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ABSTRACT

In this thesis, we focus on di↵erent types of equistatistical convergences. We de-

fine some new type of convergences such as lacunary equistatistical convergence,

�-equistatistical convergence,A-equistatistical convergence, B-equistatistical con-

vergence and ↵�-equistatistical convergence. We also study properties of these

new types of convergences. We construct examples for each case, to show that eq-

uistatistical convergence lies between point wise and uniform convergences. More-

over, we prove Korovkin type approximation theorems via lacunary equistatisti-

cal convergence, �-equistatistical convergence, A-equistatistical convergence, B-

equistatistical convergence and ↵�-equistatistical convergence. In the last chapter

we introduce ↵�- statistical convergence of order � and we prove Korovkin type

approximation theorems in the sense of ↵�- statistical convergence.

Keywords: Statistical convergence, lacunary statistical convergence,A-statistical

convergence, �-statistical convergence, equistatistical convergence, Korovkin type

approximation theorem.
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ÖZ 

Bu tezde esas olarak eşistatistiksel yakınsaklık kavramı ele alınacaktır. Eşistatistiksel 

yakınsaklık noktasal istatistiksel yakınsaklık ile düzgün istatistiksel yakınsaklık 

arasında yer alan bir yakınsama çeşididir. Bu doktora tezindeki esas amaç lacunary 

eşistatistiksel, A-eşistatistiksel, !-eşistatistiksel,  ℬ-eşistatistiksel ve !"- 

eşistatistiksel yakınsaklık kavramlarını vermek ve herbiri için Korovkin Tipli 

Teoremler ispat etmektir. Bunun yanında bu yakınsama türlerinin daha anlaşılır 

olması için belli başlı özellikleride incelenecektir. Bu yakınsama türleri için elde 

edilecek Korovkin Tipli Teoremlerin Mevcut Korovkin Tipli Teoremlerle ilişkileri 

de verilecektir.  

 

Anahtar Kelimeler: İstatistiksel yakınsaklık, lacunary istatistiksel yakinsaklik, A-

istatistiksel yakınsaklık, !-istatistiksel yakınsaklık, eşistatistiksel yakınsaklık, 

Korovkin Tipli Teorem.  
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Chapter 1

INTRODUCTION

Statistical convergence (or s�convergence) is an extension of convergence which

is based on a set function �, called density. Recently the concept of s-convergence,

which was defined in 1951 by Steinhaus (see [43]) at a conference in Poland and

developed in the same year by Fast in [23], has gained popularity amongst re-

searchers and used in di↵erent fields of mathematics (see [12], [13], [15], [19],

[20], [21], [24] and [26]). After, s�convergence some other methods are intro-

duced by di↵erent researchers. Fridy and Orhan [27] introduced and discussed

the concept of lacunary statistical convergence (or ✓�convergence) using an arbi-

trary lacunary sequence ✓. Freedman andSember [24] used a non-negative regular

matrix (NNRM) instead of Cesáro matrix and extended s�convergence to A-

statistical convergence (or A�convergence). Mursaleen [36] initiated the concept

of ��statistical convergence (or ��convergence). For each suggested method

it is shown that they are nontrivial extensions of ordinary convergence. More-

over, for each case, implication relations are also studied. For example, Fridy

obtained su�cient conditions for implications between s�convergence and or-

dinary convergence. Similarly Fridy and Orhan introduced ✓�convergence and

carry out di↵erences and implication conditions between other type of conditions.

Mursaleen did the same for ��convergence as well. He proved that under some

1



condition s�convergence implies ��convergence. Later Çolak [12] brought an-

other dimension to this theory by introducing the concept of s�convergence of

order ↵ ( see [9]).

Gadjiev and Orhan [28] joined this theory with Korovkin Type Approximation

Theory by proving a Korovkin type approximation thereom (KTAT) in the sense

of s�convergence. After they prove a (KTAT) via s�convergence many re-

searchers extend this idea to A�convergence, ✓�convergence and ��convergence

for di↵erent spaces (see [15],[16],[18],[20],[21], [22], [30] and [31]).

In 2007 Balcerzak, Dems and Komisarski [7] initiated and investigated a new

type of convergence called equistatistical convergence. The most important fea-

ture of equistatistical convergence is that it lies between pointwise and uniform

s�convergences. They also constructed examples to show that equistatistical

convergence is di↵erent from both pointwise and uniform s�convergences. This

was a new expansion for researchers and in [30] Karakuş, Demirci and Duman ini-

tiated KTAT by introducing KTAT via equistatistical convergence. This encour-

age us to study equistatistical convergence for di↵erent type of convergences such

as A�convergence, ✓�convergence, ��convergence and B�convergence. This

thesis covers our studies about equistatistical convergence and related KTAT.

Additionally, by using a di↵erent point of view we introduced ↵��statistical and

↵��equistatistical convergences of order �. We complete our thesis by KTAT’s

via ↵��statistical and ↵��equistatistical convergences. It should be mentioned

that ↵��statistical and ↵��equistatistical convergences of order � which is a
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non-trivial extension of ↵��statistical and ↵��equistatistical convergence is also

considered in this thesis.

In Chapter 1, after a general introduction we give the brief description of the

whole work.

Chapter 2, contains preliminary and auxilary results which will be needed in the

rest of the thesis. The idea here is to give definition and other informations which

will help readers to follow the rest of the thesis. At the begining of this chap-

ter we explain briefly the main properties of regular matrices then we continue

with the density function. Later we give definition and some important prop-

erties of the concept of s�convergence and relations between ordinary conver-

gence. We also give definitions and properties of ✓�convergence and its relation

between s�convergence. Finally, we discuss ��convergence and its relations be-

tween s�convergence. At the end of the chapter give required informations about

A�convergence, equistatistical convergence and (KTAT).

Our contribution starts from Chapter 3. In this Chapter, we introduce lacunary

equistatistical convergence. By the definitions one can see that lacunary equi-

statistical convergence lies between lacunary uniform convergence and lacunary

pointwise convergence. To point out the di↵erence we construct examples and

show that in general the converse implication does not hold. Moreover we discuss

the conditions under which lacunary equistatistical convergence and equistatisti-

cal convergence implies each other. At the end of chapter we prove a (KTAT) for

3



lacunary equistatistical convergence.

In Chapter 4, we introduce ��equistatistical convergence and investigate the

conditions under which equistatistical convergence and ��equistatistical conver-

gence implies each other. Also we show that ��equistatistical convergence lies

between pointwise and uniform convergences in the same sense. Moreover, we

prove (KTAT) in the sense of ��equistatistical convergence.

Chapter 5, is about A-equistatistical convergence. In this Chapter we introduce

A-equistatistical convergence and (KTAT) for A-equistatistical convergence. We

also discuss implications conditions between A-equistatistical convergence with

equistatistical convergence, lacunary equistatistical convergence and ��equistatistical

convergence.

In Chapter 6, we introduce B-equistatistical convergence by using a sequence

of infinite matrices B
j

. We prove that B-equistatistical convergence lies between

pointwise and uniform convergences in the same sense. Chapter 6 is completed

by a KTAT for B-equistatistical convergence.

Chapter 7 is devoted to ↵��statistical and ↵��equistatistical convergences of

order � which were introduced in [5]. It is shown that for special cases of ↵(n),

�(n) and �, ↵��equistatistical convergence of order � (↵��statistical conver-

gence of order �) reduces to equistatistical convergence (s�convergence of or-

der �), ✓�equistatistical convergence (✓�convergence) and ��equistatistical con-

vergence (��statistical convergence, ��statistical convergence of order �). Fi-
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nally we prove KTAT for both ↵��equistatistical convergence of order � and

↵��statistical convergence of order �.
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Chapter 2

NOTATION AND BACKGROUND MATERIAL

The present chapter is devoted to fundamental notions and background materials

about the theory of infinite matrices, density functions, statistical type conver-

gences and KTAT. The idea here is to explain some notions that will help readers

to follow the rest of the thesis.

2.1 Infinite Matrix and Matrix Transformation

Let D ⇢ N. Then the characteristic function of D is represented by �

D

and

defined by

�

D

(k) :=

8

>

>

<

>

>

:

1; k 2 D

0; k /2 D

.

Example 2.1.1 If E and F denotes the odd and even natural numbers respec-

tively then clearly we have

�

E

:= (1, 0, 1, 0, 1, ...) and �

F

:= (0, 1, 0, ...).

An infinite matrix, D := (d
nk

) is a matrix which has infinitely many rows and

coloums. In the case of infinite matrices addition and scalar multiplications are

defined componentwise, analogously to the case of sequences. More precisely if

6



D = (d
nk

) and E = (e
nk

) are two infinite matrices then

D + E := (d
nk

+ e

nk

)

�D := (�d
nk

) .

Definition 2.1.2 An infinite matrix E := (e
nk

) , with e

nk

� 0, for all n, k � 0

is called a non-negative infinite matrix.

Definition 2.1.3 (See [10]) Let E = (e
nk

) be an infinite matrix and x = (x
n

) be

a sequence then the E-transform of x := (x
k

) is denoted by Ex := ((Ex)
n

) and

defined as

(Ex)
n

=
1
X

k=1

e

nk

x

k,

if it converges for each n.

Example 2.1.4 Let x = (1, 1, 1, ...), y = (0, 1, 0, 1, ...) and z = (1, 0, 1, 0, ...).

Also let

A = (a
nk

) =

0

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 · · ·

1
2 0 1

2 0 0 0 0 · · ·

1
3 0 1

3 0 1
3 0 0 · · ·

...
...

...
...

...
...

...
. . .

1

C

C

C

C

C

C

C

C

C

C

A

7



and

B = (b
nk

) =

0

B

B

B

B

B

B

B

B

B

B

@

1
2

1
2 0 0 0 0 · · ·

0 1
2

1
2 0 0 0 · · ·

0 0 1
2

1
2 0 0 · · ·

...
...

...
...

...
...

. . .

1

C

C

C

C

C

C

C

C

C

C

A

.

Then simple calculations show that

(Ax) = x,

and

(Ay) = 0, (Bz) =
1

2
.

Definition 2.1.5 If lim
n!1(Ax)

n

= L then x is said to be A�summable to L.

Example 2.1.6 Let x and y be the same as in Example 2.1.4. Also let

A = (a
nk

) =

0

B

B

B

B

B

B

B

B

B

B

@

1
3 0 1

3 0 0 0 · · ·

0 1
3 0 1

3 0 0 · · ·

0 0 1
3 0 1

3 0 · · ·

...
...

...
...

...
...

. . .

1

C

C

C

C

C

C

C

C

C

C

A

Then

(Ax) = (
2

3
)
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and

(Ay) =

✓

0,
2

3
, 0,

2

3
. · · ·

◆

.

Hence x is A�summable to 2
3 but y is not A�summable.

The above examples show that, for an infinite matrix it is possible to keep a

sequence fix to transfer a divergent sequence to a convergent sequence.

Let A be an infinite matrix and let x be a sequence with limit L. In the present

part we will try to answer the following questions. Under which conditions Ax

is convergent and secondly under which conditions the limit of Ax is again L.

The answer of the first question is known as the theorem of Kojima and Schur.

The answer of the second theorem is known as the Silverman-Toeplitz conditions.

Details about these theorems is given below.

Definition 2.1.7 (see [10]) An infinite matrix A is said to be conservative if Ax

is convergent for each convergent sequence x.

Now we have the following well-known theorem which is given by Kojima-Schur

which gives necessary and su�cient conditions for a matrix to be conservative.

Theorem 2.1.8 (Kojima-Schur)(see [10])A = (a
nk

) is conservative ,

9



(i) sup
n

P1
k=1 |ank|  M < 1, for some M > 0,

(ii) lim
n

a

nk

= �

k

for all k,

(iii) lim
n

P1
k=1 ank = �.

Example 2.1.9 The following infinite matrices are conservative,

D = (d
nk

) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 0 0 · · ·

1
2

1
2 0 0 · · ·

2
3

1
3 0 0 · · ·

...
...

...
... · · ·

1� 1
n

1
n

0 0 · · ·

...
...

...
...

. . .

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

E = (e
nk

) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1
2

1
2 0 0 0 · · ·

1
3

1
3

1
3 0 0 0 · · ·

0 0 1
2

1
2 0 0 · · ·

0 1
3

1
3

1
3 0 0 · · ·

0 0 0 1
2

1
2 0 · · ·

...
...

...
...

...
...

. . .

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

It is easly seen that conservative matrices may or may not preserve the limit of

a convergent sequence.

Definition 2.1.10 (see [10])An infinite matrix A is called regular if x

n

! L

10



implies (Ax)
n

! L.

Theorem 2.1.11 (Silverman-Toeplitz Conditions) (see [10], [44]) A = (a
nk

) is

regular ,

(i) sup
n

P1
k=1 |ank| < 1,

(ii) For all k, lim
n

a

nk

= 0,

(iii) lim
n

P1
k=1 ank = 1.

Example 2.1.12 ([10])The infinite matrix C1 = (c
nk

) where

c

nk

=

8

>

>

<

>

>

:

1
n

, if 1  k  n,

0, otherwise

is a NNRM which is known as Cesàro matrix of order one.

Example 2.1.13 Identity matrix I, which has infinite number of rows and coloums

is also a NNRM.

Remark 2.1.14 The matrix E in Example 2.1.9 is also a NNRM but the matrix

D, in the same example is not a regular matrix.

2.2 Densities

The objective of the present section is to introduce definition and basic properties

of density functions. Basicly a density is a function from a subset of }(N) to [0, 1] .

11



Definition 2.2.1 Let C, D ✓ N, the symmetric di↵erence of this two sets is

denoted by C M D and defined as

C M D = (C\D) [ (D\C).

If the symmetric di↵erence of two sets C and D is finite then we say that C and

D has ”⇠” relation, in other words

C s D () C M D is finite.

Definition 2.2.2 (See [24]) The lower asymptotic density (may be called just a

density) is a function, defined for all sets of natural numbers taking values in [0, 1]

and denoted by � if it satisfies the following four axioms:

(d.1) if F s G then � (F ) = � (G) ;

(d.2) if F \G = ;, then � (F ) + � (G)  � (F [G) ;

(d.3) 8 F,G; � (F ) + � (G)  1 + � (F \G) ;

(d.4) � (N) = 1.

Definition 2.2.3 (See [24]) For a density � we define �, the upper density asso-

ciated with �, by

� (F ) = 1� � (N\F )

for any F ✓ N.

12



Definition 2.2.4 (See [24]) We say that the set C ✓ N has the natural density

with respect to �, if

�(C) = � (C) .

Definition 2.2.5 (See [24]) The term ”asymptotic density” (or natural density)

is generally used for the function

d(A) = lim inf
n!1

|A(n)|
n

. (2.2.1)

Here by |A(n)| ,we mean the number of elements in A\ {1, 2, ...n} . The function

d satisfies the conditions, (d1� d4) therefore it is a density.

The definition given in 2.2.1 also be given as

d(A) = lim inf
n!1

(C1.�A

)
n

.

Now the following question arises : Since Cesàro matrix is a NNRM is it possible

to extend this idea to any NNRM. Answer is positive. For instance see the

following definition which is given by Fredman and Sember (see [24]).

Definition 2.2.6 (see [24]) Let M be a NNRM and A ✓ N. Then �

M

defined by

�

M

(A) = lim inf
n!1

(M.�

A

)
n

13



Satisfies conditions, therefore �

M

is a density. Moreover

�

M

(A) = lim sup
n!1

(M.�

A

)
n

.

Definition 2.2.7 Let K ⇢ N be an arbitrary subset of the natural numbers then

the natural density of K is defined by

�(K) = lim
n!1

|K(n) := {k  n : k 2 K}|
n

Example 2.2.8 For the set K := {ak + b : k 2 N} we have �(K) = 1
a

.

Example 2.2.9 Finite sets and natural numbers have density zero and one re-

spectively.

Example 2.2.10 The set K := {k = m

2 : k 2 N} has density zero. In fact, since

|K(n)| 
p
n we conclude that

lim
n

p
n

n

= 0.

2.3 Statistical Convergence

This sections aims to give the definition of s�convergence and some properties

that will be needed in the sequel. We are also aimed to give some examples to

illusrate di↵erences between ordinary convergence and s�convergence. Moreover

we give definition of s�convergence of order ↵ (see [9] and [12]).

14



Definition 2.3.1 (see [23] and [43]) x = (x
k

) is said to be statistically convergent

to L if 8✏ > 0, K
n

(✏) = {k  n : |x
k

� L| � ✏} has natural density zero i.e.

lim
n!1

|Kn(✏)|
n

= 0. Throughout this thesis we denote s�convergence of x to L by

x

k

! L (stat).

Remark 2.3.2 For ”ordinary convergence”, for all " > 0, K
n

(✏) is finite there-

fore

x

k

! L ) x

k

! L (stat).

The following example shows that the converse implication is not true in general.

Example 2.3.3 Consider the sequence

x

k

:=

8

>

>

<

>

>

:

1; if k = m

2
,

0; if k 6= m

2
.

Since {k2 : k 2 N} has density zero we have x

k

! 0 (stat), but clearly x is not

convergent in the ordinary sense.

Another important di↵erence between statistical and ordinary convergence is the

following. Ordinary convergence implies boundedness, but we may have un-

bounded and statistical convergent sequences.
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Example 2.3.4 Consider the sequence

x

k

:=

8

>

>

<

>

>

:

p
k; if k = m

2
,

0; if k 6= m

2
.

For the given sequence we have x

k

! 0 (stat), but x is not bounded.

Example 2.3.5 The sequence

x

k

= (0, 1, 0, 1, · · · )

is not statistically convergent.

Remark 2.3.6 It is easily seen that when x

k

is statistically convergent to L then

it may have infinitely many terms at the outside of each "-neigbourhood of L, but

the density of its indices must be zero.

We know that the ordinary convergence implies s�convergence. For the inverse

implication Fridy proved the following theorem.

Theorem 2.3.7 (see [26]) If x
k

! L (stat) and 4x

k

= o( 1
k

) then x

k

! L where

4x

k

= x

k

� x

k+1.

The following definition was firstly given by Gadjiev and Orhan for statistical

convergence (see [28]). Later it was extended to A�statistical convergence by

16



Duman, Khan and Orhan (see [15]). Recently, s�convergence of order ↵ was

discussed by Çolak, in the following way (see also Bhunia, Das and Pal [9]).

Definition 2.3.8 (see [9] and [12]) For x = x

k

and 0 < ↵  1 then x

k

is called

statistically convergent to L of order ↵, if 8" > 0

lim
n!1

|{k  n : |x
k

� L| � "}|
n

↵

= 0.

It is proved that for 0 < ↵  �  1 s�convergence of order ↵ implies s-

convergence of order �. Moreover the inclusion is strict for any ↵, � with 0 <

↵ < �  1. For instance see the following example.

Example 2.3.9 (see [9]) Given 0 < ↵ < �  1, we can pick k 2 N such that

↵ <

1
k

< �. Define the sequence x by

x

k

=

8

>

>

<

>

>

:

1, k = j

n

,

0, k 6= j

n

,

j 2 N.

Then x is statistically convergent to 0 of order � but not statistically convergent

of order ↵.
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2.4 Lacunary Statistical Convergence

An increasing sequence ✓ := {k
r

} ⇢ N with

k0 = 0,

h

r

= k

r

� k

r�1 ! 1 as r ! 1 (see [25]).

is called lacunary sequence. In the rest of the thesis by I

r

we mean the intervals

(k
r�1, kr] determined by ✓ and by q

r

we will represent the ratio kr
kr�1

.

Example 2.4.1 ✓ := {k
r

} = 2r � 1, ✓ := {k
r

} = r! � 1 and ✓ := {k
r

} = r

2 are

lacunary sequences.

Fridy and Orhan [27] introduced the concept of ✓�convergence by using an arbi-

trary lacunary sequence. They also gave the conditions that lacunary statistical

and s�convergence implies each other. The inclusion properties between lacu-

nary sequences for ✓�convergence discussed by Jinlu (see [29]). For the following

section our aim is to give a short summary of ✓�convergence.

Definition 2.4.2 (see [27]) x is called ✓�convergent to L if 8 ✏ > 0,

lim
r

1

h

r

|{k 2 I

r

: |x
k

� L| � "}| = 0.

✓�convergence of x to L will be denoted by x

k

! L (✓�stat). In other words,

if we denote the characteristic function of the set K(✏) := {k 2 N : |x
k

� L| � ✏}

18



by the function �

K(✏) and A

✓

by

A

✓

= a

rk

=

8

>

>

<

>

>

:

1
hr
; k 2 I

r

0; k /2 I

r

we have 1
hr

X

k2Ir

�

K(✏)(k) =
1
hr

|{k 2 I

r

: |x
k

� L| � ✏}| , that is x is said to be lacu-

nary statistical convergent to L if and only if lim
r

(A
✓

�

K(✏))r = 0.

Example 2.4.3 Let

x

k

=

8

>

>

<

>

>

:

1; k = 2r � 1

0; k 6= 2r � 1

and let ✓ := {k
r

} = 2r � 1. Since |{k 2 I

r

: |x
k

| � "}|  1 for each r we can show

that

lim
r

1

h

r

|{k 2 I

r

: |x
k

| � "}| = 0.

Hence x is ✓�convergent to 0 but non-convergent in the usual sense.

In [27], Fridy and Orhan introduced the conditions, under which s�convergence

and ✓�convergence implies each other. They proved the following theorem.

Theorem 2.4.4 (see [27]) Let ✓ be a lacunary sequence; then x

k

! L (stat)

and x

k

! L (✓�stat) implies each other ()

1 < lim inf
r

q

r

 lim sup
r

q

r

< 1.
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2.5 �-Statistical Convergence

Mursaleen [36], investigated the concept of �-statistically convergence (or ��convergence)

for sequences of numbers. He proved that, under some conditions s�convergence

implies ��convergence. Conditions for inverse implication are obtained by Aktuğlu,

Gezer and Özarslan in [3]. We shall discuss details in Chapter 4, but here we will

give a brief outline of ��convergence.

Let � = (�
r

) be a sequence of non-decreasing and positive numbers such that

lim
r!1

�

r

= 1,

�

r+1  �

r

+ 1,

�1 = 1.

and M

r

be the closed interval [r � �

r

+ 1, r] . The set of all sequences satisfying

above conditions will be represented by !.

Example 2.5.1 Sequences �

r

= r and �

r

= |[
p
r]| are elements of !.

Definition 2.5.2 (see [36]) x is said to be ��convergent to L and denoted by

x

k

! L (��stat) if 8✏ > 0,

lim
r

1

�

r

|{k 2 M

r

: |x
k

� L| � ✏}| = 0.
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Example 2.5.3 Let �
r

= |[
p
r]|. Then x

k

is ��convergent to 1 where

x

k

=

8

>

>

<

>

>

:

0; k = m

3

1; k 6= m

3

.

Indeed for every " > 0, the set {k 2 M

r

: |x
k

� 1| � ✏} has cardinality at most

one. Hence

lim
r

1

�

r

|{k 2 M

r

: |x
k

� 1| � ✏}| = 0.

Remark 2.5.4 Taking �

r

= r, ��convergence reduces to s�convergence.

Remark 2.5.5 Let � = (�
r

) 2 !. Then we can define a NNRM in the following

way

A

�

= a

rk

:=

8

>

>

<

>

>

:

1
�r
, if k 2 M

r

0, if k /2 M

r

.

Theorem 2.5.6 (see [36]) x

k

! L (stat) implies x

k

! L (��stat) ,

lim inf
n!1

�

r

r

> 0.

Example 2.5.7 Let �
r

= |[
p
r]| then lim inf

r!1
�r
r

= 0 and consider the subse-

quence r(j) = j

4
. Then

�r(j)

r(j) <

1
j

. Define the sequence x

i

by

x

i

=

8

>

>

<

>

>

:

1 if i 2 I

n(j), j = 1, 2, ...

0 otherwise.
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Then x is not ��statistical convergent.

Later Çolak and Bektaş (see [13]) extended the idea of ��convergence to ��convergence

of order ↵ in the following way.

Definition 2.5.8 (see [13]) x
k

is said to be ��convergence to a complex number

L of order ↵ for 0 < ↵  1, if 8" > 0

lim
r!1

1

h

↵

r

|{k 2 M

r

: |x
k

� L| � ✏}| .

They proved that for 0 < ↵  �  1, ��convergence of order ↵ implies

��convergence of order �. They also proved that for 0 < ↵ < �  1 the in-

clusion is strict.

2.6 A-Statistical Convergence

Fredman and Sember (see [24]) extended the idea of s�convergence toA-convergence

using an arbitrary NNRM A instead of C1. We start this section by defining A-

density of a subset K of N where A is a NNRM. Parallel to the other sections,

A-convergence will not be given with details we just give definition and some

important properties.

Definition 2.6.1 (See [24]) Given K ⇢ N and a NNRM, A then the A�density

of K is given by

�

A

(K) = lim
n

X

k2K

a

nk

= lim
n

(A�
K

(k))
n

(2.6.1)

22



provided that the limit exists.

Definition 2.6.2 (see [24] ) x = (x
k

) is called A-convergent to L if 8✏ > 0,

K(✏) = {k 2 N : |x
k

� L| � ✏} has A-density zero.

Example 2.6.3 Given x

k

= (0, 1, 0, 1, · · · ) and

A =

2

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0 · · ·

1
2 0 1

2 0 0 0 · · ·

1
3 0 1

3 0 1
3 0 · · ·

...
...

...
...

...
...

. . .

3

7

7

7

7

7

7

7

7

7

7

5

then x is not s-convergent but it is A-convergent to zero. Indeed if " > 1 then

the set {k : |x
k

� 0| � "} is empty, so we claim that it has A-density zero. If

0 < "  1 then K = {k : |x
k

� 0| � "} = {2, 4, 6, · · · } . So �

K

= (0, 1, 0, 1, · · · )

and A�

K

= (0, 0, 0, · · · ). Hence �

A

{K} = 0.

Remark 2.6.4 Finite sets have A�density zero for any NNRM A.Thus every

convergent sequence is A-convergent.

2.7 Equistatistical Convergence

Balcerzak, Dems and Komisarski [7] initiated the concept of equistatistical conver-

gence which lies between statistical uniform and statistical pointwise convergence.

After Balcerzak, Dems and Komisarski, the concept of equistatistical converge,
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gained popularity among researchers (see [1], [2], [3], [30] and [31]). Now we will

give related definitions and examples about equistatistical convergence.

Definition 2.7.1 (see [7]) Let K ⇢ N be any subset of natural numbers then

d

j

(K) =
|K \ {1, 2, ..., j}|

j

is called the jth partial density of K.

The definitions of statistical uniform and statistical pointwise convergence has

been initiated by Duman and Orhan in more general case (see [17]).

Definition 2.7.2 (see [2] and [7]) (f
n

) is called s�pointwise convergent to the

function f on X and denoted by

f

n

! f (stat)

if 8✏ > 0,and each x 2 X

lim
r!1

|{k  r : |f
k

(x)� f(x)| � ✏}|
r

= 0.

Definition 2.7.3 (see [2] and [7]) (f
n

) is called s-uniform convergent to f on X

and denoted by

f

n

◆ f (stat)
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if 8✏ > 0,

lim
r!1

�

�

�

n

k  r : kf
k

(x)� f(x)k
C(X) � ✏

o

�

�

�

r

= 0.

Definition 2.7.4 (see [7]) (f
n

) is called equistatistically convergent to f on X

and denoted by f

n

⇣ f (stat) if 8✏ > 0, the sequence of real valued functions

p

r,✏

(x) :=
1

r

|{k  r : |f
k

(x)� f(x)| � ✏}|

converges uniformly to the zero function on X i.e.

lim
r

kp
r,✏

(.)k
C(X) = 0.

Theorem 2.7.5 (see [7]) It is obvious that

f

n

⇣ f (stat) implies f

n

! f (stat),

f

n

◆ f (stat) implies f

n

⇣ f (stat).

Example 2.7.6 (see [7]) Define f, f

n

: [0, 1] ! R in the following way,

f ⌘ 0,

f

n

(x) = �{ 1
n}.

Then

f

n

⇣ f (stat)
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but

f

n

◆ f (stat)

does not hold.

Example 2.7.7 (see [7])Let f

n

(x) = x

n

, x 2 [0, 1] , then f

n

! f (stat) but

f

n

⇣ f (stat) does not hold.

2.8 Korovkin’s Theorem

Approximation theory has important applications for di↵erent areas of Functional

Analaysis, approximation of polinomials, numerical solutions for di↵erential and

integral equations. KTAT is a base for approximation theory (see [6], [11] and

[34]). Gadjiev and Orhan [28] obtained a KTAT for s�convergence of positive

linear operators which is defined on a function space of closed, bounded and con-

tinuous intervals of real numbers. Also Duman, Khan and Orhan investigate the

KTAT in A�statistical sense (see [15]). Moreover Duman and Orhan investigate

the KTAT in statistical and A�statistical sense for di↵erent spaces (see [15],

[16] and [18]).

Definition 2.8.1 A mapping L : X ! Y is called a linear operator if

L(↵f + �g) = ↵L(f) + �L(g)

for 8f, g 2 X and 8↵, � 2 R where X and Y are linear spaces of functions. If
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Lf � f when f � 0 then L is said to be positive operator.

Proposition 2.8.2 Let L : X ! Y be a positive and linear operator, then

1. If f, g 2 X with f  g then Lf  Lg which means that L is monotonic.

2. For every f 2 X we have |Lf |  L |f | .

Theorem 2.8.3 (Bohman-Korovkin Theorem) (See [34]) Let L

r

: C [a, b] !

C [a, b] be a sequence of positive linear operator. If the sequence of operators

L

r

satisfy

lim
r

kL
r

(1; x)� 1k
C[a,b] = 0

lim
r

kL
r

(t; x)� xk
C[a,b] = 0

lim
r

�

�

L

r

(t2; x)� x

2
�

�

C[a,b]
= 0

for 8f 2 C [a, b] , we have

lim
r

kL
r

(f ; x)� f(x)k
C[a,b] = 0

Example 2.8.4 (see [35]) The Bernstein polinomials is an example for the linear

operators for I = [0, 1] , which is defined by

B

r

(f, x) :=
r

X

k=0

f(
k

r

)

✓

r

k

◆

x

k(1� x)r�k

, f 2 C [0.1] .

Direct calculations show that B
n

(1; x) = 1, B
n

(t; x) = x and B

n

(t2; x) = x

2+ x�x

2

n

.

In other words Bernstein polinomials satisfies the conditions of KTAT.
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The following KTAT is given by Gadjiev and Orhan.

Theorem 2.8.5 (see [28]) Let L
r

: C
M

[a, b] ! B [a, b] be a sequence of positive

linear operator. If the sequence of operators satisfy

st� lim
r

kL
r

(1; x)� 1k
B

= 0

st� lim
r

kL
r

(t; x)� xk
B

= 0

st� lim
r

�

�

L

r

(t2; x)� x

2
�

�

B

= 0

then for any function f in C

M

[a, b] ,

st� lim
r

kL
r

(f ; x)� f(x)k
B

= 0.

Later the following KTAT in A-statistical sense is given by Duman, Khan and

Orhan.

Theorem 2.8.6 (see [15]) Let {L
r

} be a sequence of positive linear operators

from C [a, b] into C [a, b] , then the following statements are equivalent

(i) st
A

� lim
r

kL
r

(f ; x)� f(x)k
C[a,b] = 0, 8 f 2 C [a, b] ,

(ii) st
A

� lim
r

kL
r

(f
i

; x)� f

i

(x)k
C[a,b] = 0 for f

i

(x) = x

i

, i = 0, 1, 2.

Recently, Balcerzak, Dems and Komisarski introduce the concept of equistatisti-

cal convergence and after them Karakuş, Demirci and Duman (see [30]) proved
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the following KTAT in equistatistical sense.

Theorem 2.8.7 (see [30])Let {L
r

} be a sequence of linear positive operators from

C(X) to C(X) where X is a compact subset of the real numbers. Then 8 f 2

C(X),

L

r

(f ; x) ⇣ f (stat) on X

()

L

r

(e
i

) ⇣ e

i

(stat) on X

where e

i

(x) = x

i

, i = 0, 1, 2.
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Chapter 3

LACUNARY EQUISTATISTICAL CONVERGENCE

3.1 Lacunary Equistatistical Convergence

Fridy and Orhan introduced the concept of ✓�convergence [27] by using an

arbitrary lacunary sequence. They also showed that under some conditions,

✓�convergence implies s�convergence. Moreover they give necessary and suf-

ficient conditions so that ✓�convergence and s�convergence are equivalent to

each other.

In this chapter we mainly focus on ✓�convergence and the concept of lacunary eq-

uistatistical convergence which lies between pointwise and uniform ✓�convergence

(see [2]). We also construct examples of function sequences to point out that in

general the converse implications does not hold. We started to this chapter with

the following definitions.

Definition 3.1.1 (see [2]) Let ✓ be a lacunary sequence. (f
r

) is said to be lacu-

nary statistical pointwise convergent to f on X if 8✏ > 0, and each x 2 X,

lim
r!1

|{m 2 I

r

: |f
m

(x)� f(x)| � ✏}|
h

r

= 0.
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Lacunary statistical pointwise convergence of f
r

to f is denoted by

f

r

! f (✓ � stat)

Definition 3.1.2 (see [2]) Let ✓ be a lacunary sequence. (f
r

) is said to be lacu-

nary statistical uniform convergent to f on X if 8 ✏ > 0

lim
r!1

�

�

�

n

m 2 I

r

: kf
m

� fk
C(X) � ✏

o

�

�

�

h

r

= 0.

Lacunary statistical uniform convergence of f
r

to f is denoted by

f

r

◆ f (✓ � stat).

Definition 3.1.3 (see [2]) Let ✓ be a lacunary sequence. (f
r

)
r2N is said to be

lacunary equistatistical convergent to f on X if 8 ✏ > 0, the sequence of real

valued functions (s
r,✏

)
r2N, defined by

s

r,✏

(x) =
1

h

r

|{m 2 I

r

: |f
m

(x)� f(x)| � ✏}|

uniformly converges to zero function on X, that is

lim
r!1

ks
r,✏

(.)k
C(X) = 0

Lacunary equistatistical convergence of f
r

to f is denoted by

f

r

⇣ f (✓ � stat).

31



After these definitions we have following lemma which can be proved easly.

Lemma 3.1.4 (see [2]) For a lacunary sequence ✓ we have

f

r

⇣ f (✓ � stat) =) f

r

! f (✓ � stat),

f

r

◆ f (✓ � stat) =) f

r

⇣ f (✓ � stat).

In the previous lemma, it clear that lacunary equistatistical convergence lies be-

tween pointwise and uniform ✓�convergence. But one can ask the following ques-

tion. ”Does the converse implications hold?” Example 3.1.5 and Example 3.1.6

show that in general the inverse implications are not true. Firstly we will show

that there exists a function sequence (f
r

) such that it is lacunary equistatistical

convergent but not uniformly lacunary statistical convergent.

Example 3.1.5 (see [2]) Let ✓ be a lacunary sequence. Consider the sequence

of continuous functions

f

n

=

8

>

>

<

>

>

:

� [2n(n+ 1)]2
�

x� 1
n

� �

x� 1
n+1

�

if x 2
�

1
n+1 ,

1
n

⇤

0 otherwise

then 8" > 0,

s

r,"

(x) =
1

h

r

|{m 2 I

r

: |f
m

(x) � "|}|

 1

h

r

.
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Hence 1
hr

! 0 as r approaches to 1 uniformly in x that is f
r

⇣ 0 (✓�stat). But

f

r

◆ 0 (✓�stat) does not hold since sup
x2[0,1] |fr(x)| = 1, for all r 2 N.

Secondly we introduce a function sequence such that f

r

is lacunary statistical

pointwise convergent but not lacunary equistatistical convergence.

Example 3.1.6 (see [2]) Let the sequence of functions and the lacunary sequence

be as in the following

f

r

: [0, 1] ! R, f

r

(x) = x

r

,

✓ =
�

2k
 

k > 1, for k = 1.

Clearly f

r

is pointwise convergent to the function

f(x) =

8

>

>

<

>

>

:

0; 0  x < 1

1; x = 1

in the ordinary sense, then obviously f

r

! f (✓�stat). To see that f
r

⇣ f (✓

stat) does not hold choose " = 1
2 . Then 8K 2 N, 9n > K such that m 2 [2n�1

, 2n)

and x 2
⇣

2n
q

1
2 , 1
⌘

,

|f
m

(x)| = |xm| �

�

�

�

�

�

 

2n

r

1

2

!

m

�

�

�

�

�

�

�

�

�

�

�

�

 

2n

r

1

2

!2n
�

�

�

�

�

�

=
1

2
.

Now the following question arises ”under which conditions does lacunary equi-

statistical convergence and equistatistical convergence implies each other?” The
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following two lemmas give the answer to this qustion.

Lemma 3.1.7 (see [2]) Let ✓ be a lacunary sequence then equistatistical conver-

gence implies lacunary equistatistical convergence if and only if

lim inf
r

q

r

> 1.

Proof. Assume f

n

⇣ f (stat) on X and lim inf
r

q

r

> 1. Then 9↵ > 0 such that

1 + ↵  q

r

, for large r and

1

k

r

� ↵

(↵ + 1)h
r

.

8 " > 0, we have

p

kr,"(x) =
1

k

r

|{m  k

r

: |f
m

(x)� f(x)| � "}|

� 1

k

r

|{m 2 I

r

: |f
m

(x)� f(x)| � "}|

� ↵

(↵ + 1)h
r

|{m 2 I

r

: |f
m

(x)� f(x)| � "}|

� ↵

(↵ + 1)h
r

s

r,"

(x)

uniformly in x. This proves the su�ciency. For the converse, consider the lacu-

nary sequence and the subsequence

✓ = {k
r

} =
�

r

2
 

,

r(j) = j

j (j > 2).
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Then lim inf
r

q

r

= 1, proceeding as in the proof of Lemma 2 of [27] (or as in [25];

p. 510) and take

f

i

(x) =

8

>

>

<

>

>

:

1, if i 2 I

r(j) for some j = 3, 4, ...

0, otherwise

, x 2 X

then we have

f

n

⇣ 0 (stat).

But since

1

h

r

|{n 2 I

r

: |f
n

| � "}| =

8

>

>

<

>

>

:

1, if r = j

j for some j = 3, 4, ...

0, otherwise

f

r

⇣ f (✓�stat) does not hold.

Secondly we consider the following lemma which gives conditions, under which

lacunary equistatistical convergence implies equistatistical convergence.

Lemma 3.1.8 (see [2]) Let ✓ be a lacunary sequence. Lacunary equistatistical

convergence implies equistatistical convergence if and only if

lim sup
r

q

r

< 1.

Proof. Assume lim sup
r

q

r

< 1 and f

r

⇣ f (✓�stat), then 9 M > 0 such that
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q

r

< M, 8r. Given " > 0, by the assumtion we have

lim
r!1

ks
r,"

(.)k = 0.

That is 9 an integer r0 > 0 such that

s

r,"

(x) < ",

for all r > r0, uniformly in x. Let n be an arbitrary positive integer, then 9r > 0

such that n 2 I

r

. We can write that

p

n,"

(x) =
1

n

|{m  n : |f
m

(x)� f(x)| � "}|

 1

k

r�1
|{m  k

r

: |f
m

(x)� f(x)| � "}|

=
1

k

r�1

(

r0
X

i=1

h

i

s

i,"

(x) +
r

X

i=r0+1

h

i

s

i,"

(x)

)

.

Since s

i,"

(x)  1, we conclude that

p

n,"

(x)  T

r0

k

r�1
+

1

k

r�1

r

X

i=r0+1

h

i

s

i,"

(x),

where T := Max {h1, h2, ..., hr0} . Hence

p

n,"

(x)  Tr0

k

r�1
+

"(k
r

� k

r0)

k

r�1

 Tr0

k

r�1
+ "M,

36



which proves the su�ciency. For the converse, consider the lacunary sequence

✓ = {k
r

} =
�

r

r+1
 

.

Then

lim
r

q

r

= 1

and

lim
r

h

r

k

r�1
= 1.

Define function sequence in the following way:

f

i

(x) =

8

>

>

<

>

>

:

1, if k

r�1 < i  2k
r�1, for some r = 1, 2, ...

0, otherwise,

x 2 X.

Then

s

r,"

(x) =
1

h

r

|{m 2 I

r

: |f
m

| � "}|  1

h

r

k

r�1.

Hence we have f

r

⇣ f (✓�stat). But f
n

⇣ f (stat) does not hold since

lim
r

1

r

|{m  r : |f
m

(x)� f(x)| � "}|

does not exists.
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As a consequence of Lemma 3.1.7 and Lemma 3.1.8 we can state the following

theorem.

Theorem 3.1.9 (see [2]) For any lacunary sequence ✓, f

r

⇣ f (✓�stat) and

f

n

⇣ f (stat) implies each other ,

1 < lim inf
r

 lim sup
r

q

r

< 1.

3.2 Korovkin Type Theorem for Lacunary Equistatistical

Convergence

In this section we prove a KTAT via lacunary equistatistical convergence.

Theorem 3.2.1 (see [2]) Let X ⇢ R be compact subset, and let {L
r

} be a se-

quence of linear positive operators acting from C(X) into C(X). Also let ✓ be a

lacunary sequence. If

L

r

(e
i

, x) ⇣ e

i

(x) (✓ � stat) on X where e

i

(x) = x

i

, i = 0, 1, 2,

then 8f 2 C(X) we have

L

r

(f, x) ⇣ f (✓ � stat).

Proof. Let f be a continuous function on X and let x be a fix point of X. For

every " > 0 9� such that |f(y)� f(x)| < ", 8y 2 X with |y � x| < �. Now define
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K

�

= {y 2 R : |y � x| < �} and let X
�

= X \K

�

. Then we have,

|f(y)� f(x)|  |f(y)� f(x)|�
X�
(y)+ |f(y)� f(x)|�

X\X�
(y)  "+2M�

X\X�
(y),

where M = kfk
C(X) . After some easy calculations we have

�

X\X�
(y)  1

�

2
(y � x)2.

Now for all y 2 X we may write that

|f(y)� f(x)|  "+
2M

�

2
(y � x)2.

Since {L
r

} is linear and positive, we have

|L
r

(f, x)� f(x)|  L

r

(|f(y)� f(x)e0| ; x) + |f(x)| |L
r

(f0; x)� e0(x)|

 "L

r

(e0; x) +
2M

�

2

�

L

r

�

(y � x)2 ; x
� 

+M |L
r

(e0; x)� e0(x)|

 "+

 

"+M +
2M ke2 (x)k

C(X)

�

2

!

|L
r

(e0; x)� e0(x)|

+
4M ke1 (x)k

C(X)

�

2
{|L

r

(e1; x)� e1(x)|}

+
2M

�

2
|L

r

(e2; x)� e2(x)|

 "+B

2
X

i=0

|L
r

(e
i

; x)� e

i

(x)| , (3.2.1)

where B = "+M + 4M
�

2

⇣

ke2(x)k
C(X) + ke1 (x)k

C(X) + 1
⌘

.
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Now given s > 0, choose 0 < " < s and define the following sets:

D

s

(x) = {m 2 N : |L
m

(f ; x)� f(x)| � s}

D

i

s

(x) =

⇢

m 2 N : |L
m

(e
i

; x)� e

i

(x)| � s� "

3B

�

, i = 0, 1, 2.

Using (3.2.1) we have

D

s

(x) ⇢
2
[

i=0

D

i

s

(x). (3.2.2)

Now define the following real valued functions

s

r,s

(x) =
1

h

r

|{m 2 I

r

: |L
m

(f ; x)� f(x)| � s}|

and

s

i

r,s

(x) =
1

h

r

�

�

�

�

⇢

m 2 I

r

: |L
m

(e
i

; x)� e

i

(x)| � s� "

3B

�

�

�

�

�

, i = 0, 1, 2.

Since the operators are monotonic, together with (3.2.2), we have

s

r,s

(x) 
2
X

i=0

s

i

r,s

(x), for all x 2 X.

Hence we get

ks
r,s

(.)k
C(X) 

2
X

i=0

�

�

s

i

r,s

(.)
�

�

C(X)
. (3.2.3)
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Taking limit in (3.2.3) as r ! 1 and combining the hypothesis of the theorem

we get

lim
r

ks
r,s

(.)k
C(X) = 0,

which complites the proof.
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Chapter 4

�-EQUISTATISTICAL CONVERGENCE

4.1 �-Equistatistical Convergence

Mursaleen [36] initiated the concept of ��convergence for sequences. He also

proved that under some conditions statistical convergence implies ��statistical

convergence. In this chapter firstly, conditions under which �-statistical conver-

gence implies statistical convergence are given. Secondly we introduce pointwise

and uniform convergences in ��statistical sense (see [3]). Also we introduce the

concept of �-equistatistical convergence and showed that it lies between point-

wise and uniform convergences in the same sense. Moreover we constracted some

examples to support the idea that in general �-equistatistical convergence is dif-

ferent from ��pointwise and ��uniform convergences.

Example 4.1.1 (see [3]) �
r

= ln(re) is in !. Indeed �1 = 1, �
r

> 0, �
r

! 1 as

r ! 1 and

�

r+1 = ln((r + 1)e) = ln(r + 1) + 1  ln(re) + 1 = �

r

+ 1.

we conclude that �
r

= ln(re) 2 !.

Lemma 4.1.2 Given � = (�
r

) 2 ! then for each r, �

r

 r.
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Proof. We will use the matematical induction. For r = 1, it is obvious that

�1  1.

Let the inequality be true for r = k, that is

�

k

 k. (4.1.1)

Then we need to show that

�

k+1  k + 1.

Since � 2 ! we have

�

k+1  �

k

+ 1. (4.1.2)

Combining (4.1.1) with (4.1.2) we can write that

�

k+1  �

k

+ 1  k + 1.

Hence we get the result.

Definition 4.1.3 (see [3]) Given � = (�
r

) 2 !, S ⇢ N and k 2 N. The ratio

d

�

r

(S) =
|M

r

\ S|
�

r

is called the r � th partial, ��density of S where M

r

= [r � �

r

+ 1, r] .
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Some simple properties of d�
r

are given in the following lemma.

Lemma 4.1.4 (see [3]) For each � = (�
r

) 2 ! and r 2 N, d�
r

satisfies,

i) d

�

r

(;) = 0.

ii) d

�

r

(N) = 1.

iii) A, B ⇢ N, A \B = ; ) d

�

r

(A [ B) = d

�

r

(A) + d

�

r

(B).

In the following lemma we give the conditions under which ��convergence implies

s�convergence.

Lemma 4.1.5 (see [3]) Assume that � = (�
r

) 2 ! and that the sequence (r��

r

)

is bounded, then ��convergence implies s�convergence.

Proof. By Lemma (4.1.2) we have

1

r

 1

�

r

for each r.

Given " > 0, there exists K > 0, such that, r � �

r

 K, for all r. Therefore

1

r

|{k  r : |x
k

� L|} � "|  1

�

r

|{k  r : |x
k

� L|} � "|

 1

�

r

|{k 2 M

r

: |x
k

� L|} � "|

+
1

�

r

|{k  r � �

r

+ 1 : |x
k

� L|} � "|

 1

�

r

|{k 2 M

r

: |x
k

� L|} � "|+ K + 1

�

r

for each r. Taking limit as r ! 1, completes the proof.
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Example 4.1.6 (see [3]) Consider the sequence

�

r

=

8

>

>

<

>

>

:

1, r = 1

r � 1
2 , r > 1,

then ��convergence implies s�convergence.

Theorem 4.1.7 (see [3]) Let � = (�
r

) 2 ! with

lim inf
r!1

�

r

r

> 0 and (r � �

r

) is bounded

then s�convergence and ��convergence implies each other.

Proof. Combining Lemma 4.1.5 with Theorem 2.5.6 completes the proof.

Let � = (�
r

) 2 ! and let (f
r

) be a sequence of real valued functions then we can

give the following definitions;

Definition 4.1.8 (see [3]) (f
r

) is called ��pointwise convergent to f on X and

denoted by

f

r

! f (�� stat)

if 8" > 0, and for each x 2 X

lim
r!1

d

�

r

({m : |f
m

(x)� f(x)| � "}) = 0.
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Definition 4.1.9 (see [3]) (f
r

) is called ��uniform convergent to f on X and

denoted by

f

r

◆ f (�� stat)

if 8" > 0,

lim
r!1

d

�

r

⇣n

m : kf
m

(x)� f(x)k
C(X) � "

o⌘

= 0.

Definition 4.1.10 (see [3]) (f
r

) is called �-equistatistically convergent to f on

X and denoted by

f

r

⇣ f (�� stat)

if 8" > 0,

u

r,"

(x) = d

�

r

({m : |f
m

(x)� f(x)| � "})

converges uniformly to 0 on X, i.e.

lim
r!1

ku
r,"

(.)k
C(X) = 0.

Remark 4.1.11 In the case �
r

= r, ��pointwise, ��uniform and ��equistatistical

convergence reduce to s�pointwise, s�uniform and equistatistical convergence,

respectively.
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As a consequence of above definitions we can state the following lemma which

proves that, ��equistatistical convergence lies between ��pointwise and ��uniform

convergences.

Lemma 4.1.12 (see [3]) Let � = (�
r

) 2 !. Then we have

f

r

⇣ f (�� stat) =) f

r

! f (�� stat),

f

r

◆ f (�� stat) =) f

r

⇣ f (�� stat).

In general the inverse implications does not hold. The following two exam-

ples show that 9 (f
r

) such that, f

r

is ��equistatistical convergence but not

��statistically uniform convergent.

Example 4.1.13 (see [3]) Let (�
r

) be as in the Example 4.1.1 . Define f(x) = 0,

x 2 [0, 1] and f

r

: [0, 1] ! R, f
r

= �

⇣

2
2r��r+1

⌘

. Let " > 0, and x 2 [0, 1] . Then

we have

u

r,"

(x) = d

�

r

({m : |f
m

(x)� f(x)| � "})

=
1

�

r

|{m 2 M

r

: |f
m

(x)� f(x)| � "}|

 1

�

r

 ",

which means that f
r

⇣ f (��stat) but since sup
x2[0,1] |fr(x)� f(x)| = 1, f

r

◆ f

(��stat) does not hold.
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Example 4.1.14 (see [3]) Let � = (�
r

) 2 ! and f

r

(x) be as in the Example

3.1.5. Then for every " > 0

u

r,"

(x) := d

�

r

({m : |f
m

(x)� f(x)| � "})

 1

�

r

|{m 2 M

r

: |f
m

(x)| � "}|

 1

�

r

! 0 as r ! 1

uniformly in x. This implies that f
r

⇣ 0 (��stat). But f
r

◆ f (��stat) does

not hold since

sup
x2[0,1]

|f
r

(x)| = 1, for all r.

Theorem 4.1.15 (see [3]) Consider the real valued functions f

r

, f on X and

let x0 be a fixed point in X. If f
r

⇣ f (��stat) and f

r

is continuous at x0, then

f is continuous at x0.

Proof. Let " > 0 be given, 8x 2 X define

D

"

(x) = {m 2 N : |f
m

(x)� f(x)| � "} .

Since f

r

⇣ f (��stat), 9k 2 N, with

d

�

k

(D "
3
(x)) =

1

�

k

�

�

�

n

m 2 M

k

: |f
m

(x)� f(x)| � "

3

o

�

�

�

<

1

2
; 8x 2 X.
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Now define

R

"

(x) = {m : |f
m

(x)� f(x)| < "} , x 2 X.

As a consequence of Lemma 4.1.4 (ii) and (iii),

d

�

k

(R
"

(x)) >
1

2
.

Since f

i

is continuous at x0 9� > 0 with

|f
i

(x)� f

i

(x0)| <
"

3
, 8i 2 M

k

and x 2 B(x0, �).

Fix x 2 B(x0, �). Combining d

�

k

(R "
3
(x)) > 1

2 and d

�

k

(R "
3
(x0)) >

1
2 with Lemma

4.1.4, R "
3
(x) \R

"
3
(x0) 6= ;.

Now let an arbitrary element p in R

"
3
(x) \R

"
3
(x0), then we have

|f(x)� f(x0)|  ",

which completes the proof.

Example 4.1.16 (see [3]) Let (�
r

) be as in the Example 4.1.1 and f

r

(x) = x

r

,

x 2 [0, 1] , r 2 N. Then obviously f

r

is ��statistical pointwise convergent to the
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function

f(x) =

8

>

>

<

>

>

:

0, x 2 [0, 1)

1, x = 1,

Since f is not continuous at 1, f
r

⇣ f (��stat) does not hold from the previous

theorem.

Implication relationships between � equi-statistical and equistatistical conver-

gence will be given in next theorem and remark.

Theorem 4.1.17 (see [3]) f

r

⇣ f (stat) implies f

r

⇣ f (��stat) ()

lim inf
r!1

�

r

r

> 0. (4.1.3)

Proof. Given " > 0. Since M

r

⇢ [1, r] , we can write that

{m  r : |f
m

(x)� f(x)| � "} � {m 2 M

r

: |f
m

(x)� f(x)| � "} .

Using the above inclusion we get

1

r

|{m  r : |f
m

(x)� f(x)| � "}| � 1

r

|{m 2 M

r

: |f
m

(x)� f(x)| � "}|

� �

r

r

1

�

r

|{m 2 M

r

: |f
m

(x)� f(x)| � "}|

� �

r

r

d

�

r

({m : |f
m

(x)� f(x)| � "}) .
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Considering 4.1.3 and taking the limit when n tends to infinity the implication

follows.

To show the converse, assume that lim inf
r!1

�r
r

= 0. Then 9a subsequence n(r)

with

�

n(r)

n(r)
<

1

r

.

Using the choosen subsequence we can define the following function sequence

f

i

(x) :=

8

>

>

<

>

>

:

1, if i 2 M

n(r), for some r = 1, 2, 3, ...

0, otherwise

x 2 X

then we have f

r

⇣ f (stat). But since

1

�

k

|{m 2 M

k

: |f
m

(x)| � "}| =

8

>

>

<

>

>

:

1, if k 2 M

n(r), for some r

0, otherwise,

f

r

⇣ f (��stat) does not hold.

Remark 4.1.18 (see [3]) If (r � �

r

) is bounded then

f

r

⇣ f (�� stat) ) f

r

⇣ f (stat).

4.2 Korovkin Type Theorem for �-Equistatistical Convergence

Now our aim is to prove a KTAT for �-equistatistical convergence.
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Theorem 4.2.1 (see [3]) Let X ⇢ R be compact and C(X) be the space of all

continuous real valued functions from X to X. Also let � 2 !. Suppose that {L
r

}

is a sequence of positive linear operators defined on C(X). If

L

r

(e
i

; x) ⇣ e

i

(x) (�-stat), i = 0, 1, 2

where e

i

(x) = x

i

. Then 8 f 2 C(X),

L

r

(f ; x) ⇣ f (�� stat).

Proof. Let f be a continuous function on X and let x 2 X be fixed, 8" > 0

9 � > 0 such that |f(y)� f(x)| < ", 8y 2 X with |y � x| < �. Now define

K

�

= {y 2 R : |y � x| < �} and let X
�

= X \K

�

. Then,

|f(y)� f(x)|  |f(y)� f(x)|�
X�
(y)+ |f(y)� f(x)|�

X\X�
(y)  "+2M�

X\X�
(y),

where M = kfk
C(X) . After some easy calculations we have

�

X\X�
(y)  1

�

2
(y � x)2.

Now for all y 2 X we may write that

|f(y)� f(x)|  "+
2M

�

2
(y � x)2.
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Since {L
r

} is linear and positive, we have

|L
r

(f, x)� f(x)|  L

r

(|f(y)� f(x)e0| ; x) + |f(x)| |L
r

(f0; x)� e0(x)|

 "+B

2
X

i=0

|L
r

(e
i

; x)� e

i

(x)| , (4.2.1)

where B = "+M + 4M
�

2 (ke2k+ ke1 (x)k+ 1) .

8s > 0, choose 0 < " < s and define

D

s

(x) = {m 2 N : |L
m

(f ; x)� f(x)| � s}

D

i

s

(x) =

⇢

m 2 N : |L
m

(e
i

; x)� e

i

(x)| � s� "

3B

�

, i = 0, 1, 2.

Using (4.2.1) we can have

D

s

(x) ⇢
2
[

i=0

D

i

s

(x). (4.2.2)

Now define the following real valued functions

u

r,s

(x) =
1

�

r

|{m 2 M

r

: |L
m

(f ; x)� f(x)| � s}|

and

u

i

r,s

(x) =
1

�

r

�

�

�

�

⇢

m 2 M

r

: |L
m

(e
i

; x)� e

i

(x)| � s� "

3B

�

�

�

�

�

, i = 0, 1, 2.
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Since the operators are monotonic, together with (4.2.2) we have

u

r,s

(x) 
2
X

i=0

u

i

r,s

(x), 8x 2 X.

Hence we get

ku
r,s

(.)k
C(X) 

2
X

i=0

�

�

u

i

r,s

(.)
�

�

C(X)
. (4.2.3)

Taking limit in 4.2.3 as r ! 1 and combining the hypothesis of the theorem we

get

lim
r

ku
r,s

(.)k
C(X) = 0.
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Chapter 5

A-EQUISTATISTICAL CONVERGENCE

5.1 A-Equistatistical Convergence

In this chapter our aim is to extend the idea of equistatistical convergence to

A-equistatistical convergence by using an arbitrary NNRM A (see [1]). We will

also discuss the relations between A-statistical pointwise, A-statistical uniform

and A-equistatistical convergence.

Definition 5.1.1 (see [1]) Let K ⇢ N and A be a NNRM, then

�

m

A

(K) =
1
X

k=1

a

mk

�

K

(k)

is called the mth partial A-density of K. When m tends to infinity and the limit

exists this definition coincises with the Definition 2.6.1.

Definition 5.1.2 (see [1]) Let A = (a
mk

) be a NNRM. Then (f
n

) is called A-

statistically pointwise convergent to f on X and denoted by

f

n

! f (A� stat)
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if 8" > 0 and 8x 2 X,

�

A

({n 2 N : |f
n

(x)� f(x)| � "}) = 0.

Definition 5.1.3 (see [1]) Let A = (a
mk

) be a NNRM. (f
n

) is called A-statistically

uniform convergent to f on X and denoted by

f

n

◆ f (A� stat)

if 8 " > 0,

�

A

⇣n

n 2 N : kf
n

(x)� f(x)k
C(X) � "

o⌘

= 0.

Definition 5.1.4 (see [1]) Let A = (a
mk

) be a NNRM. Then (f
n

) is called A-

equistatistically convergent to f on X if 8" > 0,

h

m,"

(x) = �

m

A

({n 2 N : |f
n

(x)� f(x)| � "}), x 2 X

converges uniformly to the function zero on X, i.e,

lim
m!1

kh
m,"

(.)k
C(X) = 0.

The A-equistatistical convergence of f
n

to f will be denoted by f

n

⇣ f (A�stat).

Remark 5.1.5 Taking A = A

�

as in Remark 2.5.5, A�equistatistical conver-

gence includes ��equistatistical convergence . Also if we take A = A

✓

which is de-
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fined in Definition 2.4.2 lacunary equistatistical convergence is obtained as a spe-

cial case of A�equistatistical convergence. Moreover taking A = C1, A�equistatistical

convergence reduces to equistatistical convergence.

Lemma 5.1.6 (see [1])Let X ⇢ R and f

n

, f : X ! R, for all n 2 N, then we

have

i) f
n

⇣ f (A� stat) ) f

n

! f (A� stat)

ii) f
n

◆ f (A� stat) ) f

n

⇣ f (A� stat).

In general, reverse implications are not true. For instance see examples below.

Example 5.1.7 (see [1]) Let A = (a
mk

) be the NNRM with the following condi-

tions;

a

mk

 b

m

, k = 1, 2, ... and lim
m!1

b

m

= 0.

Also let (f
n

) be as in Example 3.1.5 .Then we have f

n

⇣ 0 (A�stat) but f
n

◆ 0

(A�stat) fails to hold. To see that f
n

◆ 0 (A�stat) does not hold choose " = 1.

Then we have

kf
n

k
C[0,1] = sup

x2[0,1]
|f

n

(x)| = 1, 8n.
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Hence

�

A

n

n 2 N : kf
n

k
C[0,1] � 1

o

= �

A

{N} = 1 6= 0.

Now we need to verify that f
n

⇣ 0 (A�stat). 8" > 0 and 8 x 2 [0, 1] it is easly

seen that

|{n 2 N : |f
n

(x)| � "}|  1.

Thus for every " > 0 and x 2 [0, 1]

h

m,"

(x) = �

m

A

({n 2 N : |f
n

(x)| � "})  b

m

.

Hence

lim
m!1

kh
m,"

(x)k  lim
m!1

b

m

= 0.

Example 5.1.8 (see [1]) Let A = (a
nk

) be the NNRM

A =

8

>

>

<

>

>

:

1
2n n  k  3n� 1

0 otherwise.

Also let f
n

: [0, 1] ! R, defined by

f

n

(x) = �{ 1
2n}.
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Then for each " > 0 and for every x 2 [0, 1] ,

h

m,"

(x) = �

m

A

({n 2 N : |f
n

(x)| � "})  1

2m
.

Thus f

n

⇣ 0 (A�stat). But it is obvious that f
n

◆ 0 (A�stat) does not hold.

Example 5.1.9 (see [1]) Consider C1 and f

n

: [0, 1] ! R, where f

n

(x) = x

n

.

Taking " = 1
4 , then 8n 2 N, 9m � n such that for any x 2

⇣

m

q

1
4 , 1
⌘

,

{1, 2, ...,m} ⇢
⇢

n 2 N : |f
n

(x)| � 1

4

�

it follows that

1 = �

m

C1
({1, 2, ...,m})  �

m

C1

✓⇢

n 2 N : |f
n

(x)| � 1

4

�◆

and hence f

n

is not equistatistically convergent to the zero function.

5.2 Korovkin Type Theorem for A-Equistatistical Convergence

KTAT is proved for A-equistatistical convergence in the following theorem.

Theorem 5.2.1 (see [1])Let X ⇢ R, be compact, and let {L
n

} be a sequence of

linear positive operators from C(X) into C(X) . If

L

r

(e
i

; x) ⇣ e

i

(x) (A� stat) on X where e

i

(x) = x

i

, i = 0, 1, 2,
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then for all f 2 C(X)

L

r

(f ; x) ⇣ f (A� stat) on X.

Proof. Let f 2 C(X) and x 2 X be fixed, 8" > 0, 9� > 0 with |f(y)� f(x)| < ",

8y 2 X satisfying |y � x| < � since f is continuous at x. For X
�

= [x� �, x+ �]\

X we can write that

|f(y)� f(x)|  "+ 2M
(y � x)2

�

2
.

8y 2 Y, where M := kfk
C(X) . By the positivity of L

r

,

|L
r

(f, x)� f(x)|  L

r

(|f(y)� f(x)e0| ; x) + |f(x)| |L
r

(f0; x)� e0(x)|

 "+B

2
X

i=0

|L
r

(e
i

; x)� e

i

(x)| , (5.2.1)

where B = "+M + 4M
�

2 (ke2k+ ke1 (x)k+ 1) .

8 s > 0, take " > 0 with " < s and define

�
s

(x) := {m 2 N : |L
m

(f ; x)� f(x)| � s}

�i

s

(x) :=

⇢

m 2 N : |L
m

(e
i

; x)� e

i

(x)| � s� "

3B

�

(i = 0, 1, 2)

Using (5.2.1) we have

�
s

(x) ⇢
2
[

i=0

�i

s

(x). (5.2.2)
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Also define the following real valued functions:

h

r,s

(x) = �

r

A

({m 2 N : |L
m

(f, x)� f(x)| � s})

and

h

i

r,s

(x) = �

r

A

✓⇢

m 2 N : |L
m

(e
i

, x)� e

i

(x)| � s� "

3B

�◆

i = 0, 1, 2. Then by the monotonicity and (5.2.2) we have

h

r,s

(x) 
2
X

i=0

h

i

r,s

(x), 8x 2 X.

and

kh
r,s

(.)k
C(X) 

2
X

i=0

�

�

h

i

r,s

(.)
�

�

C(X)
. (5.2.3)

Taking limit in (5.2.3) and using the hypothesis of the theorem we conclude that

lim
r

kh
r,s

(.)k
C(X) = 0

whence the result.

Remark 5.2.2 If we take A = C1 in the previous Therorem then we reduce to

the result of Karakus, Demirci and Duman (see [30]) which is given in Theorem

2.8.7. Also if we take A = A

✓

then it reduces to the result of Aktuğlu and Gezer

(see [2]) which is given in Theorem 3.2.1. Moreover letting A = A

�

then we obtain
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the results of Özarslan, Aktuğlu and Gezer (see [3]) which is given in Theorem

4.2.1.
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Chapter 6

B-EQUISTATISTICAL CONVERGENCE

6.1 B-Equistatistical Convergence

Up to here, we discuss some type of convergences and among them A�convergence

has an important role because it is the most general method and includes all other

methods. In fact all other methods considered in this thesis can be obtained

from A�convergence for di↵erent choice of A. In this view of point, it seems

A�convergence is large enough and can not be extended. But using [33] and

[37], it is shown that by using sequences of NNRM we can take one more step to

extend this type of convergences. By using this idea A�convergence is extended

to B� statistical convergence ( or B�convergence) by Mursaleen and Edely in

[37]. Let B = (B
j

) be a sequence of infinite matrices B
j

= (b
mj

(j)). A bounded

sequence x is said to be B-summable to L if

lim
m!1

(B
j

x)
m

= lim
m!1

X

s

b

ms

(j)x
s

= L, uniformly in j.

The method B is called regular method (RM) if it preserves the limit of each

convergent sequence. Necessary and su�cient conditions for regular methods is

given as in the following theorem.

Theorem 6.1.1 (see [42] and [8] ) The method B = (B
j

) is regular ,
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i) sup
m,j

P

s

|b
ms

(j)| < 1

ii) lim
m

P

s

b

ms

(j) = 1, uniformly in j,

iii) lim
m

b

ms

(j) = 0, 8s � 1, uniformly in j.

If b
ms

(j) � 0, 8m, s and j then the method B is called non-negative (NN).

A subset S = {s1  s2  · · · } ⇢ N, is said to have B-density L if

�B(S) = lim
m

X

s2S

b

ms

(j) = L, uniformly in j.

Definition 6.1.2 Let B be a NN and RM, then x is called B-statistical convergent

to L if 8" > 0,

�B({s : |xs

� L| � "}) = 0.

Obviously, s�convergence, A�convergence and B�convergence are all di↵erent

from each other (see for example [1] and [14]). But taking B

j

= A for each j

where A is a NNRM then B�convergence reduces to A�convergence. Similarly

taking B

j

= C1 for each j, then B-convergence coincides with s�convergence.

Recently, the concept of B-convergence and their applications are studied in (see

[14] and [37]).

Let X ⇢ R, f, f

n

: X ! R and B = (B
j

) be NN and RM then;

Definition 6.1.3 (f
n

) is said to be B-statistically pointwise convergent to f on
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X and denoted by f

n

! f (B�stat) if 8" > 0 and 8x 2 X,

�B({n 2 N : |f
n

(x)� f(x)| � "}) = 0.

Definition 6.1.4 (f
n

) is said to be B-statistically uniform convergent to f on X

and denoted by f

n

◆ f (B�stat) if 8" > 0,

�B(
n

n 2 N : kf
n

(x)� f(x)k
C(X) � "

o

) = 0.

Definition 6.1.5 (f
n

) is said to be B-equistatistically convergent to f on X and

denoted by f

n

⇣ f (B�stat) if 8" > 0, the sequence of real valued functions

�

 j

m,"

�

m2N where

 j

m,"

(x) = �

m

Bj
({n 2 N : |f

n

(x)� f(x)| � "}) , x 2 X

uniformly converges to the zero function on X for each j, i.e.

lim
m!1

�

� j

m,"

(.)
�

�

C(X)
= 0 for all j.

Remark 6.1.6 Note that taking B
j

= A for each j, where A is a NNRM, then the

above definitions reduce to A�statistical pointwise, A�statistical uniform and A-

equistatistical convergence (see [1]) respectively. If we take B
j

= C1 then the above

definitions reduce to statistical pointwise, statistical uniform and equ-istatistical

convergence (see [7]) respectively. Also if we take B
j

= A

✓

for each j, then the

above definitions reduce to lacunary statistical pointwise, lacunary statistical uni-
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form and lacunary equ-statistical convergence (see [2]) respectively. Moreover if

we take B
j

= A

�

for each j, then the above definitions reduce to ��statistical

pointwise, ��statistical uniform and ��equistatistical convergence (see [3]) re-

spectively.

Lemma 6.1.7 i) f
n

◆ f (B�stat) ) f

n

⇣ f (B�stat),

ii) f
n

⇣ f (B�stat) ) f

n

! f (B�stat).

The following examples shows that, in general the inverse implications does not

hold, for instance see the following examples.

Example 6.1.8 Consider the NN and RM such that

B = (B
j

) = b

ms

(j) =

8

>

>

<

>

>

:

1
jm

, mj  s < 2mj

0, otherwise

and let f
n

: [0, 1] ! R, defined as

f

n

(x) =

8

>

>

<

>

>

:

�4n+1(x� 1
2n )(x� 1

2n�1 ), if x 2
⇥

1
2n ,

1
2n�1

⇤

0, otherwise.

Then f

n

⇣ 0 (B�stat) but f
n

◆ 0 (B�stat) does not hold. In fact, 8 " > 0 and

8x 2 [0, 1] , the set |{n 2 N : |f
n

(x)| � "}|  1. Thus 8 " > 0 and x 2 [0, 1]

 j

m,"

(x) = �

m

Bj
({n 2 N : |f

n

(x)| � "})  1

mj

, 8 j.
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When m tends to infinity on both sides we conclude that

lim
m!1

�

� j

m,"

(x)
�

�

C[0,1]
= 0, 8j.

Hence f

n

⇣ 0 (B�stat). But kf
n

k
C[0,1] = sup

x2[0,1] |fn(x)| = 1 8n, and choose

" = 1,

�B

n

n 2 N : kf
n

k
C[0,1] � 1

o

= �B {N} = 1.

Therefore f

n

◆ 0 (B�stat) does not hold.

Example 6.1.9 Consider f

n

: [0, 1] ! R, 8n, defined by

f

n

(x) = x

n

and the function by

f(x) =

8

>

>

<

>

>

:

0, 0  x < 1

1, x = 1

.

Let B = (B
j

) where

b

ms

(j) =

8

>

>

<

>

>

:

1
m

, 1  s  m

0, otherwise

j = 1, 2, · · · .

Then f

n

! f (B�stat). But f
n

⇣ f (B�stat) does not hold. To see that take

67



" = 1
2 , then 8n 2 N, 9m � n such that x 2

⇣

m

q

1
2 , 1
⌘

, implies that

{1, 2, ...,m} ⇢
⇢

n 2 N : |f
n

(x)| � 1

2

�

which gives that for each j

1 = �

m

Bj
({1, 2, ...,m})  �

m

Bj

✓⇢

n 2 N : |f
n

(x)| � 1

2

�◆

.

This proves that f
n

⇣ f (B�stat) does not hold.

6.2 Korovkin Type Theorem for B-Equistatistical Convergence

Dirik and Demirci (see [14]) introduce the concept of KTAT in the sense of B�convergence.

They also show that KTAT given in B�statistical sense and statistical sense are

di↵erent from each other. Our aim is to give KTAT in the sense of B�equistatistical

convergence.

Theorem 6.2.1 Let B = (B
j

) be a NN and RM, and let X be a compact subset

of R. Suppose that {L
r

} is a sequence of positive linear operators define on C(X).

If

L

r

(e
i

; x) ⇣ e

i

(x) (B � stat) on X where e

i

(x) = x

i

, i = 0, 1, 2,

then 8f 2 C(X)

L

r

(f ; x) ⇣ f (B � stat) on X.
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Proof. Let f 2 C(X) and x 2 X be fixed, 8" > 0, 9� > 0 such that

|f(y)� f(x)| < ", 8y 2 X satisfying |y � x| < �. For X

�

= [x� �, x+ �] \ X

we can write that

|f(y)� f(x)|  "+ 2M
(y � x)2

�

2
.

8y 2 Y, where M := kfk
C(X) . Since L

r

is positive and linear

|L
r

(f, x)� f(x)|  L

r

(|f(y)� f(x)e0| ; x) + |f(x)| |L
r

(f0; x)� e0(x)|

 "+B

2
X

i=0

|L
r

(e
i

; x)� e

i

(x)| (6.2.1)

where B = "+M + 4M
�

2 (kx2k+ kxk+ 1) .

On the other hand, 8s > 0, take " > 0 with " < s and define,

�
s

(x) := {m 2 N : |L
m

(f ; x)� f(x)| � s}

�i

s

(x) :=

⇢

m 2 N : |L
m

(e
i

; x)� e

i

(x)| � s� "

3B

�

(i = 0, 1, 2)

Using (6.2.1) we have

�
s

(x) ⇢
2
[

i=0

�i

s

(x). (6.2.2)

Also for each j, define the following real valued functions

 j

r,s

(x) = �

r

Bj
({m 2 N : |L

m

(f, x)� f(x)| � s})
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and

 j

r,s,i

(x) = �

r

Bj

✓⇢

m 2 N : |L
m

(e
i

, x)� e

i

(x)| � s� "

3B

�◆

i = 0, 1, 2. Then by the monotonicity of the operatos �m
Bj

and (6.2.2) we have

 j

r,s

(x) 
2
X

i=0

 j

r,s,i

(x), j = 1, 2, · · · , 8x 2 X,

which implies the inequality

�

� j

r,s

(.)
�

�

C(X)


2
X

i=0

�

� j

r,s,i

(.)
�

�

C(X)
, j = 1, 2, · · · . (6.2.3)

Taking limit in (6.2.3) as r ! 1 and using the hypothesis of the theorem we

conclude that

lim
r

�

� j

r,s

(.)
�

�

C(X)
= 0, j = 1, 2, · · · .

whence the result.

Remark 6.2.2 If B = (B
j

) = A for each j then we reduce to the Theorem 5.2.1.

If B = (B
j

) = C1 for each j then we set Theorem 2.8.7. Also if B = (B
j

) = A

✓

for each j then we obtain Theorem 3.2.1. Finally if B = (B
j

) = A

�

for each j

then we get Theorem 4.2.1.
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Chapter 7

↵�-EQUISTATISTICAL CONVERGENCE

In this Chapter we consider ↵�-statistical and ↵�-equistatistical convergences

which were initiated by Aktuğlu in [5]. A careful observation shows that most

of the convergence methods considered so far have some common points. First

of all each methods is based on a set function called density. Secondly, for each

method there is a sequence of intervals that are e↵ecting convergence of the

sequences, for example s�convergence uses intervals [1, n] . Moreover, end points

of this intervals can be considered as a sequence of positive integers such as ↵(n)

and �(n) with �(n) � ↵(n) ! 1 as n ! 1. An other observation was that,

each density function has deneminator which is the lenght of the interval used

for this method. By considering these common points we decided to define a

convergence method which depends on intervals [↵(n), �(n)] . In this chapter,

by combining all these observations and we introduce a new type convergence

which is called ↵�-statistical convergence (or ↵�-convergence ). Using parallel

idea for the existing methods also we introduce ↵�-equistatistical convergence for

sequence of functions. We show that ↵�-convergence is a non-trivial extension of

ordinary and statistical convergences.
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We also show that, for special choices of ↵(n) and �(n), ↵�-convergence reduces

to some well known methods such as s�convergence etc. Moreover we prove two

di↵erent KTAT’s via ↵�-convergence and ↵�-equistatistical convergence. Finally,

we compare our results with other KTAT which are already given by di↵erent

authors.

Let ↵(n) and �(n) be two sequences of positive numbers satisfying following

conditions;

P1 : ↵ and � are both non-decreasing.

P2 : �(n) � ↵(n).

P3 : �(n)� ↵(n) ! 1 as n ! 1

and let ⇤ denotes the set of pairs (↵, �) satisfying P1, P2 and P3.

7.1 ↵�-Statistical Convergence

Definition 7.1.1 (see [5])For K ⇢ N, 0 < �  1 and each pair (↵, �) 2 ⇤, we

define �

↵,�(K, �) in the following way,

�

↵,�(K, �) = lim
n!1

�

�

K \ P

↵,�

n

�

�

(�(n)� ↵(n) + 1)�

where |S| represents the cardinality of S and P

↵,�

n

is the closed interval [↵(n), �(n)].

After the above definition we can state the following lemma.

Lemma 7.1.2 (see [5]) Let K and M be two subsets of N and 0 < �  �  1
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then for all (↵, �) we have

i) �↵,�(;, �) = 0.

ii) �↵,�(N, 1) = 1.

iii) If K is finite then �

↵,�(K, �) = 0.

iv) If K ⇢ M ) �

↵,�(K, �)  �

↵,�(M, �).

v) �↵,�(K, �)  �

↵,�(K, �).

Now we are ready to give the following definition.

Definition 7.1.3 (see [5]) x is said to be ↵��statistically convergent of order �

to L and denoted by x

n

! L (↵���stat), if 8" > 0,

�

↵,�({k : |x
k

� L| � "} , �) = lim
n!1

�

�

�

k 2 P

↵,�

n

: |x
k

� L| � "

 

�

�

(�(n)� ↵(n) + 1)�
= 0.

When � = 1, we say that x is ↵��statistical convergent to L and denoted by

x

n

! L (↵��stat).

Remark 7.1.4 (see [5]) If 0 < �  �  1 and

x

n

! L (↵�� � stat)

then

x

n

! L (↵�↵ � stat).
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As a direct consequence of Lemma 7.1.2 (iii) we have the following lemma.

Lemma 7.1.5 (see [5])Assume that x ! L (ordinary sense) and (↵, �) 2 ⇤ then

x

n

! L (↵��stat).

The following example shows that Definition 7.1.3 is a non-trivial generalisation

of both ordinary and s�convergence.

Example 7.1.6 (see [5])Let 0 < � < 1 be fixed. Taking ↵(n) = 1 and �(n) = n

1
�
,

then

�

↵,�({k : |x
k

� L| � "} , �) = lim
n!1

�

�

�

n

k 2
h

1, n
1
�

i

: |x
k

� L| � "

o

�

�

�

n

.

Especially for � = 1
2 , we have

�

↵,�({k : |x
k

� L| � "} , 1
2
) = lim

n!1

|{k 2 [1, n2] : |x
k

� L| � "}|
n

.

Now consider the sequence

x

n

:=

8

>

>

<

>

>

:

1 : n = k

2 for some k

0 : otherwise.

It is obvious that x
n

! 0 (stat) but since

�

↵,�({k : |x
k

| � "} , 1
2
) = lim

n!1

|{k 2 [1, n2] : |x
k

| � "}|
n

= 1,

for all " > 0, x
n

! 0 (↵�
1
2�stat) does not hold.
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7.2 ↵�-Equistatistical Convergence

The main aim of this section is to introduce ↵��equistatistical convergence of or-

der � which lies between ↵��pointwise convergence of order � and ↵��statistical

uniform convergence of order �.

Definition 7.2.1 (see [5]) A function sequence f

r

is said to be ↵��statistically

pointwise convergent to f on X of order � and denoted by f

k

! f (↵���stat) if

for every " > 0, and for each x 2 X

�

↵,�({k : |f
k

(x)� f(x)| � "} , �)

= lim
n!1

�

�

�

k 2 P

↵,�

n

: |f
k

(x)� f(x)| � "

 

�

�

(�(n)� ↵(n) + 1)�
= 0.

For � = 1, f
r

is said to be ↵��statistically pointwise convergent to f on X and

denoted by f

k

! f (↵��stat).

Definition 7.2.2 (see [5]) A function sequence f

r

is said to be ↵��uniform

convergent to f on X of order � and denoted by f

k

◆ f (↵���stat) if for every

" > 0,

�

↵,�(
n

k : kf
k

(x)� f(x)k
C(X) � "

o

, �)

= lim
n!1

�

�

�

n

k 2 P

↵,�

n

: kf
k

(x)� f(x)k
C(X) � "

o

�

�

�

(�(n)� ↵(n) + 1)�
= 0.
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For � = 1, f
r

is said to be ↵��statistically uniform convergent to f on X and

denoted by f

k

◆ f (↵��stat).

Definition 7.2.3 (see [5]) A function sequence f
r

is said to be ↵��equistatistically

convergent to f on X of order � and denoted by f

k

⇣ f (↵���stat) if for every

" > 0, the sequence of real valued functions (g�
r, "

), defined by

g

�

r, "

(x) =

�

�

�

m 2 P

↵,�

r

: |f
m

(x)� f(x)| � "

 

�

�

(�(r)� ↵(r) + 1)�

uniformly converges to the zero function on X, i.e.

lim
r!1

�

�

g

�

r, "

(.)
�

�

C(X)
= 0.

For � = 1, f
r

is said to be ↵��equistatistically convergent to f on X and denoted

by f

k

⇣ f (↵��stat).

As a direct consequence of the definitions we have the following lemma.

Lemma 7.2.4 (see [5]) For 0 < �  1 and each pair (↵, �) 2 ⇤ we have

f

k

◆ f(↵�� � stat) ) f

k

⇣ f(↵�� � stat) ) f

k

! f(↵�� � stat).

The following examples shows that the converse implications does not hold in

general.
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Example 7.2.5 (see [5]) Let (↵, �) 2 ⇤ and 0 < �  1 and consider the sequence

of continuous functions which is defined in Example 3.1.5. Then for every " > 0,

0 < �  1,

g

�

r, "

(x) =

�

�

�

m 2 P

↵,�

r

: |f
m

(x)� f(x)| � "

 

�

�

(�(r)� ↵(r) + 1)�

 1

(�(r)� ↵(r) + 1)�
! 0 as r ! 1,

uniformly in x which gives that f
k

⇣ 0 (↵���stat). But f
k

◆ 0 (↵���stat) does

not hold since sup
x2[0,1] |fr(x)| = 1 for all r.

Example 7.2.6 (see [5]) Consider the functions f

r

: [0, 1] ! R, r 2 R, with

f

r

(x) = x

r

, ↵(r) = 2r�1 + 1 and �(r) = 2r. Also let

f(x) =

8

>

>

<

>

>

:

0 x 2 [0, 1)

1 x = 1

.

Then it is obvious that f

r

! f (↵���stat) for any 0 < �  1, but f

k

⇣ f

(↵���stat) does not hold for any 0 < �  1. Indeed take " = 1 then for all

N0 2 N, there exists r > N0 such that for all m 2 P

↵,�

r

:= [2r�1 + 1, 2r] and

x 2
⇣

2r
q

1
2 , 1
⌘

|f
m

(x)| = |xm| �
 

2r

r

1

2

!

m

�
 

2r

r

1

2

!2r

=
1

2

77



in other words for all x
⇣

2r
q

1
2 , 1
⌘

and 0 < �  1,

g

�

r,

1
2

(x) =

�

�

�

m 2 P

↵,�

r

: |xm| � 1
2

 

�

�

(2r�1)�

=
2r�1 � 1

(2r�1)�
.

Hence

lim
r!1

�

�

g

�

r, "

()
�

�

C(X)
9 0.

7.3 Korovkin Type Theorem for ↵�-Equistatistical Convergence and

↵� - Statistical Convergence

In this section our aim is to give a KTAT theorem for ↵��convergence and

↵��equistatistical convergence. We will also explain for the di↵erent choises of

↵(n), �(n) and �, ↵��convergence and ↵��equistatistical convergence are non

trivial extensions of s�convergence, s�convergence of order �, ��convergence,

��convergence of order � and ✓�convergence.

Theorem 7.3.1 (see [5]) Let (↵, �) 2 ⇤, 0 < �  1 and let L
r

: C(X) ! C(X)

be a sequence of positive linear operators satisfying

L

r

(e
i

, x) ⇣ e

i

(x) (↵�� � stat), i = 0, 1, 2

where e

i

(x) = x

i

, then for all f 2 C(X),

L

r

(f, x) ⇣ f (↵�� � stat).
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Proof. Let f 2 C(X) and x 2 X be fixed. We can write that for every " > 0,

there exists a number � > 0 such that |f(y)� f(x)| < " for all y 2 X satisfying

|y � x| < � since f is continuous at x. For X
�

= [x� �, x+ �] \X we can write

that

|f(y)� f(x)| = |f(y)� f(x)|�
X�(y) + |f(y)� f(x)|�

X\X�(y).

Then we have

|f(y)� f(x)|  "+ 2M
(y � x)2

�

2

For all y 2 Y, where M := kfk
C(X) . Using the fact that L

r

is positive and linear

we have

|L
r

(f, x)� f(x)|  L

r

(|f(y)� f(x)e0| ; x) + |f(x)| |L
r

(f0; x)� e0(x)|

 "L

r

(e0; x) +
2M

�

2

�

L

r

�

(y � x)2 ; x
� 

+M |L
r

(e0; x)� e0(x)|

 "+B

2
X

i=0

|L
r

(e
i

; x)� e

i

(x)| (7.3.1)

where B = "+M + 4M
�

2

⇣

ke2(x)k
C(X) + ke1 (x)k

C(X) + 1
⌘

.

For a given s > 0, choose " > 0 such that " < s and define the following sets:

K

s

(x) := {r 2 N : |L
r

(f ; x)� f(x)| � s}

K

i

s

(x) :=

⇢

r 2 N : |L
r

(e
i

; x)� e

i

(x)| � s� "

3B

�

(i = 0, 1, 2)
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Using (7.3.1) we have

K

s

(x) ⇢
2
[

i=0

K

i

s

(x). (7.3.2)

Also define the following real valued functions

u

�

m,s

(x) :=
1

(�(r)� ↵ (r) + 1)�
�

k 2 P

↵,�

m

: |L
r

(f, x)� f(x)| � s

 

and

g

�,i

m,s

(x) =
1

(�(r)� ↵ (r) + 1)�

⇢

k 2 P

↵,�

m

: |L
r

(e
i

, x)� e

i

(x)| � s� "

3B

�

i = 0, 1, 2. Then by the monotonicity and (7.3.2) we have

g

�

m,s

(x) 
2
X

i=0

g

�,i

m,s

(x), for all x 2 X,

which implies the inequality

�

�

g

�

m,s

(.)
�

�

C(X)


2
X

i=0

�

�

g

�,i

m,s

(.)
�

�

C(X)
. (7.3.3)

Taking limit in (7.3.3) as m ! 1 and using the hpothesis of the theorem we

conclude that

lim
m

�

�

g

�

m,s

(.)
�

�

C(X)
= 0

which completes the proof.
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Taking � = 1 in the previous theorem, we have the following corollary.

Corollary 7.3.2 (see [5])Let (↵, �) 2 ⇤ and let L

r

: C(X) ! C(X) be a se-

quence of positive linear operators satisfying

L

r

(e
i

, x) ⇣ e

i

(x) (↵� � stat) , i = 0, 1, 2

where e

i

(x) = x

i

, then for all f 2 C(X),

L

r

(f, x) ⇣ f (↵� � stat) .

Corollary 7.3.3 (see [5]) Let (↵, �) 2 ⇤ and let L

r

: C(X) ! C(X) be a

sequence of positive linear operators satisfying

L

r

(e
i

, x) ⇣ e

i

(x) (↵�� � stat) , i = 0, 1, 2

where e

i

(x) = x

i

, then for all f 2 C(X),

L

r

(f, x) ⇣ f (↵� � stat) .

Proof. Using Theorem 7.3.1 and the fact that L

r

(e
i

, x) ⇣ e

i

(x) (↵���stat)

implies L
r

(e
i

, x) ⇣ e

i

(x) (↵��stat), completes the proof.

Theorem 7.3.4 (see [5]) Let (↵, �) 2 ⇤, 0 < �  1 and let L
r

: C(X) ! C(X)
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be a sequence of positive linear operators satisfying

L

r

(e
i

, x) ◆ e

i

(x) (↵�� � stat) i = 0, 1, 2

where e

i

(x) = x

i

, then for all f 2 C(X),

L

r

(f, x) ◆ f (↵�� � stat) .

Proof. Let f 2 C(X) and x 2 X be fixed. We can write that for every " > 0,

there exists a number � > 0 such that |f(y)� f(x)| < " for all y 2 X satisfying

|y � x| < � since f is continuous at x. For X
�

= [x� �, x+ �] \X we can write

that

|f(y)� f(x)| = |f(y)� f(x)|�
X�(y) + |f(y)� f(x)|�

X\X�(y).

Then we have

|f(y)� f(x)|  "+ 2M
(y � x)2

�

2

For all y 2 Y, where M := kfk
C(X) . Using the fact that L

r

is positive and linear

we have

|L
r

(f, x)� f(x)|  L

r

(|f(y)� f(x)e0| ; x) + |f(x)| |L
r

(f0; x)� e0(x)|

 "+B

2
X

i=0

|L
r

(e
i

; x)� e

i

(x)| (7.3.4)
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where B = "+M + 4M
�

2

⇣

kx2k
C(X) + kxk

C(X) + 1
⌘

. By taking supremum over X

we have

kL
r

(f ; .)� f(.)k  "+B

2
X

i=0

kL
r

(e
i

; .)� e

i

(.)k .

8s > 0, choose " > 0 such that " < s and define the following sets:

K

s

(x) := {r 2 N : kL
r

(f ; x)� f(x)k � s}

K

i

s

(x) :=

⇢

r 2 N : kL
r

(e
i

; .)� e

i

(.)k � s� "

3B

�

(i = 0, 1, 2) (7.3.5)

Using (7.3.5) we have

K

s

(x) ⇢
2
[

i=0

K

i

s

(x)

which completes the proof.

Taking � = 1 in the previous theorem, we have the following corollary.

Corollary 7.3.5 (see [5])Let (↵, �) 2 ⇤, 0 < �  1 and let L
r

: C(X) ! C(X)

be a sequence of positive linear operators satisfying

L

r

(e
i

, x) ◆ e

i

(x) (↵� � stat) i = 0, 1, 2

83



where e

i

(x) = x

i

, then for all f 2 C(X),

L

r

(f, x) ◆ f (↵� � stat) .

In the following remarks we will explain that the results obtained in this chapter

are new results. Also they are non-trivial extensions of results which are done by

di↵erent authors in the past.

Remark 7.3.6 (see [5]) Taking ↵(n) = 1 and �(n) = n, and � = 1, then P

↵,�

n

=

[1, n] and

�

↵,� ({k : |x
k

� L| � "} , 1) = lim
n!1

|{k  n : |x
k

� L| � "}|
n

This shows that the case of ↵ (n) = 1, � (n) = n and � = 1, ↵��convergence

reduces to s�convergence. Therefore if we take ↵ (n) = 1, � (n) = n and � = 1

then Theorem 7.3.1 reduces to Theorem 2.1 of [30] and Theorem 7.3.4 reduces to

Theorem 1 of [28].

Remark 7.3.7 (see [5]) For ↵(n) = 1 and �(n) = n, and 0 < � < 1, then

P

↵,�

n

= [1, n] ,

�

↵,� ({k : |x
k

� L| � "} , �) = lim
n!1

|{k  n : |x
k

� L| � "}|
n

�

,

which the definition coincides with the definition of s�convergence of order �.

Therefore Theorem 7.3.1 reduces to a KTAT via equistatistical convergence of
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order � and Theorem 7.3.4, reduces to a KTAT via statistical uniform convergence

of order �.

Remark 7.3.8 (see [5]) Let �
n

2 ! and choose ↵(n) = n � �

n

+ 1, �(n) = n

and � = 1 then

P

↵,�

n

= [n� �

n

+ 1, n] .

Moreover

�

↵,� ({k : |x
k

� L| � "} , 1)

= lim
n!1

|{k 2 [n� �

n

+ 1, n] : |x
k

� L| � "}|
�

n

which shows that ↵��convergence of order � reduces to ��convergence for the

case of ↵(n) = n � �

n

+ 1, �(n) = n and � = 1. Therefore if we take ↵(n) =

n � �

n

+ 1, �(n) = n and � = 1 then Theorem 7.3.1, reduces to Theorem 1 of

[41]. Similarly Theorem 7.3.4, will be a special case of Theorem 3.1 of [1].

Remark 7.3.9 (see [5]) Let �
n

2 ! and choose ↵(n) = n � �

n

+ 1, �(n) = n

and 0 < � < 1 then we have

�

↵,� ({k : |x
k

� L| � "} , �)

= lim
n!1

|{k 2 [n� �

n

+ 1, n] : |x
k

� L| � "}|
�

�

n

which shows that ↵��convergence of order � reduces to ��convergence of order
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�. Therefore Theorem 7.3.1, reduces to a KTAT via ��equistatistical convergence

of order � and Theorem 2, reduces to a KTAT via ��convergence of order �.

Remark 7.3.10 (see [5]) Take ↵(r) = k

r�1 + 1, �(r) = k

r

and � = 1 then

P

↵,�

r

= [k
r�1 + 1, k

r

] where k

r

is a lacunary sequence. Since

(k
r�1, kr] \ N = [k

r�1 + 1, k
r

] \ N,

we have

�

↵,� ({k : |x
k

� L| � "} , �)

= lim
r!1

|{k 2 [k
r�1 + 1, k

r

] : |x
k

� L| � "}|
h

�

r

= lim
r!1

|{k 2 (k
r�1, kr] : |xk

� L| � "}|
�

�

r

.

We conclude that in the case ↵(r) = k

r�1+1, �(r) = k

r

and � = 1, ↵��convergence

of order � reduces to ✓�convergence. Therefore if we take ↵(r) = k

r�1 + 1,

�(r) = k

r

and � = 1 then Theorem 7.3.1, reduces to Theorem 3.1 of [2] and

Theorem 7.3.4, will be a special case of Theorem 3.1 of [1].

Remark 7.3.11 (see [5]) For ↵(r) = k

r�1 + 1, �(r) = k

r

, and 0 < � < 1 we
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have

�

↵,� ({k : |x
k

� L| � "} , �)

= lim
r!1

|{k 2 [k
r�1 + 1, k

r

] : |x
k

� L| � "}|
h

�

r

= lim
r!1

|{k 2 (k
r�1, kr] : |xk

� L| � "}|
�

�

r

.

Therefore Theorem 7.3.1, reduces to a KTAT via ✓�equistatistical convergence of

order � and Theorem 7.3.4, reduces to a KTAT via lacunary statistical uniform

convergence of order �.
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[39] M. A. Özarslan, O. Duman and O. Doğru, Rates of A-statistical convergence

of approximating operators, Calcolo 42 (2005), 93-104.
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