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ABSTRACT

In this thesis we compute the irreducible representations and the characters of some

certain finite groups.

We first provide the necessary overview on linear algebra, group theory and the

representations theory.

Then, we compute the irreducible representations of finite cyclic groups, smaller

symmetric groups and the direct products of the two groups.

Finally, we give a general method to compute the irreducible representations of S,, by
using Young diagrams and provide the Frobenius formula to obtain the characters for

these irreducible representations.

Keywords: Representation, Character, Cyclic groups, Symmetric groups,

Young diagram, Frobenius formula.
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Bu tezde sonlu gruplarm indirgenemez reprezantasyonlari ve karakterleri

hesaplanmustir.

Ik olarak Cebir, grup teorisi ve reprezantasyon teorileri hakkinda &n bilgi verilmistir.
Daha sonra devirli ve simetrik gruplarin ve bunlarin direkt ¢arpimlarinin indirgenemez

reprezantasyonlar1 hesaplanmistir.

Son olarak simetrik grup S,, i¢in genellestirilmis indirgenemez reprezantasyon metodu
Young semasi kullanilarak verilmis ve Frobenius formiilityle bu reprezantasyonlarin

karakterleri bulunmustur.

Anahtar Kelimeler: Reprezantasyon, Karakter, Devirli grup, Simetrik grup,

Young semasi, Frobenius formiilii
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Chapter 1

INTRODUCTION

Representation theory is a topic of pure mathematics that studies abstract algebraic
structure. Instead of working on complex algebraic operations, this theory gives a
chance to derive all of the operations from matrix addition and matrix multiplication.
Since it reduces problems of abstract algebra to problem of linear algebra, it is regarded

as an extremely useful branch of pure mathematics.

This thesis consists of 5 chapters. First chapter of the thesis is this introduction. The
second chapter includes some background information on linear algebra and groups.
In our thesis we mostly use the finite groups while working on representations. In third

chapter we give the overview information on representation theory.

Linear representation of G in V' is a homomorphism ¢ from G into GL(V) where G is
a multiplicative group with identity element 1 and GL (V) is the group of ismorphisms

of V onto itself, where V' is a vector space over the field of complex numbers, C.

The character of the representation ¢ is equal to the trace of the image matrix, where

Xo(s) =Tr(p,) forall s € G.



There are lots of important theorems and corollaries about representations. One of the
most important corollaries is about deciding whether a given representation is

irreducible or not.

We mostly compute the irreducible representations of the cyclic and symmetric groups
in our thesis. The corollaries pointed out in chapter 3 are going to be used on examples

in chapter 4.

In chapter 4 we give examples about the finite groups. One family of these finite
groups are the symmetric groups, S; and S,. From the chapter 3 we know that number
of irreducible representations of symmetric groups is equal to the number of conjugacy
classes and the first 3 irreducible representation are the trivial , alternating and the
standard representations. Other examples in chapter 4 are the representations of cyclic

groups C,, C, and the generalized form C,,.

We also explained homomorphism in chapter 2 as background information and there
are examples in chapter 4 that we use homomorphism rules to find the representations

of the direct products of the finite groups.

In the last chapter, chapter 5, we give the general formula to find all the irreducible
representations of the symmetric group S,,. In this chapter we explain what a partition
is and how the Young diagrams can be formed. Young diagrams play important role
while finding the irreducible representations of S,,. By using these diagrams we can
find the group algebra and by using the group algebra we can reach the irreducible

representations.



The brief definitions on group algebra and calculations by using Young diagrams are
given in this chapter. After finding irreducible representations, we start to work on the
character values of the elements of S,,, and we use the Frobenius formula below to

calculate the character values,

1@ = a@ | [
J

|1’|2""’|k

where A is the partition and all of the other notations are explained in chapter 5. With
respect to these character values we can observe which irreducible representation this

partition belongs.



Chapter 2

OVERVIEW

Part 1: Linear Algebra

2.1 Matrix Representation of a Linear Transformation

Definition 2.1.1 Let VV be a vector space and f = {&,ﬁz, ...,gn} be an ordered basis
for V. The coordinate vector of x € V associated with S is illustrated by the column

dy

wor ], =

), where d4,..,d, are unique scalars such that
dn

X =dix; +dyx, + -+ dpx,.
Suppose that VV and W are two finite dimensional vector spaces , and let y and S be

the corresponding ordered bases such thaty = {gl,gz, ...,gn} and g = {yl,yz, ...,ym}

Let T be a linear mapping of V and W such that; T:V — W. Then, since T is linear

there exist unique scalars d;; , such that
m
T(x;) = z dijyi
i=1

where , for 1 < j < n, x;belong to the ordered basis of V, and similarly for 1 <i <

m, y; belong to the ordered basis of W.



The matrix representation of this linear transformation, T, corresponding to ordered
bases £ and y is anm x n matrix and can be denoted by [T [}, If V = W (that means
if their dimensions and bases are same), then the matrix representation of T from

V to W and from W to V are equal , so [T ], =[T]/. Hence if two bases are equal to

each other, [T ]/, can be written as [T ], since [T}, =[T];=[T],.

Theorem 2.1.2 [7] Suppose that T and U are two linear mappings from VV to W, where

V and W are finite dimensional vector spaces. Let § and y be the corresponding

ordered bases such that 8 = {xy, x5, ...,x,} and y = {Xl'XZ' ""Xm} Then,
@ [T+ul=[T}+];
@ d[T]; =c[T];

Proof: (1) Letthat B = {x;, x5, .., x,} and y = {Xl'XZ' '"’Xm}'
T(x;) = 28y, Ux;) =2 byy, and (T +0)(x;) = (a; +by)y,
= ([T + Ulp)y = ayj + bi; = (T1R)i; + ([UR); u

Definition 2.1.3 (Inner product) Letu = (uy, Uy, ..., U,) and v = (vq, v,, ..., v,) be

2 vectors and their inner product defined as (u. v) = uv; + Uy vy + -+ + Uy,

Remark 2.1.4 Two vectors are orthogonal if their inner product gives 0.

Eg: u =(1,1,1) and = (1,3,—4) , so (w.v) = 1.1 + 1.3+ 1.—4 = 0. That means u

and v are orthogonal.



U1 o Upn
Definition 2.1.5 (Tensor product) Let U = ( oo ) and
Up1 = Upn

Vi1 0 Vin
V=< P ) then the tensor product
Uni *° VUnn

Vi1 0 Vin Vi 0 Vin

ul,l M e M cee ul,Tl M e M

Un1i " Unn Uni *° Unn
vl’l s , s ,

Up 1 : . : ... :
Un,l

2.2 Matrix Representation for Composition of Linear

|
\

Transformations.

Theorem 2.2.1 [7] Suppose that T:V - W and U:W — Z are linear and let

a ={xy,%s, ., Xn}, B = {yl,yz, ...,ym} andy = {zy,2,, ..., z,} be the corresponding
ordered bases for V,W and Z respectively. Then UT is also linear and

utl =L L.

a

Proof: Let @ = {xy, %5, .., xn} B = {Xl’zz’ '"’Xm} andy = {z, z,, ...,gp} .

wn(x) =U(T(x)) = U(iai,-zi)=iauu(zi) =iaij (Zf)bnz.) =

> > byayzy = > (ba);z, ((UT1H)y = (ba)y; = (V15 (T1Dy
| i |



Theorem 2.2.2 [7] Let B and y be ordered bases for finite dimensional vector space

IV and W respectively, and let T be a linear map from V to W such that T: V — W.Then

, for all vector .x, of V : [T(x)] = [T ], [x],

Part 2: Group Theory
2.3 Groups

Definition 2.3.1 A group is a non-empty set of elements with binary operation * . We
usually denote a group G by (G,*).There are 4 axioms for a group that need to be

satisfied:

(1) Closure: A binary operation combines any two elements in the group G to
collect the third one, and this third element collected is the element of the group

G as well. Mathematically for all g,,9, € G, g, * g2 € G.

(2) Associativity: For a group (G,*), binary operation = is associative. That means,

(axb) x c = ax(bxc)foralla,b,c €.

(3) Identity element: There exists an identity element e in G, such that

gxe=exg=gforallgeaq.

(4) Inverse element: For each g € G , we can find an inverse element g~ € G

suchthat, g x g7 = e = g~ * g, where e is the identity element of G.
Proposition 2.3.2 The identity element in axiom 3 is unique.

Proof: Assume that there are two identity elements a and b. Here, ab = a (Since b
is the identity element) and ab = b (Since a is the identity element). Therefore a = b



Proposition 2.3.3 The inverse element in axiom 4 is unique.

Proof: Let a and b be two inverses of the elemet , where a, b,c € G. Then ;

a=(axe)=ax(cxb)=(axc)*b=exb=0»b

Since b is inverse of ¢ by the axiom (2) since a is inverse of ¢

.. a=b =

2.3.4 Groups Examples :

1.

2.

(Z,+); The set of integers is a group under addition.
(R*,x); The set R*, of non-zero real numbers is a group under multiplication.

(Z,x) The set of integers is not a group under multiplication because of the failure
of axiom (4). For example, the inverse of 2 € Z , under multiplication is% , Which

is not an integer number.
The General Linear Groups:

The general linear group GL, = {A € M,,| det(A) # 0} is the group of n X n
invertible matrices with operation of multiplication. Remember that a matrix A is
invertible if and only if detdA # 0. So this group can also be identified with

matrices A such that det A #0.
Special Linear Groups:

The special linear group SL,, = {A € GL, | detA = 1} is the group of invertible
m X m (square) matrices with determinant 1. Again this set forms a group under

multiplication.



6. Modulo Group Zj:

The modulo operation is denoted as r = m(mod n) where m = np + r. And let

n > 0, the modulo set Z,, = {0,1,2,...,n — 1}.

7. Let neN, n>1, Un) ={x€{1,2,..,n—1} hef(x,n) = 1} is a group

under multiplication modulo n. For example, if n = 12, U(12) = {1,5,7,11}

Definition 2.3.5 A group G is Abelian if the operation * is commutative, such that

ab = baforalla,b €G.

Example 2.3.6 The set of non-zero rational numbers is an Abelian group under

multiplication whereas GL,, given above is not Abelian.

Remark 2.3.7 Note that we can use the following simplified notations for the given

statements.

i. “Gisagroup”= (G,*)

ii. axb = ab,

iii. order of G = |G|

2.4 SUBGROUPS

Definition 2.4.1 (Order of a Group) the number of elements of a group (finite or
infinite) is called its order. We will use |G| or sometimes n(G) to denote the order of

G.

Example 2.4.2 Order of Z (under addition) is infinite, whereas U(10) = {1,3,7,9} has

order 4.

Definition 2.4.3 The order of an element g in G is the smalles positive integer n such

that g™ = e. If there is no n values for g that means g has infinite order.

9



Example2.4.4 Consider U(15) = {1,2,4,7,8,11,13,14} under multiplication modulo
15. The order of the element 7 is 4 since 7* = 1(mod 15) where 1 is an identity

element of multiplication.

Definition 2.4.5 If a subset H of a group G is itself a group under the operation defined
on G, then H is said to be a subgroup of G (H < G) . If we write H < G, then it means

that H is a proper subgroup of G.

Theorem 4.2.6 (The Subgroup Criterion) [8] Let G be a group and H is a non-empty

subset of G. H is a subgroup of G if and only if the following axioms hold:
(1) Forallaand b € H, ab € H.

(2) Forallae H, a ! € H.

Example 2.4.7

1. SL,(n,R)isasubgroup of GL,, . The subset SL,contains the identity matrix so
it is nonempty. Since A and B € SL,, that means detA = detB = 1, then
det(AB) =detAdetB=1, which means AB € SL,. And det A™! = 1/detA =1

that measn A~ € SL,, . So 2 axioms of subgroup criterion was satisfied.
2. Qs subgroup of R.

Theorem 2.4.8 [4] Let H be a non-empty subset of G. Then, H is a subgroup of G if

and only if forall a and b in H, ab~ ! is also in H.

Proof : Since H is a subgroup, one way of the theorem is clear. For the reverse
direction, since H is non-empty, let some a € H. Then by the statement of the theorem,
aa"'=eisin H. Now by using e and a, ea™! = a~! is also in H. Finally given a and

binH,sincea *and b tareinH,a(b™*)"' =abisalsoinH. =

10



Theorem 2.4.9 (Finite Subgroup Test) [7]: If H is a non-empty finite subset of G and

H is closed under the operation of G, then H is a subgroup of G.

Example 2.4.10 The subset {1, —1, i, —i} is a group under complex multiplication.
2.5 Symmetric Groups(S,,,*).

Definition 2.5.1 The set of all 1-1 functions from the set {1,2, ..., n} onto itself is
called the symmetric group of degree n and its denoted by S,,. Since the elements are

functions, operation is the composition of functions. Note that S,, has n! elements.

Remark 2.5.2 The elements of S, can be represented by using the matrices. For

example if

1 2 3

oo N
p € Sy, then pcan be represented as p :(
" p@) p(2 p@B) .. p(n)

] . The identity

12 3

element of this group S,, is I =
group 5, [1 5 3

n . .
J. Finally the inverse of the element
n

p@ p@2) pE .. pn)

. It is clear that S,,has a grou
1 2 3 .. j " Jrotp

pgiven above is p = (
structure as compositions of functions is associative.

Remark 2.5.3 It is sometimes easier to represent elements of S,, in cycle form rather

than using matrix notation.

1 23 456

For example, if p= (2 31465

j, in cycle notation , we write this as

p=(123)(4)(56) = (123)(56)

Theorem 2.5.5 [8] Let p and o be any two cycles under S,,. If these two cycles are

disjoint (have no entries in common), then po = op.

11



Theorem 2.5.3 [8] The order of a permutation given in disjoint cycle form is the least

common multiple of the lengths of its disjoint cycles.

Theorem 2.5.4 [8] Every permutation in S,, is a product of 2-cycles.
Proof:{x;, X2, ..., X, HY1, V2, ...,ym}{zl,zz, s zp} =

(x1%2) (x23) oo (Xn—1%0) (V1Y2) V2Y3) oo Um—1Ym) (2122)(2223) ... (Zp—lzp)'
Definition 2.5.5 A cycle of length 2 is called transposition.

Definition 2.5.6 (Odd and Even permutation) Letn > 2, for ¢ in S,,, if we can write
o as a product of even (respectively odd) number of transpositions, then o is an even

(respectively odd) permutation.

Remark 2.5.6 For n > 2 and for o in S,,, o is either an even or odd permutation and

is only one or other.

Definition 2.5.7 (Alternating Group A,) The group of even permutations of n

symbols is called alternating group of degree n.

Definition 2.5.8 (Conjugate) Let G be agroup and a, b and ¢ € G. We say that a and

b are conjugate in G if b can be expressed as cac™!.

Definition 2.5.9 (Conjugacy Classes) Conjugacy classes are represented by the
cycle types. If two permutation o and 7 are conjugate each other if and only if they

belong to same conjugacy classes.

Example 2.5.10 ¢ = (123), then the conjugacy classes are

(D))}, 1(12)(13)(23)} and {(132)(123)}.

12



2.6 Cyclic Groups

Definition 2.6.1 Let G be a group. Then we say that G is a cyclic group if there exists
a generator b such that the powers of the generator gives all the elements in the group.
We denote this group as G = (b). Order of a cyclic group G, is the order of one of its

generators. Note that the inverse of a generator is also a generator.
Example 2.6.2 Z = (1) = (—1) is a cyclic group and is denoted by (Z, +).
Theorem 2.6.3 [8] Every subgroup of a cyclic group is again a cyclic group.

Theorem 2.6.4 (Fundamental theorem of Cyclic groups) [8] Let G be a cyclic group
(G = (b)) and let the order of G be n. Then the order of any subgroup of G is a divisor

of n. The group (b) has exactly one subgroup of order k, if k is the positive divisor of

n. This subgroup is namely (@i

Example 2.6.5 If |G| (where G = (a)) is 20, the, we can list all the subgroups of G as,

(a),(a?), (a*),{a®),(a®),(a?°). So subgroups of Z,, are

(20) =(0) , (10)=¢(0,10) , <(5)=(0,510,15) , (4)=(1,4812,16)

(2) =(0,2,4,6,810,12,14,16,18) , (1).

Before finishing cyclic groups, there are some corollaries that we are going to point

out.

Corollary 2.6.6 Let G be a group and let a be an element of order n in G. If a* = e,

then n|k.

Corollary 2.6.7 (Generators of Cyclic Groups) Let G = {(a) be a cyclic group of

order n, then G = (a*) if and only if gcd(n, k) = 1.

13



Corollary 2.6.8 (Generator of Z,,) An integer k € Z,, if and only if gcd(n, k) = 1.
2.7 Cosets and Normal Groups:

Definition 2.7.1 (Coset) Let G be a group and H be a subset of G. For g € G, the set
gH ={gh: h € H} is named as the left coset of H in G. Similarly the set

Hg = {hg : h € H} is called the right coset of H in G.
Example 2.7.2 Let G = Z,, and H=(3) = {0,3,6,9}. The left cosets of H in G are
0+(3),1+(3), 2+ (3). Therefore, it has 3 distinct left cosets.

Remark 2.7.3 Note that the set Z,, forms a group under addition mod n, whereas

U(n)=1Z," forms a group under multiplication.
Example 2.7.4 Find the coset of H = {1,7} in
G =U(26) ={1,3,57,9,11,15,17,19,21,23,25}.

The left cosets of H in G are ; H = {1,7}, 3H = {3,21}, 5H = {5,9}, 7H = {7,23},
9H ={9,11},11H = {11,25},15H = {1,15}, 17H = {17,15}, 19H = {3,19},

21H = {17,213}, 23H = {5,23},25H = {19,25}.

Theorem 2.7.5 (Properties of Cosets) [4] Let H be a subgroup of G, and let a and b

be elements in G. Then,
(1) a € aH
(2) aH = H ifandonly ifa € H.
(3aH =bHoraHNbH =0

4) aH = bH ifandonly ifa™'h € H
( y

14



(5) laH| = |bH|
(6) aH = Ha iff H = aHa™?
(7)aH <G iffaeH

Definition 2.7.6 The number of distinct left cosets of H in G is called the index of H

inG.

Definition 2.7.7 (Normal Subgroups) Let H be a subgroup of G. If the right and left
cosets are the same, that is to say if gH = Hg for all g € G, then H is said to be a
normal subgroup of G. We denote this by H < G. ( ghg™' € H for all h € H and

geG)
Example 2.7.8
1. For any group ,idendity element is a normal subgroup of G.
2. SL, < GL,. Letthe matrix A € GL,, and matrix B € SL,,, then

det(ABA™1) = det(4) det(B) det(A™ 1) = det(4).1.det(4™1) =

det(A) det(A™1) = 1.Therefore ABA™' € SL,,.
3. D,<SL, LetK €D, and L € SL,,.

Theorem 2.7.9 (Lagrange Theorem)[4] Let G be a finite group and H be a subgroup
of G. Then, the order of H divides the order of G. Thus, we have |G| = |G: H||H|,

where, |G: H| denotes the index of H in G.

Corollary 2.7.10 For a finite group G, the order of the element divides the order of the

group.

15



2.8 HOMOMORPHISM

Definition 2.8.1 Homomorphism is a mapping f: G — H between two groups G and

H such that
f(ab) = f(a)f(b) forall a,b € G

So we can say that there are two operations (for two different groups) in a

homomorphism and these operations may be different from one another.

Definition 2.8.2 (Kernel) If there isa homomorphismfrom G to H [f: G — H], Kernel

of f, K, is the set defined as Ky = {x € G| f(x) = ey}. The Kernel of f is denoted by

Ker(f).

Examples 2.8.3

10
1. Let f:R— GL(2;R) be defined by (x)=( 1) . The map f is a
X

1 0 1 0)(1 O
homomorphism as f(x + y) = (x+ y J = (x 1] (y J =f(x)f ().
Note that Ker f = {0}

2. LetAand B € GL(n,R) and let ¢: GL(n,R) —» R* is defined by ¢(4) = det(4).

Then ¢ is homomorphism;
@(AB) = det(AB) = detAdetB = @(A)p(B). Here Ker(p) = SL(n,R)

3. Let G be the group of positive real numbers, and let H be the group of all real
numbers. Define h: R* - R by h(x) = log,ox. Then ¢ is a homomorphism

since h(xy) = log,o(xy) = log,o(x) + log10(y) = h(x)h(y). Note again that

Ker(h) = {1}.

16



Theorem 2.8.4 [7] Let 8 be a homomorphism fromGtoH (6:G —» H) andletg € G.

1. 6 carries the identity of G to the identity of H.
2. 6(g") =(@@(g)" forallneZ

3. If|g|isfinite, then |6(g)| divides |g|.

4. Ker8 isasubgroup of G.

5. 8(a) =0(b) & aKerf = b Kerf.

6. If0(g) =g, then8 1(g")={x€G|0(x) =g'} = gKerb.

Proofs

1.

3.

Let e; be the identity element of G and ey be the identity element of H.
0(e;) = O(eqe;) = 0(eg)0(eg) , get B(e;) ™t of both sides

0(ec)™'.0(eq) = 0(es)0(es).0(ec)™ ", ey = 6(eg)

We can prove it by induction; n=0: 6(e) =e.n=1: 6(g) = 8(9).
Assume its true for all n and prove it for n+1:

0(g"™") =0(g"g) = 8(g™Mb(9) = 6(9)"0(g) = B(H™*".

Since n is negative_:That means —n is positive .

(g™ "g™) =0(g™)0(g™). ey = 6(g)"0(g"™) so that 8(g)"=60(g™)

If |g| is finite, g™ = e, 6(g™) = (6(g))" = ey, s0|0(g)| dividesn = |g]|.

17



4. e € Ker6 by property 1, so Ker6 is non-empty. If g € Kerf ,then 6(g) = ey .
0(gH)=0(g)t=el=e so g leKerf. If abe€Kerf, 6(ab)=

6(a)8(b) = ey s0 ab € Ker0.

5. (=) If 8(a) = 6(b). We show that a~1b € Ker.

0(a"*bh) = 08(a1)0(b) = 8(a) 10(b) = ey (since 8(a) = 8(b)) so a b€

Ker0.

(&) If a'b € Kerf. Show that 6(a) = 6(b).0(a b)) =6(a"1)o(b) =

0(a)0(h) =ey; = 0(a)=0(b).

6. Let x € Kerf. Then, 68(gx)=06(g)0(x)= 6(g)ey =06(g) =9 = gx €
0 1(g"). If  6(x) = g',then we show x € gKer . By using property 5 we can

say that; 8(x) = 6(g) = xKerf = gKer6

Theorem 2.8.5 [7] Let 8 be a homomorphism from a group G to a group H (6: G —

H), and let G be a subgroup of G such that;

1. 8(G)={6(g) | g€ G}isasubgroup of H.

2. If G is cyclic, then 8(G) is cyclic.

3. If G is Abelian, 6(G) is Abelian.

4. If G isnormal in G, then, 8(G) is normal in, 8(G).

5. If |[Ker6| = n, then, 0 isann — 1 mapping from G onto 8(G).
6. If |G| = n, then |6(G)| divides n.

7. If K is a subgroup of H, then 81(K) is a subgroup of G.
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8. If K is a normal subgroup of H,then 8~1(K) is a normal subgroup of G.
9. If 8 isonto and Kerf = {e}, then @ is an isomorphism from G to H.

Corollary 2.8.6 Let 8 be a group homomorphism from G to H. Then Ker6 is a normal

subgroup of G.
Exercise 2.8.7 Determine all homomorphisms from Z,g to Z,s.

Such a homomorphism is completely determined by the image of 1. As if 1 goes a, x

goes ax.

By property (3) of theorem 1, |a| divides 18, but by Lagrange's theorem |a| also

divides 45.

So|al =1,3,9

*Iflal =1 a=0.
*If la] =3 ,a=15and 30

*If |a] =9 , a=5,10,20,25,35 and 40

Corollary 2.8.8 A homomorphism 8 of G onto H is an isomorphism if and only if it

is onto and Ker 8 = {e}.
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Chapter 3

Representation Theory

3.1 Basic Definitions of Representation Theory

Definition 3.1.1 Let GL(V) be the group of ismorphisms of IV onto itself, where V is a

vector space over the field of complex numbers, C.

By the definition, each element of GL(V) is linear and has a linear inverse. Now let
T € GL(V), if V has a finite basis {e;} of n elements, then each linear map T is defined

by a square matrix a;; of order n.
T(e;) = z aij€i
i

where the coefficients are complex numbers.

We know that T is an isomorphism, therefore we can say that A is invertible which
implies that T # 0. Since det(T) =det(A), the set GL(V) can be identified with the

group of invertible square matrices of order n.

Definition 3.1.2 Let G be a finite group. Linear representation of G in V is a
homomorphism ¢ from G into GL(V). G is a group with identity element 1, which

means that the operation of homomorphism is multiplication.
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If : G = GL(V) is a homomorphism then , ¢ (ab) = ¢(a).@(b), where a,b €

G and ¢ (a), p(b) € GL(V).

Note that V is said to be the representation space or sometimes just the representation

of the group G.

Definition 3.1.3 Let ¢ and ¢’ be the two representations of the same group G in vector
spaces V and V'. We can say that these 2 representations are similar (isomorphic) if

we can find a linear isomorphism &§: V — V' satisfying

S-(s) = ¢'(s)-6 , forall s € G.

Basic example 3.1.4:

The homomorphism ¢: G — C* is a representation of the group G with degree 1. The
matrix here is 1x1. Here C* illustrates the multiplicative group of nonzero complex

numbers.

Let g € G and z = @(g) € C. G has finite order. Let us say |G| = n. By Lagrange’s
Theorem we know that |g| | n. Since the order of an element of C* divides the order

of an element of G, |z| is finite. Hence the values of z are the roots of unity.

Definition 3.1.5 (The character of a Representation) Let ¢:G — GL(V) be the
linear representation of a finite group G in the vector space V. The character of the

representation ¢ is equal to the trace of the image matrix. So,

Xo:G = C,where x,(s) = Tr(gp,) forall s € G.
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Proposition 3.1.6 Let the character of the representation ¢ of degree m be y. Then the

following properties hold;
1. x(1)=m,

2. x(g™H) = x(g) forg €G,

3. x(hgh™) = x(g) forall g,h € G.

Definition 3.1.7 (Invariant Subspace) Suppose that there is a linear map and let W
be a subspace of V. We say that W is an invariant supsbace of V relative to ¢ if for

every elementw € W, p(w) € W.

Definition 3.1.8 (Subrepresentation)[Ref:Graduate Text in Mathematics 42] Let
@: G - GL(V) be alinear representation and let W be a vector subspace of V. Suppose
that W is invariant under the action of G, or in other words, suppose that w € W
implies @ (w) € W for all s € G. The restriction " of ¢, to W is then an
isomorphism of W onto itself. Thus, " :G —» GL(W) is a linear representation of

G in W; and W is said to be a subrepresentation of G.

Definition 3.1.9 (Irreducibility and Indecomposable) Let p: G — GL(V) be a non-
zero linear representation of G.It is said to be irreducible when it contains no proper

invariant subspaces.

Representation is indecomposable if we cannot write it as a direct sum of any two

nonzero subrepresentations.
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Definition 3.1.10 (G-invariant inner product) Let G be a finite froup and V be a
representation of G. For any g € G and vy, v, € V, G-invariant inner product can be

defined as (vy, v,) = (gv1, gv,)

Definition 3.1.11 We can say that representation IV of finite group G is the direct sum
of W and W+ where W and W+ are both sub representations of V where W n W+ =

Q.

Definition 3.1.12 (Hermitian inner product)

1
(v1,v2) == > {9V, 9v,) where vy, v, € V.
g

Definition 3.1.13 (The space of class function) Let V be a representation of G and

h:G — C be a class function on G. Then for any 2 class functions hand h' ,

(h,h')y = ﬁZh(g)@ where g € G.

3.2 Types of Representations [6]

All groups we consider in this section will be finite and all vector spaces will be finite

dimensional over C .

Definition 3.2.1 (Trivial representation): Let the trivial action of G be defined by
gx = x for every x € Cand for every g € G. Since C is equipped with the trivial
action of G we say that it is the trivial representation of the finite group G. We can
point out that the every finite group has the trivial representation and since this is 1-

dimensional, then C has no proper nontrivial subspaces; in other words it is irreducible.
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Definition 3.2.2 (Permutation representation of ): Let V be a vector space generated

by the basis {e, |y € Y} where Y is a finite G-set and let

g(asey, +azey, + - +aney, ) = aregy, + azeqy, + -+ anegy,

be the action of G on V. We name V as the permutation representation of G.

It’s easily noticed that each member of G only changes the place of a basis element
which is added to another and because of the commutative property of addition that
doesn’t change the sum. Therefore the subspace spanned by the basis of the vector
space V is invariant under the action of G. As a result , every permutation

representation has nontrivial subrepresentation and is therefore reducible.

o Ifwereplacethe G-setY by G itself, we say that V is the regular representation

of G.

Definition 3.2.3 (Permutation representation of §,): Let {gl,gz,...,gn} be the

standard basis for C™ for any n, and let
U(a1€1 +aze; + -+ anﬁn) = A1851) T A28s2) T T Anlom)

be the action of S,, on C™. This action is called the permutation representation of S,,.
We already explained why the subspace is invariant under the action of G by our
earlier definition of permutation representation on G. Because of the same reason we
note that 1-dimensional subspace of C spanned by e; + e, + -+ + e, is invariant under

the action of S,,. Therefore, (e; + e, + --- + e,,) is a subrepresentation of C".
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At that point, we can say that its orthogonal complementV = {{x; + x, + -+
X )xq + x5 + -+ x, = 0}is a subrepresentation as well since this orthogonal

complement is also invariant. V is called the standard representation of S,,.

Remark 3.2.4 C" =V®(e, + e, + -+ e,), where (e; + e, + ...+ e,) under the

permutation action of S,, is isomorphic to C under the trivial action of S,,, so it is the

trivial representation, let say U. By using the corollary of character we can say that;

XC" = Xvd(ei+es+-+ey) = XC = X(ej+ep+-+ep) + Xv

Definition 3.2.5 (Alternating representation): Let o be a permutation in S,, and for
every , we define the alternating representation by p(o) = sign(a)l . We can

illustrate this representation by the action

{ w ifoisaneven permutation}
o.w= e .
—w  if o is an odd permutation

For n > 2, any S,, has the alternating representation and since this representation is

1-dimensional it is irreducible.

Theorem 3.2.6 (Fixed Point Formula) Let V be the representation of a finite
group G as described in definition 3.1.2 and X be a finite G-set. Then the number of

left fixed elements (by the action of g) in X is y,(g) forevery g € G.
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3.3 Important Theorems and Corollaries about Representation

Theory [1]

Theorem 3.3.1 The number of conjugacy classes of G is same as the number of

irreducible representations of G (up to isomorphism) .

Theorem 3.3.2 G is Abelian if and only if all irreducible representations have degree

1.

Theorem 3.3.3 The sum of the squares of the dimensions of distinct irreducible

representations is same as the order of the given group G.

k

2 ([dim(W,))* =|G|

i=1

Example 3.3.4 ( The cyclic group C,) Since C,is Abelian, from theorem 3.2.2 , all

irreducible representations have degree 1. Sum of the squares of dimensions of distinct

irreducible representations is 2, so C, has two irreducible representations of degree 1.

Let r be the generator of C, and p: C, —» C. Then p(r) = w. Since r2 =1, p(r?) =
w? =1. Hence, wis 1or—1.

Lemma 3.3.5 Let W be a subrepresentation of V where V is a representation of a finite
group G. The orthogonal complement W+ of W, is also a subrepresentation of VV under

the G-invariant inner product.

Proof. For a fixed x in W+, Wt ={x eV |{(x,w)=0,vw € W} and because we
have G —invariant inner product, (x,w) = (gx,w) =0 forany g€ G and w € W.

Therefore gx € W+ and this implies that W+ is also invariant under the action of G.
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Definition 3.3.6 let p; and p, be linear representations of G; and G, respectively then

the tensor prduct of these 2 representation is defined by p; ®p,(s,t) = p1(s)®p,(t).
Theorem 3.3.7

(a) Let 7, and 7, be irreducible representations of G; and G, respectively. Then t;®1,

be an irreducible representation of G; X G,.

(b) Each irreducible representation of G, X G, is isomorphic to a representation

p1®p,, Where p; is an irreducible representation of G;.

Proposition 3.3.8 xyew = xv + xw and xyew = xv.xw Where Vand W are the

representations of group G.

Theorem 3.3.9 For any given representation V of G, we can break it up to
subrepresentations and we canwrite VasV = W, W, @ ... ... @W, where W; doesn’t

break up into smaller pieces, which means W; is irreducible for all i.

Theorem 3.3.10 Let G be a group. The set of character functions of the irreducible

representations is orthonormal with respect to inner product.

Let y and y' be character sets for W and W' respectively , where W and W' are

irreducible representations. Then, (x, x’) = ﬁZX(g) x'(g) =1, where g €G.

If yis isomorphic to y’ their inner product will be equal to 1. If they are not

isomorphic, their inner product will be equal to 0.

27



Corollary 3.3.11 (a) Let G be a group and V be a representation of G. Then V is

irreducible if and only if (xy, xv) = 1. (xv, xw) = X yeq Xv (9 xw (9)

(b) Let V be a representation of G with character yy, and let xw,, xw,, ..., Xw, be

irreducible characters of W;,W,,...,W, respectively where W, W,,...,W, are

irreducible representations for V.

e We canwrite yy as xy = ¢1xw, + C2Xw, + - + Crxw, ,Where

C1,Co, -, € € N Hence, y, = ¥ ¢; xw, , where ¢; = (xv, xw,)

e (xvixv) =X Ciz-

k
o > dim(W,).z, (9) =0 if g € G is not the identity.

i=1

Corollary 3.3.12 Number of irreducible representations of a finite group G is equal

to the number of cycle types.
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Chapter 4

EXAMPLES

Example 4.1 ( The cyclic group C,)

C, is an Abelian group, and we know that for all Abelian groups, all irreducible
representations have degree 1. C, has 4 irreducible representations since the order is 4.
( Since the sum of the squares of the dimensions of irreducible representations is equal

to the order of the group : 12 + 12 + 12 + 12 = 4).

Let the generator of C, be r, then r* need to be equal to 1. Then p(r) = w which

. . Z.ﬁ.i.y
implies that p(r*) =w*=1. Hence, w=-¢e /" where k=0,1,23. So

w (irreducible representations) is 1,—1,i or —i.

Remark 4.2 ( Representation of C,,) In general cyclic (Abelian) groups has n

2.7k
irreducible representations which are given by w = e % ,where k =0,1,...,n — 1.

Example 4.3 : Representation of S5

From earlier theory the number of irreducible representations of a finite group G is
equal to the number of conjugacy classes in G. Since there are 3 conjugacy classes
there exists 3 irreducible representations. One of this is trivial representation U. It is

1 x 1 idendity matrix where the character value is equal to 1. Second irreducible
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representation is the alternate representation, U’. By the homomorphism
¢(0) = sign(o).
Then, character of (1) is 1,character of odd permutations [ (12),(23),(13) ] is -1 and

the character of even permutations [(123),(132)] is 1. Irreducibility of U’ can also be

proved by

1 1
Gy xy') = Ez L1+-1-1+-1-1+-1-1+11+11=2(6) =1

Standard representation is the remaining irreducible representation. By remark 3.2.4
C® = Veé(e; + e, + e3) . Note that (e; + e, + e5) under the permutation action of S5
Is isomorphic to C under the trivial action . We know that y, + xy = x¢3 . Since the
character of €3 with respect to (1) , (12) and (123) are 3, 1 and 0 [from the fixed point
theorem], then the corresponding characters of V (standard representation) are 2 , 0

and -1.

1 1
Gt xv) = Ez 22400+00+00+-1-1+-1.-1==(6) =1

Then V is also irreducible . Permutation representation is not irreducible representation

of S3.
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Example 4.4 : Representation of D3(application of S3)

D5 is the group of symmetries of an equilateral triangle.

Figure 1: Sketch of Triangle with Reflection Lines

Let a, B and y be the line of reflections ( at the end of each reflection there is 1 fixed
point) and r; and r, be the rotation of 120° and 240° ( not any fix point) respectively

and e be the identity.

Let K,,K; and K, be the representations of vertices , edges and faces respectively.
(1) K, (vertices)

Xk,(e) =3 xx,(B) =1 xx, (1) =0

Xx,(@) =1 xx, () =1 Xk, () =0

since (X, Xi,) = (33 + L1+ 11+ 11+ 0.0 +0.0) = (12) = 2. K, is the

el
direct sum of 2 distinct irreducible representations. To decide which two
representations, we need to take the product of y, ~with respect to each of the

irreducible representations of S5.

1

GBI+ 11+11+11+0140.1) = %(6) =1

1- Trivial @ {xx,, xu) =
2- Alternating : (xx,, xy') = |71|(3'1 +1.-141.-14+41.-14+01+01)=0
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1

3- Standard : (xg, xv) = G|

(32+10+1.0+10+0.-1+0.-1) ==(6) =1
Asaresult K, = UV

(2) K4 (edges)

Xk, (e) =3 X, (B) = -1 Xk, (1) =0

Xk, (@) =-1 X, (1) =-1 X, () =0

since (k. xx,) = =33+ -1L.—1+-1.—1+—1.—1+0.0 +0.0) = 2 , again

el
there exists 2 distinct irreducible representations. To decide which two, we need to

take the product of y,  with respect to each of the irreducible representations of Sj.
1- Trivial: (xx , xy) = |?1|(3'1 +-114+-11+-1140140.1) = %(0) =0
2- Alternating: (xx,, xy') = ﬁ(3.1 +-1.-1+-1.-1+-1.-14+014+01) =1

3- Standard: (xg,, xv) = i(3.2 +-10+-10+-10+4+0.-14+0.-1) =1

IGI
Hence, K; = U'@V
(3) K, (faces)
Xk,(€) =1 Xx,(B) =-1 Xk, (1) =1
Xk, (a) =-1 Xx,¥) =-1 X, (2) =1

Since (xk, xx,» = L114+4-1-1+-1.-1+-1.-1+11+11) = %(6) =1,

~al

K, is a direct sum of only 1 irreducible representation.

1

G(L1+-11+-11+-11+11+11) = %(0) =0
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2- Alternating: (x, xy') = ﬁ(m +-1.-14+-1.-1+-1.-1+11+11) =1

3- Standard : (xy,, xv) = |71|(1'2 +-104+-1.0+-10+1.-1+1.-1)=0

SO, KZ = UI

Example 4.5 Representation of C, X C:

We know that C, x C, is Abelian so all the irreducible representations have degree 1
this implies that there exists 4 irreducible representations. We know that C, has 2

irreducible representations which are 1 and —1.

Let I, 7,,7, and 73 be 4 irreducible representations of C, x C, where the elements of

the latter are (0,0), (1,0), (0,1) and (1,1).

By using the rules of homomorphism, we can find the representations, as follows;
(O I: (0,00-1

(1,0) > 1  (Trivial representation)

(0,1)-1

(1,1) -»1
2)t,:(0,0)->1

(1,0)-1

(0,1) » -1

(1,1 - —1
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(3)1,:(0,0) > 1
(1,0) » -1
(0,1) > —1
(L) -1

(4)75:(0,0) > 1
(1,0) » —1
(0,1) -1

(1,1 - —1

Example 4.6 : Representation of C, X C,: (By using Tensor Product)

We know that (p;®p,)(s,t) = pi(s).p2(t). Let p,and p, be the irreducible

representations of C, and p; and p, be the irreducible representations of C, again ,

where
Cy X Cy
p1:0-1 p3:0 -1
1-1 1-1
p2:0—-1 Ps:0—-1
1--1 1- -1

The elements of C, x C, are (0,0), (1,0), (0,1) and (1,1) and Representation are,

(1) Trivial, I

(01®p3)(0,0) = p1(0).p5(0) = 1.1 =1
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(1®p3)(0,1) = p1(0).p5(1) =1.1=1

(p1®p3)(1,0) = p1(1).p3(0) =1.1=1

(P1®p3)(1,1) = p1(D.p3(1) =11=1

(2) 7y

(02®p3)(0,0) = p;(0).p3(0) =1.1=1

(02®p3)(0,1) = p,(0).p3(1) =11=1

(P2®p3)(1,0) = pz(1).p3(0) = 1.1 = -1

(P2®p3)(1,1) = p(1).p3(1) = -1.1= -1

3) 72

(028p4)(0,0) = p;(0).p4(0) =1.1=1

(028p4)(0,1) = p2(0). p4(1) =1.-1= -1

(P2@p4)(1,0) = p5(1).ps(0) = 1.1 = -1

(P2@p4)(1,1) = p2(1).ps(1) =-1.-1=1

(4) 73

(P1®p4)(0,0) = p1(0).p4(0) =11 =1

(01®p4)(0,1) = p1(0).p4(1) =1.-1 = -1

(P1®p4)(1,0) = p1(1).ps(0) =11 =1

(P1®ps)(L,1) = p1(1).ps(1) =1.-1=-1
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Example 4.6 : €, x C, acting on an octahedron as rotations through

1t about the three axes through opposite vertices.

The group C, x C, has four elements: e, ry, 1y, 15, Where r; is the axis joining the
vertices 5 and 6, r, is joining the vertices 3 and 4, and r; is joining the vertices 1 and

2.
K, : (vertices)

XKO(I) =6

XK, (r) =2

XK, (r;) =2

Figure 2: Octahedron

XK, (r3) =2

(XK o XK,) = ﬁ(6.6 +22+22+422) = §(48) =12.

To find which representations, we need to take the product of y_ with respect to each

of the irreducible representations of C, X C,.

1

G(6l+21+21+21) = %(12) =3,

1- Trivial : (g, x1) =

1 1
2- 11 (XK Xy ) = m(6.1 +21+2.-1+2-1)=-(4) =1

1

s61+2.-1+2.-1+21) = §(4) =1.

3- Tz . <XKO'X'[2 > =

1

=61+2.-1+21+2.-1) = @ =1

4- T3 . <XKO'X'[3 >

Since32 +12+ 12 +12 =12, K, = 31®1,®1,H1s.
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K, (edges)

X, (1) =12
Xk, (1) =0
Xk, (12) =0
xx,(3) =0

(ke X,) = é (12.12 4+ 0.0 4+ 0.0 + 0.0) = §(144) = 36.

To find which representations, we need to take the product of y, with respect to each

of the irreducible representations of C, X C,.

1- Trivial : (xx,,x1) = ﬁ(12.1 +01+01+01)= §(12) = 3.

1

2- 71t ey Xy ) = 15 121+ 014+ 0.-140.~1) = §(12) = 3.

1 1
-1, i Xk Xy ) = 5(6.1 +0.-1+0.-14+01) =,(12) = 3.

431 (e, Xy ) = 7 (1214 0.-14 014+ 0.-1) =1 (4) = 3.
((xkpxr) = 3%+ 3%+ 3% + 32 = 36)

K, = 31®31,®37,®31; .

K, (faces):

XKZ(I) =8

)(KZ(H) =0

XK, () =0
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Xk, (r;) =0

(ke X,) = (88+00+00+00)——(64)—16

IG]
Similarly, we need to take the product of y,, with respect to each of the irreducible

representations of C, x C,.

1- Trivial : (x, x1) = ﬁ(s& +01+01+01)= %(8) =2

STy (e Xy ) = (814014 0.1+ 0.-1) =3(8) = 2.

-rz:(XKZ,)(TZ)—m(81+0 -1+0. 1+01)——(8)—2

T3 My ey ) = (B +0.~1+ 0.1+ 0.-1) =1 (8) = 2

(xk, x1) =22+ 22 + 2% + 22 = 16),
Kl = 21@21-1@27:2@21-3 .

Example 4.7: Representation of €, X C, X C,: (By using Tensor

Product)

We know that C, x C, X C, is Abelian, so by theory all the irreducible representations

have degree 1. Let I; and p; be the corresponding irreducible representations of each

C;.
Cy; X Cy X Cy
Ii: 0-11-1 I 0-11-1 I3: 0-1,1-1
p1:0-1,1-> -1 p2:0-1,1--1 p3:0-1,1- -1
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Since this group is Abelian, there exists 8 irreducible representations for this group, let
o; for 1 < i < 8 denotes these representations. There are 8 elements in the group
which are (0,0,0),(1,0,0), (0,1,0), (0,0,1),(1,1,0), (1,0,1),(0,1,1) and (1,1,1).

Below, we list the character values for these representations;
(1) Trivial (o)

(L®1,815)(0,0,0) = (0)®L,(0)®I3(0) =1.1.1=1
(I1®1,®13)(1,0,0) = (1)®L(0)®(0) =1.1.1=1
(1L®1,®13)(0,1,0) = (0)®,(1)®I3(0) =1.1.1 =1
(L®I1,I15)(0,0,1) =L(0)RL(0)RI;(1) =1.11=1
(L®L®I3)(1,1,0) = [(DHRL(1)®I;(0) =111=1
(1®L,®13)(1,01) = [(1)RL(0)®5(1) =1.11=1
(L®LR®I3)(0,1,1) = L(0)RL(1DRL;(1) =111=1
(LOL®L)(1,1,1) = L(DRL(D®L(1) =1.11=1

(2) 0y:

(p1®1,®15)(0,0,0) = p; ()R, (0)RI;(0) =1.1.1=1
(p1,®1,®15)(1,0,0) = p; (D®,(0)®I3(0) = —1.1.1 = —1
(p1®1,R15)(0,1,0) = p; ()R, (1)R®I;(0) =111 =1
(p1®1,®15)(0,0,1) = p;(0)RL,(0)RI;(1) =1.1.1=1
(p1®,®13)(1,1,0) = p; (DAL (D®(0) = -1.1.1 = -1

(01 ®L,®15)(1,0,1) = p,(DHRL(0)RI;(1) = -1.1.1 = -1
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(01®L®15)(0,1,1) = p;(0)®L(1®;(1) = 1.1.1 =1

(01 ®L,R1)(1,1,1) = p;(DRL(D®;(1) = —1.1.1 = —1

(3) 03.

(1,®p,®15)(0,0,0) = I;(0)®p,(0)®I;(0) = 1.1.1 = 1

(L ®p,®13)(1,0,0) = [;(D®p,(0)®3(0) = 1.1.1 =1

(11®p2®15)(0,1,0) = 1;(0)®p,(N®I3(0) = 1. -1.1 = —1

(1,®p,®I15)(0,0,1) = [;(0)®p,(0)®[3(1) = 1.1.1 =1

(1 ®p2®13)(1,1,0) = I;(D®p,(D®(0) =1.-1.1= -1

(L®p,®I5)(1,0,1) = (1)®p(0)®I3(1) =1.1.1=1

(1®p2®13)(0,1,1) = L(0)®p,(D®L(1) =1.-1.1=—1

(L®p,®I5)(1,1,1) = L(1)®p(1)®I3(1) =1.-1.1= -1

(4) 0,.

(1,®1,®p5)(0,0,0) = [, (0)®;(0)®p3(0) = 1.1.1 =1

(L,®1,®p3)(1,0,0) = (1®,(0)®p5(0) =1.1.1 =1

(L®L,®p3)(0,1,0) = (0)®(1)®p3(0) = 1.1.1 =1

(1®L,8p3)(0,0,1) = I;(0)®L(0)®ps(1) = 1.1.—1 = —1

(L®L®ps)(L,1,0) = L(D®L(1)®ps(0) = 111 =1

(h®L,®p3)(1,0,1) = L(D®L(0)®p3(1) =1.1.-1= -1

(L®L,®p3)(0,1,1) = L(0)®L(1)®ps(1) = 1.1.—1 = —1
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(L®L®ps)(1,1,1) = L(D®L(1®p;(1) =1.1.—1 = -1
(5) os:

(p1®p2®13)(0,0,0) = p; (0)®p,(0)®I3(0) =1.1.1 =1
(p1®p.®15)(1,0,0) = p; (1)®p,(0)®I3(0) = —1.1.1 = —1
(p1®p2®13)(0,1,0) = p; (0)®p,(1N®13(0) =1.-1.1 = -1
(p1®p2®15)(0,0,1) = p; (0)®p,(0)®I3(1) =1.1.1 =1
(p1®p,®15)(1,1,0) = p; (D)®p,(D)®15(0) = —1.—1.1 =1
(p1®p,®I3)(1,0,1) = p;(1)®p,(0)R5(1) = -1.1.1 = -1
(p1®p2®13)(0,1,1) = p; (0)Qp,(DN®I3(1) =1.-1.1 = -1
(p1®p;®13)(1,1,1) = p; (D®p,(D®I3(1) = -1.-1.1=1
(6) as:

(p1®1,®p3)(0,0,0) = p; ()R, (0)®p3(0) = 1.1.1 =1
(p1,8L8p3)(1,0,0) = p; (N®L(0)®p3(0) = -1.1.1 = -1
(p1®1:®p3)(0,1,0) = p1 (0)®L(D®p3(0) =1.1.1 =1
(P1®,®p3)(0,0,1) = p;(0)R,(0)®p3(1) = 1.1.-1 = -1
(01®L,R®p3)(1,1,0) = p1(DRL(1)®p3(0) = -1.1.1 = -1
(p1®1,®p3)(1,0,1) = p;(D®L(0)®p3(1) =-1.1.-1=1
(p1®,®p3)(0,1,1) = p1(0)BL(1)®p5(1) =1.1.-1 = -1

(p1®L,®p3)(1,1,1) = p;(DRL(D®p;(1) =-1.1.-1=1
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(7) o7:

(1,®p,®p3)(0,0,0) = 1;(0)®p,(0)®p;(0) = 1.1.1 =1

(1,®p2,®p3)(1,0,0) = ;(1)®p,(0)®p3(0) =1.1.1 =1

(,®p2®p3)(0,1,0) = [;(0)®p,(®p3(0) =1.-1.1 = -1

(1,®p2®p3)(0,0,1) = [;(0)®p,(0)®p3(1) = 1.1.-1 = -1

(11®p2®p3)(1,1,0) = (DO, (1)®p3(0) =1.-1.1 = -1

(L®p.®p3)(1,0,1) = L(1)®p,(0)®p3(1) =1.1.-1= -1

(1®p2®p3)(0,1,1) = L(0)®p,(D®ps(1) =1.-1.-1=1

(L®p.®p3)(L,L1) = L(D®p,(D®p3(1) =1.-1.-1=1

(8) Og.

(P1®p,®p3)(0,0,0) = p;(0)®p,(0)®p3(0) =1.1.1 =1

P1®p2®p3)(1,0,0) = p1(1)®p2(0)®p3(0) = -1.1.1 = -1

(01®p2®p3)(0,1,0) = p1(0)Bp,(N®p3(0) =1.-1.1= -1

(p1®p2®p3)(0,0,1) = p; (0)®p,(0)®p3(1) = 1.1.-1 = -1

(P1®p2®p3)(1,1,0) = p1(1D)R®p,(1)®p3(0) = -1.-1.1=1

(p1®p>®p3)(1,0,1) = p;(DBp,(0)®ps(1) = —1.1.-1 =1

(P1®p2®p3)(0,1,1) = p1(0)®p,(1)®p3(1) =1.-1.-1=1

(01 ®p2®p3)(LL1) = py(D®po(D®ps(1) = —1.—1.—1 = -1
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Example 4.7 : C, X C, X C, acting on an octahedron as reflections in

the 3 coordinate planes.

The group C, X C, x C, has eight elements: I, a,B,v,aB, ay, By and afy where a

is the reflection in the xy plane S in the yz plane and y in the xz plane.

By the fixed point formula ,

K, : (vertices)

Xk, () =6

Xk, (@) =4

Figure 3: Octahedron

Xk, (B) =4

Xk, (¥) =4

Xk, (@f) =2

Xk, (ay) =2

Xk, (BY) =2

Xk, (aBy) =0

1

(i Xiy) = 17 (6.6 + 44+ 44+ 44 +22+22+22) = %(96) =12 #1,

Showing that this representation is not irreducible. To find which representations it

reduces to, we need to take the inner product of yg with respect to each of the

irreducible representations of C, x C, x C, computed earlier.
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While doing these calculations note that «, 8 and y correspond to the elements

(1,0,0),(0,1,0) and (0,0,1) of C, x C, x C, respectively.

1- Trivial oy: (kX o,) = ﬁ(al +41+41+414+21421+21+0.1) =

%(24) = 3.

2- 03 Uk X)) = (61 + 4 —1+ 41 +4142.-142.-14+21+0) = 1.

3 05 (i Xoy) = (6144144 -1+41+2.-14+214+2.-1+0) =1,

4 04 HipXo) = (6144144144 -1+21+2.-14+2.-1+0) =1,

5 05 (X X 0y) = ﬁ(m +4-1+4-14+41+21+2.-1+2.-1+0) = 0.

6- 06 Xy X oy ) = ﬁ(m 44 -1441+4-1+2.-1+214+2.-1+0)=0.

7- 07 (XK X o)) = l;—|(6.1 +4144.-1+4.-1+2-142.-1+21+40)=0.

1

—|G|(6.1+4.—1+4.—1+4.—1+2.1+2.1+2.1+0)=O.

8- 0g: (Xk,» X oy )
Since32+12+12+12=12,thenK, = 3 5,® 0,® 5;D 0,
K; : (edges)

)(1(1(1) =12

XKl(a) =4

XKl(,B) =4

xx,(y) =4

XKl(a,b)) =0
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)(Kl(a)/)zo
Xk, (By) =0
Xk, (@By) =0
Xk XK, = IG|(66+44+44+44+22+22+22) _—(192) =24 # 1,

Again showing that this representation is irreducible. To find the irreducibles it
decomposes to, we need to take the inner product of y,  with respect to each of the

irreducible representations of C, X C, X C,.

1.Trivialoy: (xk,, X 0,) = %(12.1 +41+414+414+014+014+0.1+0.1) = %(24) =

3.

2 Xk Koy —m(1z1+4—1+41+41+0 —1+0.-1+0.1+0.-1) = 2.
3- 05 Uk Xoy) IGI(121+41+4 ~1+4140.-1+0.1+0.-1+0.-1) = 2.
4 04 (X Xoy) = IGI(121+41+41+4 ~1+01+0.-1+0.—-1+0.—-1) = 2.
5 05: Xk Xog) = |G|(121+4 —14+4.-1+41+4+01+0.-1+0.—-1+0.1) =1.
6- 06 Xk X oy ) _E(121+4_1+41+4 ~140.-1+01+0.-140.1) = 1.
7- 07 Xk p X o)) = IGI(121+41+4 ~1+4.-1+0.-1+0.-1+0.1+0.1) = 1.
8 0g: (kX o) = IGI(121+4 ~1+4.-1+4.-1+01+01+01+0.—-1)=0.

Since 32+ 22422 4+2241%2+1%2 41?2 = 24, then

Ki =30,020,D2 ;D2 0,D 05D o, 05
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Finally for K, : (Faces)

Xk, (1) =8

Xk, (@) =0

Xx,(B) =0

Xk, (y)=0

XK, (af) =0

Xk, (ay) =0

XK, By) =0

XK, (aBy) =0

Similar calculations show that

Kz = 01@ 0-26 0-36 0-46 0-56 0-6@ 0-7® 0—8'

Example 4.10: Representation of €, X C, : ( By using Tensor Product)

This group is again Abelian, so the procedure follows exactly same as other Abelian
groups. The representations of €, with elements 0 and 1, are given by I; and 9, and
the representations of €, with elements 0,1,2 and 3 are given by I,,9,,9; and 9,

where ;

;0> 1, 1-1, 2-1, 3-1
L:0-1, 1-1

Y9,:0-1, 1-1i, 2->-1, 3> —i
9;:0-1, 1- -1

93:0-1, 1> —i, 2> -1, 31

Y:0-1, 1--1, 251, 3--1
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There exist 8 irreducible representations, which are I,®I,, 1,®9,, [;®95, [;®VI,,

91 @1, 9:89,,9;®9; and 9, ®Y,.

As an example, we list below the character values for 9, ®9,;
(¥:®9,)(0,0) =9, (0)®9,(0) =1.1=1

(9:®9,)(0,1) =9;(0)®9,(1) =1.i=i

(9,®9,)(0,2) = 9, (0)Q9,(2) =1.—-1 = —1
(9;®9,)(0,3) = 9, (0)®9,(3) = 1. —i = —i

(9,89,)(1,0) = 9, (1)®I,(0) = —1.1 = —1

U,®9,)(1,) =9, (DN®I,(1) = -1.i=1i

(9,09,)(1,2) =9, (D®V,(2) = -1.-1=1

(9,89,)(1,3) = 9, (1)®3,(3) = —1.—i = i

Example 4.11: Representation of C, X S3

We did both of the representations separately before, so we know that C, has 2
representations, the trivial I, which takes both of the elements to 1, and p, taking the
generator to —1. The group S5 has 3 representations, first one is the trivial , U, second
one is the standard, V/, and the last one is the alternating representation , U’. The figure
below shows the character values of these representations.
C, X S3
[:0>1, 151 U : everything goesto 1
p:0-1, 1- -1 V:(1) -2, (12)->0, (123) > -1

U:(1)-1, (12)> -1, (123)>1
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Hence irreducible representations are given by IQU,IQU , p®U and p@U' of degree

1and I®V and p@®V of degree 2. Note that 4.1% + 2.2%2 = 12 = |C, X S5].

As an example we list below the character values of one of the degree 2°s.
Xoav (0, (1) = x,(0). xy (1) = 1.2 = 2

Xany(0,(12)) = x,(0). xy(12) =1.0 = 0

Xpen(0,(123)) = x,(0). xy(123) = 1.-1 = -1

X (1 (D) =x,(D. xy(1) = -1.2 = =2

Xoon(1L,(12)) = x,(1).xy(12) = —1.0 = 0

Xpen(1(123)) = x,(1).xy(123) = -1.-1 =1

Example 4.12: Representations of $3 X C,, :

Irreducible representations of S; and C,, are given before. By using tensor products

we can compute the irreducible representations of S5 X C,, .

Irreducible representations of S5 are U,V and U’, which are the trivial, standard and

the alternating ones, and the irreducibles of C,, are y; with u;, (1) = eziﬂ% where 0 <

k<n-1.

There are 3n many tensor product representations for S3 x C,,, with 2n 1 dimensional

and n 2 dimensional ones. Finally note that

2n.12 4+ n.22 = 6n = |S3 X C,|.
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As an example we list below the character values for the representation VQ®u;.

Ko (), 0) = 1 (D)2, (0) = 2.1 =2
Kooun(D,1) = 1 (D). 1,y (D = 2.6” 77 = 2™

X(V®Il1)((1)’ 2) = XV((l))Xﬂl(Z) -2 ez-Ziﬂ% _ 2e4i%
Ao (1) = 1 (D). e, () = 2.6 7 = 2.7
Xweup((12),0) = xy((12)).x,,(0) = 0.1 =0
Xwoup((12),1) = 1, ((12)). 0, (D) = 0.6 = 0
o ((12m) = 1 (1) ) = 0.6 =0
Xweun((123),0) = xv((123)). 1, (0) = ~1.1 = 1

Koou((123),1) = 1,((123)). 2, (1) = —1. e = 1”7

rouo ((29)) = 1((129) 1 ) = 1. &7 = 1%
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Example 4.13: Representation of S.

S, is a symmetric group on four elements and it has 5 cycle types which are
(1),(12),(123) ,(1234) and(12)(34), where there exists 1,6,8,6 and 3 different cycles in
the same cycle type respectively. We know that the number of cycle types gives the

number of irreducible representations, so there are 5 irreducible representations for S,.

First of the irreducible representations is the trivial one, U. The second one is the
alternating representation, U’. We can easily show that they are irreducible by the

corollary 3.3.11 since < yy, xy >=1and < yyr, xy’ >= 1.

Now we will check the standard representation. We know by earlier remarks that C, =
V@ <e; + e, +e; + e, > under the action of S,. By the fixed point formula, we can

find the character of each element under standard representation of S,,.

Table 1: Character Values of each element under standard representation S,
(1) | (12) | (123) | (1234) | (12)(34)

ull |1 1 1 1
vl |-1 |1 -1 1
Vi3 |1 0 -1 -1

By the fixed point formula , at (1), there are 4 fixed elements , since the character of
U is 1, character of V should be 3 to make sum equal to 4. Just like that for (12) there

are 2 fixed elements, for (123) there are 1 and for (1234) and (12)(34) there are 0 fixed
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elements. So by considering characters of conjugacy classes at U, we will find the

characters of them with respect to the standard representation.

Until now we find first 3 irreducible representations of S,, that means we need 2 more.
By the theorem 3.3.7, taking tensor product of 2 irreducible representations produces
another irreducible representation, and we also know that y ,g; = X,- X< SO let us say
that the 4™ irreducible representation will be W. Now we need to try which 2 will give
an irreducible representation, since trivial representation doesn’t change anything we
will not consider this, so we need to consider either U' and V, U’ and U’ or V and V
together. By trying these pairs we can easily find that the inner product of U’ and
V gives an irreducible representation since < yu, xw >= i(B.B + (D1 +
EDED+HFEDEDL+HEDLED+HEDED + (1D)(-1) +8.0.0 +
EDED+HFEDED+HEDED+HEDED+HEDED +EDED +
DED+EDED +(EDED) =224 = 1

24"

Table 2: Character Values of each element under standard representation S,

@ [(12) [(123) | (1234) | (12)(34)
Ul |1 |1 1 1
Uil |1 (1 |1 1
vi]3 [T [0 |1 1
w3 [-1 |0 1 1

At last step we need to find the last irreducible representation. For finding that one we

need to use earlier corollaries. Theorem 3.3.3 says that Z(dim( X; ))2 = |G| = 24 where
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x; are distinct irreducible representations, so " (dim( x; )= 12412 +32 432 +

x? = 24 which implies that x = 2. So that character of the idendity element with
respect to this representation need to be egaul to 2 since dimension gives the character
of the idendity element. After finding character of the idendity with respect to the last
irreducible representation, say W', its so easy to find the characters again by using

earlier corollaries.

By corollary 3.3.11 Zdim( X;)-x (9) is equal to zero. So from the table below we can

compare the characters and the dimensions to find the missing enteries.

Table 3: Character Values of each element under standard representation S,

M) [ (12) [ (123) | (1234) | (12)(34)
Ul |1 |1 1 1
AR 1 1
VI 3 [1 |o 1 1
w3 [-1 |0 1 1
w'l2 [a |b c d

>dim(x;).z, (12)= 11+ 1.-1+31+3.~1+2.a=0+2a=0 =a=0
dim(x).7, 123)=1.1+11+3.0+30+2.b=2+2b=0 =b=—1

Ddim(x).z, (1234)=11+1.-1+3.-1+31+2.c=0+2c=0 =c=0
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>dim(x).7, 12)(34)=11+11+3.-1+3.~1+2.a=—-4+2d=0 =

d=2

So the irreducible representations are U, U’,V,W and W' where < y,,, xw >= 1 and

< XW”XW, >= 1

Table 4: Character Values of each element under standard representation S,

@) [(12) [(123) [ (1234) | (12)(34)
Ul |1 |1 1 1
Uil |1 |1 |1 1
v |3 [T [0 |1 1
w3 [-1 |0 1 1
w'l2 [0 |1 o 2
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Chapter 5

REPRESENTATION OF §,,

Remember that the number of conjugacy classes of the symmetric group is equal to
the number of irreducible representations. In this chapter we are going to form a
relationship between the set of cycle types and the ways to write n ( number of

elements of the symmetric group ) as the sum of positive integers.

Definition 5.1 (Group Algebra) Let G be a group and F be any field. Then the

vector space over F generated by the basis {e, | x € G} is the group algebra of G over

the field F with multiplication defined by

(Zax.x](Zby.yJ - Sab,xy

xeG yeG X,yeG

Where a, s and b,,’s are scalars in the field.

Remark 5.2 If F=C, then CG becomes permutation representation under the

group action, g.e, = egy.

5.3 Representation algorithm for §,,.

Recall that S, has as many irreducible representations as the number of distinct cycle
types. For finding the irreducible representations, the algorithm works in the order of

the following steps.
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Definition 5.3.1 A partition for S, is a set of integers (14, 4,,..., A,) such that
A]_ 212 2 A 2/‘{71 and/‘11+12+"'+ln =n
Step 1 : Write corresponding sums for each of the cycle types .

Eg: (123)(45)€ S, corresponding sum for this cycle type is 3+2+1 and the particular

partition for this cycle type is 1 = (3,2,1).
Step 2 : Form corresponding Young diagram for each partition.

Definition 5.3.2 ( Young diagram ) Young diagram is a diagram of boxes arranged
with respect to the partition. For each partition a different Young diagram is produced

as a row in decreasing order.

_Eq: Since partition is 1 = (3,2,1) 112713

Corresponding Young diagram is: | 4| 9

6

Step 3 With respect to the young diagram , for each diagram find the following sets
A, = {0 € S| preserves the set of numbers in each row}
B, = {0 € S,| preserves the set of numbers in each column}
Step 4 Find following 3 elements of a group algebra
1 x= ZaeAl €q
2. ¥3 = Xgeg, Sign(o)e,
3. 3=

So irreducible representations of S,, are CS,,. z;
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Example 5.4 We can find all irreducible representations of S, by using the

algorithm.

First of all we need to produce a young diagram for each partition of S,.

1= (4) 1=3,1 1=022) 1=(211) 2=(1,111)
123 112 112 1]
1]2[374 -
4 314 3 2
1 3
— 4|
A=(4
AA = 54_
B, ={I}

Xy =e t+eus teuy teuy ters ey teasy teunssyt eunes t
e14)(23) T €123) + €(124) + €(132) + €(134) + €(142) + €(143) + €(232) + €(243) T

€(1234) T €(1243) + €(1324) + €(1342) t €(1423) + €(1432)

Yy =€

Zy=xY) = e teup teus teus teps tepy tesntennay t eus e
+ ea23) T €123) T €x124) T €132) + €(132) + €(142) + €(143) + €(234)
T €(243) T €(1234) T €(1243) T €(1324) T €(1342) T €(1423) T €(1432)

Then CS,. z; = (z;) (since it is invariant under the action of the basis CS,. So this

representation has dimension 1 and it is trivial one.
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A=(1+1+1+1) :

Al:I
By =S,
x/‘{:el

Yi= € —en3) — €z —€ens) —€r3) —€rs) —€e@Bs ten2nsEs T ens)es t
€14)(23) T €(123) T €(124) T €(132) T €(134) T €(142) T+ €(143) T+ €(234) T €(243) —

€(1234) — €(1243) — €(1324) — €(1342) — €(1423) — €(1432)

Zy =X)Yr =€ —€n3) —€(12) — €(14) — €(23) — €(24) — €(34) T €(12)(34) T €(13)(24)
+ €e(14)(23) T €123) T €(124) T €(132) T €(134) T €(142) T+ €(143) T €(234)

+ €(243) — €(1234) — €(1243) — €(1324) — €(1342) — €(1423) — €(1432)

Then CS,. z; = (z;) (since it is invariant under the action of the basis of CS,. So this

representation has dimension 1 and it is the alternating one.

A=(3+1) :

Ay ={1,(12), (23), (13), (123), (132)}

By ={I,(14)}

Xy = e+ enp) + ew3) +eus) + enzs) + ensy)

Yi= € — €

Zy = XYy = et euz) —ens) tewns) +ens3 —enus(z3) T €uzz) t €usz) — €ns)y

— €(143) — €(1423) — €(1432)
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Then CS4. z;:
el(z) =z

€(12) (z) =z,
€(13) (z) =z,

eas)(21) = —er + ey — e3) — €ra) — €i4) + €124) + €13a) + €(1a)(23) + €(1324)

+ €(1234) — €(234) — €(243)
3(23)(‘3/1) =2

eea (1) = ey —euy) + €(13)(24) — €(12)(39) T €(142) T €(234) — €(124) — €(123)

+ €(1342) T €(1423) — €(1234) — €(1243)

This set is spanned by the first forth and sixth vectors, so this representation is a 3

dimensional representation of S,.
A=(2+2) :

A; =1{1,(12),(34),(12)(34)}
By ={I,(13),(24),(13)(24)}
Xy = e t+enuy T eyt enas
Ya =€ —eu3 —eny T eus)es

Zy = XYy = et eup) eyt en) 3 — €u3z) — €ra) T ey 23) T ez

— €(124) — €(132) — €(143) — €(234) — €(1234) — €(1432) T €(1324) T €(1423)
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Then CSy. ¢;:
el(z3) =z,
€12 (z2) =z

e(13)(Z)1) = e13) T €(123) T €(134) + €(1234) — €1 — €(23) — €(14) — €(14)(23) — €(13)(24)

— €(1243) — €(1342) — €(12)(34) T €(24) T €(243) + €(142) T €(1432)

9(14)(221) = —€(123) — €(134) T €(23) T €(14) T €(1243) T+ €(1342) — €(243) — €(142)
— €(12) — €34) T €(124) T €(132) T €(143) T €(234) — €(1324) — €(1423)

= —(er + eus)
e@3)(22) = —(z2 + e13)(22))
e@a)(22) = eus)(22)
€(34) (z1) =2z,
3(123)(2,1) = €(13) (z3)
€(124) (z) =—(zn + €(13) (1))
9(132)(21) =—(z + €(13) (1))

€(142) (z1) = €(13) (z1)

9(134)(21) =—(zz *+ e(13)(Z,1))
9(143)(21) =—(zz + €(13) (z2)
9(234)(21) =—(zz + e(13)(z,1))

€(243) (z) = €13) (z1)
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€(12)(34) (z2) =z

€(13)(24) (z) =z,

€(14)(23) (z2) =z

3(1234)(2/1) = 9(13)(21)
e1243)(21) = —(z1 + eu3)(22))
€(1324) (z1) = 7

6(1423)(21) =2

e1a32)(Z2) = eq3)(22)

eaza2)(22) = —(z3 + e3)(22))

This set is spanned by the first and third vectors, so this representation is 2 dimensional
representation of S,.

5.5 Computing the character table for S,

We can also compute the character of every irreducible representation with respect to

the cycle types.

Theorem 5.5.1 ( The Frobenius Formula) [3]

The character formula for the irreducible representation of S,, corresponding to the

partition A is given by,
1@ =a@ | [
j L0yl

Where 1 = (14, 45, ..., Ax) IS a partition ,
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j is an index through 1 ton ,

I; is the number of cycles with length j ,

C; are the conjugacy classes ,

k is the number of independent variables x4, x,, ..., xj ,
Pi(x) =x + 37 + -+ x,)

[, =2 +k—1i wherel <i < kand,

A(x) is the discriminant of independent variables such that

1 xk xk
Alx) =
1 X4 X1

If ACx) [1; Pj(x)if is a polynomial say g(x), then let [g(x)] represent the

FRLPRED

coefficient of the term x;l1x, 2 .. x; e .

Remark 5.5.2 For cycle type (12) € S, i1, =2 i, =1,i3=0,i,=0.
For cycle type (12)(34) i; =0 i, =2 ,i3=0,i, =0.

For cycle type (123) i; =1 i, =0,i3=1,i, =0.

For cycle type (1234) i, =0 i, =0,i3=0,i,=1.
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Example 5.5.3 Character table for S,

Corresponding young diagrams are listed below as;

A=(4) 1=(31) 1=(22) A=(0211) A=(1,1,11)
1
4 3|4 3 2

4 '3

4 |

Dimensions for all partitions are already computed and are 1,3,2,3 and 1 respectively,

and we know that these numbers give character number of the identity element.

Lets compute character numbers of cycles,

1. Character numbers of the irreducible representation corresponding to the
partition 4 = (3,1);

Partition of the representation is A = (3,1)

1 x,

Here=2,A(x) =,
1

=X1— X2,

To calculate character of A = (3,1) at (12)(3)(4),

i; = number of cycles withlength1=2,i, =1,i3=0,i, =0.
L=M+2-1=34+2-1=4
L=M,+42-2=142-2=1

So with respect to [; we can say that the coefficient of x,*x,? is the character number

of the irreducible representation at (12).
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X31(12) = [(x1 — x2) (%1 + %)% (%1% + x,*) 4, by directly computing the

coefficient of x;*x,* we found 1.

We can calculate the characters numbers with respect to all cycle types by using the

Frobenius formula,

X3.1)(12)(34) = [(x1 — x2) (%1% + x,%)?] 1 by directly computing the coefficient of

x1*x,1 we found —1.

X31)(123) = [(g — x2) (1 + x) (%43 + x,3) ], by directly computing the

coefficient of x;*x, we found 0.

X3,1)(1234) = [(xg — x2) (x1* + x,*)*]41 by directly computing the coefficient of

x1*x,1 we found —1.

By looking at these character numbers with respect to cycle types, we can say that A = (3,1)

is the standard representation.(by Table 4)

2. Character numbers of the irreducible representation corresponding to the

partition 4 = (2, 2)

Partition of the representation is A = (2,2) Here =2,

1 x,

Alx) = 1

=x1—x2.

To calculate character of A = (2,2) at (12)(3)(4),

i; = number of cycles with length1 =2 ,i, =1,i3=0,i, =0.
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L=, +2-2=2+2-2=2

So with respect to [; we can say that the coefficient of x;3x,2 is the character number

of the irreducible representation at (12)

X2,2)(12) = [(x1 — x2) (1 + x2)* (%1% + x,°)']3, by directly computing the

coefficient of x;3x,2 , we find 0

We can calculate the characters numbers with respect to all cycle types in a similar

way by the using the Frobenius formula,

X2 (12)(34) = [(x1 — x2) (%1% + x,%)?]5 , by directly computing the coefficient of

x13x,2 we find 2.

X2 (123) = [(xg — x2) (%1 + x2) (x1® + x,°)]3, by directly computing the

coefficient of x;3x,2 we find —1.

X(2.2)(1234) = [(x1 — x3) (x1* + x,*)']41 by directly computing the coefficient of

x,3x,% we find 0.

By looking these character numbers with respect to cycle types we can say that A =

(2,2) is the irreducible representation , W .( Table 4)

3. Character numbers of the irreducible representation corresponding to the

partitiond = (2,1,1)
Partition of the representation is A = (2,1,1) Here = 3,

2
1 x3 x5

Ax) =1 x, %2 = x12x3 — x1%2% — x1%%x3 + X52%3 + x1%3% — x5%3%
1 x; x4
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To calculate character of 4 = (2,1,1) at (12)(3)(4),

i; = number of cycles withlength1=2,i, =1,i3=0,i, =0.
L=3+3-1=2+3-1=4
lLb=A,+3-2=14+3-2=2
l,=2;+3-3=143-3=1

So with respect to I; we can say that the coefficient of x; *x, x5 is the character number

of the irreducible representation at (12)

X(2,1,1)(12) = [(1°x3 — X1%5° — %1% X3 + X203 + x1X3% — X%3%) (21 + x5 +

x3)2 (%1% + x,% + x3%)]421 by computing the coefficient of x; *x,%x; we find -1.

We can calculate the character numbers with respect to all cycle types by using the

Frobenius formula,

X21,0)(12)(34) = [(x1%x3 — X1%2° — x1%%3 + X% X3 + x1%3% — X,%3°) (%1% +

x,2 + x32)?]3,, by directly computing the coefficient of x;*x,%x; we find —1.

X210 (123) = [(x12x3 — x1%,% — x12x3 + %% %3 + X3%3% — xx3%) (1 + x5 +

x3) (%13 + %23 + x33)1]42.1 by computing the coefficient of x; *x,2%x5 we find 0.

X210 (1234) = [(x12x3 — x1%5% — X1 2x3 + x5%%3 + X037 — x,23%) (1 * +

x3* +x3*)1],4 21 by directly computing the coefficient of x;*x,%x; we find 1.

By looking these character numbers with respect to cycle types we can say that 1 = (2,1,1)

is the irreducible representation, W.( Table 4)
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Chapter 6

CONCLUSION

Representation theory arises in wide variety of areas including mathematical physics,
number theory, combinatorics, engineering, mathematical chemistry and coding

theory.

As emphasized under introduction, it proves to be an extremely useful branch of pure
mathematics, as it reduces complex questions of abstract algebra to easier ones under

linear algebra.

This thesis is aimed at bringing together the most important notions of representation
theory under one source, and hence it proves to be a useful read as a first introduction

to the subject.
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