠

n+1 =
a

n

⇠

n

� b

n

=
a

n

t

n

s

n

� b

n

=
a

n

t

n

� b

n

s

n

s

n

.

Hence,

s

n

s

n+1 = (a
n

t

n

� b

n

s

n

)t
n+1.

Thus, t
n+1 | snsn+1. Therefore t

n+1 must divide s

n

, since t

n+1 and s

n+1 are rel-

atively prime. In particular, t
n+1 < s

n

. So t

n+1 < t

n

, since, s
n

< t

n

. Hence,

{t
n

}
n�1 should satisfy

0 < . . . < t

n+1 < t

n

< . . . < t3 < t2 < t1,

which is contradiction to the assumption.
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Example 1.7.2 [8] Consider continued fraction for e (1.6.4), which is

e = 2 +
2

2+

3

3+

4

4+···
.

Since a

n

 b

n

for all n, then e is irrational.

Corollary 1.7.3 (see [16], page 21) Any infinite simple continued fraction rep-

resents an irrational number.

This corollary can be proved by using Theorem 1.7.1. In fact, simple continued

fraction is a continued fraction where a

n

= 1 and b

n

are positive integer number

for all n, then for all n � 1, 0 < a

n

 b

n

holds.

Remark 1.7.4 Any finite simple continued fraction represents a rational number

and any infinite simple continued fraction represents an irrational number.

1.8 Summary of the Results

The rest of thesis has been divided into two chapters. In the second chapter, we

apply Euler’s di↵erential method, which was not used by mathematicians for a

long time, to derive a new formula for a certain kind continued fraction depending

on a parameter. This formula is in the form of the ratio of two integrals. In case

of integer values of the parameter, the formula reduces to the ratio of two finite

sums. Asymptotic behavior of this continued fraction is investigated numerically

and it is shown that it increases in the same rate as the root function. The results

of this chapter are based on [3]. In the third chapter, we define a transformation of
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a certain kind of continued fractions to the same kind of continued fractions. This

transformation is obtained by multiple application of the Bauer-Muir transform

and then using the limiting process. It is shown that a double application of this

transformation is the identity transformation. The obtained result is applied to

some classic continued fractions due to Euler and Ramanujan. The results of this

chapter are published in [2].
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Chapter 2

EULER’S DIFFERENTIAL METHOD

In [10] Euler considered a generalization of (1.2.2):

c0x0 = b0x1 + a1x2

c1x1 = b1x2 + a2x3

c2x2 = b2x2 + a3x4 (2.0.1)

...

c

n

x

n

= b

n

x

n+1 + a

n+1xn+2

...

Assume that sequences {x
n

} in (2.0.1) are nonzero. Now we can rewrite (2.0.1)

as a following continued fraction form

c0x0

x1
= b0 +

a1c1

b1 +

a2c2

b2 +
···

+

a

n

c

n

b

n

+ a

n+1
x

n+2

x

n+1

. (2.0.2)

30



Example 2.0.1 Consider the function

S(x) = x

n(↵� �x� �x

2)

where ↵, �, � 2 R and all be positive. With simple calculation we can easily find

x1 = 0 and x2 = ⇠ = (
p

�

2 + 4↵� � �)/2� > 0 are two real roots of S(x).

After di↵erentiating of S(x), we obtain

dS = n↵x

n�1
dx� (n+ 1)�xn

dx� (n+ 2)�xn+1
dx.

Integrating both sides and simplifying, we obtain

n↵

ˆ
⇠

0

x

n�1
dx = (n+ 1)�

ˆ
⇠

0

x

n

dx+ (n+ 2)�

ˆ
⇠

0

x

n+1
dx. (2.0.3)

Let us to define

x

n

:=

ˆ
⇠

0

x

n

dx =
⇠

n+1

n+ 1
.

By replacing x

n

in (2.0.3), we can write

n↵x

n�1 = (n+ 1)�x
n

+ (n+ 2)�x
n+1. (2.0.4)
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Comparing (2.0.1) and (2.0.4), we can choose

c

n

= (n+ 1)↵, b

n

= (n+ 2)�, a

n

= (n+ 2)�.

Then by using Theorem 1.5.4 and (2.0.2), we can get

2↵

⇠

= 2� +
2⇥ 3↵�

3� +

3⇥ 4↵�

4� +

4⇥ 5↵�

5� +
...

. (2.0.5)

We can write the left side of equation (2.0.5) as below

2↵

⇠

=
4↵�p

�

2 + 4↵� � �

= � +
p
�

2 + 4↵�,

since ⇠ = (
p

�

2 + 4↵� � �)/2�. Let us take x = ↵�

�

2 , and substitute it in (2.0.5),

� +
p

�

2 + 4x�2 = 2� +
2⇥ 3x�2

3� +

3⇥ 4x�2

4� +

4⇥ 5x�2

5� +
...

. (2.0.6)

After simplification, we obtain

p
1 + 4x = 1 +

2x

1 +

x

1 +

x

1 +

x

1 +

x

1 +
...

, x > 0.

More examples can be found in [16].
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2.1 Euler’s Di↵erential Method

Euler transformed the above computation into the following theorem.

Theorem 2.1.1 [9] Let R and P be two real-valued functions on the interval

[0 , 1], which are positive on (0 , 1), let n be a nonnegative integer, let a, b and c

be any real numbers, and let ↵, � and � be any positive numbers. If

(a+ n↵)

ˆ 1

0

PR

n

dx = (b+ n�)

ˆ 1

0

PR

n+1
dx+ (c+ n�)

ˆ 1

0

PR

n+2
dx (2.1.1)

then

´ 1
0 PRdx´ 1
0 P dx

=
a

b +

(a+ ↵)c

b+ � +

(a+ 2↵)(c+ �)

b+ 2� +

(a+ 3↵)(c+ 2�)

b+ 3� +
...

. (2.1.2)

Moreover, (2.1.1) holds if R and P satisfy the di↵erential relations

8
>>><

>>>:

RdS + S dR = (bR + cR

2 � a)P dx

S dR = (�R + �R

2 � ↵)P dx

(2.1.3)

on (0 , 1) for some function S on [0 , 1] such that Rn+1
S vanishes at 0 and 1.

Proof. The proof of this theorem can be found in Khrushchev[16], page 184.

In [12] Euler considered a continued fraction of the form

K(s) =
s

1+

s+ 1

2 +

s+ 2

3 +

s+ 3

4 + ···
. (2.1.4)
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In the above notation,K(s) = K

1
k=1

⇥
k+s�1

k

⇤
. Clearly, at s = 0,�1,�2, . . . the

right hand side of (2.1.4) is a finite continued fraction and, hence, K(s) can

be calculated directly. But at s = 1, 2, . . . it is an infinite continued fraction

and straightforward calculation of K(s) becomes complicated. For this, by using

Theorem 2.1.1, Euler transferred the continued fraction in (2.1.4) to the following

continued fraction

K(s) =
s

2+

s� 2

3 +

s+ 1

4 +

s� 3

5 +

s+ 2

6 +

s� 4

7 +

s+ 3

8 + ···
, (2.1.5)

which is finite at all integer values of s except s = 1. Based on this, he calculated

K(2) = 1, K(3) = 4
3 etc. and obtained that K(s) is rational for all integer values

of s except s = 1. It is remarkable that K(1) = (e � 1)�1 is irrational, the fact

again proved by Euler (see [16], page 162).

Example 2.1.2 Following formula was obtained by Stieltjes [29].

1

s+K

1
n=1

⇥
n(n+1)

s

⇤ =

ˆ 1

0

e

�sx

cosh

2
x

dx = s

ˆ 1

0

e

�sx

tanh x dx (2.1.6)

By using the Euler’s di↵erential method, we can find a very simple proof of Stielt-

jes’s formula.

In Theorem 2.1.1, let us take

a = 1, b = s, c = 1

↵ = 1, � = 0, � = 1
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and choose R(x) = x and P (x) = (1�x

1+x

)s/2. Therefore, it su�ces to verify the

condition in (2.1.3) of Theorem 2.1.1 for a suitable choice of S. Let S(x) =

(1�x

1+x

)s/2. Then R

n(x)S(x) = x

n(1�x

1+x

)s/2, implying R

n(0)S(0) = R

n(1)S(1) = 0

for n � 0. For our choice of functions P , R and S, the equations in (2.1.3) have

the form

8
>><

>>:

x dS + S dx = (sx+ x

2 � 1)P dx,

S dx = (x2 � 1)P dx.

Therefore we can write

ˆ 1

0

P dx =

ˆ 1

0

(
1� x

1 + x

)s/2
dx

1� x

2
=

1

2

ˆ 1

0

t

s

2�1
dt =

1

s

,

the result obtained by substituting x = 1�t

1+t

. Similarly,

ˆ 1

0

RP dx =
1

2

ˆ 1

0

t

s

2�1(
1� t

1 + t

) dt =

ˆ 1

0

e

�sx

tanh x dx

= �1

s

ˆ 1

0

tanh x de

�sx =
1

s

ˆ 1

0

e

�sx

cosh

2
x

dx,

the first integral obtained by substituting t = e

�x, and the second integral obtained

from the first by using the integration by parts.
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2.2 Application of Euler’s Di↵erential Method

In this section we discover new application of Euler’s di↵erential method . The

object of our study is the function

f(t) = K

1
k=1


k + t

k

�
, �1 < t < 1. (2.2.1)

2.2.1 The Analyticity

In this subsection we prove that f is analytic.

At first, note that the mth convergent c

m

(t) = K

m

k=1

⇥
k+t

k

⇤
of K

1
k=1

⇥
k+t

k

⇤
is a

rational function of t. Hence, we can represent it in the form

c

m

(t) =
P

m

(t)

Q

m

(t)

for some polynomials P

m

and Q

m

. One can also observe that Q

m

is a positive

function on (�1,1). Consequently, c
m

is an analytic function on (�1,1) for all

m = 1, 2, . . . .

Lemma 2.2.1 The functions

g

m

(t) =
Q

m+1(t)

Q

m

(t)
, m = 1, 2, . . . ,

are positive and strictly increasing on (�1,1).

Proof. The positivity of g
m

follows from the positivity of Q
m

for allm = 1, 2, . . . .

To prove that g
m

is strictly increasing, we will verify the condition g

0
m

(t) > 0 for
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m = 1, 2, . . . . By Theorem 1.3.4

g

m

(t) = m+ 1 +
m+ 1 + t

m +

m+ t

m� 1+ ···+

2 + t

1
= m+ 1 +

m+ 1 + t

g

m�1(t)
.

Hence, for m = 1,

g

0
1(t) =

✓
2 +

2 + t

1

◆0

= 1 > 0,

and for m = 2,

g

0
2(t) =

✓
3 +

3 + t

g1(t)

◆0

=
1

(4 + t)2
> 0.

Assume that g0
n

(t) > 0 for all n = 1, . . . ,m� 1. Then

g

0
m

(t) =

✓
m+ 1 +

m+ 1 + t

g

m�1(t)

◆0

=
g

m�1(t)� (m+ 1 + t)g0
m�1(t)

g

m�1(t)2

= g

m�1(t)
�2

✓
m+

m+ t

g

m�2(t)
� (m+ 1 + t)

g

m�2(t)� (m+ t)g0
m�2(t)

g

m�2(t)2

◆

= g

m�1(t)
�2

✓
m� 1

g

m�2(t)
+

(m+ 1 + t)(m+ t)g0
m�2(t)

g

m�2(t)2

◆
.

Since g

m�2(t) > m � 1, we obtain g

0
m

(t) > 0. By induction, g0
m

(t) > 0 for all

m = 1, 2, . . . .

Lemma 2.2.2 The functions

h

m

(t) = |c
m+1(t)� c

m

(t)|, m = 1, 2, . . . ,

are positive and strictly increasing on (�1,1).
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Proof. If m = 1, then

h1(t) = |c2(t)� c1(t)| =
(1 + t)(2 + t)

4 + t

.

One can verify that h1(t) > 0 and h

0
1(t) > 0. Assume that h

m

is positive and

strictly increasing. By Theorem 1.3.2

h

m+1(t) =
(1 + t)(2 + t) · · · (m+ 1 + t)

Q

m+1(t)Qm

(t)

=
(1 + t)(2 + t) · · · (m+ t)

Q

m

(t)Q
m�1(t)

· (m+ 1 + t)Q
m�1(t)

Q

m+1(t)
.

Hence, h
m+1 is positive. Moreover, from the Euler-Wallis formula (1.3.2)

Q

m+1(t) = (m+ 1)Q
m

(t) + (m+ 1 + t)Q
m�1(t),

we obtain

h

m+1(t) = h

m

(t) · Qm+1(t)� (m+ 1)Q
m

(t)

Q

m+1(t)
= h

m

(t)

✓
1� m+ 1

g

m

(t)

◆
.

Thus, by Lemma 2.2.1, h
m+1 equals to the product of two positive strictly in-

creasing functions. Hence, h
m+1 is strictly increasing. By induction, h

m

is strictly

increasing for all m = 1, 2, . . . .

Theorem 2.2.3 The function f , defined by (2.2.1), is analytic on the interval

(�1,1).

Proof. At first, note that the continued fraction K

1
k=1

⇥
k+t

k

⇤
converges at every
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t > �1. This follows from the theorem of Pringsheim (Theorem 1.5.2) since

1X

k=1

(k � 1)k

k + t

= +1

for t > �1. Next, let us show that this convergence is uniform on every compact

subinterval [a, b] of (�1,1). Since the sequence {c
m

(b)} converges, it is a Cauchy

sequence. Hence, for given " > 0, there is N such that for all m > N ,

|c
m+1(b)� c

m

(b)| < ".

By Lemma 2.2.2, for all m > N ,

max
t2[a,b]

|c
m+1(t)� c

m

(t)| = |c
m+1(b)� c

m

(b)| < ".

By Theorem 1.5.1

c2(b) < c4(b) < · · · < c2k(b) < · · · < c2k+1(b) < · · · < c3(b) < c1(b).

Hence, for all n > m > N ,

max
t2[a,b]

|c
n

(t)� c

m

(t)|  max
t2[a,b]

|c
m+1(t)� c

m

(t)| = |c
m+1(b)� c

m

(b)| < ".

This means that the sequence of functions {c
m

} is uniformly Cauchy on [a, b].

Hence, it converges uniformly on [a, b]. Finally, since all terms of the sequence

{c
m

} are analytic functions on [a, b], the limit function f is also analytic on [a, b].

From the analyticity on every compact subinterval of (�1,1), we obtain that f
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is analytic on (�1,1).

2.2.2 The Representation by Integrals

In this subsection we represent the function f , defined by (2.2.1), as a ratio of

two integrals. We will use the following.

Lemma 2.2.4 The integral

ˆ 1

0

(1� x)b�1
x

a�1
e

x

dx

is well-defined for a > 0 and b > 0. Otherwise, it diverges to 1.

Proof. Since the exponential function is bounded positive on [0, 1], the lemma

follows from comparison of the above integral with the Euler’s integral

ˆ 1

0

(1� x)b�1
x

a�1
dx,

which is well-defined for a > 0 and b > 0, and diverges to 1 whenever a  0 or

b  0.

Lemma 2.2.5 For �1 < t < 1,

f(t) =

´ 1
0 (1� x)�t

x

t+1
e

x

dx´ 1
0 (1� x)�t

x

t

e

x

dx

, (2.2.2)

where f is defined by (2.2.1).
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Proof. It is easily seen that (2.2.2) is same as (2.1.2) for the selection a = t+ 1,

b = c = ↵ = � = 1, � = 0, R(x) = x and P (x) = x

t(1 � x)�t

e

x. Therefore, it

su�ces to verify the condition in (2.1.3) of Theorem 2.1.1 for a suitable choice

of S. Let S(x) = �x

t(1 � x)1�t

e

x. Then R

n+1(x)S(x) = �x

t+n+1(1 � x)1�t

e

x,

implying R

n+1(0)S(0) = R

n+1(1)S(1) = 0. For our choice of functions P , R and

S, the equations in (2.1.3) have the form

8
>><

>>:

x dS + S dx = (x+ x

2 � t� 1)P dx,

S dx = (x� 1)P dx,

which can be verified easily.

Corollary 2.2.6 K(1) = (e� 1)�1, where K(s) is defined by (2.1.4).

Proof. Let t = 0 in Lemma 2.2.5. Then

K(1) = f(0) =

´ 1
0 xe

x

dx´ 1
0 e

x

dx

=
1

e� 1
,

proving the corollary. By Lemma 2.2.4, the integrals in (2.2.2) are divergent

for t � 1, producing 1
1 in the right hand side. The next lemma extend (2.2.2) to

the interval (�1,1).

Lemma 2.2.7 For 0 < t < 2,

f(t) =

´ 1
0 (1� x)1�t(xt+1

e

x)0 dx´ 1
0 (1� x)1�t(xt

e

x)0 dx
, (2.2.3)
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where f is defined by (2.2.1).

Proof. For 0 < t < 1, formula (2.2.3) can be deduced by the application of the

integration by parts formula to the integrals in (2.2.2). The right hand side of

(2.2.3) is analytic on (0, 2). By Theorem 2.2.3, the left hand side of (2.2.3) is

an analytic on (�1,1). Hence, by the uniqueness theorem of analytic functions,

(2.2.2) holds for 0 < t < 2. Formula (2.2.3) is still not valid for t > 2 since its

right hand side produces 1
1 . It is not valid for �1 < t  0 as well for the same

reason. Next, we generalize Lemmas 2.2.5 and 2.2.7 in the following form.

Theorem 2.2.8 For p� 1 < t < p+ 1, where p = 0, 1, 2, . . . ,

f(t) =

´ 1
0 (1� x)p�t

d

p

dx

p

(xt+1
e

x) dx´ 1
0 (1� x)p�t

d

p

dx

p

(xt

e

x) dx
. (2.2.4)

Proof. This follows by multiple application of the procedure used in the proof

of Lemma 2.2.7.

2.2.3 The Representation by Finite Sums

Now we are interested in integer values of t.

Theorem 2.2.9 For p = 1, 2, . . . ,

f(p) = (p+ 1)

P
p�1
k=0

a

p,k

p�k+1P
p�1
k=0 ap,k

, (2.2.5)
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where

a

p,k

=

0

BB@
p

k

1

CCA · 1

(p� k � 1)!
.

Proof. Substituting t = p in (2.2.4) and integrating, we obtain

f(p) =

d

p�1

dx

p�1 (xp+1
e

x)��
x=1

d

p�1

dx

p�1 (xp

e

x)��
x=1

. (2.2.6)

By Leibnitz’s formula for the higher order derivatives of product function,

d

p�1

dx

p�1
(xp+1

e

x)

����
x=1

=
p�1X

k=0

0

BB@
p� 1

k

1

CCA e

x(xp+1)(k)
����
x=1

= e

p�1X

k=0

(p� 1)!

k!(p� k � 1)!
· (p+ 1)!

(p� k + 1)!

= e

p�1X

k=0

(p� 1)!

k!(p� k � 1)!
· (p+ 1)p!

(p� k + 1)(p� k)!

= e(p+ 1)
p�1X

k=0

0

BB@
p

k

1

CCA
(p� 1)!

(p� k + 1)(p� k � 1)!

= e(p+ 1)(p� 1)!
p�1X

k=0

a

p,k

p� k + 1
.
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In a similar way,

d

p�1

dx

p�1
(xp

e

x)

����
x=1

=
p�1X

k=0

0

BB@
p� 1

k

1

CCA e

x(xp)(k)
����
x=1

= e

p�1X

k=0

(p� 1)!

k!(p� k � 1)!
· p!

(p� k)!

= e

p�1X

k=0

0

BB@
p

k

1

CCA
(p� 1)!

(p� k � 1)!

= e(p� 1)!
p�1X

k=0

a

p,k

.

Substituting the calculated expressions in (2.2.6) produces the formula in (2.2.5).

Using Theorem 2.2.9, one can easily recalculate K(2) = f(1) = 1, K(3) =

f(2) = 4
3 , etc.

2.2.4 Concluding Remarks

The Euler’s di↵erential method, that was forgotten for a long time, is applied to

a continued fraction depending a parameter. A new formula, di↵erent from the

Euler’s one, proved for this continued fraction. In case of integer values of the

parameter, this formula takes a simple form.

The function f , defined by (2.2.1), has a very interesting behavior. If

�(t) =
p
t� f(t), 0 < t < 1,

then � is a slowly increasing function. The values of �, calculated by use of

Wolfram Mathematica Software, are presented in Table 1 for t changing from
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Table 2.1. The values of �(t) for t = 104 to 1015

t �(t) t �(t) t �(t)

1 · 104 0.247814 11 · 104 0.249341 106 0.249781

2 · 104 0.248454 12 · 104 0.249369 107 0.249931

3 · 104 0.248738 13 · 104 0.249393 108 0.249978

4 · 104 0.248907 14 · 104 0.249415 109 0.249993

5 · 104 0.249022 15 · 104 0.249435 1010 0.249998

6 · 104 0.249107 16 · 104 0.249453 1011 0.249999

7 · 104 0.249173 17 · 104 0.249470 1012 0.250000

8 · 104 0.249227 18 · 104 0.249484 1013 0.250000

9 · 104 0.249271 19 · 104 0.249498 1014 0.250000

10 · 104 0.249308 20 · 104 0.249511 1015 0.250000

t = 104 to t = 1015 with di↵erent steps. This table shows that the di↵erence

between
p
t and f(t) continuously increases but the increased value become tiny

in comparison to the change of t. From t = 1012 to t = 1015 the program calculates

the value 0.25. This allows to conjecture whether � has a horizontal asymptote.

If yes, then it becomes interesting to prove whether �1 = lim
t!1 �(t) = 0.25.

Theorem 2.2.9 may be used for this purpose since �1 can be evaluated by giving

t integer values p in the limiting process. The formula in (2.2.5) is heavily based

on factorials. Therefore, the Stirling’s approximation formula for factorials may

be e�cient to solve this conjecture.
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Chapter 3

BAUER-MUIR TRANSFORM

Consider the continued fraction

b0 +K

1
k=1

✓
a

k

b

k

◆
. (3.0.1)

Its Bauer–Muir transform with respect to a sequence of real numbers {x
n

} is a

continued fraction

b0 + x0 +
�1

b1 + x1 +

a1�2/�1

b2 + x2 � x0�2/�1 + ···+

a

n�1�n

/�

n�1

b

n

+ x

n

� x

n�2�n

/�

n�1 + ···
, (3.0.2)

where

�

n

= a

n

� x

n�1(bn + x

n

), n = 1, 2, . . . ,

are assumed to be nonzero. This transform was introduced in Bauer [1] and Muir

[21]. Its importance is predefined by the following theorem, the proof of which

can be found in Khrushchev (see [16], page 230).

3.1 The Value of the Bauer-Muir Transform

Theorem 3.1.1 Assume that the continued fraction in (3.0.1) has positive ele-

ments and x

n

� 0 starting from some n. If the continued fraction converges, then

its Bauer–Muir transform also converges to the same value.
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Recently, Jacobson [14] has proved that the Bauer-Muir transform is useful also

for negative elements of the continued fraction in (3.0.1). But for our purposes

this transform will be used for positive elements.

Using this transform, Bauer showed that the Brouncker’s continued fraction

b(s) = s+K

1
n=1


(2n� 1)2

2s

�

equals to (s+1)2/b(s+2) and provided an easy proof of the Brouncker’s theorem,

stating that b(s)b(s+ 2) = (s+ 1)2.

More significant application of the Bauer-Muir transform belongs to Perron [24,

25], who proved the Ramanujan’s formula

1

s

2 � 1+

4 · 12

1 +

4 · 12

s

2 � 1+

4 · 22

1 +

4 · 22

s

2 � 1+ ···
=

ˆ 1

0

2te�st

e

t + e

�t

dt.

Some other applications can be found in [18].

In [12] Euler considered a continued fraction of the form

K(s) = K

1
n=1


n+ s� 1

n

�
=

s

1+

s+ 1

2 +

s+ 2

3 +

s+ 3

4 + ···
. (3.1.1)

Using di↵erential method, Euler transferred this continued fraction to

K(s) =
s

2+

s� 2

3 +

s+ 1

4 +

s� 3

5 +

s+ 2

6 +

s� 4

7 +

s+ 3

8 + ···
, (3.1.2)

which is finite at all integer values of s except s = 1. Based on this, he calculated
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K(2) = 1, K(3) = 4
3 etc. and obtained that K(s) is rational for all integer values

of s except s = 1. Note that K(1) = (e� 1)�1 is irrational, the fact again proved

by Euler (see [16], page 162).

3.2 Application of Bauer-Muir Transform

In this chapter we apply the Bauer-Muir transform to the continued fraction in

the more general form

K

1
n=1


an+ b

dn+ c

�
, (3.2.1)

which equals to (3.1.1) when a = d = 1, b = s� 1 and c = 0. By this, we transfer

(3.2.1) to a continued fraction which becomes finite at certain values of parameters

allowing to calculate its values. In particular, for Euler’s continued fraction K(s),

we find another finite representation, reducing the number of calculations.

Our aim is studying continued fractions of the formK

1
n=1

⇥
↵n+�

"n+�

⇤
with ↵, �, �, " 2 R

and " 6= 0. Applying the equivalent transform (Theorem 1.4.2), one can show

that

K

1
n=1


↵n+ �

"n+ �

�
= "K

1
n=1


an+ b

n+ c

�
, (3.2.2)

where a = ↵/"

2, b = �/"

2 and c = �/". Therefore, the problem reduces to study

of K1
n=1

⇥
an+b

n+c

⇤
for a, b, c 2 R.

In the sequel, we are interested in the continued fraction K

1
n=1

⇥
an+b

n+c

⇤
for two sets
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of parameters (a, b, c). The first one is

D =
�
(a, b, c) 2 R3 : 0  a  1, a+ b � 1, c � 0

 
, (3.2.3)

and the second one is

R =
�
(a, b, c) 2 R3 : �1  a  0, c+ 2a � 0, b � a

2 + ac+ 1
 
. (3.2.4)

3.2.1 Convergence Theorems

In this section, we state convergence theorems for sets of parameters (3.2.3) and

(3.2.4). For this, at first we modify the Tietze’s criterion (see [26], page 56) for

continued fractions.

Theorem 3.2.1 The continued fraction K

1
n=1

⇥
a

n

b

n

⇤
converges if the following in-

equalities hold:

8
>><

>>:

a

n

> 0, b

n

> 1 + ", if n < N,

a

n

< 0, b

n

� 1, a

n

+ b

n

� 1 + " if n � N,

(3.2.5)

where N is a natural number and " is a small positive value.

Proof. Note that in condition (3.2.5), n takes natural values. If N = 1, then no

n satisfies n < N . Hence, only the second line in (3.2.5) takes place. Also, one

can observe that the inequality a

n

+ b

n

� 1+ " is assumed explicitly or implicitly

for all n.
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Let P

n

Q

n

be nth convergent of K1
n=1

⇥
a

n

b

n

⇤
. Conventionally, we assume that Q0 =

P�1 = 1 and Q�1 = P0 = 0. At the first step, let us prove that

Q

n

> (1 + ")Q
n�1, n � 1. (3.2.6)

For n = 1, we have

Q1 = b1 > 1 + " = (1 + ")Q0.

If n = 2, then

Q2 = b2Q1 + a2Q0 > b2Q1 > (1 + ")Q1.

In a similar way, by using Euler-Wallis formula (1.3.2), we can continue up to

N � 1 and obtain

Q

N�1 = b

N�1QN�2 + a

N�1QN�3 > b

N�1QN�2 > (1 + ")Q
N�2.

Starting n = N our arguments change since we pass from the inequalities in the

first line to the inequalities in the second line of (3.2.5). For n = N , we can write

Q

N

= b

N

Q

N�1 + a

N

Q

N�2 > b

N

Q

N�1 + a

N

Q

N�1

= (b
N

+ a

N

)Q
N�1 � (1 + ")Q

N�1.

Here we used the inequality Q

N�1 > Q

N�2 combined with a

N

< 0. For n > N ,

the arguments of the case n = N are valid. So, by induction we can conclude
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that (3.2.6) holds for all n � N , and hence, for all n = 1, 2 . . . .

In the second step, let us prove that

nY

i=1

(b
i

� 1� ") < Q

n

�Q

n�1, n = 1, 2, . . . . (3.2.7)

If n = 1, then this inequality holds trivially in the form b1 � 1 � " < b1 � 1.

Assume it holds for n. Then

Q

n+1 �Q

n

= b

n+1Qn

+ a

n+1Qn�1 �Q

n

> b

n+1Qn

+ (1� b

n+1 + ")Q
n�1 � (1 + ")Q

n

= (Q
n

�Q

n�1)(bn+1 � 1� ") >
n+1Y

i=1

(b
i

� 1� ").

By induction, (3.2.7) holds for all n = 1, 2, . . . . This implies

nY

i=1

(b
i

� 1� ") < Q

n

, n = 1, 2, . . . . (3.2.8)

In the third step, for n � N , by Theorem 1.3.2

P

n

Q

n�1 � P

n�1Qn

= (�1)n�1
a1 · · · an,

we can write

P

n

Q

n

� P

n�1

Q

n�1
=

(�1)n�1
a1 · · · an

Q

n

Q

n�1
=

(�1)Na1 · · · aN�1|aN | · · · |an|
Q

n

Q

n�1
.
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Hence, the sequence of convergents P

n

Q

n

is monotone starting from N . It is de-

creasing if N is odd and it is increasing if N is even. Furthermore, for n � N ,

P

n

Q

n

� P

N�1

Q

N�1
=

nX

i=N

✓
P

i

Q

i

� P

i�1

Q

i�1

◆
= (�1)Na1 · · · aN�1

nX

i=N

|a
N

| · · · |a
i

|
Q

i

Q

i�1
.

Hence, from (3.2.5) and (3.2.8),

����
P

n

Q

n

� P

N�1

Q

N�1

���� = a1 · · · aN�1

nX

i=N

|a
N

| · · · |a
i

|
Q

i

Q

i�1

 a1 · · · aN�1

nX

i=N

Q
i

j=N

(b
j

� 1� ")

Q

i

Q

i�1

< a1 · · · aN�1

nX

i=N

Q
i

j=N

(b
j

� 1� ")
Q

i

j=1(bj � 1� ")Q
i�1

<

a1 · · · aN�1Q
N�1
j=1 (bj � 1� ")

nX

i=N

1

Q

i�1
.

One can observe that in the case N = 1, we simply have

a1 · · · aN�1 =
N�1Y

j=1

(b
j

� 1� ") = 1.

So, P

n

Q

n

is bounded if the series
P1

i=N

1
Q

i�1
converges. To prove the latter, we use

(3.2.6). From

Q

i�1 > (1 + ")Q
i�2 > · · · > (1 + ")i�N

Q

N�1 > (1 + ")i�N

,

the series
P1

i=N

1
Q

i�1
is majorized by convergent geometric series. Thus P

n

Q

n

con-

verges.
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Theorem 3.2.2 The continued fraction K

1
n=1

⇥
an+b

n+c

⇤
converges if (a, b, c) 2 D[R.

Proof. For (a, b, c) 2 D, we have an+ b > 0, n+ c > 0 for all n = 1, 2, . . . and

1X

n=1

(n� 1 + c)(n+ c)

an+ b

= 1.

Hence, by Theorem 1.5.2, the continued fraction K

1
n=1

⇥
an+b

n+c

⇤
converges.

For (a, b, c) 2 R, first note that

D \R = {(a, b, c) : a = 0, b � 1, c � 0}.

Therefore, we have to prove the convergence of K1
n=1

⇥
an+b

n+c

⇤
under the conditions

�1  a < 0, c+ 2a � 0, b � a

2 + ac+ 1.

We will prove this by verifying the conditions of Theorem 3.2.1. Since a < 0, we

have a

n

= an+ b < 0 starting some N . Next,

b

n

= n+ c � n� 2a = n+ 2|a| > 1 + "

if we let " = �a. Finally,

a

n

+ b

n

= (a+ 1)n+ b+ c � (a+ 1)n+ a

2 + ac+ 1 + c

= (a+ 1)(n+ c) + a

2 + 1 > (a+ 1)(1 + ") + a

2 + 1

= (a+ 1)(1� a) + a

2 + 1 = 2 � 1 + ".
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Thus, K1
n=1

⇥
an+b

n+c

⇤
converges on R.

3.2.2 Main Result

Theorem 3.2.3 For (a, b, c) 2 D,

K

1
n=1


an+ b

n+ c

�
= a+K

1
n=1


An+B

n+ C

�
, (3.2.9)

where

A = �a, B = b+ a� a(a+ c), C = c+ 2a. (3.2.10)

Proof. One can verify that (a, b, c) 2 D implies (A,B,C) 2 R. Hence, both

continued fractions in (3.2.9) are convergent by Theorem 3.2.2. It remains to

show the equality holds in (3.2.9). For this, we will use Theorem 3.1.1.

Let a
n

= an+ b, b

n

= n+ c, x

n

= a, observing that {x
n

} is a constant sequence.

Calculate �
n

= b�a(a+c), observing that {�
n

} is also a constant sequence. Then

by Theorem 3.1.1, the Bauer-Muir transform of K1
n=1

⇥
an+b

n+c

⇤
for this selection of

parameters converges and

K

1
n=1


an+ b

n+ c

�
= a+

b� a(a+ c)

1 + c+ a +

a+ b

2 + c+

2a+ b

3 + c + ···+

na+ b

n+ 1 + c+ ···

= a+
b� a(a+ c)

1 + c+ a+K

1
n=1

⇥
an+b

n+1+c

⇤
. (3.2.11)
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Apply the same to K

1
n=1

⇥
an+b

n+1+c

⇤
selecting a

n

= an + b, b

n

= n + 1 + c, x

n

= a

and calculating �

n

= b� a(a+ c+ 1). Then

K

1
n=1


an+ b

n+ 1 + c

�
= a+

b� a(a+ c+ 1)

2 + c+ a +

a+ b

3 + c+ ···+

na+ b

n+ 2 + c+ ···

= a+
b� a(a+ c+ 1)

2 + c+ a+K

1
n=1

⇥
an+b

n+2+c

⇤
.

Substituting this continued fraction in (3.2.11), we obtain

K

1
n=1


an+ b

n+ c

�
= a+

b� a(a+ c)

1 + c+ 2a+ b�a(a+c+1)

2+c+a+K

1
n=1

⇥
an+b

n+2+c

⇤
.

Applying the same to K

1
n=1

⇥
an+b

n+2+c

⇤
and repeating this procedure N times, we

obtain

K

1
n=1


an+ b

n+ c

�
= a+

b� a(a+ c)

1 + c+ 2a + ···+

b� a(a+ c+N � 1)

N + c+ a+K

1
n=1

⇥
an+b

n+N+c

⇤
,

or, by using (3.2.10),

K

1
n=1


an+ b

n+ c

�
= a+

A+B

1 + C + ···+

AN +B

N + C +

�a+K

1
n=1

⇥
an+b

n+N+c

⇤

1
. (3.2.12)

Next, we deduce the equality (3.2.9) from (3.2.12). At first, introduce the follow-

ing notation. Let

↵

N

= K

1
n=1


an+ b

n+N + c

�
, N = 0, 1, . . . ,
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and let P

N

Q

N

be Nth convergent of K1
n=1

⇥
An+B

n+C

⇤
. Since (a, b,N + c) 2 D, ↵

N

is

finite for all N and, therefore, by Theorem 1.5.1, it is located between the first

two convergents of K1
n=1

⇥
an+b

n+N+c

⇤
, i.e.,

a+ b

N + 1 + c+ 2a+b

N+2+c

 ↵

N

 a+ b

N + 1 + c

.

Hence, ↵
N

! 0 as N ! 1. By Theorem 1.3.1

↵0 =
P

N

+ (↵
N

� a)P
N�1

Q

N

+ (↵
N

� a)Q
N�1

.

Then

����↵0 �
P

N

Q

N

���� =
����
P

N

+ (↵
N

� a)P
N�1

Q

N

+ (↵
N

� a)Q
N�1

� P

N

Q

N

���� =
|↵

N

� a|
�� PN�1

Q

N�1
� P

N

Q

N

��
�� Q

N

Q

N�1
+ ↵

N

� a

�� .

Here ↵

N

! 0 and, by Theorem 3.2.2,

����
P

N�1

Q

N�1
� P

N

Q

N

���� ! 0 as N ! 1.

Hence,

|↵
N

� a|
����
P

N�1

Q

N�1
� P

N

Q

N

���� ! 0 as N ! 1. (3.2.13)

Also, by (3.2.6),

Q

N

Q

N�1
� 1 + ",
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which implies

����
Q

N

Q

N�1
+ ↵

N

� a

���� �
����
Q

N

Q

N�1

����� |↵
N

� a|

� 1 + "� |↵
N

� a| � 1 + "� |↵
N

|� |a| � "� |↵
N

|

since 0  a  1. From lim
N!1 ↵

N

= 0, for large values of N , we have |↵
N

| < "/2.

Therefore,

����
Q

N

Q

N�1
+ ↵

N

� a

���� >
"

2
(3.2.14)

for large values of N . (3.2.13) and (3.2.14) yield ↵0 = lim
N!1

P

N

Q

N

. Theorem is

proved.

Corollary 3.2.4 For a, b, c, d 2 R with d 6= 0 and
�

a

d

2 ,
b

d

2 ,
c

d

�
2 D,

K

1
n=1


an+ b

dn+ c

�
=

a

d

+K

1
n=1


a

0
n+ b

0

dn+ c

0

�
,

where

a

0 = �a, b

0 = b+ a� a

d

✓
a

d

+ c

◆
, c

0 = c+
2a

d

.
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Proof. By (3.2.2) and Theorem 3.2.3, we have

K

1
n=1


an+ b

dn+ c

�
= dK

1
n=1


a

d

2n+ b

d

2

n+ c

d

�

=
a

d

+ dK

1
n=1

� a

d

2n+ a+b

d

2 � a

d

2

�
a

d

2 +
c

d

�

n+ c

d

+ 2a
d

2

�

=
a

d

+K

1
n=1

�an+ a+ b� a

�
a

d

2 +
c

d

�

dn+ c+ 2a
d

�

=
a

d

+K

1
n=1


a

0
n+ b

0

dn+ c

0

�
.

This proves the corollary.

Corollary 3.2.5 For every real s � 1,

K(s) = K

1
n=1


n+ s� 1

n

�
= 1 +

s� 2

3 +

s� 3

4 +

s� 4

5 + ···
.

Proof. Just let a = 1, c = 0 and b = s� 1 in Theorem 3.2.3.

Corollary 3.2.6 For every s = 2, 3, . . . ,

K(s) = K

1
n=1


n+ s� 1

n

�
= 1 +K

s�2
n=1


s� 1� n

n+ 2

�
,

where K

0
n=1

⇥
1�n

n+2

⇤
= 0 in the case s = 2.

Proof. This follows from the fact that the integer values of smakes the continued

fraction in Corollary 3.2.5 finite. Corollary 3.2.6 provides a fast formula for

calculation ofK(s) at integer values of s in comparison with the formula in (3.1.2).
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For example, for s = 4, the formula in (3.1.2) produces

K(4) =
4

2 + 2
3+ 5

4+ 1
5+6

6

=
21

13
,

that is 5 step fractional calculation. While Corollary 3.2.6 reduces the number of

steps to 2 as follows

K(4) = 1 +
2

3 + 1
4

=
21

13
.

Generally, for s = 2, 3, . . . , Corollary 3.2.6 gives a formula consisting of s � 2

fractions, while the number of fractions in (3.1.2) is 2s� 3.

Theorem 3.2.3 allows to obtain some of Ramanujan’s formulas. Letting a = 1,

b = x and c = x � 1 in Theorem 3.2.3, we obtain the Ramanujan’s formula (see

[4], page 112)

K

1
n=1

h
n+ x

n+ x� 1

i
= 1.

Letting a = 1, b = m� 1 and c = m�↵� 1 in Theorem 3.2.3, we obtain another

Ramanujan’s formula (see [4], page 118)

K

1
n=1

h
n+m� 1

n+m� ↵� 1

i
= 1 +K

1
n=1

h
↵� n

n+m� ↵ + 1

i
.
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Also, letting a = ↵, b = x, c = x� ↵� 1 and d = ↵ in Corollary 3.2.4, we obtain

one more Ramanujan’s formula (see [4], page 115)

K

1
n=1

h
↵n+ x

↵n+ x� ↵� 1

i
= 1 +

↵

x+ 1
.

Theorem 3.2.3 suggests also a mapping T , that assigns (A,B,C) 2 R3 to ev-

ery (a, b, c) 2 R3 by the formulas in (3.2.10). This mapping has the following

properties:

• The mapping T is an involution, i.e., T (T (a, b, c)) = (a, b, c). This can be

verified by straightforward calculations.

• The mapping T is a bijection since it is an involution.

• The image of D under the mapping T equals to T (D) = R. Indeed, let

(a, b, c) 2 D. From (A,B,C) = T (a, b, c), we have

A = �a, B = b+ a� a(a+ c), C = c+ 2a.

From 0  a  1, we get �1  A  0. Also, c � 0 implies C + 2A � 0.

Finally, a+ b � 1 produces B � A

2 + AC + 1.

• The image of R under the mapping T equals to T (R) = D since T is an

involution.

• T (0, b, c) = (0, b, c), i.e., in the case a = 0 the right and left hand sides of

the equality in Theorem 3.2.3 are the same continued fraction.
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• The continued fractionsK1
n=1

⇥
an+b

n+c

⇤
and a+K

1
n=1

⇥
An+B

n+C

⇤
converge for (a, b, c) 2

D and (A,B,C) 2 R, respectively. In the case of (A,B,C) = T (a, b, c) they

converge to the same value.

61



REFERENCES

[1] Bauer G., Von einem Kettenbruch Eulers und einem Theorem von Wallis.

Abh. der kgl. Bayerischen Akad. der Wissenschaften zu München, zweite

Klasse 11, 1872.

[2] Belaghi M.J.S., Khrushchev S. and Bashirov A.E., On Bauer–Muir Trans-

form of Continued Fractions, Int. J. Number Theory, Vol. 09, 321–332, 2013.

[3] Belaghi M.J.S. and Bahsirov A.E., On application of Euler’s di↵erential

method to a continued fraction depending on parameter, (Submitted for

publication).

[4] Berndt B.C., Ramanujan’s Notebook’s, Part II, Springer, New York, 1989.

[5] Bernoulli D., Disquisitiones ulteriores de indole fractionum continuarum,

Novi. Comm. Acad. Sc. Imp. St Petersburg 20, 1775.

[6] Cuyt A., Brevik Peterson V., Verdonk B., Waadeland H. and Jones W.B.,

Handbook of Continued Fractions for Special Functions, Springer, 2008.

[7] Euler L., De fractionibus continuus, Dissertatio, Commentarii Academiae

Scientiarum Imperialis Petropolitanae IX for 1737, 98–137 (presented on

February 7, 1737); Opera Omnia, ser. 1, vol. 14, 187–216, 1744; E071. English

translation: Mathematical Systems Theory (1985) 4 (18).

[8] Euler L., Introductio in Analysin Infinitorum (Lausanne) 1748; E101.

62



[9] Euler L., De fractionibus continuus, observationes, Commentarii Academiae

Scientiarum Imperialis Petropolitanae XI for 1739, 32–81 (presented on 22

January 1739); Opera Omnia, ser. I, vol. 14, pp. 291–349, 1750; E123.

[10] Euler L., De formatione fractionum continuarum, Acta Academiae Scien-

tarum Imperialis Petropolitinae 3, 3–29 (presented to the St Petersburg

Academy on 4 September 1775); Opera Omnia, ser. 1, vol. 15, pp. 314–337,

1782; E522.

[11] Euler L., De transformatione serierum in fractiones continuas, ubi simul haec

theoria non mediocriter amplificatur, Opuscula Analytica 2, 138–177; Opera

Omnia, ser. 1, vol. 15, pp. 661–700, 1785; E593.

[12] Euler L., Observationes circa fractiones continuas in hac forma contentas

S = n/(1+(n+1)/(2+(n+2)/(3+(n+3)/(4+etc.)))), Mmoires de l’Acadmie

des Sciences de St Petersbourg, 4, 52-74 (presented on 18 November 1779);

Opera Omnia, ser. 1, vol. 16, pp. 139–161, 1813; E742.

[13] Huygens Ch., Descriptio Automati Planetarium (The Hague), 1698.

[14] Jacobson L., On the Bauer-Muir transformation for continued fractions

and its applications, Journal of Mathematical Analysis and Applications,

Vol.152, Issue2, pp.496-514, 1990.

[15] Jones W. B. and Thron W. J., Continued Fractions. Analytic Theory and

Applications (Addison-Wesley, Reading), 1980.

63



[16] Khrushchev S.V., Orthogonal Polynomials and Continued Fractions from

Euler’s Point of View, Encyclopedia of Mathematics and Its Applications,

Vol.˜122, Cambridge University Press, Cambridge, 2008.

[17] Lange L. J., An elegant continued fraction for ⇡, Amer. Math. Monthly 106,

no. 5, 456-458, 1999.

[18] Lorentzen L., Waadeland H., Continued Fraction with Applications, Stud-

ies in Computational Mathematics 3, Vol.122, North-Holland, Amsterdam,

1992.

[19] Marko↵ A. A., Izbrannye Trudy po Teorii Neoreryvnyukh Drobei i Teorii

Funkcii naimenee uklonyayushikhsya ot nulya (GITTL, Moscow), 1948.

[20] Markowsky G., Misconceptions about the golden ratio, Two Year College

Math. J. 23, no. 1, 2-19, 1992.

[21] Muir Th., A theorem in continuants and Extension of a theorem in contin-

uants, with an important application. The London, Edinburgh and Dublin

Philosophical Magazine and Journal of Science 3 (5), 137, 360, 1877.

[22] Nathan J. A., The irrationality of ex for nonzero rational x, Amer. Math.

Monthly 105, no. 8, 762-763, 1998.

[23] Olds C.D., Continued Fractions, Mathematical Association of America,

Washington, 1963.

64
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