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ABSTRACT 

The dynamics of a single species and harvested single species that goes extinct when 

rare, is described by nonlinear differential equations 

a)
 

1
N N A

N rN
K K K

  
= − −  

  
�

 

b)
 

1 ,
N N A

N rN hN
K K K

  
= − − −  

  
�

 

(1) 

where a parameter A  ( 0 A K< < ) is associated with the Allee effect, r  is the 

intrinsic growth rate, h  is the harvesting and K  is the carrying capacity of the 

environment. The intention of this thesis is to study the existence of periodic 

solutions and their stability properties assuming that ,r  A , h  and K  are continuous 

T - periodic functions. Using rather elementary techniques, we completely describe 

populations dynamics analyzing influences of both strong ( 0A > ) and weak ( 0A < ) 

Allee effects. We discuss the effect of harvesting on a single species population in a 

fluctuating environment whose dynamics is described by a nonlinear differential 

equation. We consider separately cases of harvesting ( )0h >  (stocking ( )0h < ), 

weak Allee effect ( )0A ≤ and strong Allee effect ( )0A > . Thus, we answer 

questions regarding the location of positive periodic solutions and their stability 

complementing the research in a recent paper by Padhi [14]. Bounds for periodic 

solutions and estimates for backward blow-up times are also established. 

Furthermore, we demonstrate advantages of our approach on simple examples to 

which the results in the cited paper fail to apply. 

Keywords: Nonlinear differential equation, Allee effect, periodic solutions, stability, 

blow up, existence, positive solutions, harvesting. 
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ÖZ 

Yetersiz nüfus yoğunluğundan dolayı soyu tükenmekte olan tek bir türün ve hasat 

edilen tek bir türün dinamikleri doğrusal olmayan aşağıdaki diferansiyel 

denklemlerle tanımlanabilir, 

a)
 

1
N N A

N rN
K K K

  
= − −  

  
�

 

b)
 

1 .
N N A

N rN hN
K K K

  
= − − −  

  
�

 

(1) 

Burada, A  parametresi ( 0 A K< < ) Allee etkisi ile ilişkilidir, r  içsel büyüme oranı, 

h  hasat kaldırma ve K  çevrenin taşıma kapasitesidir. Bu tezin amacı r, A, h ve 

K’nin sürekli T - periyodik fonksiyonlar oldukları koşullarda, periyodik çözümlerin 

varlığını ve onların denge özelliklerini araştırmaktır. Temel teknikler kullanarak 

güçlü  ( 0A > ) ve zayıf  ( 0A < ) Allee etkileri incelenerek nüfus dinamikleri 

tamamıyla elde edilmişlerdir. Dinamikleri doğrusal olmayan diferansiyel 

denklemlerle tanımlanan dalgalanma ortamındaki tek bir nüfusun hasatı 

incelenmemiştir. Bu durumda ayrı ayrı hasat ( )0h >  (stok ( )0h < ), zayıf Allee 

etkisi ( )0A ≤ ve güçlü Allee etkisi ( )0A > dikkate alınmıştır. Bu araştırmayla 

Padhi’nin makalesinde [14]  ortaya çıkan pozitif periyodik çözümlerin konumları ve 

bunların istikrarlarıyla ilgili soruları aydınlattık. Periyodik çözümlerin sınırları ve 

geri darbe süreleri de tanımlanmıştır. Ayrıca, bu çalışmada önerilen yaklaşımın 

avantajı Padhi’nin makalesinde [14] önerdiği sonuçların uygulanmayacağı basit 

örnekler yardımıyla gösterilmiştir. 

Anahtar Kelimeler: Doğrusal olmayan diferansiyel denklem, Allee etkisi, periyodik 

çözümler, çözümün varlığı, kararlılık, darbe süreleri, pozitif çözümler, hasat. 
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Chapter 1  

INTRODUCTION 

The dynamics of a single non-structured population is directly influenced by 

regular changes in environmental conditions such as climate, food availability, 

predator scarcity, etc. Therefore, seasonal habitat fluctuations should be preferably 

taken into consideration in mathematical models due to the significant effect they 

have on the population density, even during brief periods when the physical and 

biological environments remain nearly constant. In fact, Nicholson [1] disputed that 

any periodic change of climate tends to impose its period upon oscillations of 

internal origin or to cause such oscillations to have a harmonic relation to periodic 

climate changes. Many researchers emphasized particular importance of periodic and 

almost periodic fluctuations in mathematical biology. For instance, Vance and 

Coddington [2] pointed out that periodic time variation holds considerable promise 

as a means to explore time-varying ecological processes. 

Although rapid progress in mathematical biology within the last few decades 

led to incorporation of time-varying parameters in many models, the effect of 

environmental fluctuations is still being quite often underestimated or even 

neglected. Henson and Cushing [3] stressed that fluctuating environments are of 

particular interest to population biologists. Despite this fact, the vast majority of 

mathematical models used in population dynamics and ecology are autonomous and 

assume a constant environment. As a result, virtually all fundamental principles in 
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theoretical population dynamics are based upon the assumption of a constant 

environment: monotonic logistic growth, competitive exclusion and ecological niche, 

predator-prey oscillations, and so on.  

In the cited paper, the authors obtained very interesting results that provide 

the first rigorous evidence, via model analysis of laboratory data, that an effective 

periodicity can have a positive effect on total population biomass. This positive 

development is in line with the prediction made by Brauer and Sánchez [4]  who 

emphasized that a general theory of the qualitative behavior of periodic population 

models, both single species and interacting species, would have many applications. 

Development of such theory appears to be not an easy task, as the discussion for a 

relatively simple logistic model in [5] demonstrates, see also the references cited 

therein. 

In Chapter 2, we give some basic definitions and theorems about T - periodic 

solutions and their asymptotic behavior, lower and upper fences, funnel and 

antifunnel.  

In this thesis, we are concerned with a nonlinear differential equation [42], 

( ) ( ) ( )
( )
( )

( )
( )

( )
( )

1
N t N t A t

N t r t N t
K t K t K t

  
= − −    

  

�  
(1.1) 

with continuous, positive T -periodic functions ( ) ,r t  ( )K t  and a continuous T -

periodic function ( ).A t   Eq. (1.1) describes the dynamics of a single species subject 

to Allee effect, where the case of constant coefficients is dealt with [6]. This equation 

can be also written in a compact form 

( ) ( ) ( )( ) ,N t N t g N t=�  (1.2) 

 where 
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gNt = rt 1 − Nt
Kt

Nt
Kt

− At
Kt

.
 

 In Eqs. (1.1) and (1.2), N  denotes the population size, the function ( )g N  stands 

for the density-dependent per capita growth rate, ( )r t  denotes the maximum per 

capita population growth rate without Allee effect, ( )A t  is the Allee threshold, that 

is, a critical population size or density below which the per capita population growth 

rate becomes negative,  ( )K t   is the carrying capacity of the environment. 

In Chapter 3, we investigate the existence of periodic solutions of Eq. (1.1) 

and their asymptotic behavior for the Allee threshold, ( ) ( ) ( )0,  0,  0A t A t A t> = < . 

A so called Allee effect occurs when positive density dependence dominates at low 

population size; for 0A >  (strong Allee effect), it characterizes the dynamics of a 

single population that goes extinct when rare. This effect is often caused by 

difficulties in mate finding; it may also depend, as indicated by Lewis and Kareiva 

[7], on other factors such as inbreeding depression, food exploitation, predator 

avoidance of defense, etc. Recent studies indicate that a strong Allee effect ( 0A > ) 

can give rise to a complex dynamics even in simple models arising in mathematical 

ecology and epidemiology; it can lead to critical population size or population levels 

below which the population crashes to extinction. Courchamp [10] pointed out that 

studies demonstrating Allee effects and determining their causal mechanisms, either 

theoretically or empirically, ought to be more numerous in the future. For more 

information on the wide variety of Allee effects in mathematical ecology, we refer to 
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an excellent monograph by Courchamp [10] and review papers by Boukal and Berec 

[12] or Berec [13]. 

Research reported in this thesis has been strongly motivated by a very recent 

contribution due to Padhi [14] who discussed existence of periodic solutions to a 

general scalar differential equation 

( )
( ) ( ) ( )( ), ,

dx t
A t x t f t x t

dt
= − +  (1.3) 

where A  and f  are continuous T - periodic real valued functions on  �   and  2
�   

respectively. Using Legget-Williams multiple fixed point theorem [15], Padhi [14] 

established existence of at least two positive periodic solutions to Eq. (1.3). As an 

application, a sufficient condition for the existence of periodic solutions to equation 

( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

dy t
a t y t y t b t c t y t

dt
= − −  (1.4) 

describing the dynamics of a single species subject to Allee effect has been derived. 

In Eq. (1.4), all coefficients are positive T - periodic functions; it is also assumed that  

( ) ( ),b t c t<   for all  .t ∈�  We formulate one of the principal results obtained in the 

cited paper. 

 Theorem 1.1 Let 

( ) ( ) ( ) ( ) ( )2

0 0
and    .

T T

M a s c s ds L a s b s c s ds= =∫ ∫  
(1.5) 

 If 

( ) ( ) ( )( )

( ) ( )

2
4 exp exp 1

2

exp 2 exp
,

M L M L M L L

M

L L

M L

+ + + − − −

− −
>

+

 (1.6) 
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Eq. (1.4) has at least two positive T - periodic solutions. 

Padhi [14] concluded the paper by pointing out the following. It would be 

interesting to develop results that identify the exact number of positive periodic 

solutions admitted by the considered model and study their stability nature. Such 

study becomes imperative from resource management perspective.  

In this thesis, we answer the questions raised by Padhi [14] demonstrating 

that much more information regarding the properties of periodic and, in general, all 

solutions to Eq. (1.1) can be obtained by combining methods of mathematical 

analysis with a simple direction field argument and the upper and lower solutions 

techniques. Our arguments are far from being trivial because the development of a 

qualitative theory for nonautonomous equations is much more difficult compared to 

autonomous case and requires, as pointed out by Langa [16], an essentially 

nonautonomous analysis. In particular, in what regards stability of solutions and 

properties of attractors, Berger and Siegmund [17] emphasized recently that there 

exist several non-equivalent definitions for nonautonomous attractors, and in many 

respects the nonautonomous situation remains fundamentally different from the 

autonomous one. Although serious difficulties that arise in the study of stability and 

bifurcation properties of generic nonautonomous differential equations, our 

elementary yet efficient technique for Eq. (1.1) allows one to determine the exact 

number of periodic solutions, localize them and describe their stability properties 

characterizing completely the dynamics of the population. 

In this chapter, we examine the blow up in finite time forward or backward, 

which prompts possibility for existence of vertical asymptotes for solutions. We 

estimate the behavior of solutions and we use upper and lower solutions to associated 

differential equations with constant coefficients whose exact solutions can be easily 
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obtained in a closed form. We explore the examples of the asymptotic behavior and 

vertical asymptotes of the Eq. (3.21) for 1,0,1γ = −  with the figures. 

In Chapter 4, we investigate the effect of harvesting on the dynamics of 

population in a fluctuating environment described by a nonlinear differential 

equation [43], 

( ) ( ) ( )
( )
( )

( )
( )

( )
( )

( ) ( )1
N t N t A t

N t r t N t h t N t
K t K t K t

  
= − − −    

  

�  (1.7) 

with continuous, positive T - periodic functions ( ) ,r t

 
( )K t  and a continuous T -

periodic function ( )A t
 
that is, 

( ) ( ) ( ) ( ) ( ) ( ),  ,    and     for all .r t T r t K t T K t A t T A t t+ = + = + = ∈�  

Eq. (1.7) describes the dynamics of a single species subject to Allee effect, where the 

case of constant coefficients is dealt with [6]. N  denotes the population size, ( )r t

denotes the maximum per capita population growth rate without Allee effect, ( )A t
 
is 

the Allee threshold for a strong Allee effect, that is, a critical population size or 

density below which the per capita population growth rate becomes negative, ( )K t
 

is the carrying capacity of the environment, ( )h t
 

is continuous function of 

harvesting. The dynamics of population in a fluctuating environment described by 

Eq. (1.7) or its particular cases in the presence of harvesting has been studied by 

many authors.  We would like mention to interesting contributions by Brauer and 

Sánchez [4], Lazer Chapter 1[38], Lazer and Sánchez [39], [40] and Padhi [14]. 

In this Chapter, all solutions to Eq. (1.7) are obtained by combining methods 

of mathematical analysis with simple direction field and the upper and lower 

solutions techniques. The discussed technique for Eq. (1.7) allows one to determine 
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the exact number of periodic solutions, localize them and describe their stability 

properties characterizing the dynamics of the system for the properties of  and A h , 

( )0, 0, 0, 0, 0A A A h h> < = > < . We explained the existence of periodic solutions 

for 0h = in Chapter 3.  We explore the examples for the asymptotic behavior of the 

Eq. (4.8) – Eq. (4.15) for 1 2, 1,0,1γ γ = − , with the figures. 
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Chapter 2  

PRELIMINARY AND AUXILIARY RESULTS 

In this chapter, we collected relevant results that are used in the sequel. In the 

qualitative theory of differential equations, one often uses lower and upper solutions, 

also called lower and upper fences (subsolutions and supersolutions) to prove 

existence and uniqueness of solutions, to describe their local and global behavior, to 

provide efficient estimates for solutions, etc. 

2.1 Lower and Upper Fences 

Definition 2.1.1 For the differential equation  

( )
( , ( )),

dx t
f t x t

dt
=  

(2.1) 

 a continuously differentiable function ( )tα  is called a lower fence (lower solution) 

if  ( ) ( )( ),t f t tα α≤�   for all ,t I∈  where I  is an open or closed interval with the 

endpoints a  and ,b  ,b ≤ +∞  .a ≥ −∞   Similarly, a continuously differentiable 

function  ( )tβ   is called an upper fence (upper solution) if ( ) ( )( ),t f t tβ β≥�   for all 

.t I∈   A lower/upper fence (lower/upper solution) is said to be strong (strict) if

( ) ( )( ),t f t tα α<�   or ( ) ( )( ), .t f t tβ β>�   A lower fence ( )tα   ( an upper fence 

( )tβ
 
) is called nonporous for the differential equation (2.1) with solution ( )x t  if  

( ) ( )t x tα ≤   then ( ) ( )t x tα <   or if ( ) ( )t x tβ ≥  then ( ) ( )t x tβ > , for all t I∈   

where  ( )x t   is defined. 
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2.2 Funnel and Antifunnel 

Definition 2.2.1 Let ( )tα   and ( )tβ   be nonporous lower and upper fences for 

differential equation (2.1) over  .I   If ( ) ( )t tα β<   ( ( ) ( )t tα β> ), the set of points 

( ),t y   such that, for all ,t I∈   ( ) ( )t y tα β≤ ≤   ( ( ) ( )t y tβ α≤ ≤ ), is called a 

funnel (antifunnel). 

For more details, we refer the reader to the book by Hubbard and West [17] 

where basic facts regarding fences and funnels can be found. 

The following two results regard existence of periodic solutions to Eq. (1.1) 

and Eq. (1.7); they are very useful for our discussion in the Chapter 3 and Chapter 4. 

The first one is a celebrated Massera Theorem [19], [20], [21], [22] and the second 

one is a direct consequence of the Massera Theorem, [4], [20], [23], or [24]. 

2.3 T-Periodic Solutions and Their Asymptotic Behavior 

Theorem 2.3.1 Suppose that the function ( , )f t x  is continuous, satisfies the 

uniqueness condition for all t   and ,x   and 

( , ) ( , ).f t T x f t x+ ≡  (2.2) 

 If a solution ( )x tφ=  of a differential equation (2.1) is bounded for all 0t t≥  ( for all 

0t t≤
 
), then either it is T - periodic or it asymptotically approaches some T - 

periodic solution as t → +∞    (as t → −∞  ). 

Corollary 2.3.2 Assume that ( , )f t x  is a smooth function satisfying (2.2) and there 

exist constants ,a b ( )a b<   such that ( , ) 0 ( , )f t b f t a< <   for every .t  Then there 

exists a T - periodic solution ( )x tφ=  of equation (2.1) satisfying 1(0) cφ =   for some 

1 ( , ).c a b∈  
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Remark 2.3.3 A T -periodic solution ( )x tφ=  in Corollary (2.3.2) is asymptotically 

stable, see Brauer and Sánchez [4]. If, in addition, there exists a constant d a<   

such that ( , ) 0f t d <   for all ,t   there exists a second unstable T -periodic solution 

( )x tψ=  of equation (2.1) satisfying 2(0) cψ =   for some 2 ( , ).c d a∈  

The next theorem was established in a more general form by Nkashama [25] 

as an extension of the existence result proved by Lakshmikantham and Leela [26] for 

a periodic boundary value problem 

( ) ( )
( )

( , ( )), 0
dx t

f t x t x x T
dt

= =  
(2.3) 

with a continuous function [ ]: 0,f T × →� �  to periodic boundary value problems 

with Carathéodory functions. It serves the same purpose as Theorem (2.3.1) and 

Corollary (2.3.2) Since our concern is polynomial differential equations of the form 

(1.1) with continuous coefficients, we assume continuous differentiability of f  to 

simplify the presentation. 

Theorem 2.3.4 (i) Let ( )tα  and ( )tβ  be respectively lower and upper solutions for 

equation (2.1) on [ ]0,I T=  such that ( ) ( )t tα β≤  on .I  Assume also that 

( ) ( )0 Tα α≤     ( ) ( )and    0 .Tβ β≥  

 Then periodic boundary value problem (2.3) has at least one solution ( )x t
∗

 

satisfying ( ) ( ) ( )t x t tα β∗≤ ≤   for all .t I∈  

(ii) Let ( )tα  and ( )tβ  be respectively lower and upper solutions for equation (2.1) 

on I   such that ( ) ( )t tα β≥  on .I  Assume also that 

( ) ( )0 Tα α≥     ( ) ( )and    0 .Tβ β≤  
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 Then periodic boundary value problem (2.3) has at least one solution ( )x t
∗

 

satisfying ( ) ( ) ( )t x t tβ α∗≤ ≤   for all .t I∈  

Andersen and Sandqvist [27] proved an interesting result providing an upper 

bound for the number of periodic solutions to Eq. (2.1). We extract it from the cited 

paper skipping details regarding relationship between the properties of periodic 

solutions and characteristic exponents that are not relevant to the study undertaken 

here. 

Theorem 2.3.5 Assume that the function f  in Eq. (2.1) belongs to ( )3 2 ,C �   

satisfies Eq. (2.2) and is such that ( ), 0,xxxf t x ≤  for every ( ) 2, ,t x ∈�
 
and there is  

t0   such that ( )0 , 0,xxxf t x <   for every  .x ∈�  Then Eq. (2.1) has at most three 

periodic solutions. 

The following result due to Korman and Ouyang [28] gives the exact number 

of periodic solutions for a differential equation of the form 

( ) ( )( ) ( )( ) ( )( ),x e t x a t x b t x c t= − − −�  (2.4) 

 where ,a  ,b   ,c   and  e  are continuous real-valued functions. 

Theorem 2.3.6 Let Eq. (2.4) have continuous T -periodic coefficients such that ( )e t  

has constant sign for almost all t  and 

max
t∈R

at < min
t∈R

bt, max
t∈R

bt < min
t∈R

ct.
 

 Then Eq.(2.4) has exactly three T -periodic solutions. 
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One can thus deduce from Theorem (2.3.6) the following proposition that 

provides the exact number of periodic solutions of Eq. (1.1) for the cases ( ) 0A t >  

(strong Allee effect), ( ) 0A t =   and ( ) 0A t <  (weak Allee effect). 

Theorem 2.3.7  Consider Eq. (1.1) with continuous, positive T - periodic functions 

( )r t  and ( ).K t   Assume also that either (i) ( )A t  is a continuous, positive T - 

periodic functions such that 

( ) ( )max min ,
tt

A t K t
∈∈

<
��

 

 or  (ii) ( )A t  is a continuous, non-positive T - periodic function such that 

( ) ( )min min .
t t

A t K t
∈ ∈

− <
� �

 

 Then, in either case, Eq. (1.1) has exactly three T - periodic solutions. 

Remark 2.3.8 One should note that Theorems (2.3.5) – (2.3.7) fail to hold for 

generic cubic differential equations. For instance, Lins Neto [29] provided examples 

of equations of the form 

( )
( ) ( ) ( ) ( )3 2

3 2

dy t
a t y t a t y t

dt
= +  

(2.5) 

 

 which have at least k  periodic solutions and not all solutions to Eq.(2.5) are 

periodic, where k  is a positive integer and 2 ,a  3a  are polynomials in t  or in 

( )cos tπ  and ( )sin .tπ   It is a special form of Eq. (1.1) that helps describe its 

dynamics more precisely. 

We conclude this section with a simple technical proposition that facilitates 

estimates in the proofs of our main results. 
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Lemma 2.3.9 Let 1f  and 2f  be two continuous real-valued functions defined on 

some interval  [ ], .a b = ⊂ �I  

(i) If      ( ) ( ) ( ) ( )1 1 1 2 2 2min ( ) max 0 min ( ) max ,
t tt t

f t f t f t f t f t f t
∈ ∈∈ ∈

≤ ≤ < < ≤ ≤
I II I

 

then 

( ) ( ) ( ) ( )1 2 1 2 1 2min ( ) max max min ( ) on .
t tt t

f t f t f t f t f t f t
∈ ∈∈ ∈

⋅ ≤ ≤ ⋅
I II I

I  

(ii) If    ( ) ( )1 2max , 0,
t

f t f t
∈

<  
I

 

 then 

( ) ( ) ( ) ( )1 2 1 2 1 2max max min ( ) min ( ) on .
t tt t

f t f t f t f t f t f t
∈ ∈∈ ∈

⋅ ≤ ≤ ⋅
I II I

I  
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Chapter 3  

EXISTENCE OF PERIODIC SOLUTIONS OF THE 

DIFFERENTIAL EQUATION WITH ALLEE EFFECT 

In this chapter, we study the existence of periodic solutions to Eq. (1.1) and 

their stability properties. In what follows, maxP  and minP   denote respectively the 

maximum and the minimum of a continuous periodic function ( ).P t  Taking into 

account that the exact number of periodic solutions to Eq. (1.1) is established in 

Theorem (2.3.7) which is a direct consequence of a more general Theorem (2.3.6) of 

Korman and Ouyang [28] and following the suggestion of Padhi [14], we concentrate 

our efforts on establishing location and stability properties of positive periodic 

solutions. When we have a negative periodic solution of the differential equation 

(1.1) describing dynamics of a population, it has no biological meaning. If the 

periodic solution is positive and stable then the biological meaning is the population 

survives and fluctuates periodically. 

The solutions to Eq. (1.1) may not be defined for all values of  ;t   some may 

blow up in finite time forward or backward, which prompts possibility for existence 

of vertical asymptotes for solutions. Direct integration of Eq. (1.1) is not possible 

despite of its relatively simple structure. Therefore, to estimate the behavior of 

solutions we use upper and lower solutions to associated differential equations with 

constant coefficients whose exact solutions can be easily obtained in a closed form.  
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3.1 Existence of Periodic Solutions  

In this section, we study the existence of periodic solutions to Eq. (1.1) and 

their stability properties. Three cases where the ( )A t is positive (strong Allee effect), 

zero and negative (weak Allee effect) are considered separately. 

3.1.1 Existence of Periodic Solutions and their Stability for A(t)>0 

In this subsection, we study the existence of periodic solutions to Eq. (1.1) 

and their stability properties for the Allee threshold ( )A t  is positive (strong Allee 

effect). 

Theorem 3.1 (Bistability) Let ( ) 0A t >  and assume that 

max min .A K<  (3.1) 

 Then Eq. (1.1) has three periodic solutions: the asymptotically stable trivial solution 

( ) 0N t =
triv

 and two positive solutions, an asymptotically stable solution ( )1N t  and 

an unstable solution ( )2 .N t  

 Proof. Observe first that 

Amin ≤ At ≤ Amax < Amax + Kmin

2
< Kmin ≤ Kt ≤ Kmax .

 

 Let 
max .M K

∗ >  Then, using Lemma (2.3.9), we conclude that, for all 

[ ]0 0, ,t t t T∈ = +J  

( )
( )
( )

( )( ) ( )( )

( )( )

2

min
max max2

max

,

               0.

r t
f t M M K t M M A t

K t

r
M K M M A

K

∗ ∗ ∗ ∗

∗ ∗ ∗

= − −

≤ − − <

 (3.2) 

 On the other hand, 
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( )
( )

( )

( )

max min max min max min
2

max min max minmin
2
max

max min max min
min max

,
2 2 2

                            
2 2

                            
2 2

r tA K A K A K
f t K t

K t

A K A Kr
A t

K

A K A K
K A

+ + +    
= −    

    

+ +   
× − ≥   
   

+ + 
× − − 
 

( ) ( )
2min

max min min max2
max

                           0.
8

r
A K K A

K


 
 

= + − >

 (3.3) 

 Since  

( )( ) ( )1 1, 0f t t tβ β< =�  ( )( ) ( )1 1  and    , 0,f t t tα α> =�  

for all 0 ,t t≥   we conclude that ( )1 t Mβ ∗=   and ( ) ( )1 max min / 2t A Kα = +  are strict 

upper and lower fences respectively. Note that ( ) ( )1 1 .t tα β<   Therefore, there is a 

funnel that contains an asymptotically stable periodic solution ( )1N t  to Eq. (1.1). 

Furthermore, ( )1N t  attracts all other solutions with close initial data; these solutions 

stay in the funnel after entering it once. The existence of a periodic solution ( )1N t  is 

guaranteed by Theorem (2.3.1), Corollary (2.3.2), or Theorem (2.3.4), as well as 

corresponding theorems about funnels; see Hubbard and West [18]. Corollary (2.3.2) 

and theorems on funnels [17] ensure asymptotic stability. Similar reasoning applies 

in the rest of this proof and for other results included in this section. 

Next, observe that 

( )
( )

( ) ( )

( )

min min min min
2

min min min min
min min2

max

2
min min

min min2
max

,
2 2 2 2

                 
2 2 2

                 2 0
8

r tA A A A
f t K t A t

K t

r A A A
K A

K

r A
K A

K

    
= − −    

    

  
≤ − −  

  

= − − <

 

 and 
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( )
( )

( ) ( )

( )

min min min min
2

min min min min
min min2

max

2
min min

min min2
max

,
2 2 2 2

                    
2 2 2

3
                    2 0.

8

r tA A A A
f t K t A t

K t

r A A A
K A

K

r A
K A

K

     
− = − + − −     

     

   
≥ − + − −   

   

= + >

 

The same argument as above leads to the conclusion that ( )0 min / 2t Aβ =  and 

( )0 min / 2t Aα = −   are, respectively, strict upper and lower fences because 

ft,α0t > α̇0t = 0, ft,β0t < β̇0t = 0.
 

Since ( ) ( )0 0 ,t tα β<  the trivial solution ( )N t
triv

 to Eq. (1.1) is located in a funnel 

formed by 0α  and 0.β  This solution is asymptotically stable; all nearby solutions 

enter a funnel and stay eventually there. 

To study unstable positive periodic solution ( )2 ,N t  we reverse the time, 

keeping in mind that a past attractor is a future repellor. Note that a new function 

( ) ( )N N tτ = −  satisfies a modified differential equation 

( )
( ) ( )

( )
( )

( )
( )

( )
( )

1 .
dN N N A

r N
d K K K

τ τ τ τ
τ τ

τ τ τ τ

   
= − − −      

   
 (3.4) 

 Let ( )ˆ ,f Nτ  denote the right-hand side of Eq. (3.4). Then 

( )
( )

( )

( )

max min max min max min
2

max min max minmin
2
max

max min max mi
min max

ˆ ,
2 2 2

                             
2 2

                            
2

rA K A K A K
f K

K

A K A Kr
A

K

A K A K
K A

τ
τ τ

τ

τ

+ + +    
= − −    

    

+ +   
× − ≤   
   

+ + 
× − − 
 

( ) ( )

n

2min
max min min max2

max

2

                           0
8

r
A K K A

K

 
 
 

= − + − <
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 and  

( )
( )

( )

( ) ( )

min min min
2

2
min min min

min min2
max

ˆ ,
2 2 2

                  2 0.
2 8

rA A A
f K

K

A r A
A K A

K

τ
τ τ

τ

τ

    
= −    

    

 
× − ≥ − > 
 

 

 Reasoning as above, we conclude that ( ) ( )2 max min / 2t A Kβ = +  and ( )2 min / 2t Aα =   

are strict upper and lower fences respectively, since  

f̂t,α2t > α̇2t = 0, f̂t,β2t < β̇2t = 0.
 

 The fact that ( ) ( )2 2t tα β<  yields that these fences form a funnel as τ → ∞  and, 

correspondingly, an antifunnel as .t → ∞ This means that there exists an 

asymptotically stable, as ,τ → +∞   periodic solution to Eq. (3.4) satisfying 

( ) max minmin .
2 2

A KA
N τ

+
< <  (3.5) 

Consequently, Eq. (1.1) has an unstable periodic solution ( )2 ,N t   as ,t → +∞   

satisfying Eq. (3.5). Therefore, we have established existence of three periodic 

solutions to Eq. (1.1), namely, the trivial solution ( )N t
triv

 and two positive 

solutions, a stable solution ( )1N t   and an unstable solution ( )2N t  satisfying, for all  

t ∈ R,   

( ) ( ) ( )max minmin min
2 1 .

2 2 2

A KA A
N t N t N t M ∗+

− < < < < < <
triv  (3.6) 

 By Theorem (2.3.6), Eq. (1.1) cannot have more periodic solutions. The proof is 

complete.
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In the following proposition, we indicate the corridors where periodic 

solutions are located. It can be easily proved along the same lines as Theorem (3.1).  

For instance, one can use maxK ε+  rather than M
∗   to derive an estimate similar to 

(3.2) and minK ε−  to obtain an inequality analogous to (3.3). 

Corollary 3.2 Let the assumptions of Theorem (3.1) be satisfied. Then, for any  

0,ε >  the following estimates for the three periodic solutions of Eq. (1.1) hold, for 

all  ,t ∈�  

( )

( )

( )

min 1 max

min 2 max

,

,

.

N t

K N t K

A N t A

ε ε

ε ε

ε ε

− < <

− < < +

− < < +

triv

 (3.7) 

Remark 3.3 New estimates in Corollary (3.2) are better than (3.6), but are not 

sharp. Our technique requires control of the sign of the right-hand side of Eq. (1.1) 

and, unfortunately, does not allow further tightening of inequalities (3.7). 

3.1.2 Existence of Periodic Solutions and their Stability for A(t)=0 

In this subsection, we investigate the existence of the periodic solutions to 

Eq. (1.1) and their stability when the Allee threshold ( )A t  is zero (weak Allee 

effect).  

Consider the case when ( ) 0.A t =   Then, Eq. (1.1) takes the form  

Ṅt =
rt
Kt

N2t 1 − Nt
Kt

,   #   

 

(3.8) 

 whereas assumption (3.1) is satisfied automatically. 
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Theorem 3.4 (Unique Positive Attractor) Eq. (3.8) has two periodic solutions, a 

semi-stable trivial solution ( )N t
triv

 and an asymptotically stable positive solution 

( )1N t  that attracts all other solutions to this equation with positive initial data. 

Proof.  For any 
max ,M K

∗ > one has, for all 0 ,t t≥  

( )
( )
( )

( ) ( )( )

( ) ( )

2

2

2
min

max2
max

,

   0

r t
f t M M K t M

K t

r
M K M

K

∗ ∗ ∗

∗ ∗

= −

≤ − <

 

 and 

( )
( )

( )
2

min min min
2

3
min min

2
max

,
2 2 2

   0.
8

r tK K K
f t K t

K t

r K

K

     
= −     

     

≥ >

 

Thus, horizontal lines ( )1 t Mβ ∗=  and ( )1 min / 2t Kα =  are strict upper and lower 

fences, respectively, since 

( )( ) ( ) ( )( ) ( )1 1 1 1, 0, , 0.f t t t f t t tα α β β> = < =��  

Furthermore, ( ) ( )1 1 ,t tα β<   which means that these fences form a funnel; once 

solution enters the funnel, it stays there eventually. Therefore, Eq. (3.8) has an 

asymptotically stable positive periodic solution ( )1N t  satisfying 

Kmin

2
< N1t < M∗.

 

 On the other hand, 
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( )
( )

( )
2

min min min
2

2

min min min
min2

max

3
min min

2
max

,
2 2 2

                     
2 2

3
                     0.

8

r tK K K
f t K t

K t

r K K
K

K

r K

K

     
− = − +     

     

   
≥ − +   

   

= >

 

This means that the trivial solution ( )N t
triv

 is a semi-stable periodic solution to Eq. 

(3.8); it attracts solutions with negative initial data and repels those with positive 

initial data; there are no more periodic solutions in this case. 

 

Remark 3.5 Observe that in the case ( ) 0,A t =  solutions to Eq. (3.8) with positive 

initial data exhibit logistic type dynamics similar to that observed for the logistic 

differential equation 

Ṅt = rtNt 1 − Nt
Kt

,   #   

 

(3.9) 

although solutions to Eq. (3.8) do not approach a unique positive solution ( )1N t  as 

fast as the solution of  Eq. (3.9). 

The following proposition is similar to Corollary (3.2). 

Corollary 3.6 Let ( ) 0.A t =  Then, for any 0ε >   and for all  t ∈ R,   the first two 

estimates in (3.7) hold for the periodic solutions ( )N t
triv

 and ( )1N t  to Eq. (1.1). 

3.1.3 Existence of Periodic Solutions and their Stability for A(t)<0  

In this subsection, we examine the existence of the periodic solution and their 

stability for the case ( ) 0A t <  (weak Allee effect). 
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 Theorem 3.7 (Positive and Negative Attractors)  Let  ( ) 0A t <   and assume that 

min min0 .A K< − <  (3.10) 

 Then Eq. (1.1) has three periodic solutions: the trivial solution ( )N t
triv

 which is 

unstable, a positive solution ( )1N t  and a negative solution ( )2 ,N t   both 

asymptotically stable. Furthermore, ( )1N t  attracts all solutions with positive initial 

values. 

Proof.  Pick an 
max ,M K

∗ >   then 

( )
( )
( )

( )( ) ( )( )

( )( )

2

min
max max2

max

,

 0.

r t
f t M M K t M M A t

K t

r
M K M M A

K

∗ ∗ ∗ ∗

∗ ∗ ∗

= − −

≤ − − <

 

 Noting that, by virtue of (3.10), max min 0,A K+ >   we conclude that 

( )
( )

( )

( )

max min max min max min
2

max min max minmin
2
max

max min max min
min max

,
2 2 2

                            
2 2

                            
2 2

r tA K A K A K
f t K t

K t

A K A Kr
A t

K

A K A K
K A

+ + +    
= −    

    

+ +   
× − ≥   
   

+ + 
× − − 
 

( ) ( )
2min

max min min max2
max

                           0.
8

r
A K K A

K


 
 

= + − >

 

Therefore, ( )1 t Mβ ∗=  and ( ) ( )1 max min / 2t A Kα = +  are, respectively, strict upper 

and lower fences since 

( )( ) ( ) ( )( ) ( )1 1 1 1, 0, , 0.f t t t f t t tα α β β> = < =��  

 Furthermore, ( ) ( )1 1 ,t tα β<  and the two horizontal lines, ( )1 t Mβ ∗=  and 

( ) ( )1 max min / 2t A Kα = +  form a funnel, which means that there exists an 
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asymptotically stable as  t → ∞   positive periodic solution ( )1N t  to Eq. (1.1) 

satisfying 

Amax + Kmin

2
< N1t < M∗,

 

for all .t ∈�  All other solutions with positive initial data enter the funnel and stay 

there eventually. 

Observe also that, by virtue of Lemma (2.3.9), 

( )
( )

( ) ( )

( )

max max max max
2

max max maxmin
min max2

max

2
min max

min max2
max

,
2 2 2 2

                  
2 2 2

                   2 0
8

r tA A A A
f t K t A t

K t

A A Ar
K A

K

r A
K A

K

     
= − −     

     

   
≤ − −   

   

= − − <

 

 and, for any  
min 0,h A

∗ < <  

( )
( )
( )

( )( ) ( )( )

( )( )

2

min
min min2

max

,

             0.

r t
f t h h K t h h A t

K t

r
h K h h A

K

∗ ∗ ∗ ∗

∗ ∗ ∗

= − −

≥ − − >

 

Therefore, ( )0 max / 2t Aβ =  and ( ) ( )0 max min / 2t A Kα = +  are strict upper and lower 

fences, respectively, because  

α̇0t = 0 < ft,α0t, β̇0t = 0 > ft,β0t.  

They form an antifunnel since ( ) ( )0 0 .t tα β>  The trivial solution ( )N t
triv

 to Eq. 

(1.1), contained in the antifunnel, is unstable and repels other solutions with close 

initial data. On the other hand, we observe that the second nontrivial periodic 

solution ( )2N t  takes on only negative values and attracts all nearby solutions. It is 
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not difficult to see that ( )2N t  is located in a funnel formed by a strict upper solution 

( )2 max / 2t Aβ =  and a strict lower solution ( )2 ;t hα ∗=  solutions with close initial 

data are eventually trapped inside the funnel.
 
 

 

3.2 Blow Up Time 

In this section, the solutions to Eq. (1.1) may not be defined for all values of  

;t  some may blow up in finite time forward or backward, which prompts possibility 

for existence of vertical asymptotes for solutions. Direct integration of Eq. (1.1) is 

not possible despite of its relatively simple structure. Therefore, to estimate the 

behavior of solutions we use upper and lower solutions to associated differential 

equations with constant coefficients whose exact solutions can be easily obtained in a 

closed form. In the sequel, we explore behavior of solutions to Eq. (1.1) satisfying 

the initial condition 

Nt0  = N0 .   #   
 

(3.11) 

  

The following result plays the key role in our subsequent discussion. 

Lemma 3.8 (Comparison Lemma) Assume that ( ) 0A t >  and (3.1) are satisfied. 

Then, for 0 max ,N K>  every solution  ( )N t   to Eq. (1.1) satisfies, for all 0 ,t t≥    

ηt ≤ Nt ≤ ϕt,   #   
 

(3.12) 

 

 where η   and ϕ   are solutions to differential equations 

η̇t = − rmax

Kmin
2

η3t   #   

 

(3.13) 
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 and 

ϕ̇t = rmin

Kmax
2

Kmax − ϕt3
  #   

 

(3.14) 

 with the same initial data. For 0 ,t t<   the functions η  and ϕ  in (3.12) swap the 

roles. Similarly, for 0 0,N <   every solution ( )N t  to Eq. (1.1) satisfies, for all 0 ,t t≥    

φt ≤ Nt ≤ ψt,   #   
 

(3.15) 

 

 where φ  and ψ  are solutions to differential equations 

φ̇t = − rmin

Kmax
2

φ3t   #   

 

(3.16) 

 

 and 

ψ̇t = rmax

Kmin
2

Kmax − ψt3
  #   

 

(3.17) 

 

satisfying the same initial condition. For 0 ,t t<  the functions φ  and ψ  in (3.15) 

swap the roles. 

Proof.  For  0 max ,N K>   one has, for all 0 ,t t≥  

( )
( )
( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

( )( )

2

min
max max2

max

3min
max2

max

r t
N t N t K t N t N t A t

K t

r
N t K N t N t A

K

r
K N t

K

⋅

= − −

≤ − −

≤ −

 

 and  
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( )
( )
( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

( )

2

max
min min2

min

3max
2
min

        

        .

r t
N t N t K t N t N t A t

K t

r
N t K N t N t A

K

r
N t

K

= − −

≥ − −

≥ −

�

 

 In a similar manner, for 0 0,N <  we obtain the following estimates: 

( )
( )
( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )( )

( )( )

2

max
max max2

min

3max
max2

min

        

        

r t
N t N t K t N t N t A t

K t

r
N t N t A K N

K

r
K N t

K

⋅

= − −

≤ − −

≤ −

 

 and 

( )
( )
( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

( )

2

min
min min2

max

3min
2
max

,

r t
N t N t K t N t N t A t

K t

r
N t K N t N t A

K

r
N t

K

⋅

= − −

≥ − − −

≥ −

 

for all 0 .t t≥  The proof is complete. 

Corollary 3.9 (i) Let ( ) 0.A t =   Then both conclusions of Lemma (3.8) regarding 

solutions with large positive and negative initial data remain intact. 

(ii) Let ( ) 0A t <  and assume that (3.10) holds. Then, the first conclusion of Lemma 

(3.8) for solutions with large positive data remains intact. The second conclusion 

holds for solutions satisfying condition 

N0 < Amin < 0.   #   
 

(3.18) 
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Proof. We note that the only change in the proof regards the second conclusion in the 

case (ii). We have to require that (3.18) holds to ensure that the term ( ) ( )N t A t−   on 

the right hand side is always negative. The rest of the proof is as in Lemma (3.8). 

Using Lemma (3.8), one can describe more precisely backward behavior of solutions 

to Eq. (1.1) satisfying the initial condition (3.11).
 
 

Theorem 3.10 (i) Suppose that ( ) 0A t >  and (3.1) is satisfied. Then backward blow 

up time  tbul   for solutions to Eq. (1.1) with large initial data 0 maxN K>  satisfies the 

estimates 

tϕ
∗ = t0 − Kmax

2

2rminKmax − N0 
2
≤ tbul ≤ t0 −

Kmin
2

2rmaxN0
2
= tη

∗.   #   

 

(3.19) 

 

 For solutions with negative initial data, the estimates for the backward blow up time  

tbun   take the form 

tφ
∗ = t0 − Kmax

2

2rminN0
2
≤ tbun ≤ t0 −

Kmin
2

2rmaxKmax − N0 
2
= tψ

∗ .   #   

 

(3.20) 

 

(ii) Let ( ) 0.A t =   Then conclusions in (i) remain intact. 

(iii) Suppose that ( ) 0A t <  and (3.10) holds. Then (3.19) is satisfied for solutions 

with large positive data, whereas (3.20) holds for solutions satisfying (3.18). 

Proof. (i) Let ( )N t  be the solution to Eq. (1.1) satisfying the initial condition (3.11). 

Then, by virtue of  Lemma (3.8), for all  t ∈ R,  ( )N t   is squeezed (note the order 

swapping in the inequalities at 0t t=  ) between solutions to differential equations 
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(3.13) and (3.14) starting at ( )0 0, .t N   A straightforward integration of Eq. (3.14) 

from  t0   to  t   yields 

1
ϕt − Kmax 2

= 1
ϕt0  − Kmax 2

+ 2 rmin

Kmax
2

t − t0 ,

 

 or, equivalently, 

ϕt =
Kmax ϕt0  − Kmax −2 + 2rminKmax

−2 t − t0  + 1

ϕt0  − Kmax −2 + 2rmin Kmax
−2 t − t0 

.

 

Therefore, solution ( )tϕ  to Eq. (3.14) satisfying (3.11) blows up backward in time 

at the instant 

tϕ
∗ = t0 − Kmax

2

2rminKmax − ϕt0 
2

;

 

this solution has a vertical asymptote .t tϕ
∗=   Similarly, integrating Eq. (3.13) 

between  0t   to  ,t   one has 

1
η2t

= 1
η2t0 

+ 2 rmax

Kmin
2

t − t0 ,
 

 or 

ηt = 1

η−2t0  + 2rmaxKmin
−2 t − t0 

.

 

Consequently, solution  ( )tη   to Eq. (3.13) satisfying (3.11) blows up backward in 

time at the instant 

tη
∗ = t0 −

Kmin
2

2rmaxη2t0   
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and has a vertical asymptote .t tη
∗=   The estimate (3.19) accounts for the change of 

order in (3.12). Following the same lines, one can also evaluate backward blow up 

time for solutions to Eq. (1.1) with negative initial values. Using equations (3.16) and 

(3.17) rather than (3.13) and (3.14), after a straightforward integration from  0t   to  ,t   

one deduces explicit formulas for solutions of the second pair of equations:  

φt = 1

φ−2t0  + 2rminKmax
−2 t − t0 

 

  and 

ψt =
Kmax Kmax − ψt0 

−2 + 2rminKmax
−2 t − t0  + 1

Kmax − ψt0 −2 + 2rmin Kmax
−2 t − t0 

.

 

 Corresponding blow up times are 

tφ
∗ = t0 − Kmax

2

2rminφ2t0   

 and 

tψ
∗ = t0 −

Kmin
2

2rmaxKmax − ψt0 
2

.

 

Taking into account that  φ   and  ψ   swap in (3.15) for 0 ,t t<   these two equations 

lead to the estimate (3.20) for the backward blow up time for solutions to Eq. (1.1) 

with negative initial data. The proof in the case (ii) is the same, whereas in the case 

(iii) only obvious minor modifications are required.
 
 

Remark 3.11 The estimates provided by solutions to differential equations (3.13)-

(3.14) are not very tight as time  t   advances. This can be seen from the figures in 
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the next chapter. The reason is that all differential equations are in the one and only 

form that allows to determine explicit solutions. However, the estimates for the blow 

up time are reasonably good, especially those provided by solutions to Eq. (3.13) for 

large positive initial values and by solutions to Eq. (3.14) for negative initial values. 

3.3 Example and Discussion 

In this section, we discuss examples that illustrate results of Section 3.1 and 

Section 3.2. To underline the changes in the dynamics of the population that occur 

during the transition of the Allee threshold  ( )A t   from positive values through zero 

to negative ones, we intentionally keep the other two parameters of the system, the 

intrinsic growth rate  ( )r t   and carrying capacity  ( ) ,K t   unchanged. We also 

compare our technique to the approach suggested in the recent work by Padhi [14]. 

Example 3.12  For ,γ ∈�   consider Eq. (1.1) with 

rt = sin2πt + 4, Kt = cos2πt + 8, At = γsin2πt + 2.
 

This choice of coefficients leads to the differential equation 

( ) ( ) ( )
( ) ( ) sin 2 2

sin 2 4 1 .
cos 2 8 cos 2 8 cos 2 8

N t N t t
N t t N t

t t t

π
π γ

π π π

   +
= + − × −   

+ + +   

�  
(3.21) 

 

To begin with, let 1.γ =  Obviously, then  ( ) 0A t >   and max min3 7 .A K= ≤ =   By 

Theorem (3.1), Eq. (3.21) has three periodic solutions: an asymptotically stable 

trivial solution ( ) 0N t =
triv

  and two positive solutions, an asymptotically stable 

solution  ( )1N t   and an unstable solution ( )2 .N t  

By Corollary (3.2), these three solutions satisfy the inequalities  
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( )

( )

( )

1

2

,

7 9 ,

1 3 ,

N t

N t

N t

ε ε

ε ε

ε ε

− < <

− < < +

− < < +

triv

 (3.22) 

 for any 0,ε >   see Figure 1.    

 
Figure 1: Three periodic solutions and several other solutions to Eq. (3.21) for 1.γ =   

 

This and all other figures in this chapter have been plotted with the help of the 

computer algebra system Mathematica. Differential equations (3.13)-(3.17) that 

define upper and lower solutions for Eq. (3.21) have the form 
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( ) ( )

( ) ( )( )

( ) ( )

( ) ( )( )

3

3

3

3

5
,

49

1
9 ,

27

1
,

27

5
9 .

49

t t

t t

t t

t t

η η

ϕ φ

φ ϕ

ψ ψ

= −

= −

= −

= −

�

�

�

�

 

 The estimates (3.19) and (3.20) for the backward blow up times provided in 

Theorem (3.10) yield for Eq. (3.21) the following. For solutions with large initial 

data,  

t 0 − 27
29 − N0 

2
≤ t bul ≤ t0 − 49

10N0
2

,   #   

 

(3.23) 

 whereas for solutions with negative initial data, the estimates take the form 

t 0 − 27
2N0

2
≤ tbun ≤ t0 − 49

109 − N0 
2

.   #   

 

(3.24) 

 Periodic solutions to Eq. (3.21) are shown in Figure 2 along with several solutions 

approaching asymptotically stable periodic solution ( )1 .N t  

For solutions departing from the points  ( )0,13   and ( )0, 3 ,−   the estimates for the 

backward blow up time are, respectively,  

− 27
32

≤ tbul ≤ − 49
1690

, − 27
338

≤ tbun ≤ − 49
1600  

 and 
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− 27
288

≤ tbul ≤ − 49
90

, − 3
2

≤ tbun ≤ − 49
1440

.
 

 Two pairs of vertical asymptotes are shown, along with several trajectories, in 

Figure 2. Taking into account that the difference t tη ψ
∗ ∗−  is usually very small, it is 

quite difficult to distinguish asymptotes to solutions to Eqs. (3.13) and (3.17) plotted 

together. In fact, for both pairs of asymptotes to solutions through  ( )0,13   and  

( )0, 3 ,−   one has 

349 49 1 1
49 1.6309 10 .

1600 1690 1600 1690
t tη ψ

∗ ∗ − 
− = − = − = × 

 
 

 
Figure 2: Vertical asymptotes (green), upper (orange) and lower (lilac) solutions 

along with several other solutions (red) to Eq. (3.21) for 1γ = . 

 
 

This is why one can see only three asymptotes in Figure 2, the upmost right being 

slightly thicker and representing two asymptotes that collide rather than one. Note 

that, by virtue of Lemma (3.8), vertical asymptotes do not depend on the choice of 
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( ).A t   This is a natural consequence of the restrictions (3.1) and (3.10) imposed on 

the coefficient associated with the Allee effect ( )A t  simply leaves no trace in Eqs. 

(3.13)-(3.17). Consequently, variations in ( )A t  in Eq. (3.21) do not affect their 

location. 

In order to compare our results with those derived by Padhi [14], observe that, by 

virtue of (1.5), one obtains for Eq. (3.21) the following values: 

M = ∫
0

1
sin2πt + 4dt = 4

 

 and 

L = ∫
0

1 sin2πt + 4sin2πt + 2
8 + cos2πt

dt = − 55
21

7 + 8 ≈ 1.0707.
 

 A straightforward computation yields  

2
1 55 55 55

4 7 8 4 4exp 7 8 exp 7 8 1
2 4 21 21 21

55
  4 7 8 1.1211

21

α
       = × − + − ⋅ − − + −      ⋅       


+ − + ≈



 

 and  

55 55
exp 2 7 8 exp 7 8

21 21
1.6108.

55
4 7 8

21

β

    
⋅ − + − −    
    = ≈

− +

 

Therefore, condition (1.6) in Theorem (1.1) fails to hold for Eq. (3.21) because  

.α β<   Thus, the cited theorem does not apply to this equation. Serious limitations 

brought by applying a much more general result derived by Padhi [14] for Eq. (1.3) 
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to its particular case, Eq. (1.4) are clearly seen, whereas our simpler technique 

tailored for the latter equation proves to be more efficient. In fact, Theorem (1.1) 

does not bring much information to mathematical biologists who require more 

details regarding the exact number of positive periodic solutions and their 

qualitative properties. 

Letting now  0γ =   in Eq. (3.21), we obtain 

Ṅt = sin2πt + 4
cos2πt + 8

N2t 1 − Nt
cos2πt + 8

.   #   

 

(3.25) 

  

By Theorem (3.4), Eq. (3.25) has two periodic solutions, a semi-stable trivial 

solution  ( )N t
triv

 and an asymptotically stable positive solution ( )1N t  that attracts 

all solutions to this equation with positive initial data. Both solutions are sketched in 

Figure 3. The first two estimates in (3.22), as well as the estimates (3.23) and (3.24) 

for the backward blow up times remain valid also for solutions to Eq. (3.25) with 

large and negative initial data respectively.   
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Figure 3: Two periodic solutions and several other solutions to Eq. (3.21) for 0γ =  . 

 

Finally, choosing  1γ = −   in Eq. (3.21), one arrives at the differential equation 

 

 

Ṅt = sin2πt + 4Nt 1 − Nt
cos2πt + 8

Nt + sin2πt + 2
cos2πt + 8

.   #   

 

(3.26) 

 

Observe that (3.10) is satisfied since min 3,A = −   min 7,K =   and  min min 4 0.K A+ = >   

Consequently, by Theorem (3.7), Eq. (3.26) has three periodic solutions, an unstable 

trivial solution ( ) ,N t
triv

  an asymptotically stable positive solution ( )1N t  and an 

asymptotically stable negative solution ( )2 ,N t   see Figure 4.  
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Figure 4: Three periodic solutions and several other solutions to Eq. (3.21) for 

1γ = −  . 

 

Note that  ( )1N t   attracts all solutions with positive initial values. As above, the 

estimates (3.23) and (3.24) for the backward blow up times also apply to solutions to 

Eq. (3.26) with large positive initial data and solutions with negative initial data 

satisfying (3.18). 

We would like to stress that despite of its generality and power, the method 

using an advanced multiple fixed point theorem to Eqs. (1.3) and (1.4) suggested by 

Padhi [14] does not apply to the latter equation whenever condition (1.6) fails to 

hold; this fact was observed for Eq. (3.21) for  1;γ =   more equations with similar 

properties can be easily provided. Furthermore, the example selected by Padhi [14] 

to illustrate Theorem (1.1) looks quite artificial and may not be suitable for 

describing the dynamics of the real system due to rather unrealistic ranges of the 

carrying capacity ( ) ( )
1

1.2 sinc t t
−

= +  and intrinsic growth rate  ( ) ( )
2

1.2 sin .a t t= +   
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In fact; the maximal value  max 121 / 25a =   is very close to the maximum of the 

carrying capacity  max 5,c =    

( )
5

5
11

c t≤ ≤    ( )
1 121

and    .
25 25

a t≤ ≤  

Finally, we note that Padhi [14] do not discuss weak Allee effect. 

In this light, our approach combining rigorous mathematical analysis with 

direction field arguments and the upper and lower solutions method is more efficient 

for Eq. (1.1); it provides all necessary information on the dynamics of the species 

under nonrestrictive and easily verifiable assumptions like (3.1), (3.10) or (3.18). 

Such simple but efficient approach is very important in applied problems arising in 

population dynamics or epidemiology. One should note that since the suggested 

technique relies on the form of the right-hand side in a given differential equation, its 

efficiency is directly related to estimates for the right-hand side used in Section 3.1 

or estimates for solutions derived in Section 3.2 and thus differs for various classes 

of differential equations.  

However, similar ideas proved to be useful for the study of several population 

models, see, for instance, the direction field arguments in the analysis of periodic 

logistic and Gompertz equations with harvesting in Brauer and Sánchez [4] and 

applications of the comparison technique to periodic competing species in [30] or  

[31], as well as the references cited therein. Very recently, Hasanbulli [32] used the 

technique described in this thesis for the study of the effect of a periodic constant 

yield harvesting on a single species population whose dynamics in a fluctuating 

environment is described by the logistic differential equation with periodic 

coefficients. They demonstrated  the existence of the attractor-repellor  pair, obtained 
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efficient bounds for positive attractor and repellor along with the estimates for 

extinction time and for forward/backward blow up times. 

In what concerns dynamics of the general differential equation (1.3), we 

would like to mention a very interesting contribution by Bardi [33] for a general 

nonlinear differential equation 

dxt
dt

= xtrt − gt, xt,   #   

 

(3.27) 

 

where  r   is continuous  T - periodic function,  [ ): 0,g × +∞ →� �   is continuous  

T - periodic in t  and continuously differentiable in x  function such that  ( ),0 0.g t ≡   

In the cited paper, existence, multiplicity and global stability results for Eq. (3.27) 

have been proved. We believe that an application of Bardi's approach based on the 

analysis of the Poincaré map associated to Eq. (3.27) to the problem studied by Padhi 

[14] for Eq. (1.3) would be much more beneficial. 
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Chapter 4  

EXISTENCE OF PERIODIC SOLUTIONS OF THE 

DIFFERENTIAL EQUATION WITH ALLEE EFFECT 

UNDER HARVESTING 

In this chapter, we study the existence of periodic solutions to Eq. (1.7)  and 

their stability properties. In the following theorems, we show the corridors where the 

periodic solutions located. Our technique requires control of the sign of the right- 

hand side of Eq. (1.7). Eight cases where the Allee threshold ( )A t
 
is positive, zero, 

negative and the harvesting ( )h t
 
is positive, negative considered separately. 

Let the minimal and maximal values for the growth rate, carrying capacity, 

Allee threshold and harvesting effort, 

[ )
( )

[ )
( )

[ )
( )

[ )
( )

[ )
( )

[ )
( )

[ )
( )

[ )
( )

max min max min
0, 0,0, 0,

max min max min
0, 0,0, 0,

max ,  min ,  max ,  min

max ,  min ,  max ,  min .

t tt t

t tt t

r r t r r t K K t K K t

A A t A A t h h t h h t

∈ +∞ ∈ +∞∈ +∞ ∈ +∞

∈ +∞ ∈ +∞∈ +∞ ∈ +∞

= = = =

= = = =
 

If

 

( ) 0A t >  then 

min max min max .A A K K≤ < ≤  
(4.1) 

 

If

 

( ) 0A t <  then

  
max min min max .A A K K≤ < ≤

 
(4.2) 
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Consider the square on the right-hand side of Eq. (1.7) in the form 

( )
( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( )

( )
( )

( ) ( )

2

2

22

2

2

           .
2

r t K t A t
N t N t N t

K t

r t K t K t A t
N t h t

K t r t

 + 
= − −   

  

 − 
 − −     

�

 

The derivative ( )
dN

N t
dt

= �

 
is negative for all t ∈� , we provided that the harvesting 

( )h t  satisfied the condition 

( )
( )

( )
( ) ( )

22

0,
2

K t K t A t
h t

r t

 − 
 − >      

(4.3)
 

 

in which case the population density ( ) 0 as N t t→ → +∞  , the Eq. (1.7) has zero 

solution and the population goes extinct. Supposing that the opposite to inequality 

(4.3) holds for all t ∈� , we obtain the existence of periodic solutions. Since 

( ) 0,h t <  

( ) ( )( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

( )
22 2

2
4 4 0.

2

K t K t A t K t
D K t A t K t A t h t h t

r t r t

   − 
 = + − + = − >          

 

Then, the solutions of the equation ( ), 0f N t =  are  

( )

( ) ( )( ) ( ) ( )( ) ( ) ( )
( )

( )
( )

2
2

1

4

0
2

K t
K t A t K t A t K t A t h t

r t
N t

 
+ + + − + 

 
= >

 

and 



42 

 

( )

( ) ( )( ) ( ) ( )( ) ( ) ( )
( )

( )
( )

2
2

2

4

2

K t
K t A t K t A t K t A t h t

r t
N t

 
+ − + − + 

 
=  

One of the solutions is positive; the other one is positive or negative, depending on 

the following. 

If ( )
( )
( )

( ) min min
min

max

0 provided by 
K t A r

A t h t h
r t K

+ > > −  then, ( )2 0,  for 0N t t> ≥ . 

 If ( )
( )
( )

( ) max max
max

min

0 provided by 
K t A r

A t h t h
r t K

+ < < −

 

then ( )2 0,  for 0N t t< ≥ . 

4.1 Existence of Periodic Solutions  

4.1.1 Existence of Periodic Solutions and their Stability for A(t)>0 and h(t)>0      

( Harvesting for Strong Allee Effect )  

Theorem 4.1  Let ( ) ( )0 and 0A t h t> >
 
and harvesting satisfies the condition 

 

2

min maxmin
max 2

max 2

K Ar
h

K

− 
<  

   

(4.4) 

then Eq. (1.7) has three periodic solutions; the asymptotically stable trivial solution 

( )trivN t
 

and two positive solutions, asymptotically stable solution ( )1N t and an 

unstable solution ( )2N t . 

Proof. Let maxN K=  , then, using Lemma (2.3.9), we conclude that, for all 

[ )0, ,t ∈ +∞
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( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( ) ( )

max max max max2

min
max max max max max min2

max

max min

,

0

r t
N f t K K K t K K A t h t

K t

r
K K K K A h

K

K h

 
= = − − −  

 

 
< − − − 

 

= − <

�

 

(4.5) 

On the other hand,  

( )
( )

( ) ( ) ( )

max min

min max min max min max
2

min max min max min maxmin
min max max2

max

min max

min
2
max

,
2

2 2 2

2 2 2

2

A K
N f t

r tK A K A K A
K t A t h t

K t

K A K A K Ar
K A h

K

K A

r

K

+ 
=  

 

 + + +    
= × − − −     
     

 + + +    
> × − − −     
     

+ 
=  
 

× −

�

( )

min max min max
min max max

min max

2

min max min maxmin
min max max min max2

max

2

min max min maxmin
2
max

2 2

2

2 2

2 2

K A K A
K A h

K A

K A K Ar
K A A K h

K

K A K Ar

K

 + +  
− − −   

   

+ 
=  
 

  + +   
× − − + + −     

       

+ −   
= × − −   
   

max min max

2

min max min maxmin
max min max2

max

2

min max min maxmin
max2

max

2 2

0
2 2

A K h

K A K Ar
A K h

K

K A K Ar
h

K

  
+ −      

  + +   
= − −            

 + −   
= − >    
       

(4.6) 

Since  

( )( ) ( )1 1, 0f t t tβ β< =�    ( )( ) ( )1 1and    , 0,f t t tα α> =�  

 for all 0 ,t t≥  we conclude that, ( ) ( ) ( )1 max 1 max min and / 2t K t A Kβ α= = +  are strict 

upper and lower fences respectively. Note that, ( ) ( )1 1t tα β< . Therefore, there is a 
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funnel that contains an asymptotically stable periodic solution ( )1N t  to Eq. (1.7). 

( )1N t  attracts all other solutions with close initial data, these solutions stay in the 

funnel which are close in the horizontal lines ( )1 tα  and ( )1 tβ . The existence of a 

periodic solution ( )1N t  is guaranteed by Theorem (2.3.1), Corollary (2.3.2) or 

Theorem (2.3.4) which is corresponding theorems on funnels see Hubbard and West 

[18]. This solution is asymptotically stable. 

Next, observe that, 

( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( ) ( )

min min min min2

min
min min min min min min2

max

min min

,

0

r t
N f t A A K t A A A t h t

K t

r
A K A A A h

K

A h

 
= = − − −  

 

 
< − − − 

 

= − <

�

    

and 

( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( )( )

( ) ( )( )

min min min min2

min
min min min min min max2

max

min
min min min min max2

max

,

2 0

r t
N f t A A K t A A A t h t

K t

r
A K A A A h

K

r
A K A A h

K

 
= − = − + − − −  

 

 
> − + − − − 

 

 
= + + > 

 

�

 

Thus, the conclusion that ( ) ( )0 min 0 min and t A t Aβ α= = −
 
are strict upper and lower 

fences, respectively, because   

( )( ) ( ) ( )( ) ( )0 0 0 0, 0   and      , 0f t t t f t t tα α β β> = < =��  

and ( ) ( )0 0t tα β< then trivial solution ( )trivN t  to Eq. (1.7) is located in a funnel 

formed by the horizontal lines ( )0 tα  and ( )0 tβ . This solution is asymptotically 

stable; all solutions enter a funnel and stay there. 
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 Note that, by the Lemma (2.3.9), the two horizontal lines, ( )2 mint Aβ =
 

( ) max min
2and 

2

A K
tα

+
=

 
are strict upper and lower fences, respectively, since 

( )( ) ( ) ( )( ) ( )2 2 2 2, 0   and      , 0.f t t t f t t tα α β β> = < =��  

They form an antifunnel and ( ) ( )2 2t tα β>
 
as t → +∞ . For an unstable periodic 

solution ( )2N t , as t → +∞ to Eq. (1.7) contained in the antifunnel and the other 

solutions with close initial value in the antifunnel. Therefore, we have established 

existence of three periodic solutions to Eq. (1.7), namely the trivial solution ( )trivN t  

and two positive solutions, a stable solution ( )1N t  and an unstable solution ( )2N t  

satisfying, for all
 [ )0,t ∈ +∞  ,  

( ) ( ) ( )max min
min min 2 1 max .

2triv

A K
A N t A N t N t K

+
− < < < < < <

 

(4.7) 

 

 By Theorem (2.3.6), Eq. (1.7) cannot have more periodic solutions. The proof is 

completed.
 

4.1.2 Existence of Periodic Solutions and their Stability for A(t)>0  and  h(t)<0    

( Stocking for Weak Allee Effect ) 

Theorem 4.2 Let ( ) ( )0 and 0A t h t> < and harvesting satisfies the condition,   

a. 

2

min
min min

max

1

4

A
h r

K

 
> −  

 
 then Eq. (1.7) has three periodic solutions; the 

asymptotically stable trivial solution ( )trivN t
 

and two positive solutions, 

asymptotically stable solution ( )1N t
 
and an unstable solution ( )2N t  
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b. ( )
2

max max
min min max max

min

A r
r h h r

K

 +
− < < < −  

   

then Eq. (1.7) has three periodic 

solutions; the trivial solution ( )trivN t which is unstable a positive solutions ( )1N t

and a negative solution ( )2N t , both asymptotically stable. 

Proof.  

a. For min maxN A K= +  , for all 0 ,t t≥  

( )

( )
( )
( )

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( )

( )

min max

min max min max min max2

min
min max max min max min max max min2

max

min
min max min min

max

,

0 .

N f t A K

r t
A K K t A K A K A t h t

K t

r
A K K A K A K A h

K

A
A K r h

K

= +

 
= + × − + + − −  

 

 
< + × − + + − − 

 

 
= + − − < 

 

�

 

Since 
2

min min min
min min

max max

1
.

4

A r A
h r

K K

 
> − > − 

   

On the other hand, max min, 0
2

A K
N f t

+ 
= > 

 
�  , this is shown in Theorem (4.1). 

There is a funnel that contains an asymptotically stable periodic solution ( )1N t  to 

Eq. (1.7). This solution attracts all other solutions with close initial value, these 

solutions stay in the funnel bounded by the horizontal lines ( )1 min max  , t A Kβ = +
 

( ) max min
1 2

A K
tα

+
=

 
and ( ) ( )1 1t tα β< , and the existence of the periodic solution 

( )1N t is guaranteed. Next, observe that, 
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( )
( )

( ) ( ) ( )min min min min
2

min min min min
min min min2

max

2

min min min
min2

max

,
2 2 2 2

2 2 2

0. 
2 2

r tA A A A
N f t K t A t h t

K t

A r A A
A A h

K

A r A
h

K

     
= = − − −           

   
< − − −   

   

  
= − − <     

�

 

and  

( )
( )

( ) ( ) ( )min min min min
2

min min min min
min min max2

max

2
min min min

max2
max

,
2 2 2 2

2 2 2

9
0,

2 4

r tA A A A
N f t K t A t h t

K t

A r A A
A A h

K

A r A
h

K

       
= − = − + − − −               

     
> − + − − −     
     

  
= − − − >  
  

�

 

since 
2 2

min min
max min min min

max max

1 9
.

4 4

A A
h h r r

K K

   
> > − > −   

     

The conclusion that ( ) ( )min min
0 0 and 

2 2

A A
t tβ α= = − are strict upper and lower 

fences, respectively and ( ) ( )0 0 .t tα β<
 
The trivial solution ( )trivN t  to Eq. (1.7) is 

located in a funnel bounded by the horizontal lines ( ) ( )0 0 and  t tα β . The two 

horizontal lines, ( ) ( ) max minmin
2 2 and 

2 2

A KA
t tβ α

+
= =

 
are strict upper and lower 

fences, respectively. They form an antifunnel and ( ) ( )2 2t tα β>
 
as t → +∞ . For an 

unstable periodic solution ( )2N t , as t → +∞  to Eq. (1.7) contained in the antifunnel 

and the other solutions with close initial data in the antifunnel. Therefore, we have 

established existence of three periodic solutions to Eq. (1.7), namely the trivial 

solution ( )trivN t  and two positive solutions, a stable solution ( )1N t  and an unstable 

solution ( )2N t  satisfying, for all [ )0,t ∈ +∞ ,  
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( ) ( ) ( )max minmin min
2 1 min max .

2 2 2triv

A KA A
N t N t N t A K

+
− < < < < < < +  

b. Let max2N K= ,  for all 0 ,t t≥   

( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( )( )

( )( )

max max max max2

min
max max max max max min2

max

max min min

, 2 2 2 2

2 2 2

2 0 .

r t
N f t K K K t K K A t h t

K t

r
K K K K K h

K

K r h

 
= = − − −  

 

 
< − − − 

 

= − − <

�

 

On the other hand,  

( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( ) ( )

min min min min2

min
min max min min max max2

max

,

0.

r t
N f t K K K t K K A t h t

K t

r
K K K K A h

K

 
= = − − −  

 

 
> − − − > 

 

�

 

The existence of the periodic solution ( )1N t  is guaranteed by Theorem (2.3.1) and 

Theorem (2.3.4). There is a funnel that contains an asymptotically stable periodic 

solution ( )1N t  and all other solutions with close initial data to Eq. (1.7), these 

solutions stay in the funnel bounded by the horizontal lines ( )1 max2  ,t Kβ =  

( )1 mint Kα =  and ( ) ( )1 1t tα β< . Then, observe that, 

( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( )( )

( )

max max max max2

max
max max max max max max2

max

2

max max
max max max

max

,

0.

r t
N f t r r K t r r A t h t

K t

r
r K r r A h

K

A r
r r h

K

 
= − = − + − − −  

 

 
< − + − − − 

 

  +
 < + <    

�

 

and   
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( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )

max max max max2

min
max max max max max max2

max

min
max max max max max2

max

max min max

,

2

4 0.

r t
N f t K K K t K K A t h t

K t

r
K K K K A h

K

r
K K K A h

K

K r h

 
= − = − + − − −  

 

 
> − + − − − 

 

 
= + + 

 

> + >

�

 

The two horizontal lines ( ) ( )0 max 0 min and t r t Kβ α= − =
 
are strict upper and lower 

fences, respectively. They form an antifunnel and ( ) ( )0 0t tα β>
 
as t → +∞ . The 

trivial solution ( )trivN t  to Eq. (1.7) is unstable between the horizontal lines ( )0 tα  

and ( )0 tβ . Consequently, Eq. (1.7) has an asymptotically stable periodic solution 

( )2N t . There is a funnel that contains an asymptotically stable periodic solution 

( )2N t  and all other solutions with close initial data to Eq. (1.7), these solutions stay 

in the funnel bounded by the horizontal lines ( ) ( )2 max 2 max , t r t Kβ α= − = −  and 

( ) ( )2 2t tα β< . Therefore, we have established existence of three periodic solutions 

to Eq. (1.7), namely the trivial solution ( )trivN t  and the positive and negative 

solutions ( )1N t  and ( )2N t  , which are asymptotically stable,  for all t ∈�  , 

( ) ( ) ( )max 2 max min 1 max2 .trivK N t r N t K N t K− < < − < < < <
 

The proof is completed.
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4.1.3 Existence of Periodic Solutions and their Stability for A(t)<0 and h(t)>0      

( Harvesting for Weak Allee Effect ) 

Theorem 4.3  Let ( ) ( )0 and 0A t h t< >
 
and harvesting satisfies the condition   

a. 

2 2

maxmin min min
min min max min

0
max max max

3 1
max ,

4 4t

AA r K
r h h r

K K K≥

     
− < < <    

     

 then Eq. (1.7) 

has three periodic solutions; the asymptotically stable trivial solution 

( )triv
N t

 
and two positive solutions, asymptotically stable solution ( )1N t

 
and 

an unstable solution
 

( )2N t . 

b. 
2

max max max
max min

0
min max

3
min ,

4t

A r A
h r

K K≥

   
< −  

     

then Eq. (1.7) has three periodic 

solutions; the trivial solution ( )triv
N t which is unstable a positive solutions

( )1N t
 
and a negative solution ( )2N t , both asymptotically stable. 

Proof. 

a.  Let maxN K= , then  

( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( )( )

max max max max2

min
max max max max max min2

max

max min

,

0.

r t
N f t K K K t K K A t h t

K t

r
K K K K A h

K

K h

 
= = − − −  

 

 
< − − − 

 

= − <

�

 

On the other hand,  

( )
( )

( ) ( ) ( )min min min min
2

min min min min
min max2

max

2

min min
min max

max

,
2 2 2 2

2 2 2

1
0.

2 4

r tK K K K
N f t K t A t h t

K t

K r K K
K h

K

K K
r h

K

       
= = − − −               

     
> − −     
     

    = − >       

�
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Therefore, there is a funnel that contains an asymptotically stable periodic solution 

( )1N t  and all other solutions with close initial data to Eq. (1.7). These solutions stay 

in the funnel bounded by the horizontal lines ( )1 max  ,  t Kβ = ( ) min
1 2

K
tα =

 
and 

( ) ( )1 1t tα β< . Next, we observe that, 

( )
( )

( ) ( ) ( )max max max max
2

max max maxmin
max max min2

max

2

max max
min min

max

,
2 2 2 2

2 2 2

3
0.

2 4

r tA A A A
N f t K t A t h t

K t

A A Ar
A A h

K

A A
r h

K

       
= − = − + − − −               

     
< − − + − − −     
     

    = − − <       

�

 

and 

( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( ) ( )

( )

max max max max2

min
max max max max max max2

max

2

max
max min max

max

, 2 2 2 2

2 2 2

2 0.

r t
N f t A A K t A A A t h t

K t

r
A A A A A h

K

A
A r h

K

 
= = − − −  

 

 
> − − − 

 

  
 = − − >    

�

 

The trivial solution ( )triv
N t  to Eq. (1.7) is located in a funnel bounded by the 

horizontal lines ( ) ( )max
0 0 max ,  2

2

A
t t Aβ α= − =  and ( ) ( )0 0t tα β< , this solution is 

asymptotically stable. The two horizontal lines ( ) ( )max min
2 2

 
  and  

2 2

A K
t tβ α= − =  

are strict upper and lower fences, respectively. They form an antifunnel, and the fact 

that ( ) ( )2 2t tα β>
 

as t → +∞ . Consequently, Eq. (1.7) has an unstable periodic 

solution ( )2N t , as t → +∞ , between the horizontal lines ( )2 tα  and ( )2 tβ . 

Therefore, we have established existence of three periodic solutions to Eq. (1.7). 
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( ) ( ) ( )max min
max 2 1 max2 .

2 2triv

A K
A N t N t N t K< < − < < < <  

b.  Let maxN K= , then ( )max, 0N f t K= <�
 
, this is shown in part (a).  

 On the other hand, 

 
( )
( )

( ) ( ) ( )max max max max
2

max max maxmin
max max max2

max

2

max max
min max

max

,
2 2 2 2

2 2 2

3
0.

2 4

r tA A A A
N f t K t A t h t

K t

A A Ar
A A h

K

A A
r h

K

       
= − = − + − − −               

     
> − − + − − −     
     

    = − − >       

�

 

Consequently, Eq. (1.7) has an asymptotically stable periodic solution ( )1N t . There 

is a funnel that contains an asymptotically stable periodic solution ( )1N t  and all 

other solutions with close initial data to Eq. (1.7). These solutions stay in the funnel 

bounded by the horizontal lines ( )1 max ,t Kβ =
 

( ) max
1 2

A
tα = − , and ( ) ( )1 1t tα β< . 

Next, observe that, 

( )
( )

( ) ( ) ( )max max max max
2

max max maxmin
max max max2

max

2

max max
min max

max

,
2 2 2 2

2 2 2

3
0,   

2 4

r tA A A A
N f t K t A t h t

K t

A A Ar
A A h

K

A A
r h

K

       
= = − − −               

     
< − + −     
     

    < − <       

�

 

  

and  
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( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( )( )

( )

min min min min2

min
min min min min min max2

max

2

min
min min max

max

, 2 2 2 2

2 2 2

2 0.

r t
N f t A A K t A A A t h t

K t

r
A A A A A h

K

A
A r h

K

 
= = − − −  

 

 
> − − − 

 

  
 = − − >    

�

 

The trivial solution ( )triv
N t  to Eq. (1.7) is an unstable bounded by two horizontal 

lines ( ) ( )max max
0 0

 
and 

2 2

A A
t tβ α= = −

 
are strict upper and lower fences, 

respectively. They form an antifunnel, since the fact that ( ) ( )0 0t tα β>
 
as t → +∞ . 

Because of, Eq. (1.7) has an asymptotically stable periodic solution ( )2N t   for all
 

[ )0,t ∈ +∞ . There is a funnel that contains an asymptotically stable periodic solution 

( )2N t  and all other solutions with close initial data to Eq. (1.7). These solutions stay 

in the funnel bounded by the horizontal lines ( ) ( )max
2 2 min ,  2

2

A
t t Aβ α= = , and 

( ) ( )2 2t tα β< . Therefore, we have established existence of three periodic solutions 

to Eq. (1.7), 

( ) ( ) ( )max max
min 2 1 max2 .

2 2triv

A A
A N t N t N t K< < < < − < <

 

The proof is completed. 

4.1.4 Existence of Periodic Solutions and their Stability for A(t)<0 and h(t)<0      

( Stocking for Weak Allee Effect ) 

Theorem 4.4 Let ( ) ( )0 and 0A t h t< < and harvesting satisfies the condition 

2

min
max min min

0
max

max , 4
t

K
h r r

K≥

   
> − −  

   
 
then Eq. (1.7) has three periodic solutions; the 

trivial solution ( )triv
N t

 
which is unstable a positive solutions ( )1N t

 
and a negative  
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solution ( )2N t , both asymptotically stable. 

Proof.  Let max2N K= , for all 0t t≥   

( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( )( )

( )( )

max max max max2

min
max max max max max max2

max

max min max

, 2 2 2 2

2 2 2

2 0.

r t
N f t K K K t K K A t h t

K t

r
K K K K K h

K

K r h

 
= = − − −  

 

 
< − − − 

 

= − − <

�

 

On the other hand, 

( )
( )

( ) ( ) ( )min min min min
2

min min min min
min max min2

max

min min min min
max min2

max

,
2 2 2 2

2 2 2

0.
2 2 2

r tK K K K
N f t K t A t h t

K t

K r K K
K A h

K

K r K K
A h

K

       
= = − − −               

     
> − − −     
     

     
= − − >     
     

�

 

Therefore, Eq. (1.7) has an asymptotically stable periodic solution ( )1N t . There is a 

funnel that contains an asymptotically stable periodic solution ( )1N t  and all other 

solutions with close initial data to Eq. (1.7). These solutions stay in the funnel 

bounded by the horizontal lines ( ) ( ) min
1 max 12  ,  

2

K
t K tβ α= = , and ( ) ( )1 1t tα β< . 

There is a funnel that contains an asymptotically stable periodic solution ( )1N t  to 

Eq. (1.7). Then, we observe that, 

( )
( )

( ) ( ) ( )max max max max
2

max max maxmin
max max max2

max

2

max max
min max

max

,
2 2 2 2

2 2 2

3
0.

2 4

r tA A A A
N f t K t A t h t

K t

A A Ar
A A h

K

A A
r h

K

       
= = − − −               

     
< − − − −     
     

    = − <       

�

 

and 
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( ) ( )
( )
( )

( )( ) ( )( ) ( )

( ) ( )( )

( )

min min min min2

min
min min min min min min2

max

2

min
min min min

max

,

4 0.

r t
N f t K K K t K K A t h t

K t

r
K K K K K h

K

K
K r h

K

 
= − = − + − − −  

 

 
> − + − − − 

 

  
 = − − − >    

�

 

Therefore, the trivial solution ( )triv
N t  to Eq. (1.7) is an unstable bounded by two 

horizontal lines ( ) max
0 2

A
tβ =

 
( ) min

0

 
and 

2

K
tα =

 
are strict upper and lower fences, 

respectively. They form an antifunnel, because of the fact ( ) ( )0 0t tα β>
 
as t → +∞ . 

Also, Eq. (1.7) has an asymptotically stable periodic solution ( )2N t  for all
 

[ )0,t ∈ +∞ . There is a funnel that contains an asymptotically stable periodic solution 

( )2N t  and all other solutions with close initial data to Eq. (1.7). These solutions stay 

in the funnel bounded by the horizontal lines ( ) ( )max
2 2 min,  

2

A
t t Kβ α= = − , and 

( ) ( )2 2t tα β< . Therefore, we have determined existence of three periodic solutions 

to Eq. (1.7), 

( ) ( ) ( )max min
min 2 1 max2 .

2 2triv

A K
K N t N t N t K− < < < < < <

 

The proof is completed. 

4.1.5 Existence of Periodic Solutions and their Stability for A(t)=0 , h(t)>0 and 

A(t)=0 , h(t)<0 ( Harvesting and Stocking for Weak Allee Effect ) 

Theorem 4.5  

a. Let ( ) ( )0 and  0A t h t= >
 

and harvesting satisfies the condition 

 
2

min
max min

max

1

4

K
h r

K

 
<  

 
 then Eq. (1.7) has three periodic solutions; the 
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asymptotically stable trivial solution ( )triv
N t

 
and two positive solutions, 

asymptotically stable solution ( )1N t and an unstable solution ( )2N t . 

b. Let ( ) ( )0 and 0A t h t= <
 

and harvesting satisfies the condition 

2

min
max min

max

3

4

K
h r

K

 
< −  

   

then Eq. (1.7) has three periodic solutions; the trivial 

solution ( )triv
N t

 
which is unstable a positive solution ( )1N t

 
and a negative 

solution ( )2N t , both asymptotically stable. 

Proof. 

a. Let maxN K=  ,  for all 0t t≥  then  

 

( ) ( )
( )
( )

( )( ) ( )

( ) ( )

max max max max2

min
max max max max min2

max

max min

,

0

r t
N f t K K K K t K h t

K t

r
K K K K h

K

K h

 
= = − −  

 

 
< − − 

 

= − <

�

. 

On the other hand,  

( )
( )

( ) ( )min min min min
2

min min min min
min max2

max

2

min min
min max

max

,
2 2 2 2

2 2 2

1
0.

2 4

r tK K K K
N f t K t h t

K t

K r K K
K h

K

K K
r h

K

      
= = − −             

    
> − −    
    

    = − >       

�

 

Consequently, Eq. (1.7) has an asymptotically stable periodic solution ( )1N t . There 

is a funnel that contains an asymptotically stable periodic solution ( )1N t  and all 

other solutions with close initial data to Eq. (1.7). These solutions stay in the funnel 
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bounded by the horizontal lines ( ) ( ) min
1 max 1 ,  

2

K
t K tβ α= =  and ( ) ( )1 1t tα β< . 

There is a funnel that contains an asymptotically stable periodic solution ( )1N t  to 

Eq. (1.7). Then, we assume that min ,N h=  

( ) ( )
( )
( )

( ) ( )( ) ( )

( ) ( )( )

( ) ( )

min min min min2

min
min min min min min2

max

2 min
min min min2

max

,

1 0

r t
N f t h h h K t h h t

K t

r
h h K h h

K

r
h K h

K

 
= = − −  

 

 
< − − 

 

 
< − − < 

 

�

 

 

and 

 

( )
( )

( ) ( )min min min min
2

min min min min
min max2

max

2

min min
min max

max

,
2 2 2 2

2 2 2

3
0.

2 4

r tK K K K
N f t K t h t

K t

K r K K
K h

K

K K
r h

K

       
= − = − − + −               

     
> − − + −     
     

    = + >       

�

 

So, the trivial solution ( )triv
N t  to Eq. (1.7) is located in a funnel. This solution is 

asymptotical stable; all solutions enter a funnel bounded by the horizontal lines 

which are upper and lower fences ( ) ( ) min
0 min 0 ,  

2

K
t h tβ α= = − , and ( ) ( )0 0t tα β<

respectively, and stay there. Consequently, Eq. (1.7) has an unstable periodic 

solution ( )2N t , as t → +∞ , bounded by two horizontal lines ( )2 mint hβ =
  

( ) min
2

 
and 

2

K
tα = are strict upper and lower fences, respectively, since the fact that 

( ) ( )2 2t tα β>
 
as t → +∞ . Therefore, we have determined existence of three periodic 

solutions to Eq. (1.7), 



58 

 

( ) ( ) ( )min min
min 2 1 max .

2 2triv

K K
N t h N t N t K− < < < < < <

 

b. Let max2N K= , then 

( ) ( )
( )
( )

( ) ( )( ) ( )

( ) ( ) ( )

( )( )

max max max max2

min
max max max max max2

max

max min max

, 2 2 2 2

2 2 2

2 2 0.

r t
N f t K K K K t K h t

K t

r
K K K K h

K

K r h

 
= = − −  

 

 
< − − 

 

= − − <

�

 

On the other hand, since min 0h < , we have 

( ) ( )
( )
( )

( ) ( )( ) ( )

( ) ( ) ( )

min min min min2

min
min min min min min2

max

min min

,

0.

r t
N f t K K K K t K h t

K t

r
K K K K h

K

K h

 
= = − −  

 

 
> − − 

 

= − >

�

 

Thus, Eq. (1.7) has asymptotically stable periodic solution ( )1N t  to Eq. (1.7). There 

is a funnel that contains an asymptotically stable periodic solution ( )1N t  and all 

other solutions with close initial data to Eq. (1.7). These solutions stay in the funnel 

bounded by the horizontal lines ( ) ( )1 max 1 min2  nd t K a t Kβ α= = , since ( ) ( )1 1t tα β< .  

Next, we observe that,

            

 

( )
( )

( ) ( )min min min min
2

min min min min
min max

max

2

min min
min max

max

,
2 2 2 2

2 2 2

3
0

2 4

r tK K K K
N f t K t h t

K t

K r K K
K h

K

K K
r h

K

       
= − = − − + −               

     
< − − + −     
     

    < − − − <       

�

 

and since min 0,h <  
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( ) ( )
( )
( )

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )

max max max max2

min
max max max max min2

max

max min min

,

2 0.

r t
N f t K K K K t K h t

K t

r
K K K K h

K

K r h

 
= − = − − + −  

 

 
> − − + − 

 

= − − − >

�

 

Consequently, the trivial solution ( )triv
N t  to Eq. (1.7) is an unstable, this solution of 

the Eq. (1.7) stay in the antifunnel bounded by two horizontal lines 

( ) ( ) min
0 min 0 and 

2

K
t K tβ α= = −

 
are strict upper and lower fences, respectively, 

since the fact that ( ) ( )0 0t tα β<
 

as t → +∞ . Because of, Eq. (1.7) has an 

asymptotically stable periodic solution ( )2N t  for all t →+∞  . The asymptotically 

stable periodic solution ( )1N t  and all other solutions with close initial data to Eq. 

(1.7) stay in the funnel bounded by the horizontal lines ( ) min
2  ,

2

K
tβ = −

( )2 maxt Kα = − , and ( ) ( )2 2t tα β< . Therefore, we have established existence of three 

periodic solutions to Eq. (1.7), for all
 [ )0,t ∈ +∞ ,  the corridors where these periodic 

solutions are located are 

( ) ( ) ( )min
max 2 min 1 max2 .

2
triv

K
K N t N t K N t K− < < − < < < <

 

The proof is completed. 

4.2 Examples and Discussion 

In this section, we introduce the existence of the periodic solutions and their 

asymptotic behavior of Eq. (1.7) and also we investigate the effect of harvesting on 

the dynamics of population in a fluctuating environment described by Eq. (1.7). All 

the figures in this chapter have been plotted with the computer algebra system 

Mathematica. 
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Example 4.6 Consider the following differential equation with ( ) 0 A t > and 

( ) 0,h t >
 

( )

( )1 2

40 sin 2 1
50 cos 2

10 sin 2
    2 cos 2

50 cos 2 50 cos 2

N
N t N

t

N t
t N

t t

π
π

π
γ γ π

π π

 
= + − 

+ 

+ 
× − − + 

+ + 

�

 
(4.8) 

where 

( ) ( ) ( ) ( ) ( ) ( )1 240 sin 2 ,  50 cos 2 ,  10 sin 2 ,  2 2 .r t t K t t A t t h t cos tπ π γ π γ π= + = + = + = +

 

Let 1 1,γ =  and 2 1.γ =  Obviously, the condition (4.1) is satisfied 

max min11 49.A K= ≤ =  By the Theorem (4.1), the condition (4.3) is satisfied,  

( )

2

min maxmin
max 2

max

2

2

2

39 49 11
3 5.41292.

251

K Ar
h

K

− 
<  

 

− 
< ≅ 

 

 

Therefore, Eq. (4.8) has three periodic solutions: an asymptotically stable trivial 

solution ( ) 0
triv

N t =  and two positive solutions, an asymptotically stable solution 

( )1N t  and an unstable solution ( )2N t . 

By the Theorem (4.1), these three solutions satisfy the inequality, 

( ) ( ) ( )

( ) ( ) ( )

max min
min min 2 1 max

2 1

2

            9 9 30 51

triv

triv

A K
A N t A N t N t K

N t N t N t

+
− < < < < < <

− < < < < < <  

which are the corridors of these periodic solutions, see Figure 5.
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Figure 5: Existence of one positive asymptotically stable and one positive unstable 
periodic solution of Eq. (4.8) in case of strong Allee effect for 1 1γ =   and harvesting 

for 2 1γ = . 
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Example 4.7 Consider the following differential equation with ( ) 0A t > and  

( ) 0.h t <
 

( )

1 2

.   10 sin 2 1
1

10 cos 2
4

8 sin 2 1
         1 cos 2

1 1 10010 cos 2 10 cos 2
4 4

N
a N t N

t

N t
t N

t t

π
π

π
γ γ π

π π

 
 

= + − 
 +
 

 
 +  

× − − +   
  + +

 

�

 

(4.9) 

where 

 

( ) ( )

( ) ( ) ( )1 2

1
10 sin 2 ,  10 cos 2 ,

4

1
8 sin 2 ,  1 cos 2 .

100

r t t K t t

A t t h t t

π π

γ π γ π

= + = +

 
= + = + 

 
 

( )

( )1 2

.  8 sin 2 1
30 cos 2

2 sin 2
        5 cos 2

30 cos 2 30 cos 2

N
b N t N

t

N t
t N

t t

π
π

π
γ γ π

π π

 
= + − 

+ 

+ 
× − − + 

+ + 

�

 

(4.10) 

where  

( ) ( ) ( ) ( ) ( ) ( )1 28 sin 2 ,  30 cos 2 ,  2 sin 2 ,  5 2 .r t t K t t A t t h t cos tπ π γ π γ π= + = + = + = +

 

a. Let 1 1,γ =  and 2 1.γ = −  Obviously, the condition (4.1) is satisfied 

max min9 10.25.A K= ≤ =  By the Theorem (4.2), the condition 
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( )

2

min
min min

max

2

1

4

1 7
1.01 9 1.049375

4 10.25

A
h r

K

 
> −  

 

 
− > − = − 

 

 

is satisfied. Thus, Eq. (4.9) has three periodic solutions: the asymptotically stable 

trivial solution ( ) 0
triv

N t =
 
and two positive solutions, asymptotically stable solution 

( )1N t
 
and an unstable solution ( )2N t  . 

By the Theorem (4.2), these three solutions satisfy the inequality, 

( ) ( ) ( )

( ) ( ) ( )

max minmin min
2 1 min max

2 1

.
2 2 2

            3.5 3.5 9.375 17.25

triv

triv

A KA A
N t N t N t A K

N t N t N t

+
− < < < < < < +

− < < < < < <
 

which are the corridors of these periodic solutions, see Figure 6(a). 

b. Let 1 1,γ =  and 2 1.γ = −  Obviously, the condition (4.1) is satisfied 

max min3 29.A K= ≤ =  By the Theorem (4.2), the condition  

( )

( )

2

max max
min min max max

min

2
3 9

7 6 4 9 1.541022
29

A r
r h h r

K

 +
− < < < −  

 

+ 
− < − < − < − = − 

 

 

is satisfied. Therefore, Eq. (4.10) has three periodic solutions: the trivial solution 

( ) 0
triv

N t = which is unstable a positive solutions ( )1N t and a negative solution

( )2N t , both asymptotically stable. 

By the Theorem (4.2), these three solutions satisfy the inequality, 
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( ) ( ) ( )

( ) ( ) ( )

max 2 max min 1 max

2 1

2

    31 9 29 62

triv

triv

K N t r N t K N t K

N t N t N t

− < < − < < < <

− < < − < < < <  

which are the corridors of these periodic solutions, see Figure 6(b). 
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Figure 6(a): Existence of one positive asymptotically stable and one positive unstable 
periodic solution of Eq. (4.9) in case of strong Allee effect for 1 1γ =  and stocking 

for 2 1γ = − .
  

 
Figure 6(b): Existence of one positive asymptotically stable  periodic solution of Eq. 
(4.10) in case of strong Allee effect for 1 1γ =  and stocking for 2 1γ = − . 



66 

 

Example 4.8 Consider the following differential equation with ( ) 0 A t < and  

( ) 0,h t >
 

( )

( )1 2

.  45 sin 2 1
45 cos 2

2 sin 2
        8 cos 2

45 cos 2 45 cos 2

N
a N t N

t

N t
t N

t t

π
π

π
γ γ π

π π

 
= + − 

+ 

+ 
× − − + 

+ + 

�

 

(4.11) 

 where 

( ) ( ) ( ) ( ) ( ) ( )1 245 sin 2 ,  45 cos 2 ,  2 sin 2 ,  8 cos 2 .r t t K t t A t t h t tπ π γ π γ π= + = + = + = +

 

( )

( )1 2

.  20 sin 2 1
30 cos 2

17 sin 2
       2 cos 2

30 cos 2 30 cos 2

N
b N t N

t

N t
t N

t t

π
π

π
γ γ π

π π

 
= + − 

+ 

+ 
× − − + 

+ + 

�

 

(4.12) 

where  

( ) ( ) ( ) ( ) ( ) ( )1 220 sin 2 ,  30 cos 2 ,  17 sin 2 ,  2 2 .r t t K t t A t t h t cos tπ π γ π γ π= + = + = + = +

 

a. Let 1 1,γ = −  and 2 1.γ =  Obviously, the condition (4.2) is satisfied 

min min0 3 44.A K< = ≤ =  By the Theorem (4.3), the condition 

( ) ( )
( ) ( )

2 2

maxmin min min
min min max min

0
max max max

2 2

0

3 1
               max ,

4 4

3 44 3 1 1 44
max , 44 2.869565 7 9 44 10.064272

46 4 46 4 46

t

t

AA r K
r h h r

K K K≥

≥

     
− < < <    

     

 − −    
− = < < < =    
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is satisfied. Thus, Eq. (4.11) has three periodic solutions: the asymptotically 

stable trivial solution ( ) 0
triv

N t =
 

and two positive solutions, asymptotically 

stable solution ( )1N t
 
and an unstable solution

 
( )2N t . 

By the Theorem (4.3), these three solutions satisfy the inequality, 

( ) ( ) ( )

( ) ( ) ( )

max min
max 2 1 max

2 1

2
2 2

2 0.5 22 46.

triv

triv

A K
A N t N t N t K

N t N t N t

< < − < < < <

− < < < < < <
 

which are the corridors of these periodic solutions,  see Figure 7(a). 

b. Let 1 1,γ = −  and 2 1.γ =  Obviously, the condition (4.2) is satisfied 

max min0 16 29.A K< − = ≤ =  By the Theorem (4.3), the condition  

( ) ( )
( )

2

max max max
max min

0
min max

2

0

3
    min ,

4

16 21 3 16
3 min , 19 3.796046

29 4 31

t

t

A r A
h r

K K≥

≥

   
< −  

   

 − −  
< − ≅  

   

 

is satisfied. Therefore, Eq. (4.12) has three periodic solutions: the trivial solution

( ) 0
triv

N t = which is unstable a positive solution ( )1N t
 
and a negative solution 

( )2N t , both asymptotically stable. 

By the Theorem (4.3), these three solutions satisfy the inequality, 

( ) ( ) ( )

( ) ( ) ( )

max max
min 2 1 max

2 1

2
2 2

    36 8 8 31.

triv

triv

A A
A N t N t N t K

N t N t N t

< < < < − < <

− < < − < < < <
 

which are the corridors of these periodic solutions, see Figure 7(b). 
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Figure 7(a): Existence of one positive asymptotically stable and one positive unstable 
periodic solution of Eq. (4.11) in case of weak Allee effect for 1 1γ = −  and 

harvesting for 2 1γ = .
  

 
Figure 7(b): Existence of one positive asymptotically stable of Eq. (4.12) in case of 
weak Allee effect 1 1γ = − and harvesting 2 1γ = .  
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Example 4.9 Consider the following differential equation with ( ) 0 A t < and 

( ) 0h t < ,  

( )

( )1 2

5 sin 2 1
10 cos 2

6 sin 2
   2 cos 2

10 cos 2 10 cos 2

N
N t N

t

N t
t N

t t

π
π

π
γ γ π

π π

 
= + − 

+ 

+ 
× − − + 

+ + 

�

 
(4.13) 

where  

( ) ( ) ( ) ( ) ( ) ( )1 25 sin 2 ,  10 cos 2 ,  6 sin 2 ,  2 cos 2 .r t t K t t A t t h t tπ π γ π γ π= + = + = + = +

 

Let 1 1,γ = −  and 2 1.γ = −
 
The condition (4.2) is satisfied min min0 7 9.A K< = ≤ =  By 

the Theorem (4.4), the condition  

( )

2

min
max min min

0
max

2

0

max , 4

9
 1 max 4, 4 4 4

11

t

t

K
h r r

K≥

≥

   
> − −  

   

   
− > − − = −  

   

 

is satisfied. Therefore, Eq. (4.13) has three periodic solutions: the trivial solution 

( ) 0
triv

N t = which is unstable a positive solutions ( )1N t
 
and a negative solution

( )2N t , both asymptotically stable. 

By the Theorem (4.4), these three solutions satisfy the inequality, 

( ) ( ) ( )

( ) ( ) ( )

max min
min 2 1 max

2 1

2
2 2

    9 2.5 4.5 22.

triv

triv

A K
K N t N t N t K

N t N t N t

− < < < < < <

− < < − < < < <  

which are the corridors of these periodic solutions, see Figure 8. 
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Figure 8: Existence of one positive asymptotically stable periodic solution of Eq. 
(4.13) in case of weak Allee effect for 1 1γ = −  and stocking for 2 1γ = − .  
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Example 4.10 

a. Consider the following differential equation with ( ) ( )0 and 0A t h t= >  

( )

( )2

30 sin 2

    1 2 cos 2
40 cos 2 40 cos 2

N t N

N N
t N

t t

π

γ π
π π

= +

  
× − − +  

+ +  

�

 
(4.14) 

where ( ) ( ) ( ) ( ) ( )230 sin 2 ,  40 cos 2 ,  0,  2 cos 2 .r t t K t t A t h t tπ π γ π= + = + = = +  

b. Consider the following differential equation with ( ) ( )0 and 0A t h t= <  

( )

( )2

20 sin 2

    1 16 cos 2
25 cos 2 25 cos 2

N t N

N N
t N

t t

π

γ π
π π

= +

  
× − − +  

+ +  

�

 

(4.15) 

where ( ) ( ) ( ) ( ) ( )220 sin 2 ,  25 cos 2 ,  0,  16 2 .r t t K t t A t h t cos tπ π γ π= + = + = = +
 

a. Let 1 0,γ =  and 2 1.γ =
 
The condition (4.1) is satisfied max min0 41.A K= ≤ =  By the 

Theorem (4.5), the condition  

( )

2

min
max min

max

2

1

4

1 39
3 29 6.559934

4 41

K
h r

K

 
<  

 

 
< = 

 

 

is satisfied. Therefore, Eq. (4.14) has three periodic solutions: the asymptotically 

stable trivial solution ( ) 0
triv

N t =
 
and two positive solutions, asymptotically stable 

solution ( )1N t and an unstable solution ( )2N t . 

By the Theorem (4.5), these three solutions satisfy the inequality, 
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( ) ( ) ( )

( ) ( ) ( )

min min
min 2 1 max

2 1

2 2

19.5 1 19.5 41.

triv

triv

K K
N t h N t N t K

N t N t N t

− < < < < < <

− < < < < < <
 

which are the corridors of these periodic solutions, see Figure 9(a). 

b. Let 1 0,γ =  and 2 1.γ = −
 
The condition (4.1) is satisfied max min0 24.A K= ≤ =  By 

the Theorem (4.5), the condition  

( )

2

min
max min

max

2

3

4

3 24
15 19 12.142012

4 26

K
h r

K

 
< −  

 

 
− < − = − 

 

  

 

is satisfied. Therefore, Eq. (4.15) has three periodic solutions: the trivial solution 

( ) 0
triv

N t =
 
which is unstable a positive solutions ( )1N t

 
and a negative solution 

( )2N t , both asymptotically stable. 

By the Theorem (4.5), these three solutions satisfy the inequality,  

( ) ( ) ( )

( ) ( ) ( )

min
max 2 min 1 max

2 1

2 .
2

      24 12 24 52.

triv

triv

K
K N t N t K N t K

N t N t N t

− < < − < < < <

− < < − < < < <

 

which are the corridors of these periodic solutions,  see Figure 9(b).
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Figure 9(a): Existence of one positive asymptotically stable and one positive 
unstable periodic solution of Eq. (4.14) in case of harvesting for 1 20, 1γ γ= = . 

 

 
Figure 9(b): Existence of one positive asymptotically stable of Eq. (4.15) in case of 
stocking 1 20, 1γ γ= = − .  
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Chapter 5  

CONCLUSION 

In this thesis, we have established the following three patterns in the 

dynamics of Eq. (1.1) in relation to the changes of the Allee threshold  ( ) :A t  

 

a. for  ( ) 0,A t >   a bistability is observed: an unstable positive periodic solution  

( )2N t   is located between a pair of asymptotically stable solutions, a positive 

solution  ( )1N t   and the trivial solution  ( );N t
triv

  all solutions with positive initial 

values split into two groups that are attracted to one of the solutions in this pair - 

solutions with initial data  0 minN A<   and  0 maxN A>   (more precisely, with  

( )0 2 0N N t<   and  ( )0 2 0N N t>  ) approach, respectively,  ( )N t
triv

  and  ( )1N t   as  

;t → +∞  

b. for  ( ) 0,A t =   the semi-stable trivial solution  ( )N t
triv

  does not attract solutions 

with positive initial values anymore, but still attracts those with negative initial 

values; an unstable positive periodic solution  ( )2N t  disappears, whereas the only 

remaining positive periodic solution  ( )1N t   attracts all solutions with positive initial 

data; 

c. for  ( ) 0,A t <   the trivial solution  ( )N t
triv

 completely loses stability and 

becomes a repellor, one of the nontrivial periodic solutions,  ( )2 ,N t   emerges again, 

this time as a negative asymptotically stable solution, whereas the status of a positive 
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asymptotically stable periodic solution  ( )1N t   does not change: as in (b), it attracts 

all solutions with positive initial data. 

Clearly, the dynamics in (a) is the most complicated; in (b) and (c) the first 

quadrant is invariant - all solutions with positive initial data remain there and are 

eventually attracted by the only positive periodic solution  ( )1 .N t   Furthermore, in 

all three cases, solutions with large positive and negative (rather large negative) 

initial values blow up backward in time. However, no troubles occur for  0 .t t≥   The 

transition dynamics for Eq. (3.21) associated with the variation of parameter  γ   

from 1 to -1 with the step -0.25 is summarized in Figure 10. One can observe how 

the qualitative properties change from the bistability in case  0γ >   to the situation 

where the asymptotically stable solution  ( )1N t   attracts all solutions with positive 

initial values for  0.γ ≤  

Taking into account that Eq. (1.1) models evolution of a single unstructured 

species in a fluctuating habitat, one is particularly interested in existence of 

asymptotically stable positive periodic solutions. Our analysis demonstrates that such 

solution, denoted  ( )1N t   in this thesis, exists in all three cases (a) - (c); the basin of 

attraction in (a) is  ( )( )2 0 ,N t +∞   and  ( )0, +∞   for (b) and (c). 
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Figure 10: Qualitative changes in the dynamics of Eq. (3.21) as γ  changes from 1 to 

-1 with the step -0.25. 
 

In this thesis, we also discuss the effect of harvesting on a single species population 

in a fluctuating environment whose dynamics is described by the Eq. (1.7).  We have 

determined the following five patterns in the dynamics of Eq. (1.7) in a relation to 

the changes of the Allee threshold ( )A t  and harvesting ( )h t ; 

a. for ( ) 0 A t > and ( ) 0h t > , and harvesting satisfies the condition

2

min maxmin
min 2

max 2

K Ar
h

K

− 
<  

 
 then, Eq. (1.7) has three periodic solutions; the 
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asymptotically stable trivial solution ( )triv
N t

 
and two  positive solutions, 

asymptotically stable solution ( )1N t and an unstable solution ( )2N t . An unstable 

positive periodic solution  ( )2N t   is situated between a pair of asymptotically stable 

solutions, a positive solution  ( )1N t   and the trivial solution  ( );N t
triv

  all solutions 

with positive initial values split into two groups that are attracted to one of the 

solutions in this pair - solutions with initial data  0 minN A<   and 0 maxN A>  approach, 

( )N t
triv

  and  ( )1N t  ,  respectively as  ;t → +∞  

b.  for ( ) ( )0 and 0A t h t> <
 
and harvesting satisfies the condition   

i) 
2

min
min min

max

1

4

A
h r

K

 
> −  

 
 then Eq. (1.7) has three periodic solutions; the 

asymptotically stable trivial solution ( )triv
N t

 
and two positive solutions, 

asymptotically stable solution ( )1N t
 
and an unstable solution ( )2N t , whereas the 

status of these three periodic solutions do not change, as in (a). 

ii) ( )
2

max max
min min max max

min

A r
r h h r

K

 +
− < < < −  

   

then Eq. (1.7) has three periodic 

solutions; the trivial solution ( )triv
N t

  
which is unstable a positive solutions ( )1N t

 

and a negative solution ( )2N t , both asymptotically stable. The trivial solution  

( )N t
triv

 completely loses stability and becomes a repellor, one of the nontrivial 

periodic solutions,  ( )2 ,N t  arises again, this time as a negative asymptotically stable 

solution, whereas the status of a positive asymptotically stable periodic solution  

( )1N t   does not change: as in b(i), it attracts all solutions with positive initial data. 
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c. for ( ) ( )0 and 0A t h t< >
 
and harvesting satisfies the condition 

i)

 

2 2

maxmin min min
min min max min

0
max max max

3 1
max ,

4 4t

AA r K
r h h r

K K K≥

     
− < < <    

     

 then Eq. (1.7) has 

three periodic solutions; the asymptotically stable trivial solution ( )triv
N t

 
and two 

positive solutions, asymptotically stable solution ( )1N t
 
and an unstable solution 

( )2N t , whereas the status of these three periodic solutions are same as in (a). 

ii) 
2

max max max
max min

0
min max

3
min ,

4t

A r A
h r

K K≥

   
< −  

   

then Eq. (1.7) has three periodic solutions; 

the trivial solution ( )triv
N t

 
which is unstable a positive solutions ( )1N t

 
and a 

negative solution ( )2N t , both asymptotically stable, whereas the status of these 

three periodic solutions are same as in b(ii). 

d. for ( ) ( )0 and 0A t h t< <
  

and harvesting satisfies the condition  

2

min
max min min

0
max

max , 4
t

K
h r r

K≥

   
> − −  

   
 then Eq. (1.7) has three periodic solutions; ; the 

trivial solution ( )triv
N t

 
which is unstable a positive solutions ( )1N t

 
and a negative 

solution ( )2N t , both asymptotically stable which are not change as in b(ii). 

e. i) for ( ) ( )0 and 0A t h t= >
 
and harvesting satisfies the condition 

 
2

min
max min

max

1

4

K
h r

K

 
<  

 
 then Eq. (1.7) has three periodic solutions; the asymptotically 

stable trivial solution ( )triv
N t

 
and two positive solutions, asymptotically stable 
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solution ( )1N t
 
and an unstable solution ( )2N t , whereas the status of the periodic 

solutions are same as in (a). 

ii) for ( ) ( )0 and 0A t h t= <
 
and harvesting satisfies the condition  

2

min
max min

max

3

4

K
h r

K

 
< −  

   

then Eq. (1.7) has three periodic solutions; the trivial solution 

( )triv
N t

 
which is unstable, a positive solutions ( )1N t

 
and a negative solution ( )2N t , 

both asymptotically stable whereas the status of the periodic solutions are same as in 

b(ii). 

The changeover dynamics for Eq. (4.8) – Eq. (4.15) associated with the 

variation of parameter  1 2  and  γ γ  from 1 to -1 with the step -0.25 is summarized in 

Figure 11. We observe that qualitative properties of the periodic solutions for the 

cases 1 2, 0γ γ > , 1 20, 0γ γ> < , 1 20, 0γ γ< > , 1 20, 0γ γ< < , 1 20, 0γ γ= >  and 

1 20, 0γ γ= < . 

When we have a negative periodic solution of the differential equations (1.1) 

and (1.7) describing dynamics of a population, it has no biological meaning. 

Therefore, in these cases we can state the existence of a unique stable positive 

solution of these equations. Since it is stable, the population survives and fluctuates 

periodically. 
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If
  A

,h
 >

0 

   

If
  A

>
0,

 h
 <

0 

   

If
  A

>
0,

 h
 <

0 

   

If
  A

<
0,

 h
 >

0 

   

If
  A

<
0,

 h
 >

0 
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If
  A

<
0,

 h
 <

0 

   

If
  A

=
0,

 h
 >

0 

   

If
  A

=
0,

 h
 <

0 

   
Figure 11: Qualitative changes in the dynamics of Eqs. (4.8) – (4.15) as 1 2 and γ γ  

change from 1 to -1 with the step -0.25. 
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Table 1: Phenomenological models of demographic Allee effect and harvesting (or stocking) for the per capita growth rate 

( ) 1 .
N N A

g N r
K K K

  
= − −  

    

The meaning of the abbreviations are AS: Asymptotically Stable, SS: Semi-Stable, US: Unstable. 

    

Continuous time 
model  

Types of Allee 
effect  ( ( )A t ) 

Types of 
harvesting ( ( )h t ) 

Behaviour Stability 

( )
dN

Ng N
dt

=  ( )          0

 (Strong Allee effect)

A t >

 

( )   0h t =  Eq. (1.1) has three periodic solutions, ( )trivN t
 
is AS, 

( )1 0N t >
 
is AS and ( )2 0N t >

 
is US. 

 
( )        0 

(Weak Allee effect)

A t =

 

( )   0h t =  Eq. (1.1) has two periodic solutions, ( )trivN t
 
is SS, ( )1 0N t >

 
is AS. 

 
( )       0

 (Weak Allee effect)

A t <

 

( )   0h t =  Eq. (1.1) has three periodic solutions, ( )trivN t
 
is US, 

( )1 0N t >
 
and ( )2 0N t <

 
are AS. 

( ) ( )
dN

Ng N h t N
dt

= −

 

( )          0

 (Strong Allee effect)

A t >

 

( )   0

(harvesting)

h t >
 

Eq. (1.7) has three periodic solutions, ( )trivN t
 
is AS, 

( )1 0N t >
 
is AS and ( )2 0N t >

 
are US. 
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( )          0

 (Strong Allee effect)

A t >

 

( ) 0

(stocking)

h t <
 

Eq. (1.7) has three periodic solutions, for the condition 
2

min
min min

max

1

4

A
h r

K

 
> −  

 
, ( )trivN t

 
is AS, ( )1 0N t >

 
is AS and 

( )2 0N t >
 
are US. 

 

( )          0

 (Strong Allee effect)

A t >

 

( ) 0

(stocking)

h t <

 

Eq. (1.7) has three periodic solutions, for the condition 

( )
2

max max
min min max max

min

A r
r h h r

K

 +
− < < < −  

 
, ( )trivN t

 
is US, 

( )1 0N t >
 
and ( )2 0N t <

 
are AS. 

 
( )        0 

(Weak Allee effect)

A t <
 

( )  0

(harvesting)

h t >
 

Eq. (1.7) has three periodic solutions, for the condition 
2 2

maxmin min min
min min max min

0
max max max

3 1
max ,

4 4t

AA r K
r h h r

K K K≥

     
− < < <    

     

( )triv
N t

 
is AS, ( )1 0N t >

 
is AS and ( )2 0N t >

 
are US. 

 
( )        0 

(Weak Allee effect)

A t <

 

( )  0

(harvesting)

h t >

 

Eq. (1.7) has three periodic solutions, for the condition 
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