Application of Data Envelopment Analysis by the Evaluation of the Quality and Operational Factors

Saba Ahmed

Submitted to the Institute of Graduate Studies and Research in partial fulfilment of the requirements for the degree of

> Master of Science in Industrial Engineering

Eastern Mediterranean University September 2016 Gazimağusa, North Cyprus Approval of the Institute of Graduate Studies and Research

Prof. Dr. Mustafa Tümer Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of Science in Industrial Engineering.

Assoc. Prof. Dr. Gökhan İzbırak Chair, Department of Industrial Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in scope and quality as a thesis for the degree of Master of Science in Industrial Engineering.

Asst. Prof. Dr. Sahand Daneshvar Supervisor

Examining Committee

1. Prof. Dr. Bela Vizvari

2. Asst. Prof. Dr. Sahand Daneshvar

3. Asst. Prof. Dr. Hüseyin Güden

ABSTRACT

In the last decade, soft drink products among FMCG (Fast Moving Consumer Goods) industry have been facing serious problems due to the change in the consumer preferences. Health concerns towards these products had risen and companies keep making strategies to cope with this change. Since, the condition of the market shares getting narrower, maintaining efficient operations throughout the industry supply chain became an essential matter. The study focuses on the efficiency evaluation of soft drink company's production lines between 2010 and 2015 located in Köprülüköy Cyprus, since the production phase is one of the most essential part of the whole operation. Data Envelopment Analysis is a widely known technique used for the evaluation of technical efficiencies of decision making units where multiple inputs and multiple outputs were under concern. Here, production lines of the production facility have chosen as DMUs and among the models of DEA, standard CCR and standard BCC models were utilized. Since the study was being performed in FMCG sector, where perishable food products were under concern, quality factors were also taken into consideration besides operational factors in the operation. Especially for the food production process, efficiency of the whole operation is definitely affected by the efficiency of the quality operations. In this study a general procedure for the evaluation of the production line efficiencies for the perishable goods had built that could easily adapted to the whole industry. Findings of the models can help management in decision making process, budget planning purposes, categorize production lines, future plans, and help to build a corporate memory for the efficiency of the lines.

Keywords: Data Envelopment Analysis, FMCG, Quality Factors, Operational Factors, Efficiency, CCR Model, BCC Model, Food Production, Soft drink.

Son on yıl dikkate alındığı taktirde, hızlı tüketim malları sektöründe yer alan gazlı içecek endüstrisi, müşteri tercihlerinin değişimi konusunda ciddi sorunlarla karşılaşmaktadır. Bu ürünlerin insan sağlığına etkileri ile ilgili endişeler artmakta ve şirketler bu durumla başaçıkmak için stratejiler geliştirmektedirler. Endüstrideki pazar paylarının giderek daralması ile birlikte sektör genelinde verimli operasyonlar sağlamak önem arz eder olmuştur. Üretim prosesleri bu zincirin en önemli parçası olduğundan bu çalışma Köprüköy, KKTC'de bulunan bir gazlı içecek üreticisinin 2010 ve 2015 yılları arası üretim hatlarının verimliliği üzerine bir değerlendirme içermektedir. Veri Zarflama Analizi, verimlilik analizinde birden fazla girdi ve çıktı olması durumunda teknik verimliliklerin hesaplanmasında yaygın olarak kullanılan etkin bir yöntemdir. Bu çalışmada, üretim alanındaki her bir üretim hattı bir Karar Verme Birimi olarak seçilmiş ve Veri Zarflama Analizi modellerinden Standard CCR ve Standard BCC modelleri kullanılmıştır. Bu çalışma hızlı tüketim malları sektöründe yapıldığından kısa ömürlü gıda ürünlerinin üretimi incelenmiş ve operasyonel faktörlerin yanında kalite faktörlerinin de dikkate alınmasına karar verilmiştir. Özellikle gıda üretimide kalite operasyonlarının verimliliği, genel anlamda operasyonel verimliliği de etkilemektedir. Bu çalışma neticesinde tüm endüstriye uyarlanabilecek şekilde üretim hatları verimliliklerinin ölçümü için genel bir prosedür oluşturulmuştur. Modelden alınacak sonuçlar şirket yönetiminin karar verme mekanizmasına yardımcı olacak ve bütçe planlaması, üretim hatlarının kategorize edilmesi, gelecek planları ve üretim hatlarının verimliliği hususunda şirket hafizasının oluşturulmasını sağlayacaktır.

V

Anahtar Kelimeler: Veri Zarflama Analizi, HTM, Kalite Faktörleri, Operasyonel FaktörlerQuality, Verimlilik, CCR Model, BCC Model, Gıda Üretimi, Gazlı İçecek.

To My Family

ACKNOWLEDGMENT

I would like to thank to all the academic and administrative staff of the Department of Industrial Engineering. Very special thanks to Asst. Prof. Dr. Sahand Daneshvar for his support and guidance throughout the study. I would like to thank to the entire personnel and engineers of Ektam Kıbrıs Ltd, especially General Manager Mr. Haluk Yerli and Factory Manager Mr. Erkan Meşeci for their professional support and contribution.

TABLE OF CONTENTS

ABSTRACTii
ÖZv
DEDICATIONvii
ACKNOWLEDGMENTviii
LIST OF TABLES
LIST OF FIGURESxii
LIST OF ABBREVIATIONS
1 INTRODUCTION
1.1Problem Description1
1.2Structure of the Thesis
2 LITERATURE REVIEW7
2.1 Literature Review on DEA, Standard CCR and BCC Models7
2.2 Literature Review on Operational and Quality Efficiency in DEA
2.3 Literature Review on FMCG Industry11
3 METHODOLOGY
3.1 Standard DEA Models (CCR and BCC Models)
3.1.1 CCR Models in Economical View of Point14
3.1.2 CCR and BCC Models in Mathematical Point of View17
3.2. AHP (Analytic Hierarchy Process) Analysis
3.2.1 AHP (Analytic Hierarchy Process) Analysis Methodology
3.2.2. AHP (Analytic Hierarchy Process) Consistency Analysis
4 DATA COLLECTION
4.1 Defining the Input/ Output Variables and Factors

4.2 Incorporating AHP Results with the Labor Costs	34
4.3 Data Collection Procedure	\$7
4.4 Correlation between Input and Output Data4	10
4.5 Collected Data	12
5 RESULTS AND RECOMMENDATIONS	15
5.1 DMUs Efficiency Results	15
5.2 DMUs Weight Calculation	18
5.3 Discussion on Inefficient DMUs	50
5.4 Consistency of the Derived Results5	51
5.5 Summary of the Results5	55
6 CONCLUSION	;6
6.1 Conclusion5	;6
6.2 Future Studies	57
REFERENCES	58
APPENDICES 6	52
Appendix A: AHP Analysis6	53
Appendix B: Standard CCR Model λ_j Results	59
Appendix C: Distribution Table for Labor Cost7	0'
Appendix D: Income Contribution Data Tables7	2

LIST OF TABLES

Table 3.1: Primal and Dual Correspondences (Tone 2007)	21
Table 3.2: AHP (Analysis Hierarchy Process) Comparison Scale	
Table 3.3: Objectives' Pairwise Comparison Matrix	26
Table 3.4: Pairwise Comparison Matrix for Production Lines for	Maintenance
Hours	27
Table 3.5: Weights of the Production Lines with Respect to	Comparison
Factors	29
Table 3.6: Weights of the Comparison Factors	
Table 3.7: Random Index Reference: (Wayne L. Winston ,1994)	
Table 4.1: Weight for each Production of the Lines for Indirect	Labor Cost
Calculation	35
Table 4.2: Definition of Input/Output variables	
Table 4.3: Correlation Relationship.	
Table 4.4: Correlation Matrix of Inputs and Outputs	41
Table 4.5: Input/Output Data	42
Table 4.6: Normalized Input/Output Data	43
Table 5.1: CCR and BCC Efficiencies of the Production Lines	46
Table 5.2: Weights of Inputs and Outputs Using CCR Model	48
Table 5.3: Sensitivity Analysis on CCR Efficiency	51
Table 5.4: Sensitivity Analysis on CCR Efficiency Scores in terms of	Production
Lines	53

LIST OF FIGURES

Figure 1.1: Sales Trends of the Carbonated Beverages Between 2004-2013			
Figure 1.2: Structure of the Thesis	5		
Figure 3.1: Efficiency Evaluation Structure Regarding n Homogenous DMUs	.14		
Figure 3.2: Production Frontiers of the CCR (above) and BCC (below) Models	in		
Two Dimensional $m = 1$ and $s = 1$ (Single Input and Single Output) Case	.22		
Figure 4.1: DMUs vs Input/Output Values	.40		

LIST OF ABBREVIATION

- DEA Data Envelopment Analysis
- DMU Decision Making Unit
- FMCG Fast Moving Consumer Goods
- PPS Production Possibility Set
- MPM Marketing Performance Measurements
- RTS Return to Scale
- AHP Analytic Hierarchy Process
- CI Consistency Index
- RI Random Index
- SKU Stock Keeping Unit
- SoD Set of Data
- QA Quality Assurance

Chapter 1

INTRODUCTION

1.1 Problem Description

FMCG's (Fast moving consumer goods) are the largest sectors of the business world. It is a huge market including the largest companies in the world. FMCG category consists of regularly purchased essential or non-essential products such as food, soft drinks, disposable goods or toiletries. These products have some common features like they sold quickly with relatively low prices. Carbonated beverages (soft drinks) are one of the main contributors of the FMCG market.

An article published in March 2014 by Daily Mail UK reveals that sales trends for the recent years showing the customer preferences towards carbonated beverages have been decreasing. Recent medical researches, increase in the number of health conscious customer and susceptibility to child obesity issues lead to a decrease in the carbonated beverage consumption. According to the article the carbonated soft drink sales in the USA market drop by 1% in 2011, 1.2% in 2012 and 3% in 2013. In Figure 1.1, a report published by Beverage Digest in 2014, the volumetric fall in the sales of the soft drink from 2004 to 2013 is illustrated. Heath concerns among people lead to much healthy and natural choices of food consumption. Major companies keep introducing calorie free (diet) products to satisfy consumers. Government policies also have a major role in this decrease, for instance in 2010 Cypriot Ministry of Education issued a notice stating the banning of the sales of the carbonated beverages in school cafeterias. Moreover, since March 2016 only fresh foods, milk and water is allowed in the school cafeteria of Turkey. All these factors eventually have an effect on the sales of the carbonated beverages. While the situation in the FMCG market is getting rough, some precautions need to be taken in the factory floor to cope with the increasing competition resulting from shrinkage in the total FMCG market. In order to perform this objective, careful efficiency evaluation should be performed to determine and differentiate efficient and inefficient operations. Some improvements for inefficient operations need to be suggested to make them efficient. Furthermore, yearly budgets should be adjusted to maintain efficiency in the operations.

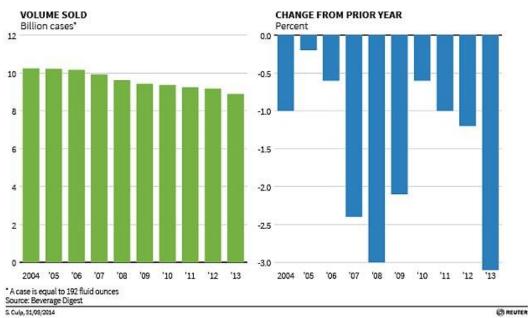


Figure 1.1: Sales Trends of the Carbonated Beverages Between 2004-2013.

Due to the decrease in the consumption of the carbonated beverages, efficient production lines should be used for producing products with the stated quality standards and hence, a reduction in the production costs must definitely be achieved. For the food industry, traditional efficiency approach may not be applicable since the quality standards of the product is a restriction in the process. In other words, factory cannot increase its outputs for the efficiency purposes while disregarding quality factors as stated in the traditional efficiency formula. Utilization of such conventional methods will still help to cope with the changes described in Figure 1.1. The following formula (1.1) is the simplest way and commonly used to evaluate general purpose efficiency values. In economical view of point when our Decision Making Unit (DMU) consumes one input, it produces one output.

$$Efficiency = \frac{Output}{Input}$$
(1.1)

By this formula some problems and limitations might occur when attempting to evaluate efficiency with multiple outputs and multiple inputs case. In this study, Data Envelopment Analysis (DEA), a technique originally proposed by Charnes, Cooper and Rhodes (1978) for evaluating relative efficiency of decision making unit's (DMUs) is utilized. It is a non-parametric method based on linear programming to evaluate relative efficiency. Non-parametric method is a commonly used method in statistics where small sample sizes are used to analyze nominal data. It is often used when the analyzer does not know anything about the parameters of the sample chosen from the population. In other words it can be expressed as parameter-free or distribution-free method.

The main advantages of using DEA approach for efficiency evaluation is that it provides multiple dimensions for efficiency, it makes it possible to rank the operations, it helps the management to identify and seek solutions for the inefficient operations. Furthermore in more detail, the model makes it possible to identify sources and amounts of inefficiency in each input and output for each entity and it could identify the benchmark members of the efficient sets effecting these evaluations and identify these sources of inefficiency.

To sum up, due to rigorous competition and shrinkage of the soft drink market share in the FMCG industry some precautions need to be taken by the manufacturers to cope with this competition. Operation on the factory floor must definitely be efficient in order to assure good manufacturing practices. The nature of a FMCG food product like carbonated beverages is that a certain quality standards need to be assured before sending product to the market. In this study, while considering and maintaining the quality and operational efficiency aspects, the main contributors to the input values and output values of a carbonated beverage factory is listed. Each production line in the factory floor is assigned as a DMU. In order to form a corporate memory for the efficiency values, input/output data between the years of 2010-2015 is collected. Eventually efficiency values for each DMU are calculated to seek for any improvement in the inefficient operations. Weights of the input/output values are calculated to make suggestions on the types of enhancements. Furthermore, 6 different sets of data (SoD) are formed by subtracting one input variable at a time while denoting the original problem as SoD 1 and to identify which input value contributes the most to the number of efficient DMUs.

It is expected from this study to bring an insight to the manufacturing operations. As can be seen in the literature section numerous studies have been performed regarding the FMCG industry with the sole purpose of analyzing its efficiency. Studies in the literature mainly focused on marketing, financial or logistics point of view since due to the characteristic of the FMCG product, logistics operations are the main contributor to efficiency of the industry and marketing operations have a huge effect on customer preferences and purchasing choices which are again important for the industry. In this study focus is given to the factory operations mainly to the factory floor. Maintaining efficiency in the manufacturing operations is a critical factor for the soft drink industry due to the reasons mentioned above and this paper will help to identify inefficient operations and guides management accordingly.

1.1 Structure of the Thesis

After the Chapter 1 which is the introduction part, thesis will be shaped in the following structure. The literature review regarding the study will be summed up in Chapter 2 then Chapter 3 is continued by the presentation of the methodology. Definition of the data and their collection procedure will be given in Chapter 4 and in Chapter 5 there will be an explanation of the results and recommendations regarding the study. Finally in Chapter 6 the whole study will be concluded and suggestion for the future studies will be given. Figure 1.2 illustrated the main sections of the thesis.

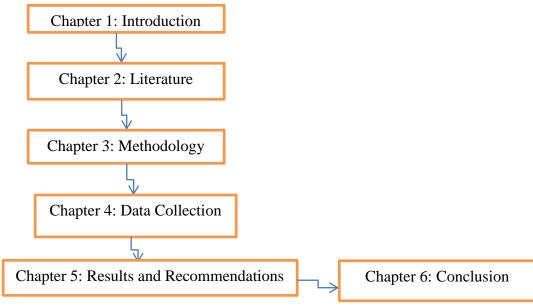


Figure 1.2: Structure of the thesis

Chapter 2

LITERATURE REVIEW

2.1 Literature Review on DEA, Standard CCR and BCC Models

Data Envelopment Analysis is a widely known technique for analyzing relative efficiencies of the DMU. The different models of DEA can be adapted to various area; health sector especially hospitals, transportation sector especially airports, energy generation plants especially electric generation plants, education sector especially schools. In the history of efficiency evaluation, the productive efficiency measurement for the economic policy makers goes back to 1957 where Farrell et al. combined inputs and outputs to obtain a satisfactory efficiency measurement for the industry. Until then, it was considered adequate to measure the average productivity of the labor for the measurement of the efficiency. However, neglecting the other variables does not seem reasonable, and this method guided economic decision makers in a wrong direction for a long time. Farrel et al. (1957) solved this problem by taking account all the inputs and yet avoiding index number problems. Charnes, Cooper and Rhodes (1978) proposed a nonlinear (non-convex) programming model providing a new definition of efficiency for the use in evaluating activities of not-forprofit entities participating in public programs. In this paper, the new approach to efficiency evaluation makes it possible to control managerial behavior while connecting the engineering and economic aspects of the efficiency itself. A scalar measurement of the efficiency for each of the participating units is provided along with methods for objectively determining weights by reference to the observational

data for the multiple outputs and multiple inputs. Banker et al. (1984) brought a new insight and provide a separation into technical and scale efficiencies without altering the conditions for the data. Technical inefficiencies are identified with failures to achieve best possible output levels and/or usage of excessive amounts of inputs. The new approach includes a new separate variable which makes it possible to determine whether operations were conducted in regions of increasing, constant or decreasing returns to scale (in multiple input and multiple output situations). The former proposed efficiency evaluation model denoted as CCR model and the latter was denoted as BCC model. The detailed explanation of the both of the models will be defined in the following chapters of this study. Wide sorts of application of these models have been performing in the distinct range of the cases and distinct range of study area from applied engineering to social sciences. Golany et al. (1989) introduced their work providing a systematic application procedure of the DEA methodology in its various stages. The paper explained the selection of 'decision making units' (DMUs) to enter the analysis as well as the choice and screening of factors. Paper also gives certain demonstrations regarding different DEA models while providing relative efficiencies within the compared DMUs. Moreover, Boussofiane et al. (1991) introduced the model where multiple inputs and multiple outputs case and focused on some key issues that may arise regarding the application of the standard DEA models.

2.2 Literature Review on Operational and Quality Efficiency in DEA

When we focus on the factory point of view, operational efficiency is an important notion that needs to be evaluated for the sake of the management. In the FMCG industry which is the case of soft drink industry in this study, besides operational factors, quality is also an important notion that should be maintained throughout the process. Product's quality need to be assured before sending to the market. This notion leads to defected products to be eliminated from the process, hence affecting the efficiency of the factory. Quality of a process can be expressed as either qualitatively or quantitatively. The concept of quality increasingly getting attention for the customers and it is not limited to food industry. Customer service outcomes and their quality scores are getting attention in corporate world. For example, Jimenez et al. (1996) set out a model of primary health care performance which is based on the premise that certain measurable quality indicators can act as proxies for outcome. They chose DEA for the study for its characteristic that it can handle multiple dimensions of performance more comfortably, and is less vulnerable to the misspecification bias that afflicts statistically based models. Similarly Adler et al. (2001) applied standard DEA models to the measurement of the relative efficiency and quality of the airports. The quality scores in this study were expressed as by the means of detailed questionnaire filled by the airlines' companies. Quality indicators for the airports in Adler's study helped the airlines' choice of hubs. Similarly, Nayar et al. (2008) utilized DEA approach to make a comparison on hospital efficiency and quality where quantitative hospital specific quality measures are taken as output variables. The study concluded that the technically efficient hospitals were performing well as far as quality measures were concerned. DEA methodology can be utilized by the quality management aspect which is an approach to the management made up of a set of mutually reinforcing principles, each of which is supported by a set of practices and techniques. Kuah et al. (2010) utilize DEA to assessed quality management efficiency where the steps for evaluating quality efficiency is described thoroughly, quality factors were introduced and improvement suggestions were given to the inefficient operations. On the other hand, relative efficiency of an operation can be measured with DEA also with the contribution of the operational performances of each DMU. Subrahmanya *et al.* (2006) for example, studied the role of labor efficiency in promoting energy efficiency and economic performance with reference to small scale brick enterprises' cluster in Malur, Karnataka State, India. In brick industry, labor efficiency negatively affects the energy cost since enterprises having higher labor productivities had lower energy intensities. Therefore, labor efficiency is here a major concern for these companies. Önüt *et al.* (2006) used DEA to analyze energy use and efficiency in manufacturing sector where small and medium sized enterprises are studied for energy efficiency. Relative efficiency of the systems was compared within the industry with multiple inputs and multiple outputs DMUs. Energy cost is usually a small portion of the total production cost but in this case Turkish industrial sector comprises about 35% of the total energy consumption. Efficiency in energy consumption again became a major concern for small and medium enterprises in this industry. Liu et al. (2009) used DEA to evaluate thermal power plant operational performances where the efficiency is handled operational point of view. Overall operational performances of the thermal power plants were investigated between the years of 2004 to 2006, hence the overall performances of the plants were evaluated and results were drawn in yearly basis. For the factory floor operations, DEA utilized by Lin et al. (2009) to select a subset of potential product variants that can simultaneously minimize product proliferation and maintain market coverage. Efficient production lines and product variety selected with the results of the standard DEA model. Here, the product variations were under concern rather than production lines itself and production lines are utilized or bypassed according to the product mix.

2.3 Literature Review on FMCG Industry

Various studies have been performed regarding the dynamics of the FMCG (Fast Moving Consumer Goods) Industry. The common attribute of these studies were they all focus on improving efficiency of the companies in the industry. Lakmal et al. (2011) for example worked on enhancing the effectiveness and efficiency of warehouse operations in FMCG sector in Sri Lanka. The study focused on eliminating the inefficiencies and ineffective logistics operations since warehouse operations are one of the main contributors to the supply chain of the industry. The relation between factors affecting warehouse efficiency/effectiveness and the overall performance of the warehouse operation has been investigated and the hypothesis was tested by the regression analysis. With the financial point of view Paswan (2013) analyzed the solvency of selected FMCG companies. The study concentrates on the various accounting ratios to analyse the financial performance in terms of solvency of the selected companies. Statistical analysis has been performed on the collected data from the annual financial reports of the FMCG companies. Hezekiah et al. (2016) studied the marketing operations and investigated the advertising media efficiency of the Indian FMCG firms. The urge for advertising is simply because of the need to sell and so it is necessary that the prospective buyers be informed. 17 companies were participated in the study and advertising spending efficiency of these companies were investigated with the utilization of Data Envelopment Analysis. Again for the marketing operations Testa et al. (2016) studied the marketing performance measurements of the FMCG companies. Marketing performance measurements (MPM) have been considered a priority in marketing research and managerial practices. The author also proposed a model for MPM and tested the model on the leading FMCG Company.

From the past literature, various versions of efficiency methodologies have been widely utilized for the variety of study areas, however, to the best our knowledge Data Envelopment Analysis has not been used to evaluate production line efficiency of FMCG manufacturing operations with the combination of operational and quality aspects of the process.

Chapter 3

METHODOLOGY

3.1 Standard DEA Models (CCR and BCC Models)

As mentioned before Data Envelopment Analysis (DEA) is a technique, originally proposed by Charnes, Cooper and Rhodes (1978), used for evaluating relative efficiency of decision making unit's (DMUs). Definition of DMU as done by Tone (2007) as generically a DMU is regarded as the entity responsible for converting inputs into outputs and whose performances are to be evaluated. There are two main DEA models that are commonly used by analyzers. Standard CCR model is the most basic DEA model and originally proposed by Charnes, Cooper and Rhodes (1978). Secondly, Standard BCC model is proposed by Banker, Charnes and Cooper (1984) which is a variation of CCR model. The former model is built on the assumption of constant returns to scale of activities which will be illustrated in next sections. On the other hand, the BCC model has its production frontiers spanned by the convex hull of the DMUs. This piecewise linear and concave characteristic of the frontiers, leads to variable return to scale of activities (Tone, 2007).

3.1.1 CCR Models in Economical View of Point

Regarding to the formulation (1.1) and following assumptions, efficiency can be calculated under the structure mentioned in Figure 3.1.

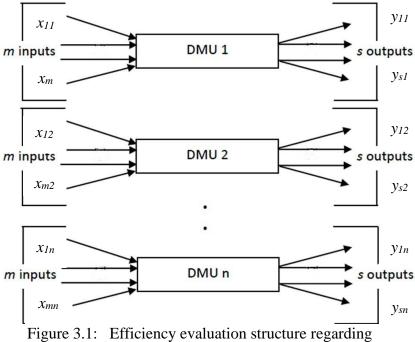
k= the DMU being evaluated in the set of j = 1, 2, ..., n DMUs

 θ_k = the measure of efficiency of DMU *k*, the DMU in the set of *j*= 1,2...,*n* rated relative to the others

 y_{rk} = the amount of output *r* produced by DMU *k*

 x_{ik} = the amount of resource input *i* used by DMU *k*

 y_{rj} = the amount of service output *r* produced by DMU *j*


 x_{ij} = the amount of service input *i* used by DMU *j*

 u_{rk} = the weight assigned to service output *r* computed in the solution of the DEA model

 v_{ik} = the weight assigned to resource input *i* computed in the solution of the DEA model

m= number of inputs used by the DMUs

s= number of outputs produced by the DMUs

n homogenous DMUs

In equation 3.1, virtual input and output values are calculated for every single DMU by utilizing unknown weights v_i and v_r. The weights are then determined by utilizing linear programming to maximize the ratio illustrated in equation 3.3. Hence, in DEA approach weights are not designated in advance and they are calculated directly from data itself. Each DMU has different weights for each input and output values. This enables researcher to analyze the degree of effect of each input and output values on specific DMU under concern. It can be interpreted that which values should be enhanced to obtain an increase in efficiency of the DMUs.

$$VirtualInput = v_1 x_{10} + ... + v_m x_{m0}$$
(3.1)

 $VirtualOutput = u_1 y_{10} + \dots + u_s y_{s0}$

$$Efficiency = \frac{VirtualOutput}{VirtualInput}$$
(3.2)

The fractional form of CCR model (Charnes, Cooper and Rhodes (1978)Önüt, Soner 2006):

$$Max \frac{\sum_{r=1}^{s} u_{rk} y_{rk}}{\sum_{i=1}^{m} v_{ik} x_{ik}}$$
(3.3)

Subject to:

$$\frac{\sum_{r=1}^{s} u_{rk} y_{rj}}{\sum_{i=1}^{m} v_{ik} x_{ij}} \le 1; \qquad j = 1, 2, ..., n$$
(3.4)

 $u_{rk}, v_{ik} \ge 0;$ r = 1, 2, ..., s; i = 1, 2, ..., m (3.5)

Since it is rather difficult to solve the fractional objective function, the model should be converted to linear form. The denominator is forced to be equal to one, hence the fractional formula became linear and solving this linear programming model is much easier. The mathematical interpretation of the model will be discussed in the next chapter.

3.1.2 CCR and BCC Models in Mathematical Point of View

The main purpose of the technical efficiency is that evaluation of a DMU is important to test whether the DMU is on the surface; meaning the production frontier or not of the production possibility set. The production possibility set "PPS" has the following properties which make it easier to understand its importance in data envelopment analysis:

- 1- "PPS" is the set including observed activities (X_j, Y_j) where j = 1, 2, 3, ..., nand "m" inputs and "s" outputs case. Semi-positive "n" DMUs are under concern meaning all the data assumed to be non-negative but at least one component of every input and every output vector is positive.
- 2- If an activity (X, Y) belongs to PPS then the activity (tX, tY) also belongs to PPS for any positive scalar t. This property is called constant returns to scale assumption.
- 3- For any activity (X, Y) in PPS with input no less than x in any component and any activity with output no greater than y in any component is feasible.
- 4- Any semi positive linear combination of activities in PPS belongs to PPS.
- 5- " λ " a semi-positive linear vector in \mathbb{R}^n is also defined as follow after arranging data sets in matrices:

 $X = (x_j)$ and $Y = (y_j)$

$$PPS_{C} = \left\{ (X,Y) \middle| X \ge \sum_{j=1}^{n} \lambda_{j} X_{j}, Y \le \sum_{j=1}^{n} \lambda_{j} Y_{j}, \lambda_{j} \ge 0, \ j = 1, 2, ..., n \right\}$$
(3.6)
$$X_{j} \ge 0, \ X_{j} \ne 0 \quad x \in \mathbb{R}^{m} , \qquad j = 1, 2, ..., n$$

$$Y_{j} \ge 0, \ Y_{j} \ne 0 \quad x \in \mathbb{R}^{s} , \qquad j = 1, 2, ..., n$$

Now, for input orientation CCR Model we try to find θ_k in a manner that

$$Min \ \theta_k \tag{3.7}$$

$$s.t. \ (\theta_k \ X_k, Y_k) \ \epsilon \ PPS_C.$$

$$PPS_C = \left\{ (X, Y) \middle| X \ge \sum_{j=1}^n \lambda_j X_j, Y \le \sum_{j=1}^n \lambda_j Y_j, \lambda_j \ge 0, j = 1, 2, ..., n \right\} \tag{3.8}$$

The primal form of CCR model is the following (Charnes, Cooper and Rhodes (1978) Önüt, Soner 2006):

$$Min \quad \theta_k \tag{3.9}$$

Subject to:

$$\sum_{j=1}^{n} x_{ij} \lambda_{j} \le \theta_{k} x_{ik} \qquad i = 1, 2, ..., m$$
(3.10)

$$\sum_{j=1}^{n} y_{rj} \lambda_{j} \ge y_{rk} \qquad r = 1, 2, ..., s;$$
(3.11)

$$\lambda_j \ge 0 , \forall i, j, r \tag{3.12}$$

 θ_k = Measure of the efficiency of the *DMU_k* in the set of j=1,2,...,n

 λ_j = Weight assigned to the *DMUs*

The dual form of CCR model becomes the following (Charnes, Cooper and Rhodes (1978) Önüt, Soner 2006):

$$Max \sum_{r=1}^{s} u_{rk} y_{rk}$$
(3.13)

Subject to:

$$\sum_{i=1}^{m} v_{ik} x_{ik} = 1 \tag{3.14}$$

$$\sum_{r=1}^{s} u_{rk} y_{rj} - \sum_{i=1}^{m} v_{ik} x_{ij} \le 0; \qquad j = 1, 2, ..., n$$
(3.15)

$$u_{rk}, v_{ik} \ge 0$$
 $r = 1, 2, ..., s;$ $i = 1, 2, ..., m$ (3.16)

When some of the v_{ik} and v_{rk} are zero, it seems that the related inputs and outputs have not any effect on efficiency of the DMU under evaluation. Therefore infinitesimal positive number ε is introduced, which constraints the input and output coefficients to be positive, hence eliminating the possibility that they will be given a zero relative value in DEA results. So, the constraint (3.16) will be in the following form.

$$u_{rk}, v_{ik} \ge \varepsilon$$
 $r = 1, 2, ..., s;$ $i = 1, 2, ..., m$ (3.17)

From the economic interpretation of the model, the BCC model assumed production possibility sets as convex combination of the observed DMUs. Hence, BCC score is named as local pure technical efficiency. On the contrary the constant returns to scale assumption (without convexity condition) where, $\sum_{j=1}^{n} \lambda j = 1$ meaning expansion and reduction of all observed DMUs and their non-negative combinations are possible. CCR score is named as global technical efficiency. If the comparison between CCR and BCC efficiencies were performed, a much more detailed analysis regarding the sources of inefficiencies can be obtained (Luptacik, 2000). In Figure3 production frontiers drawn by production possibility sets with CCR and BCC models having economic interpretation point of view. In the above graph where CCR model is the case, production frontier forms a linear line passing from the origin and efficient frontier. On the contrary in the below graph where BCC model is the case, the frontiers have piecewise and concave characteristics. This characterization consists of increasing returns to scale in the initial parts, decreasing returns to scale in the middle parts and finally constant returns to scale in the end of the graph. Production possibility set for BCC model is defined by

$$PPS_{B} = \left\{ (X,Y) \middle| X \ge \sum_{j=1}^{n} \lambda_{j} X_{j}, Y \le \sum_{j=1}^{n} \lambda_{j} Y_{j}, e\lambda = 1, \lambda_{j} \ge 0, j = 1, 2, ..., n \right\}$$
(3.18)

Where "*e*" is a row vector with all elements unity and " λ " is a column vector with all the elements non-negative. $e\lambda = I$ condition given to differentiate BCC model from former with the interpretation of the convexity condition $\sum_{j=1}^{n} \lambda j = 1$, where $\lambda_j \ge 0$ for all *j*.

Now, for input orientation BCC Model we try to find θ_k in a manner that

$$Min \ \theta_k \tag{3.19}$$

$$s.t. \ (\theta_k X, Y) \ \epsilon \ PPS_B.$$

$$PPS_B = \left\{ (X, Y) \middle| X \ge \sum_{j=1}^n \lambda_j X_j, Y \le \sum_{j=1}^n \lambda_j Y_j, \sum_{j=1}^n \lambda_j = 1, \lambda_j \ge 0, j = 1, 2, ..., n \right\} \tag{3.20}$$

The BCC equation is the same as the one used for CCR model but a convexity constraint is added. Hence, primal form of BCC model (Banker (1984),Liu, Lin, Lewis 2009):

$$\operatorname{Min} \quad \theta_k \tag{3.9}$$

Subject to:

$$\sum_{j=1}^{n} x_{ij} \lambda_{j} \le \theta_{k} x_{ik} \qquad i = 1, 2, ..., m$$
(3.10)

$$\sum_{j=1}^{n} y_{rj} \lambda_{j} \ge y_{rk} \qquad r = 1, 2, ..., s;$$
(3.11)

$$\sum_{j=1}^{n} \lambda_j = 1 \qquad \text{* (convexity constraint)} \tag{3.21}$$

$$\lambda_j \ge 0 , \forall i, j, r \tag{3.12}$$

The dual form of BCC model becomes the following (Charnes, Cooper and Rhodes (1978) Önüt, Soner 2006):

$$Max \sum_{r=1}^{s} u_{rk} y_{rk} + u_0$$
(3.22)

Subject to:

$$\sum_{i=1}^{m} v_{ik} x_{ik} = 1$$
(3.23)

$$\sum_{r=1}^{s} u_{rk} y_{rj} - \sum_{i=1}^{m} v_{ik} x_{ij} + u_o \le 0; \quad j = 1, 2, ..., n$$
(3.24)

$$u_{rk}, v_{ik} \ge 0$$
, u_0 free, $r = 1, 2, ..., s$; $i = 1, 2, ..., m$ (3.25)

In Table 3.1, the difference between the two model's both with envelopment side and multiplier side can be seen. As mentioned before, in BCC model $e \lambda = 1$ constraint and u₀ variable was introduced.

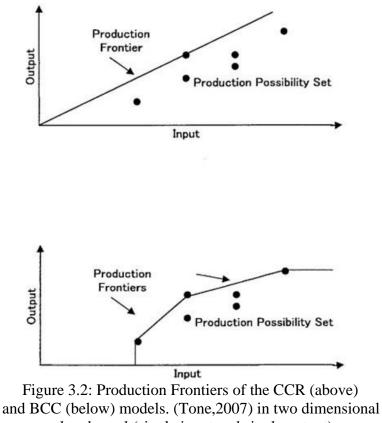
Model	Multiplier form constraints	Envelopment form variables	Envelopment form constraints	Multiplier form variables
CCR	$vx_0 = 1$ $-vX + uY \le 0$	$egin{array}{c} heta\ \lambda\geq 0 \end{array}$	$\theta x_0 - X\lambda \ge 0$ $Y\lambda \ge y_o$	$v \ge 0$ $u \ge 0$
BCC	$vx_0 = 1$ $-vX + uY - u_0 e \le 0$	$egin{array}{c} heta\ \lambda\geq 0 \end{array}$	$\theta x_0 - X\lambda \ge 0$ $Y\lambda \ge y_o$ $e\lambda = 1$	$v \ge 0$ $u \ge 0$ u_0

Table 3.1 Primal and Dual Correspondences (Tone 2007)

The scale efficiency values are then calculated after obtaining BCC and CCR efficiencies. The scale efficiency is calculated by the following formula (3.26).

$$SE = \frac{\theta_{CCR}}{\theta_{BCC}}$$
(3.26)

When scale efficiency is one, it is the best situation where is the most productive scale size occurs. Here, a DMU is BCC efficient in a constant return to scale environment θ_{CCR} is defined as technical (global) efficiency since it takes no account of scale. In other words, if (*X*, *Y*) is a feasible point then (*tX*, *tY*) for any positive t is also feasible. On the other hand θ_{BCC} is defined as pure (local) technical efficiency since it works under variable return to scale (RTS) environment. Variable return to scale environment can be identified in standard BCC model by the following theorem proposed by Banker and Thrall (1992).


<u>Theorem:</u> When (X_0, Y_0) are the coordinates of the point on the efficiency frontier then,

- (i) Increasing RTS at (X₀, Y₀), IFF $u_0^* < 0$
- (ii) Decreasing RTS at (X₀, Y₀), IFF $u_0^* > 0$
- (iii) Constant RTS at (X_0 , Y_0), IFF $u_0^* = 0$

All of the behavior of the variable and constant return to scale behavior can be seen in Figure 3.2. Scale efficiency formula helps us to investigate the sources of inefficiencies.

$$\theta_{CCR} = \theta_{BCC} * SE \tag{3.27}$$

The inefficiency of a DMU might be stemmed from inefficient operation or it might be stemmed from its failure to achieve scale efficiency or both cases.

m = 1 and s = 1 (single input and single output) case

DEA models can either be input oriented or output oriented. Input oriented DEA model was chosen for this study. In this model the objective is to minimize inputs while producing at least the given output values. In FMCG industry, demand is in the market. Serious marketing activities have been performed by companies to increase the market share of their products. Companies cannot increase their production rates and sales with a sole purpose of increasing operational efficiency, when there is not

enough demand in the market. That is why input oriented model is utilized where focus is given to decreasing inputs to acquire a certain level of output. Keep increasing the output for efficiency purposes is not logical in FMCG industry since it creates surplus and food products certainly have shelf life which makes them perishable goods.

3.2. AHP (Analytic Hierarchy Process) Analysis

3.2.1 AHP (Analytic Hierarchy Process) Analysis Methodology

In order to interpret the effect of indirect labor wages (laboratory technicians, maintenance workers, syrup making workers, management and seasonal workers) to the calculation of the total annual labor wages, AHP (Analytic Hierarchy Process) was utilized. AHP is a very useful decision making methodology where pairwise comparison taken place by enabling judgments of the experts. It helps decision makers to choose between alternatives or decide on which one is prior to other. Firstly, the alternatives selected that are desired to be compared with AHP. Then, objectives were defined that would guide while comparing these alternatives, here indirect labor force is under concern. In this study the objective of comparison was chosen as maintenance hours, working hours and produced quantity, since these three aspects are the most important for the management (decision makers). Now step by step the methodology of AHP analysis will be described.

<u>Step 1:</u> The alternatives of comparison are chosen. Here, production lines (Pet-6, Pet-2, Can, Glass Bottle and Premix) will be weighted in terms of indirect labor force contribution.

<u>Step 2:</u> The objective of comparison will be chosen which will guide the decision making process. In this study the objectives were chosen as maintenance hours, working hours and produced quantity while these aspects are the most important factors affected by indirect labors. Hence, indirect labor cost in the production lines will be compared while considering these certain objectives.

<u>Step 3:</u> First of all weight of the objectives should be assigned as in formula 3.28 in order to determine the order of importance and make the AHP analysis accordingly. The comparison performed by the use of Table 3.2 as the scale and eventually how much one sample dominates the other one is scored. In this study the scores were given after a brain storming activity where the factory manager and the engineers were attended.

$$\sum_{i=1}^{n} w_i = 1 \quad \text{(the alternative } j\text{'s score on objective } i\text{)}$$
(3.28)

As in formula 3.28 "*j*" many alternatives will be compared while considering "*i*" many objectives with the guidance of the Table 3.2 having a scale of 1-9.

	VERBAL	
SCALE	EXPRESSION	EXPLANATION
	Equal	
1	importance	Two activities contribute equal to the objective
	Moderate	Experience and judgement slightly favour one activity
3	importance	over another
	Strong	Experience and judgement strongly favour one activity
5	importance	over another
	Very strong	
7	importance	An activity is favoured very strongly over another
9	Extreme importance	The evidence favouring one activity over another is of the highest possible order of offirmation
	1	the highest possible order of affirmation
Values 2	, 4, 6 and 8 are co	mpromises between the previous definitions.

Table 3.2 AHP (Analysis Hierarchy Process) Comparison Scale

<u>Step 4:</u> A pairwise comparison matrix "*A*" (*nxn* matrix) will be formed after obtaining weight for objectives. The matrix will be in the following form:

$$A = \begin{pmatrix} \frac{W_1}{W_1} & \frac{W_1}{W_2} & \dots & \frac{W_1}{W_n} \\ \frac{W_2}{W_1} & \frac{W_2}{W_2} & \dots & \frac{W_2}{W_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{W_n}{W_1} & \frac{W_n}{W_2} & \dots & \frac{W_n}{W_n} \end{pmatrix}$$

<u>Step 5:</u> After forming an *nxn* matrix for the objectives, all the alternatives were pairwisely compared while considering 3 objectives separately. Eventually, three separate *nxn* matrix were formed for production lines in sequence for maintenance hours, production hours and production quantity (Appendix A).

<u>Step 6:</u> In order be precise on the decimal values, the eigenvectors and eigenvalues must be computed. Before explaining eigenvalues, eigenvectors should be defined. Almost all vectors change direction when they are multiplied with *A*. Certain exceptional vectors "*x*" are in the same direction as "*Ax*" which is called eigenvectors. Multiply an eigenvector by *A*, and the vector *Ax* is a number of λ times the original *x*.

The basic equation $Ax = \lambda x$ = The number λ is an eigenvalue of A.

The eigenvalue λ tells whether the special vector *x* stretched or shrunk or reversed or left unchanged when it is multiplied by *A*.

<u>Step 7:</u> Matrix multiplication is performed to the *nxn* matrices, hence for example objectives weight pairwise comparison matrix was multiplied by itself several times

until the average of the summed rows have the same decimal values and the results can be seen in Table 3.3.

	Maintenance Hours	Working Hours	Produced Quantity
Maintenance Hours	1	0.25	0.33
Working Hours	4	1	1.33
Produced Quantity	3	0.75	1

Table 3.3: Objectives'	Pairwise Comparison Matrix

	Summed Rows			
0.124686965	4.73	0.9925	0.7475	2.99
0.5	18.9675	3.98	2.9975	11.99
0.375313035	14.2375	2.9875	2.25	9
1	37.935	Total:		

	Summed Rows			
0.124686803	42.451625	8.90771875	6.70878125	26.835125
0.5	170.2330313	35.720375	26.90253125	107.610125
0.375313197	127.7814063	26.81265625	20.19375	80.775
1	340.4660625	Total:		

	Summed Rows			
0.124686803	3419.49166	717.519529	540.3944262	2161.577705
0.5	13712.32386	2877.287369	2167.007299	8668.029197
0.375313197	10292.83221	2159.76784	1626.612873	6506.451492
1	27424.64773	Total:		

	Summed Rows			
0.124686803	22186868.44	4655519.876	3506269.712	14025078.85
0.5	88970395.54	18668855.68	14060307.97	56241231.89
0.375313197	66783527.11	14013335.81	10554038.26	42216153.04
1	177940791.1	Total:		

<u>Step 8:</u> The same methodology applied to the all *nxn* matrices again until the decimal values resulted the same for the last two matrix multiplications.

	PET-6	PET-2	CAN	GLASS BOTTLE	PREMIX
PET-6	1	5	3	7	6
PET-2	0.2	1	0.33	3	5
CAN	0.33	3	1	5	7
GLASS BOTTLE	0.14	0.33	0.2	1	0.5
PREMIX	0.17	0.2	0.14	2	1

Table 3.4 Pairwise Comparison Matrix for Production Lines for Maintenance Hours

	Summed Rows						
0.4916097 21 0.1376815	154.89	61.5	56	9.89	22.51	4.99	
0.1570015	43.3789	15.01	19.05	2.56	4.98	1.7789	
0.2780361 0.0425811	87.6	33.48	35.31	4.96	10.7	3.15	
02 0.0500915	13.4159	4.89	4.97	0.9989	2.06	0.497	
68	15.7822	5	6.49	1.256	2.33	0.7062	
1	315.067	Total:					

					Summed	
					Rows	
167.35	993					0.4918652
	9 588.902	7 289.2135	1734.9264	1557.2173	4337.619839	4
	166.4517	3				0.1370131
45.867	545	9 80.921326	476.9744	438.06545	1208.28046	96
		160.46913				0.2708622
91.5693	376 328.011	5 9	948.1485	860.4587	2388.657215	47
				143.68257		0.0450968
15.214	507 53.766	4 26.249847	158.783159	2	397.696485	7
						0.0551624
18.381	65.95856	2 31.941739	192.98836	177.19158	486.461946	46
				Total:	8818.715945	1

					Summed Rows	
136524.32	487440.51	237749.16		1292654.4		0.4918711
89	3	35	1421467.942	72	3575836.419	66
38030.357	135800.19	66233.461		360126.36		0.1370263
71	16	46	395972.5017	73	996162.8797	46
75306.496	268892.41	131149.87		713059.44		0.2713234
32	04	01	784076.3171	02	1972484.534	48
12473.051	44533.921	21720.884		118106.11		0.0449396
98	39	39	129871.1548	96	326705.1322	49

15219.909	54344.801	26505.077		144128.94		0.0548393
55	95	02	158476.1766	33	398674.9085	91
				Total:	7269863.874	1
					Summed	
					Rows	
924846136	3.30224E+	1.61062E+		8.75741E+	2.42247E+1	0.4918715
38	11	11	9.62954E+11	11	2	3
257644851	919941085	448687623		2.43965E+	6.74854E+1	0.1370262
82	71	88	2.68261E+11	11	1	17
510162054	1.82157E+	888445464		4.83075E+	1.33628E+1	0.2713253
79	11	54	5.31183E+11	11	2	38
844969383	301702923	147151127		800105557	2.21324E+1	0.0449389
5	49	43	87978605950	79	1	76
103109557	368160735	179564939		976349342	2.70077E+1	0.0548379
50	55	73	1.07358E+11	10	1	39
				Total	4.02512+12	1
				Total:	4.925E+12	1
				Total:	4.925E+12	1
				Total:	4.925E+12	1
				Total:		1
				Total:	Summed	1
4.24446E+	1.51552E+	7.39171E+		Total:		0.4918715
4.24446E+ 22	1.51552E+ 23	7.39171E+ 22	4.41935E+23		Summed Rows	
			4.41935E+23	4.0191E+2	Summed Rows 1.11176E+2	0.4918715
22	23	22	4.41935E+23 1.23115E+23	4.0191E+2 3	Summed Rows 1.11176E+2 4	0.4918715
22 1.18243E+	23 4.22195E+	22 2.05919E+		4.0191E+2 3 1.11965E+	Summed Rows 1.11176E+2 4 3.09715E+2	0.4918715 3 0.1370262
22 1.18243E+ 22	23 4.22195E+ 22	22 2.05919E+ 22		4.0191E+2 3 1.11965E+ 23	Summed Rows 1.11176E+2 4 3.09715E+2 3	0.4918715 3 0.1370262 17
22 1.18243E+ 22 2.34132E+	23 4.22195E+ 22 8.35987E+	22 2.05919E+ 22 4.0774E+2	1.23115E+23	4.0191E+2 3 1.11965E+ 23 2.21701E+	Summed Rows 1.11176E+2 4 3.09715E+2 3 6.13266E+2	0.4918715 3 0.1370262 17 0.2713253
22 1.18243E+ 22 2.34132E+ 22	23 4.22195E+ 22 8.35987E+ 22	22 2.05919E+ 22 4.0774E+2 2	1.23115E+23	4.0191E+2 3 1.11965E+ 23 2.21701E+ 23	Summed Rows 1.11176E+2 4 3.09715E+2 3 6.13266E+2 3	0.4918715 3 0.1370262 17 0.2713253 38
22 1.18243E+ 22 2.34132E+ 22 3.87788E+	23 4.22195E+ 22 8.35987E+ 22 1.38463E+	22 2.05919E+ 22 4.0774E+2 2 6.75331E+	1.23115E+23 2.43779E+23	4.0191E+2 3 1.11965E+ 23 2.21701E+ 23 3.67198E+	Summed Rows 1.11176E+2 4 3.09715E+2 3 6.13266E+2 3 1.01574E+2	0.4918715 3 0.1370262 17 0.2713253 38 0.0449389
22 1.18243E+ 22 2.34132E+ 22 3.87788E+ 21	23 4.22195E+ 22 8.35987E+ 22 1.38463E+ 22	22 2.05919E+ 22 4.0774E+2 2 6.75331E+ 21	1.23115E+23 2.43779E+23	4.0191E+2 3 1.11965E+ 23 2.21701E+ 23 3.67198E+ 22	Summed Rows 1.11176E+2 4 3.09715E+2 3 6.13266E+2 3 1.01574E+2 3	0.4918715 3 0.1370262 17 0.2713253 38 0.0449389 76
22 1.18243E+ 22 2.34132E+ 22 3.87788E+ 21 4.73208E+	23 4.22195E+ 22 8.35987E+ 22 1.38463E+ 22 1.68963E+	22 2.05919E+ 22 4.0774E+2 2 6.75331E+ 21 8.2409E+2	1.23115E+23 2.43779E+23 4.03766E+22	4.0191E+2 3 1.11965E+ 23 2.21701E+ 23 3.67198E+ 22 4.48083E+	Summed Rows 1.11176E+2 4 3.09715E+2 3 6.13266E+2 3 1.01574E+2 3 1.23948E+2	0.4918715 3 0.1370262 17 0.2713253 38 0.0449389 76 0.0548379

For the indirect labors (laboratory technicians, maintenance workers, syrup making workers, management and seasonal workers), 3 factors were selected as the means of comparison, namely, maintenance hours, working hours and produced quantity. Then, these 3 factors were scored using AHP method and the order of importance hence, their weights were decided. Then according to the each factor, the production lines were scored again using the AHP scale. For example, can line is compared by the management with the glass bottle production line in terms of their requirement of the maintenance hours or they can be compared for the hours they work respectively. The comparison scores obtained in Step 5 are multiplied by the weights given for the factors themselves in Step 4 where important factor included in the calculation more

than the other. The AHP analysis comparison tables are shown in detail in the appendix A section along with their eigenvalues and eigenvectors.

3.2.2. AHP (Analytic Hierarchy Process) Consistency Analysis

Decision maker's comparison should be checked in terms of its consistency for the accuracy of the judgment. Following are the steps for checking consistency of the AHP. Our first comparison matrix is the following:

Maintenance		Working	Produced	
	Hours	Hours	Quantity	
Pet-6	0.49187153	0.43298666	0.498763319	
Pet-2	0.137026217	0.049727945	0.100505063	
Can	0.271325338	0.283874177	0.319015177	
Glass	0.044938976	0.029387005	0.033455443	
Premix	0.054837939	0.204024212	0.048260999	

Table 3.5: Weights of the Production Lines with Respect to Comparison Factors

Our second comparison matrix is the following:

	Weights
Maintenance Hours	0.124686803
Working Hours	0.500000000
Produced Quantitiy	0.375313197

<u>Step 1:</u> Aw^T is the product of these matrices where "w" denotes the estimate of the decision maker's weights.

$$\begin{pmatrix} 1 & 0,25 & 0,33 \\ 4 & 1 & 1,33 \\ 3 & 0,75 & 1 \end{pmatrix} \begin{pmatrix} 0,124686803 \\ 0,50000000 \\ 0,375313197 \end{pmatrix} = \begin{pmatrix} 0,37354015801 \\ 1,49791376401 \\ 1,124373606 \end{pmatrix}$$

<u>Step 2:</u> Then the following formula is computed for the calculation of the consistency index *CI*.

$$\frac{1}{n} \sum_{i=1}^{n} \frac{Aw_{i}^{T}}{w_{i}^{T}}$$
(3.29)
$$1 \left[0.37354015801 + 1.49791376401 + 1.124373606 \right]$$

$$= \frac{1}{3} \left\{ \frac{0,37354015801}{0,124686803} + \frac{1,49791376401}{0,50000000} + \frac{1,124373606}{0,375313197} \right\} = 2,9958$$

Step 3: Consistency index (CI) then calculated:

$$CI = \frac{2,9958 - n}{1 - n} = \frac{2,9958 - 3}{1 - 3} = 0,0021$$

<u>Step 4:</u> In the next step *CI* is compared to random index (*RI*) derived from Table 3.7. In this study we have n=3 and therefore *RI* becomes 0,58

n	RI
2	0
3	0,58
4	0,90
5	1,12
6	1,24
7	1,32
8	1,41
9	1,45
10	1,51

Table 3.7: Random Index Reference: (Wayne L. Winston ,1994)

If *CI* is sufficiently small, the decision maker's comparisons are probably consistent enough to derive useful estimates of the weights for the objective function under concern.

If
$$\frac{CI}{RI} \le 0.10$$
 then it can be concluded that the degree of consistency is satisfactory.

If $\frac{CI}{RI} \ge 0.10$ then it can be concluded that serious inconsistencies might exists and

AHP may not yield meaningful results. (Wayne L. Winston ,1994)

In our study, $\frac{CI}{RI} = \frac{0,0021}{0,58} = 0,0036$ meaning the degree of consistency is

satisfactory, in other words AHP will definitely yield meaningful results.

Chapter 4

DATA COLLECTION

4.1 Defining the Input/ Output Variables and Factors

Ektam Kıbrıs Ltd. founded in 1981 and a soft drink manufacturer located in Cyprus was investigated for efficiency utilizing Data Envelopment Analysis. The factory has 5 production lines: Pet-6, Pet-2, Can, Glass Bottle and Premix lines. Data regarding the production lines was collected from 2010 to 2015 and every yearly data for a production line is designated as a DMU obtaining 30 different DMUs. Hence, inefficient and efficient production lines are determined thorough the history of the factory. By this way management can see and identify the precautions and measures that made a production line efficient or inefficient. The yearly trend of the efficiency values also calculated for each production line, this helps management to decide on the future operational and budget planning of the production lines.

For the DEA study, 5 input and 2 output variables are used in the model and their definition is can be seen in Table 6.

Input Variables:

- 1- Electricity consumption (Operational Factor),
- 2- Fuel consumption (Operational Factor),
- 3- Direct and indirect labor wages (Quality + Operational Factor). The management, quality, laboratory and maintenance workers were also taken

into consideration indirectly along with direct labors working in each production line.

- 4- Number of labors directly involved in the production line (Operational Factor),
- 5- Number of defected materials separated by the quality assurance (QA) personnel in the production lines (Quality Factor)

Output Variables:

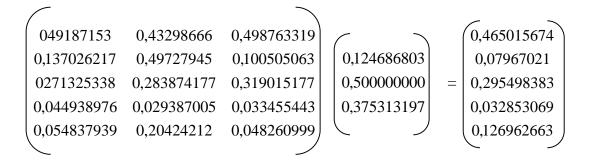
- Production SKU (Stock Keeping Unit) (Quality), number of the products produced with the approval of the quality assurance department (Quality + Operational Factor).
- 2- Income contribution of the each production line (Operational Factor)

In the further parts of this chapter data collection procedure will be explained. Raw data for Input 1, 2, 4 and 5 was directly used for the study. However, for the Input 3 further analysis need to be performed in order to combine direct and indirect labor costs. For the Output values, Output 1 is directly used in the efficiency analysis however Output 2 was calculated by multiplication of the sold quantity and price of the products and the resulting value is then used as Output 2.

4.2 Incorporating AHP Results with the Labor Costs

Wages of the labors directly involved in the production lines are added as direct labor cost. However, laboratory technicians, maintenance workers, syrup making workers, seasonal workers and white collar managers are designated as indirect labor cost since they are not directly linked to a specific production line and their cost should be distributed to the all production lines. Analytic Hierarchy Process (AHP) was utilized to decide on the weight of these indirect labor cost to the production lines respectively. AHP is a multi-criteria decision making method originally developed by Thomas L. Saaty in the 1970s. The advantage of this method for decision maker is that it not only uses quantified data but also allows user to make decisions by subjective opinions. In other words it is a method based on both mathematics and psychology. Maintenance hours of the production lines, working hours of the production lines and produced quantities are the major factors effecting the weight of the indirect labor cost (laboratory technicians, maintenance workers, syrup making workers, seasonal workers and white collar managers) in the Ektam Kıbrıs Ltd. soft drink factory. The production lines are compared according to these three aspects and the ratio scales are derived from the principal eigen vectors and the consistency index is derived from the principal eigen value. The comparison is performed using a 1-9 scale described in Table 3.2.

Table 3.5 interprets the comparison matrix of production lines and comparison objectives namely maintenance hours, working hours and produced quantities. Then, in Table 3.6 the importance of these comparison aspects are again weighted utilizing AHP methodology. Finally, in Table 4.1 with the matrix multiplication of the both, weights for the each production lines' acquired for the calculation of the indirect labor cost.


35

	Maintenance	Working	Produced
	Hours	Hours	Quantity
Pet-6	0.49187153	0.43298666	0.498763319
Pet-2	0.137026217	0.049727945	0.100505063
Can	0.271325338	0.283874177	0.319015177
Glass Bottle	0.044938976	0.029387005	0.033455443
Premix	0.054837939	0.204024212	0.048260999

 Table 3.5: Weights of the Production Lines with Respect to Comparison Factors

Table 3.6: Weights of the Comparison Factors

	Weights
Maintenance Hours	0.124686803
Working Hours	0.500000000
Produced Quantitiy	0.375313197

Above, pairwise comparison scores of the DMUs were multiplied by the weight of the factors, and then Table 4.1 is obtained.

Production Line	Score
Pet-6	0.465015674
Pet-2	0.07967021
Can	0.295498383
Glass Bottle	0.032853069
Premix	0.126962663

Table 4.1: Weight for each Production of the Lines for Indirect Labor Cost Calculation

Therefore, for calculation of total the labor wages, direct labor cost is added directly and indirect labor costs are multiplied with weight calculated in Table 4.1 and then added to the direct labor cost. The detailed comparisons for AHP analysis can be seen in the Appendix A section.

4.3 Data Collection Procedure

Input and output data collection was performed with a certain procedure and identify the sourced of inefficiencies in order to prevent any future deficiencies. Firstly, input 1 and input 2 were recorded by examining yearly energy (electricity and fuel) consumption reports of the factory production lines separately under the supervision of the production engineer. Secondly, records regarding the labor wages for different worker types were inquired from the Human Resource Specialist of the company. Then, factory workers were categorized as direct workers whom are directly involved in the production lines and indirect workers whom are general purpose workers whose wages' distribution need to be further studied. Then, with the utilization of the AHP following formulation is used for the total labor cost calculation: $TLC_{ik} = DLW_{ik} + (IDLW_{ik} * W_i)$

(4.1)

Where,

 TLC_i = Total labor cost of the production line *i* at year *k*.

 DLW_{ik} = Direct labor's wages working on production line *i* at year *k*.

 $IDLW_{ik}$ = Indirect Labor's Wages working on production line *i* at year *k*.

 W_i = Weight of Production line *i*

i=Pet-6, Pet-2, Can, Glass Bottle, Premix *k*=2010, 2011, 2012, 2013, 2015

Hence, Input 3 column was filled after repeating this calculation for every production line and yearly data on labor wages. The detailed information regarding the labor wages calculation for Ektam Kıbrıs Ltd. Company can be seen in Appendix C. In addition Input 4 was easily filled after the counting the total number of labor directly involved in the previous calculation. For the number of defected materials information (Input 5) the Quality Assurance Department's annual reports were examined and summation of the all the defected raw material and defected finished good were taken into consideration. For the data of the Output 1, again the records from Quality Assurance Department were investigated and eventually summation of the all the products that had confirmation from the QA were recorded. Finally for the Output 2, Sales Department of the company assisted while providing yearly sales data and yearly price changes. In order to fill the column for the output 2, the yearly prices of the each SKU is multiplied by its quantity of sales and the result is recoded. Repeating this calculation for every SKU is added and the final value is recorded in the column of the Output 2. . The detailed information regarding the income contribution of the each SKU calculation for Ektam Kıbrıs Ltd. Company can be seen in Appendix D.

Table 4.2: Definition of input/output variables

Variable	Unit	Define
v unuono	em	Donne
Inputs:		
1- Electricity		Electricity consumption of the equipments in
Concumption	KWh	and production line
Consumption		each production line
2- Fuel	Liter	Fuel consumption of the equipments in each
Consumption		production line
	Turkish	Direct and indirect labor wages for each
3- Labor Wages	1 di Kish	Direct and indirect labor wages for each
C	Lira	production line
4- Number of		Number of labors working directly in the
Labors Directly	Numeral	Number of labors working directly in the
Lucons Directly	Numerai	production line
Involved		
5-Number of		Total number of defected materials that are
5-INUILIDEE OI	Numeral	Total number of defected materials that are
Defected Materials	Tumorui	collected in each production line
		-
Outputs:		
1- Production	SKU	Total produced SKU of each production line
1-1100000000	SILU	Total produced Sixo of each production line
2-Income	Turkish	Total income coming from the sales of the
	. .	
Contribution	Lira	products produced in each production line

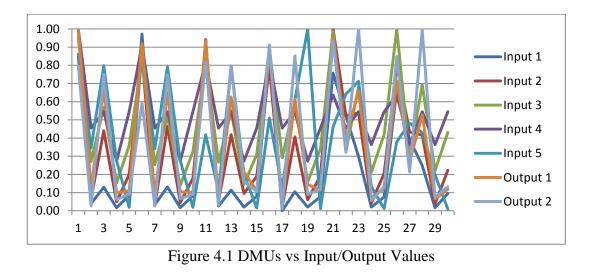
4.4 Correlation between Input and Output Data

Statistical correlation is a notion that tells us if the two variables are related or not. It is interpreted by the calculation of correlation coefficient (r) which describes the strength of the relationship between the variables. Correlation coefficient ranges from +1.0 to -1.0. If the correlation coefficient is close to +1.0, then there is a strong positive linear relationship between x and y. In other words, if x increases, y also increases. On the other hand if the correlation coefficient is close to -1.0, then there is a strong negative linear relationship between x and y. In other words, if x increases, y will decrease. Less of a linear relationship between x and y exists when the correlation coefficient gets closer to zero. The effect of the changes in the correlation coefficient value is described in the Table 4.3.

Tuble 1.5: Contention Ref	uionsnip
Value of r	Strength of Relationship
1.0-0.5	Strong
0.5 - 0.3	Moderate
0.3 – 0.1	Weak
0.1 – 0.1	None or very weak

Table 4.3: Correlation Relationship

The correlation between the input and output values are also important for efficiency to make sense. Hence, correlation coefficient between each variable is calculated by formula (4.5).


$$S_{xx} = \sum x^2 - \frac{(\sum x)^2}{n}$$
(4.2)

$$S_{yy} = \sum y^2 - \frac{(\sum y)^2}{n}$$
(4.3)

$$S_{xy} = \sum xy - \frac{\left(\sum x\right)\left(\sum y\right)}{n}$$
(4.4)

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \tag{4.5}$$

As seen in the Figure 4.1 there is a trend between the DMUs and input/output values. Meaning that when one input starts to increases, the others also follow a similar behavior and similarly when the value of an output falls the other variables also seem to be fell. So, the data chosen for input and output values are consistent.

The correlation coefficient results between input and output variables are shown in Table 4.4 and most of the values are higher than the 0.5 meaning there is a strong positive correlation between the input and output variables. Only input 5 (number of defected materials) showed a moderate correlation with other input variables, but again it is strongly correlated with both of the output variables.

	Input						
	1	Input 2	Input 3	Input 4	Input 5	Output 1	Output 2
		0.92342	0.83263	0.83266	0.44881	0.84583	0.64132
Input 1	1	2	1	6	5	8	4
			0.93366	0.81278	0.53260	0.94777	0.83957
Input 2		1	5	0	2	2	8
				0.86760	0.43561	0.91604	0.87638
Input 3			1	4	9	9	4
					0.34834	0.79787	0.64582
Input 4				1	1	4	1
_						0.67891	
Input 5					1	9	0.61896
Output							0.91956
1						1	3
Output							
2							1

Table 4.4: Correlation Matrix of Inputs and Outputs

4.5 Collected Data

The input and output data summarized in Table 4.5 were collected from the year of 2010 to the 2015. Totally 30 different values were recorded for each of the input/ output value showing the situation of the data in the designated year and each and every one of it denoted as a DMU. The collected input and output data were in different scales as can be seen in Table 4.5 that might be difficult to take into evaluation. Normalization is performed to bring the data to the same scale in order to interpret data and calculate efficiency values more easily. It was performed by selecting the highest value for each column (input and output values) and the remaining values in the column were divided to this value. Hence all the values became in between 0.0 and 1.0 Moreover, increased decimal values are eliminated and rescaled for the ease of calculation. Normalized data is shown in Table 4.6.

Year	Prodution Line	DMUs	Input 1	Input 2	Input 3	Input 4	Input 5	Output 1	Output 2
	Pet-6 Line	DMU1	836191	48323	729,215.22	11	115235	779486	13,846,881.29
	PEt-2 Line	DMU2	33182	3665	208,132.51	5	46330	93896	471,150.00
2010	Can Line	DMU3	108773	25102	436,009.43	6	106928	518787	13,073,962.88
	Glass Bottle Line	DMU4	14422	2846	118,049.16	3	37039	77643	1,072,267.25
	Premix Line	DMU5	72280	11420	275,413.67	6	2513	85574	1,600,515.80
	Pet-6 Line	DMU6	812782	48378	637,309.70	10	118233	716385	10,337,609.31
	PEt-2 Line	DMU7	27507	1709	194,255.38	5	45598	66071	450,192.95
2011	Can Line	DMU8	109864	26535	398,676.46	6	105982	505381	13,013,013.82
	Glass Bottle Line	DMU9	13999	2538	106,691.63	3	37040	81866	1,156,515.12
	Premix Line	DMU10	69551	10224	249,610.83	6	2549	79419	1,588,380.00
	Pet-6 Line	DMU11	787492	47542	626,690.89	9	55986	729653	14,271,344.31
	PEt-2 Line	DMU12	21749	3080	204,686.23	5	14209	47865	526,322.40
2012	Can Line	DMU13	95105	23907	422,429.78	6	106595	487924	13,789,411.85
	Glass Bottle Line	DMU14	17266	5453	111,016.33	3	26925	166373	2,839,733.87
	Premix Line	DMU15	66760	10760	237,368.76	5	2082	85310	1,838,951.40
	Pet-6 Line	DMU16	713322	45382	687,102.15	9	68319	692072	15,859,469.03
	PEt-2 Line	DMU17	466	1325	223,696.97	5	16589	26421	205,064.00
2013	Can Line	DMU18	88014	23184	459,321.28	6	81282	478374	14,813,417.93
	Glass Bottle Line	DMU19	17529	3495	120,731.37	3	133836	113214	1,557,216.34
	Premix Line	DMU20	64905	11022	261,676.24	5	1584	88118	2,089,638.40
	Pet-6 Line	DMU21	633045	57025	756,110.18	7	61829	738233	16,244,660.11
	PEt-2 Line	DMU22	436378	29839	249,654.64	5	85903	311934	5,592,703.20
2014	Can Line	DMU23	249452	30737	522,519.00	6	95332	513083	17,390,305.56
	Glass Bottle Line	DMU24	17031	2455	163,061.18	4	17664	55085	981,231.78
	Premix Line	DMU25	63670	11770	322,098.22	6	1697	94787	2,289,852.40
	Pet-6 Line	DMU26	560201	45518	766,440.21	7	50855	556809	14,758,001.10
	PEt-2 Line	DMU27	329300	24694	221,205.43	4	64644	208534	3,719,996.08
2015	Can Line	DMU28	207499	23704	530,946.61	6	57565	410623	17,272,191.48
	Glass Bottle Line	DMU29	14585	2195	170,453.07	4	26407	50700	1,291,422.38
	Premix Line	DMU30	80034	12696	329,798.57	6	1179	91991	2,306,254.85

Table 4.5: Input/Output Data

Table 4.6: Normalized	Input/Output Data
-----------------------	-------------------

2010	Pet-6 Line PEt-2 Line Can Line Glass Bottle Line Premix Line Pet-6 Line	DMU1 DMU2 DMU3 DMU4 DMU5	1.00000 0.03968 0.13008 0.01725	0.84740 0.06427 0.44019	0.95143 0.27156	1.00000 0.45455	0.86102 0.34617	1.00000 0.12046	0.79624
2010	Can Line Glass Bottle Line Premix Line	DMU3 DMU4	0.13008			0.45455	0.34617	0.12046	0.02709
2010	Glass Bottle Line Premix Line	DMU4		0.44019	0.5000				0.02707
	Premix Line		0.01725		0.56888	0.54545	0.79895	0.66555	0.75180
		DMU5		0.04991	0.15402	0.27273	0.27675	0.09961	0.06166
	Pet-6 Line		0.08644	0.20026	0.35934	0.54545	0.01878	0.10978	0.09203
		DMU6	0.97201	0.84836	0.83152	0.90909	0.88342	0.91905	0.59445
	PEt-2 Line	DMU7	0.03290	0.02997	0.25345	0.45455	0.34070	0.08476	0.02589
2011	Can Line	DMU8	0.13139	0.46532	0.52017	0.54545	0.79188	0.64835	0.74829
	Glass Bottle Line	DMU9	0.01674	0.04451	0.13920	0.27273	0.27676	0.10503	0.06650
	Premix Line	DMU10	0.08318	0.17929	0.32568	0.54545	0.01905	0.10189	0.09134
	Pet-6 Line	DMU11	0.94176	0.83370	0.81766	0.81818	0.41832	0.93607	0.82065
	PEt-2 Line	DMU12	0.02601	0.05401	0.26706	0.45455	0.10617	0.06141	0.03027
2012	Can Line	DMU13	0.11374	0.41924	0.55116	0.54545	0.79646	0.62596	0.79294
	Glass Bottle Line	DMU14	0.02065	0.09562	0.14485	0.27273	0.20118	0.21344	0.16329
	Premix Line	DMU15	0.07984	0.18869	0.30970	0.45455	0.01556	0.10944	0.10575
	Pet-6 Line	DMU16	0.85306	0.79583	0.89649	0.81818	0.51047	0.88786	0.91197
	PEt-2 Line	DMU17	0.00056	0.02324	0.29186	0.45455	0.12395	0.03390	0.01179
2013	Can Line	DMU18	0.10526	0.40656	0.59929	0.54545	0.60733	0.61370	0.85182
	Glass Bottle Line	DMU19	0.02096	0.06129	0.15752	0.27273	1.00000	0.14524	0.08955
	Premix Line	DMU20	0.07762	0.19328	0.34142	0.45455	0.01184	0.11305	0.12016
	Pet-6 Line	DMU21	0.75706	1.00000	0.98652	0.63636	0.46198	0.94708	0.93412
	PEt-2 Line	DMU22	0.52186	0.52326	0.32573	0.45455	0.64185	0.40018	0.32160
2014	Can Line	DMU23	0.29832	0.53901	0.68175	0.54545	0.71230	0.65823	1.00000
	Glass Bottle Line	DMU24	0.02037	0.04305	0.21275	0.36364	0.13198	0.07067	0.05642
	Premix Line	DMU25	0.07614	0.20640	0.42025	0.54545	0.01268	0.12160	0.13167
	Pet-6 Line	DMU26	0.66994	0.79821	1.00000	0.63636	0.37998	0.71433	0.84863
	PEt-2 Line	DMU27	0.39381	0.43304	0.28861	0.36364	0.48301	0.26753	0.21391
2015	Can Line	DMU28	0.24815	0.41568	0.69274	0.54545	0.43012	0.52679	0.99321
	Glass Bottle Line	DMU29	0.01744	0.03849	0.22240	0.36364	0.19731	0.06504	0.07426
	Premix Line	DMU30	0.09571	0.22264	0.43030	0.54545	0.00881	0.11801	0.13262

Chapter 5

RESULTS AND RECOMMENDATIONS

5.1 DMUs Efficiency Results

All the gathered data initially normalized to bring to the same scale. The normalization was performed by identifying the biggest value for each column (input and output values) and the remaining values in the column were divided to this value. Then with the utilization of the PIMDEA software and using the standard CCR and standard BBC modeling options, the efficiency values, weights, lambda values are calculated. When in Table 5.1 the efficiency values of the production lines from 2010 to 2015 are investigated, it can be seen that the can production line is the only line which is efficient both CCR and BCC throughout the study. Hence, from the management point of view, can production in the factory should be taken into consideration while budget planning. Serious attention should be given for maintaining and planning operation for this production line. The marketing activities for the can products should be encouraged and new product development studies need to be performed to increase the capacity utilization of the production line.

Glass bottle line is come out as BCC efficient and CCR inefficient for year 2010, 2014, and 2015. In other words when we commend on sources of inefficiencies it can be said that glass bottle production line is pure technically efficient (efficient operation) under variable return to scale environment and it is CCR inefficient due to failure to achieve scale efficiency.

45

Pet-6 and Premix production lines seemed to be inefficient in the previous years, and became efficient in the later years. These lines seem to be working at the efficiency frontier and some precautions taken by the management in the previous years seem to be worked that brought both of these lines to the efficient level. From now on management could rely on both of these production lines and consider investment to maintain its efficient performance.

Finally when the results regarding Pet-2 line is considered it came out as inefficient operation most of the study. Although the output variables are at the highest level in 2010, 2014 and 2015 the efficiency values are the lowest. It can be concluded that this production line is the inefficient one among the others and it maintain its inefficiency despite the constant increase in the output variables. Management should cease the production in this line and look for alternative solutions for these product portfolios. Economy of scale could not be achieved for this production line and the option of the contract manufacturing can seriously be considered by the management.

					Scale
			CCR	BCC	Efficiency
Production Line	Year	DMUs	Efficiency	Efficiency	$(\theta CCR/\theta BCC)$
	2010	DMU1	0.90	1.00	0.90
	2011	DMU6	0.91	0.96	0.94
Pet-6	2012	DMU11	1.00	1.00	1.00
	2013	DMU16	0.96	1.00	0.96
	2014	DMU21	1.00	1.00	1.00
	2015	DMU26	1.00	1.00	1.00
	2010	DMU2	0.77	0.79	0.98
	2011	DMU7	1.00	1.00	1.00
Pet-2	2012	DMU12	0.53	1.00	0.53
ret-2	2013	DMU17	1.00	1.00	1.00
	2014	DMU22	0.92	0.94	0.98
	2015	DMU27	0.71	0.82	0.86
	2010	DMU3	1.00	1.00	1.00
	2011	DMU8	1.00	1.00	1.00
Corr	2012	DMU13	1.00	1.00	1.00
Can	2013	DMU18	1.00	1.00	1.00
	2014	DMU23	1.00	1.00	1.00
	2015	DMU28	1.00	1.00	1.00
	2010	DMU4	0.85	1.00	0.85
	2011	DMU9	1.00	1.00	1.00
Class Dettle	2012	DMU14	1.00	1.00	1.00
Glass Bottle	2013	DMU19	1.00	1.00	1.00
	2014	DMU24	0.75	1.00	0.75
	2015	DMU29	0.95	1.00	0.95
	2010	DMU5	0.88	0.93	0.95
	2011	DMU10	0.89	1.00	0.89
Dur	2012	DMU15	0.99	1.00	0.99
Premix	2013	DMU20	1.00	1.00	1.00
	2014	DMU25	1.00	1.00	1.00
	2015	DMU30	1.00	1.00	1.00

Table 5.1. CCR and BCC Efficiencies of the Production Lines

5.2 DMUs Weight Calculation

In DEA weights of the input and output values are calculated to maximize efficiency. When we analyze the average weights in Table 5.2, Input 1 (Electricity Consumption), Input 2 (Fuel Consumption) and Input 5 (Number of Defected Materials Separated from Production Lines) scored the highest meaning these aspects effect the most the efficiency score. For the further enhancement of all the production lines, some precautions need to be taken to minimize electricity/ fuel consumption and number of defected materials. This result also shows the effect of energy and quality factors to the efficiency score. Minimizing number of defective materials achieved due to the increased quality in production processes. Furthermore, minimizing the energy consumption is achieved by practicing some changes in the production lines especially detecting the most energy consuming machines and deciding on energy reducing policies. For the output variables, Output 1 (Production SKU) scored more than the Output 2 (Income Contribution of DMUs) meaning an increase in the production has more influence on the efficiency score. The number of approved end products by the quality department is an important output parameter. Increase in quality practices will lead to decrease the number of the annihilated products hence increasing number of production SKUs. Marketing activities should also be encouraged to increase the demand of the products, hence having a bigger market share than the rival company leading to an increase in the production.

Table 5.2.	Weights of Ir	puts and	Outputs	Using CCR Model

DMUs	Input 1	-	-	Input 4		Output 1	Output 2
DMU 1	0	0.48	0.09	0.36	0.17	0.9	0
DMU 2	0	13.37	0	0.29	0.03	6.38	0
DMU 3	0	1.54	0	0.59	0	1.32	0.16
DMU 4	4.36	17.91	0	0.08	0.04	8.58	0
DMU 5	2.29	2.66	0.4	0	6.73	8.03	0
DMU 6	0	0	0.8	0.28	0.09	0.99	0
DMU 7	0	24.71	0	0.53	0.05	11.8	0
DMU 8	0	0.69	0.76	0.37	0.1	1.11	0.38
DMU 9	3.95	19.92	0.27	0	0.04	9.52	0
DMU 10	0	4.19	0.13	0	10.84	8.69	0
DMU 11	0	0.83	0	0	0.74	1.07	0
DMU 12	0	6.72	0	0	6	8.67	0
DMU 13	0	1.22	0.43	0.47	0	1.18	0.33
DMU 14	0.45	1.5	0.96	1.78	1.1	4.69	0
DMU 15	0	0	2.46	0	15.4	9.03	0
DMU 16	0	0.56	0	0.45	0.36	0.92	0.15
DMU 17	118.85	40.19	0	0	0	29.5	0
DMU 18	0.44	2.35	0	0	0	0.44	0.86
DMU 19	0	13.68	0	0.59	0	6.89	0
DMU 20	2.46	2.9	0.49	0	7.03	7.58	1.19
DMU 21	0	0.55	0	0.44	0.36	0.91	0.15
DMU 22	0	0	2.2	0.62	0	2.29	0
DMU 23	0	0.82	0	1.02	0	0.74	0.51
DMU 24	0	23.23	0	0	0	5	7.07
DMU 25	1.76	3.8	0	0	6.39	7.11	1.03
DMU 26	0.01	0.23	0	0.18	1.84	0.6	0.67
DMU 27	0	0	2.55	0.72	0	2.66	0
DMU 28	0	2.41	0	0	0	0.52	0.73
DMU 29	0	25.98	0	0	0	5.59	7.91
DMU 30	0	3.15	0.42	0	13.18	0.6	7
Average Weights	4.4857	7.1863	0.3987	0.2923	2.3497	5.1103	0.9380

5.3 Discussion on Inefficient DMUs

From the efficiency calculations in Table 5.1, it can be clearly seen that Pet-6 and Premix lines were come out as inefficiently operated in the former years as the latter years. To better understand the inefficiency at these lines, the lambda (λ_i) values derived from the PIMDEA software calculations were carefully examined. When the standard CCR model is investigated it can be noted that since slack variables (S_{ik} , S_{rk} ^t) are non-negative, θ_k cannot exceed 1. The composite unit has input levels that do not exceed those of the unit j_0 and having the output values at least as high. When unit j_0 is efficient, the slack variables become 0 and θk results 1. Meaning it has proved impossible to find a composite unit outperforming unit j_0 . On the contrary, when j_0 is not efficient (inefficient) θ_k will be less than 1 and some slack variables may be positive. Meaning it has proved that there is a more efficient composite unit exists. The λj 's form an efficient composite unit providing targets for j_0 and θ_k representing the proportion of the input levels of j_0 that the efficient composite unit would require to produce at least of the output levels of j_0 . Since θ_k is the measurement of the efficiency of the DMUs, the composite unit therefore provides a set of targets for an inefficient unit.

When we go back and investigate the λ_j table in the Appendix B, there can a few suggestions be made after the investigation of the inefficient Pet-6 lines and Premix lines between 2010 and 2015. Since these lines were became efficient after a period of inefficiency, some conclusion regarding the λ_j values can be gained to interpret target units for inefficient ones. Initially, λ_j values for inefficient operations of the Pet-6 line were examined; which are DMU1, DMU6, DMU16, the common largest positive λ value among these is DMUs is λ_{11} which is calculated as 0.5, 0.41 and 0.72

respectively. In other words these 3 inefficient DMUs should work similar with DMU11 in order to become efficient. The input values of these inefficient ones should become as close as the one of the DMU11 in order to perform efficiently. On the other hand, when the inefficient operations of the Premix line are examined, DMU5, DMU10 and DMU15, the common largest positive λ value among these DMUs is λ_{25} which is calculated as 0.62, 0.34 and 0.87 respectively. Similarly it can be concluded that words these 3 inefficient DMUs should work similar with DMU25 in order to become efficient. The input values of these inefficient ones should become as close as the one of the DMU25 in order to perform efficiently.

5.4 Consistency of the Derived Results

In order to verify the importance of input values and support the arguments mentioned above by weight evaluation, CCR efficiency is calculated by deleting one input variable at a time, hence obtaining 6 different set of data where SoD 0 is the original one. Number of efficient DMUs in the original model is the highest score 17. However, when Input 5 (number of defected materials separated from production line) is deleted from input variables and then the CCR model was run, the number of efficient DMUs drastically dropped to 11. In other words, number of defected materials which is a quality factor has the biggest effect on efficiency scores of the DMUs. Similarly, in SoD 2 where input variable fuel consumption is subtracted from the calculation, the number of efficient DMUs also decreased to a certain point. These results also support the previous argument derived by the weight calculation of the standard CCR model.

Apart from the change in the number of efficient DMUs, the average efficiency values of the all DMUs were evaluated to commend on the consistency of the model.

Here we can say again that input 2 and input 5 have the biggest effect on the efficiency evaluation. Furthermore, number of efficient DMUs of SoD 1, 3 and 4 were calculated as same as 15. However, changes in the average efficiency values show that SoD 3 where labor wages were subtracted has more effect on the efficiency scores than the others.

DMU	SoD 0	SoD 1	SoD 2	SoD 3	SoD 4	SoD 5
DMU 1	0.90	0.90	0.88	0.89	0.81	0.84
DMU 2	0.77	0.77	0.33	0.77	0.77	0.76
DMU 3	1.00	1.00	1.00	1.00	0.96	1.00
DMU 4	0.85	0.84	0.55	0.85	0.85	0.84
DMU 5	0.88	0.88	0.87	0.87	0.88	0.26
DMU 6	0.91	0.91	0.91	0.85	0.82	0.88
DMU 7	1.00	1.00	0.25	1.00	1.00	1.00
DMU 8	1.00	1.00	1.00	0.98	1.00	1.00
DMU 9	1.00	0.99	0.60	1.00	1.00	1.00
DMU 10	0.89	0.89	0.86	0.88	0.89	0.28
DMU 11	1.00	1.00	1.00	1.00	1.00	0.94
DMU 12	0.53	0.53	0.46	0.53	0.53	0.46
DMU 13	1.00	1.00	1.00	0.99	1.00	1.00
DMU 14	1.00	1.00	1.00	1.00	1.00	1.00
DMU 15	0.99	0.99	0.99	0.95	0.99	0.30
DMU 16	0.96	0.96	0.93	0.96	0.94	0.86
DMU 17	1.00	0.60	1.00	1.00	1.00	1.00
DMU 18	1.00	1.00	1.00	1.00	1.00	1.00
DMU 19	1.00	1.00	0.68	1.00	1.00	1.00
DMU 20	1.00	1.00	1.00	1.00	1.00	0.32
DMU 21	1.00	1.00	1.00	1.00	1.00	1.00
DMU 22	0.92	0.92	0.92	0.66	0.85	0.92
DMU 23	1.00	1.00	1.00	1.00	1.00	1.00
DMU 24	0.75	0.75	0.47	0.75	0.75	0.75
DMU 25	1.00	1.00	1.00	1.00	1.00	0.32
DMU 26	1.00	1.00	1.00	1.00	0.94	0.83
DMU 27	0.71	0.71	0.71	0.54	0.64	0.71
DMU 28	1.00	1.00	1.00	1.00	1.00	1.00
DMU 29	0.95	0.95	0.52	0.95	0.95	0.95
DMU 30	1.00	1.00	1.00	1.00	1.00	0.30

Table 5.3 Sensitivity Analysis on CCR Efficiency

No. of Efficient DMUs	17	15	14	15	15	11
Average Efficiency	0.93	0.92	0.83	0.91	0.92	0.78

When we analyze production lines one by one with sensitivity point of view the same results can be interpreted as in the Table 5.4. Here the most shocking finding is about the sensitivity of Premix line to the Input 5. When the input 5 is eliminated from the data list and then the efficiency is calculated it can be clearly seen that the efficiency score drastically fell. In other words the number of defected products plays a huge role to bring Premix line to the efficiency frontier. On the contrary sensitivity of can production line comes out as very low since the efficiency score is not affected abruptly by the change in the set of data.

Production Line	Year	DMUs	SoD 1	SoD 2	SoD 3	SoD 4	SoD 5	SoD 6
	2010	DMU1	0.90	0.90	0.88	0.89	0.81	0.84
	2011	DMU6	0.91	0.91	0.91	0.85	0.82	0.88
Pet-6	2012	DMU11	1.00	1.00	1.00	1.00	1.00	0.94
ret-0	2013	DMU16	0.96	0.96	0.93	0.96	0.94	0.86
	2014	DMU21	1.00	1.00	1.00	1.00	1.00	1.00
	2015	DMU26	1.00	1.00	1.00	1.00	0.94	0.83
	2010	DMU2	0.77	0.77	0.33	0.77	0.77	0.76
	2011	DMU7	1.00	1.00	0.25	1.00	1.00	1.00
Pet-2	2012	DMU12	0.53	0.53	0.46	0.53	0.53	0.46
100-2	2013	DMU17	1.00	0.60	1.00	1.00	1.00	1.00
	2014	DMU22	0.92	0.92	0.92	0.66	0.85	0.92
	2015	DMU27	0.71	0.71	0.71	0.54	0.64	0.71
	2010	DMU3	1.00	1.00	1.00	1.00	0.96	1.00
	2011	DMU8	1.00	1.00	1.00	0.98	1.00	1.00
Can	2012	DMU13	1.00	1.00	1.00	0.99	1.00	1.00
Call	2013	DMU18	1.00	1.00	1.00	1.00	1.00	1.00
	2014	DMU23	1.00	1.00	1.00	1.00	1.00	1.00
	2015	DMU28	1.00	1.00	1.00	1.00	1.00	1.00
	2010	DMU4	0.85	0.84	0.55	0.85	0.85	0.84
	2011	DMU9	1.00	0.99	0.60	1.00	1.00	1.00
Glass Bottle	2012	DMU14	1.00	1.00	1.00	1.00	1.00	1.00
Glass Doule	2013	DMU19	1.00	1.00	0.68	1.00	1.00	1.00
	2014	DMU24	0.75	0.75	0.47	0.75	0.75	0.75
	2015	DMU29	0.95	0.95	0.52	0.95	0.95	0.95
	2010	DMU5	0.88	0.88	0.87	0.87	0.88	0.26
	2011	DMU10	0.89	0.89	0.86	0.88	0.89	0.28
Premix	2012	DMU15	0.99	0.99	0.99	0.95	0.99	0.30
	2013	DMU20	1.00	1.00	1.00	1.00	1.00	0.32
	2014	DMU25	1.00	1.00	1.00	1.00	1.00	0.32
	2015	DMU30	1.00	1.00	1.00	1.00	1.00	0.30

Table 5.4: Sensitivity Analysis on CCR Efficiency Scores in terms of Production Lines

5.5 Summary of the Results

To sum up, in this derived model for the calculation of efficiency values for the perishable food products in the FMCG industry, the input variables have the sequence of importance as follows:

- 1- Number of defected materials eliminated in the production,
- 2- Energy (Fuel, Electricity) usage,
- 3- Labor Wages,
- 4- Number of labors directly involved in the production lines.

Weight calculations, together with the consistency analysis of the results brought insight regarding the data sets and hence, an order of importance among input variables was established. In this study we are dealing with the input oriented situation, which is why it is utmost important to analyze input variables and discuss corrective actions to enhance them.

Chapter 6

CONCLUSION

6.1 Conclusion

This study helped decision makers, management of the Ektam Kıbrıs Ltd. Company to commend on the certain aspects of the production lines of the production facility. Every year a certain amount of budget is set by the company managers and fraction of this budget used for the production lines need to be decided. This decision should carefully be made in order not to waste capital to an inefficient operation. Data Envelopment Analysis with the utilization of the PIMDEA software made it possible to distinguish efficient and inefficient operations. This study also revealed the sources of inefficiencies and forms a pathway to efficient operations for the managers of the factory. By this study a general model for the efficiency evaluation of the FMCG manufacturing facility is formed and it can easily be utilized by similar operations. In this model both operational and quality factors are considered since, both have a major effect on FMCG food products. Weight calculations revealed that energy consumption (electricity and fuel) and number of defected materials have the highest influence on efficiency scores. Some actions need to be taken by the management regarding these areas to enhance efficiency of the production lines. Verification of the model also revealed that number of the efficient DMUs changed abruptly while subtracting the 5th input namely, number of defected materials separated from the production. This shows drastic effect of this input to the efficiency calculation. Good working production lines move to the efficiency frontier as soon as the defected material input is introduced.

6.2 Future Studies

In this study the factory production lines' efficiency values were calculated for ease of the management decision making process. A future study on this topic is recommended to perform a ranking method on these production lines. This also gives direction to the management of the factory to a certain point for the ease of the decision making regarding production lines. Ranking will help to make a distinction between the efficient DMUs. Moreover, this developed model can be adapted to other perishable goods of the FMCG industry; mainly food products or clothing industry in which seasonal fashion concept gives perishability to these kinds of goods. Also the return to scale of efficient production lines can be estimated. The RTS value for each efficient production line can help the management to have investment plans on efficient production lines. Obviously an efficient DMU with increasing RTS might be a good opportunity for investment.

REFERENCES

- [1] A. Boussofiane, R. G. Dyson, E. Thanassoulis (1991), Applied Data Envelopment Analysis, *European Journal of Operational Research*, 52 (1), 1-15.
- [2] A. Charnes, W. W. Cooper, E. Rhodes (1978), Measuring the Efficiency of Decision Making Units, *European Journal of Operational Research*, 2 (6), 429-444.
- [3] AGDP Lakmal and WADN Wickramarachchi (2011), Enhancing the effectiveness and efficiency of warehouse operations in FMCG sector in Sri Lanka, 17th Eru Research Symposium, 20110, Faculty of Engineering, University of Moratuwa, Sri Lanka.
- [4] Alt Monika- Anetta (2013), Measuring Romanian Large FMCG Retain Chains Efficiency During the Period of Economic Crisis Between 2006-2011, *Studia Universitatis Babes-Bolyai, Negotia*, 58 (1), 5-21.
- [5] B. Golany, Y. Roll (1989), An Application Procedure for DEA, *Omega*, 17 (3), 237-250.
- [6] C.H. Liu, Sue J. Lin, Charles Lewis (2009), Evaluation of Thermal Power Plant Operational Performance in Taiwan by Data Envelopment Analysis, *Elsevier Ltd*, 38, 1049-1058.

- [7] Chuen Tse Kuah, Kuan Yew Wong, Farzad Behrouzi (2010), Applicatin of Data Envelopment Analysis to Assess Quality Management Efficiency, World Academy of Sciences, Engineering and Technology, 46, 753-758.
- [8] Chun-Yu Lin, Ming-Chuan Chiu, Henri Thevenot, Gül E. Okudan (2009), On the Use of Data Envelopment Analysis for Product Line Selection, *Journal of Mechanical Design*.
- [9] Fizzy drinks fall flat as soda sales decline in U.S. even faster than expected, (2015, March 31), Retrieved from: <u>http://www.dailymail.co.uk/news/article-2593728/Fizzy-drinks-fall-flat-soda-sales-decline-U-S-fasterexpected.html#ixzz4B5Y4t6lU</u>
- [10] Hezekiah, Ramakhrishnan Lalitha, Shaban, Majid (2016), Advertising media efficiency of FMCG firms in India: An empirical investigation using data envelopment analysis, *IUP Journal of Management Research*, 15 (1), 37-47.
- [11] Javier Salinas-Jiménez, Peter Smith (1996), Data envelopment analysis applied to quality in primary health care, *Springer Annals of Operations Research*, 67 (1), 141-161.
- [12] M. H. Bala Subrahmanya (2006), Labour Productivity, Energy Intensity and Economic Performance in Small Enterprises: A study of Brick Enterprises Cluster in India, *Energy Conversion and Management*, 47 (6), 763-777.

- [13] Mikulas Luptacik (2000), Mathematical Optimization and Economic Analysis, Springer Science Business Media LLC.
- [14] M. J. Farrell, The Measurement of Productive Efficiency (1957), *The Journal of the Royal Statistical Society*, 120 (3), 253-290.
- [15] Nicole Adler, Joseph Berechman (2001), Measuring airport quality from the airlines' viewpoint: an application of data envelopment analysis, *Elsevier Transport Policy*, 8 (3), 171-181.
- [16] Pierpaolo Testa ,Vincenzo Basile, Luigi Cantone, (2016), Marketing performance measurement in FMCG: Proposing and testing a conceptual model,Retrievedfrom:
 <u>http://www.marketingtrendscongress.com/archives/2016/pages/PDF/TESTA_B</u>

ASILE_CANTONE.pdf

- [17] Preethy Nayar, Yasar A. Ozcan (2008), Data Envelopment Analysis
 Comparison of Hospital Efficiency and Quality, *Springer Science+Business Media LLC*, 32, 193-199.
- [18] Ranjit Kumar Paswan (2013), Analysis of solvency of selected FMCG companies in India, *Global Journal of Management and Business Studies*, 3 (4), 401-406.

- [19] R. D. Banker, A. Charnes, W. W. Cooper (1984), Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis, *Management Science*, 30 (9), 1078-1092.
- [20] Semih Önüt, Selin Soner (2006), Analysis of Energy Use and Efficiency in Turkish Manufacturing Sector SMEs, *Science Direct*, 48, 384-394.
- [21] Wayne L. Winston (1994), Operations Research Applications and Algorithms, Third Edition, *Duxbury Press, Belmont, California*.
- [22] William W. Cooper, Lawrence M. Seiford, Kaoru Tone (2007), Data Envelopment Analysis A Comprehensive Text with Models, Applications, References and DEA-Solver Software, Second Edition, Springer Science Business Media LLC, New York.

APPENDICES

Appendix A: AHP Analysis

A.1 AHP for Comparison Factors

	Maintenance Hours	Working Hours	Produced Quantitiy
Maintenance Hours	1	0.25	0.33
Working Hours	4	1	1.33
Produced Quantitiy	3	0.75	1

	Summed Rows			
0.12468696				
5	4.73	0.9925	0.7475	2.99
0.5	18.9675	3.98	2.9975	11.99
0.37531303				
5	14.2375	2.9875	2.25	9
1	37.935	Total:		

	Summed			
0.12468680	Rows			
3	42.451625	8.90771875	6.70878125	26.835125
0.5 0.37531319	170.2330313	35.720375	26.90253125	107.610125
7	127.7814063	26.81265625	20.19375	80.775
1	340.4660625	Total:		

	Summed Rows			
0.12468680				
3	3419.49166	717.519529	540.3944262	2161.577705
0.5	13712.32386	2877.287369	2167.007299	8668.029197
0.37531319				
7	10292.83221	2159.76784	1626.612873	6506.451492
1	27424.64773	Total:		

			Summed	
			Rows	
				0.12468680
14025078.85	3506269.712	4655519.876	22186868.44	3
56241231.89	14060307.97	18668855.68	88970395.54	0.5
				0.37531319
42216153.04	10554038.26	14013335.81	66783527.11	7
		Total:	177940791.1	1

A.2 AHP for Production Lines for Maintenance Hours

	PET-6	PET-2	CAN	GLASS BOTTLE	PREMIX
PET-6	1	5	3	7	6
PET-2	0.2	1	0.33	3	5
CAN	0.33	3	1	5	7
GLASS BOTTLE	0.14	0.33	0.2	1	0.5
PREMIX	0.17	0.2	0.14	2	1

	Summed Rows					
0.4916097 21 0.1376815	154.89	61.5	56	9.89	22.51	4.99
09	43.3789	15.01	19.05	2.56	4.98	1.7789
$0.2780361 \\ 0.0425811$	87.6	33.48	35.31	4.96	10.7	3.15
0.0500915	13.4159	4.89	4.97	0.9989	2.06	0.497
68	15.7822	5	6.49	1.256	2.33	0.7062
1	315.067	Total:				

					Summed Rows	
167.35993						0.4918652
9	588.9027	289.2135	1734.9264	1557.2173	4337.619839	4
	166.45173					0.1370131
45.867545	9	80.921326	476.9744	438.06545	1208.28046	96
		160.46913				0.2708622
91.569376	328.0115	9	948.1485	860.4587	2388.657215	47
				143.68257		0.0450968
15.214507	53.7664	26.249847	158.783159	2	397.696485	7
						0.0551624
18.381705	65.958562	31.941739	192.98836	177.19158	486.461946	46
				Total:	8818.715945	1

					Summed Rows	l
136524.32	487440.51	237749.16		1292654.4		0.4918711
89	3	35	1421467.942	72	3575836.419	66
38030.357	135800.19	66233.461		360126.36		0.1370263
71	16	46	395972.5017	73	996162.8797	46
75306.496	268892.41	131149.87		713059.44		0.2713234
32	04	01	784076.3171	02	1972484.534	48
12473.051	44533.921	21720.884		118106.11		0.0449396
98	39	39	129871.1548	96	326705.1322	49
15219.909	54344.801	26505.077		144128.94		0.0548393
55	95	02	158476.1766	33	398674.9085	91
				Total:	7269863.874	1

					Summed Rows	
924846136	3.30224E+	1.61062E+		8.75741E+	2.42247E+1	0.4918715
38	11	11	9.62954E+11	11	2	3
257644851	919941085	448687623		2.43965E+	6.74854E+1	0.1370262
82	71	88	2.68261E+11	11	1	17
510162054	1.82157E+	888445464		4.83075E+	1.33628E+1	0.2713253
79	11	54	5.31183E+11	11	2	38
844969383	301702923	147151127		800105557	2.21324E+1	0.0449389
5	49	43	87978605950	79	1	76
103109557	368160735	179564939		976349342	2.70077E+1	0.0548379
50	55	73	1.07358E+11	10	1	39
				Total:	4.925E+12	1

					Summed	
					Rows	
4.24446E+	1.51552E+	7.39171E+		4.0191E+2	1.11176E+2	0.4918715
22	23	22	4.41935E+23	3	4	3
1.18243E+	4.22195E+	2.05919E+		1.11965E+	3.09715E+2	0.1370262
22	22	22	1.23115E+23	23	3	17
2.34132E+	8.35987E+	4.0774E+2		2.21701E+	6.13266E+2	0.2713253
22	22	2	2.43779E+23	23	3	38
3.87788E+	1.38463E+	6.75331E+		3.67198E+	1.01574E+2	0.0449389
21	22	21	4.03766E+22	22	3	76
4.73208E+	1.68963E+	8.2409E+2		4.48083E+	1.23948E+2	0.0548379
21	22	1	4.92706E+22	22	3	39
					2.26026E+2	
				Total:	4	1

A.3 AHP for Production Lines for Working Hours

	PET-6	PET-2	CAN	GLASS BOTTLE	PREMIX
PET-6	1	8	2	9	3
PET-2	0.125	1	0.142	3	0.142
CAN GLASS	0.5	7	1	8	2
BOTTLE	0.11	0.33	0.125	1	0.125
PREMIX	0.33	7	0.5	8	1

	Summed Rows					
0.4297972						
54	160.972	12.261	82	7.761	53.97	4.98
0.0463804						
14	17.37086	1.318	9.397	0.98	4.978	0.69786
0.2884761						
62	108.043	7.494	57.5	4.994	34.64	3.415


0.0269436 84 0.2084024	10.09122	0.87686	4.98	0.57936	3.29	0.365
87	78.053	4.984	43.97	3.654	22.78	2.665
1	374.53008	Total:				

	Summed					
	Rows					
0.4331770		323.36451		222.60802	1355.3598	151.57328
23	4362.15547	8	2309.24976	8	8	42
0.0498891		37.270350		25.448869	157.33135	17.238364
77	502.3912493	88	265.102306	38	82	88
0.2836291		212.72141		146.08732		99.194090
85	2856.187044	7	1508.55826	7	889.62595	4
0.0295126		21.890241		15.039548	92.504771	10.246705
36	297.1965311	88	157.5152642	08	2	7
0.2037919		153.47847		104.94153		70.978770
78	2052.214788	12	1080.81574	62	642.00027	8
1	10070.14508	Total:				

					Summed	
					Rows	
115034.26	1037931.5	169418.46		247061.18		0.4329872
82	66	03	1758386.326	31	3327831.804	б
13211.217	119208.12	19457.287		28374.940		0.0497283
39	25	65	201947.7396	11	382199.3072	04
75418.327	680488.87	111074.22		161979.28		0.2838735
53	04	93	1152820.673	68	2181781.387	85
7807.3471	70445.902	11498.382		16768.068		0.0293873
43	02	17	119343.8418	4	225863.5415	13
54203.614	489081.09	79830.500		116417.86		0.2040235
57	92	55	828540.807	27	1568073.884	37
				Total:	7685749.923	1

					Summed	
					Rows	
668424209	6.03119E+	984439024		1.43561E+	1.93371E+1	0.4329866
41	11	37	1.02174E+12	11	2	6
767676366	692674212	113061520		164878033	2.22084E+1	0.0497279
3	98	29	1.17346E+11	05	1	45
438231451	3.95416E+	645416692		941213548	1.26778E+1	0.2838741
37	11	54	6.69875E+11	86	2	77
453662606	409339667	668143324		974355880	1.31242E+1	0.0293870
2	65	5	69346277287	2	1	05
314962873	2.84191E+	463869709		676462912	9.11169E+1	0.2040242
58	11	75	4.81448E+11	71	1	12
					4.46598E+1	
				Total:	2	1

					Summed Rows	
2.25689E+	2.0364E+2	3.3239E+2		4.84726E+	6.52906E+2	0.4329866
22	3	2	3.44986E+23	22	3	6
2.59201E+	2.33877E+	3.81746E+		5.56701E+	7.49854E+2	0.0497279
21	22	21	3.96212E+22	21	2	45
1.47966E+	1.3351E+2	2.17921E+		3.17795E+	4.28057E+2	0.2838741
22	3	22	2.26179E+23	22	3	77
1.53176E+	1.38211E+	2.25595E+	2.34144E+22	3.28985E+	4.4313E+22	0.0293870

A.4 AHP for Produced Lines for Production Quantity

	PET-6	PET-2	CAN	GLASS BOTTLE	PREMIX
PET-6	1	5	3	9	8
PET-2	0.2	1	0.17	4	3
CAN	0.33	6	1	8	7
GLASS BOTTLE	0.11	0.25	0.125	1	0.5
PREMIX	0.125	0.33	0.142	2	1

	Summed Rows						
0.4930955	101.101		-		22 00	4.00	
19 0.0980781	181.481	56.5	78	9.111	32.89	4.98	
36	36.0971	10.79	17.16	1.866	5.01	1.2711	
0.3319953							
51	122.189	38.64	56.97	5.004	17.96	3.615	
0.0313202 78	11.52725	3.505	4.99	0.6935	1.965	0.37375	
0.0455107	11.52725	5.505	т.уу	0.0755	1.905	0.57575	
16	16.74996	4.984	7.581	0.9651	2.637	0.58286	
1	368.04431	Toplam=					

					Summed Rows	
161.62723		260.95811		1543.2881		0.4991348
4	794.46516	4	2289.43257	4	5049.771218	75
32.146488	162.59256	52.581005				0.1006292
4	9	1	458.85081	311.90045	1018.071323	92
102.73536						0.3182467
39	512.58852	168.2898	1452.45162	983.65207	3219.717374	4
10.773925	53.640582	17.385440		104.07493		0.0335796
8	5	75	153.8521	5	339.7269841	57
15.481742	77.754304	25.127921		150.08794		0.0484094
99	4	76	221.308641	5	489.7605552	35
				Toplam=	10117.04745	1

Summed

					Rows	
127031.22	634149.26	206450.72		1223824.9		0.4987647
16	36	15	1807381.681	15	3998837.802	63
25596.844	127792.65	41601.748				0.1005053
01	54	19	364195.741	246612.77	805799.7586	33
81249.321	405619.70	132052.14		782763.59		0.3190126
98	46	7	1155993.573	46	2557678.341	47
8520.6682	42537.636	13847.784		82091.558		0.0334558
76	58	84	121233.864	94	268231.5127	27
12291.311	61363.369	19976.205		118420.59		0.0482614
19	93	26	174883.6812	88	386935.1663	29
				Toplam=	8017482.581	1

					Summed	
					Rows	
795856448	3.97317E+	1.29345E+		7.66752E+	2.50535E+1	0.4987633
16	11	11	1.13235E+12	11	2	19
160371862	800626880	260641765		1.54507E+	5.04849E+1	0.1005050
62	75	29	2.28178E+11	11	1	63
509039610	2.54129E+	827308359		4.90424E+	1.60245E+1	0.3190151
42	11	98	7.24263E+11	11	2	77
533834971	266507241	867606617		514312808	1.68051E+1	0.0334554
4	89	4	75954199914	12	1	43
770081228	384448818	125156200		741919619	2.42421E+1	0.0482609
3	89	99	1.09567E+11	85	1	99
					5.02312E+1	
				Toplam=	2	1

	Summed						
	Rows						
0.4987633	9.83412E+2	3.0097E+2		5.07713E+	1.55957E+	3.12394E+	
19	3	3	4.44475E+23	22	23	22	
0.1005050	1.98166E+2	6.0648E+2		1.02308E+	3.14266E+		
63	3	2	8.95655E+22	22	22	6.295E+21	
0.3190151	6.29002E+2	1.92504E+		3.24739E+	9.97519E+	1.99811E+	
77	3	23	2.84292E+23	22	22	22	
0.0334554	6.59641E+2	2.01881E+		3.40558E+	1.04611E+	2.09544E+	
43	2	22	2.98139E+22	21	22	21	
0.0482609	9.51563E+2	2.91222E+		4.9127E+2	1.50906E+	3.02276E+	
99	2	22	4.3008E+22	1	22	21	
	1.05155.01	— 1					1
1	1.9717E+24	Toplam=					

	DMU 3	DMU 7	DMU 8	6 NMQ	DMU 11	DMU 1	13 DMU 14	4 DMU 17	DMU 18	DMU 19	DMU 20	DMU 21	DMU 23	DMU 25	DMU 26	DMU 28	DMU 30
DMU 1	0	5 0		0 0	0.56	10	0 0.46		0 0.08	0	0	0		0	0		0 0
DMU 2		0 0.56				0	0 0.34		0 0	0.01		•					
DMU 3		1 0	0	0	0	0	0	0	0 0	0	0	•		0			0
DMU 4		0 0.01		0.74	0	0	0 0.09		0 0	0.01	0	•					
DMU 5		0	0		0.01		0 0.01				0.62	•		0.2			
DMU 6		0	0.69	0	0.41		0 0.41			0		•					0
DMU 7		0 1				0	0		0 0		0	0	0	0	0		0
DMU 8		0			0	0	0			0		•					0
DMU 9		0		1		0	0										
DMU 10		0			0.02	6	0				0.3						0
DMU 11		0 0		0			0	0		0							0
DMU 12		0				0	0										
DMU 13		0 0	0	0	0	0	1		0 0	0	0			0			0
DMU 14		0				0	0			0							
DMU 15		0 0		0	0.01		0	0			0.87	0					
DMU 16		0			0.72	2	0					0.0					
DMU 17		0 0		0		0	0			0	0						
DMU 18		0				0	0										
DMU 19		0 0				0	0										0 0
DMU 20		0		0		0	0		0								
DMU 21		0 0				0	0				0	-					
DMU 22		0	0.34			0	0										
DMU 23		0 0	0	0		0	0	0	0	0	0						
DMU 24		0 0				0	0	32									
DMU 25		0 0		0 0		0	0										
DMU 26		0				0	0	0									
DMU 27		0 0	0.29			0	0 0.36										
DMU 28		0 0		0	0	0	0	0	0	0	0	0					1 0
DMU 29			0			0	0 0	2				•				0.04	
DMU 30		0 0		0		-	0	0	0			C					-

Appendix B: Standard CCR Model λ_j Results

Appendix C: Distribution Table for Labor Cost

YEA R	SECTION	PERSON EL	MONTHLY COST	ANNUAL TOTAL COST	COST DISTRIBUTION WITH AHP
	LABORATUVA R	4	13,920.00	167,040.00	
	SYRUP MAKING	4	9,512.00	114,144.00	
	MAINTENANCE	8	32,944.00	395,328.00	
	MANAGEMENT	5	14,772.00	177,264.00	
0	SEASONAL			, , , , , , , , , , , , , , , , , , ,	
2010	WORKER	0	0.00	0.00	720 21 5 22
	PET-6	11	27,683.00	332,196.00	729,215.22
	PET-2	5	11,676.00	140,112.00	208,132.51
	CAN	6	15,310.00	183,720.00	436,009.43
	GLASS BOTTLE	3	7,500.00	90,000.00	118,049.16
	PREMIX LABORATUVA	6	13,918.00	167,016.00	275,413.67
	R SYRUP	4	12,528.00	150,336.00	
	MAKING	4	8,630.00	103,560.00	
	MAINTENANCE	8	30,299.00	363,588.00	
	MANAGEMENT	5	13,711.00	164,532.00	
2011	SEASONAL WORKER	0	0.00	0.00	
ñ	PET-6	10	22,805.00	273,660.00	637,309.70
	PET-2	5	10,996.00	131,952.00	194,255.38
	CAN	6	13,966.00	167,592.00	398,676.46
	GLASS BOTTLE	3	6,750.00	81,000.00	106,691.63
	PREMIX	6	12,527.00	150,324.00	249,610.83
	LABORATUVA R	4	13,224.00	158,688.00	
	SYRUP MAKING	4	8,966.80	107,601.60	
	MAINTENANCE	8	32,364.00	388,368.00	
	MANAGEMENT	5	15,544.00	186,528.00	
2012	SEASONAL WORKER	0	0.00	0.00	
6	PET-6	9	19,627.20	235,526.40	626,690.89
	PET-2	5	11,472.40	137,668.80	204,686.23
	CAN	6	14,488.40	173,860.80	422,429.78
	GLASS BOTTLE	3	6,948.40	83,380.80	111,016.33
	PREMIX	5	10,880.80	130,569.60	237,368.76
	LABORATUVA R	4	14,326.00	171,912.00	
	SYRUP MAKING	4	9,802.00	117,624.00	
2013	MAINTENANCE	8	34,626.00	415,512.00	
5	MANAGEMENT	5	17,980.00	215,760.00	
	SEASONAL WORKER	0	0.00	0.00	
	PET-6	9	21,576.00	258,912.00	687,102.15

1		5	12,528.00	150,336.00	223,696.97
	PET-2		,		
	CAN	6	15,602.00	187,224.00	459,321.28
	GLASS BOTTLE	3	7,540.00	90,480.00	120,731.37
	PREMIX	5	12,064.00	144,768.00	261,676.24
	LABORATUVA R	4	15,361.50	184,338.00	
	SYRUP MAKING	4	10,683.75	128,205.00	
	MAINTENANCE	8	33,100.00	397,200.00	
	MANAGEMENT	6	22,060.50	264,726.00	
2014	SEASONAL WORKER	9	19,339.07	116,034.42	
7	PET-6	7	20,750.75	249,009.00	756,110.18
	PET-2	5	13,564.50	162,774.00	249,654.64
	CAN	6	16,689.75	200,277.00	522,519.00
	GLASS BOTTLE	4	10,602.90	127,234.80	163,061.18
	PREMIX	6	15,303.75	183,645.00	322,098.22
	LABORATUVA R	4	16,195.44	194,345.28	
	SYRUP MAKING	3	8,422.70	101,072.40	
	MAINTENANCE	7	31,150.88	373,810.56	
	MANAGEMENT	6	23,471.42	281,657.04	
2015	SEASONAL WORKER	11	23,065.16	138,390.96	
10	PET-6	7	21,659.14	259,909.68	766,440.21
	PET-2	4	11,201.88	134,422.56	221,205.43
	CAN	6	17,422.27	209,067.24	530,946.61
	GLASS BOTTLE	4	11,222.25	134,667.00	170,453.07
	PREMIX	6	15,958.43	191,501.16	329,798.57

Γ		NCOME	919333	87482.9	215644	162562	215493		8							8	8 - 2	8		8		8	0	1600516
	Fremix	SALES UNIT PRICEINCOM	18.85	18.85	18.85	18.85	18.85											<u>.</u>						
- C	Fre	SALES 1	48771	4641	11440	8624	11432																	
		SKU	205305 PC 18	72418.7 DPC 18	63606.1 7UP 18	359113 YM 18	47300 FRS 18											6						
		INCOME	205305	72418.7	63606.1	359113	47300	155700	168825	0							0 0	6						1072267
. 60	ottle	SALES UNIT PRIGINCOME SKU	15.85	15.85	15.85	12.5	12.5	12.5	12.5	0														
G	Glass Bottle	SALES 1	12953	4569	4013	28729	3784	12456	13506	0														
		SKU	PC 25	7UP 25	YM 25	PC 20	DPC 20	7UP 20	YM 20	FRG 20														
ſ		NCOME	281825 PC 25	105675 7UP 25	108625 YM 25	114250 PC 20	7883188 DPC 20	806816 7UP 20	0	0	1338441	153464	1767248	56015.5	24203	434213								1.3E+07
OTO .	-	UNIT PRIGINCOME SKU	25	25	25	25	25.45 7	25.45	0	0	25.45 1	25.45	25.45 1	25.45	25.45	22.13				3				
ATAT NETT	Can	SALES 1	11273	4227	4345	4570	309752	31702	0	0	52591	6030	69440	2201	951	19621								
		SKU	44135 PCK 25	69415 DPCK 25	20600 7UPK 25	125725 YMK25	PC 33	117715 DPC 33	PTW 33	PCMAX 33	7UP 33	D7UP 33	YM 33	FRT 33	FRS 33	CHR 33								
		NCOME	44135	69415	20600	125725	93560 PC 33	117715																471150
5	Fet-2	UNIT PRICI INCOME SKU	5	5	5	5	5	5	<u>,</u>	÷	1	÷	- 	÷										
é	Fe	SALES 1	8827	13883	4120	25145	18712	23543																
			1874389 FANA 33	118970 FMING 33	243852 FMUZ 33	FCLK 33	490700 FLIM 33	FMIX 33																
		NCOME	1874389	118970	243852	30463.7	490700	2573291	638179	0	580188	113585	771713	137924	132435	334120	20543.6	97025	119926	115569	44502	4180480	1229027	1.4E+07
		UNIT PRIGINCOME SKU	15.85	15.85	15.85	15.85	15.85	21.59 2	21.59	0	21.59	21.59	21.59	15.91	15.91	12.88	12.88	12.88	12.88	13.63	13.63	17.55 4	17.55 1	
27.0	Pet-0	SALES	118258	7506	15385	1922	30959	119189	29559	0	26873	5261	35744	8669	8324	25941	1595	7533	9311	8479	3265	238204	70030	
		SKU	PC 45	DPC 45	7UP 45	D7UP 45	YM 45	PC 1	DPC 1	PMAX 1	7UP 1	D7UP1	YM1	FRT 1	FRS 1	PC 1,5	DPC 1,5	7UP 1,5	YM 1,5	PC 2	YM 2	PC 2,5	YM 2,5	TOTAL

Appendix D: Income Contribution Data Tables

		INCOME	904080	93700	221480	143280	225840																	1588380
	Premix	SALES UNIT PRICTINCOM	20	20	20	20	20																	
	Pre	SALES 1	45204	4685	11074	7164	11292																	
		SKU	PC 18	DPC 18	7UP 18	YM 18	FRS 18			5 38	3				5 - 3) 			8 - 38	8 - 3) 	S 38			3	
		NCOME	144882 PC 18	57996.4 DPC 18	47254.4 7UP 18	430714 YM 18	52205.7 FRS 18	207823	215640	0														1156515
	ottle	SALES UNIT PRIDINCOMESKU	16.68	16.68	16.68	13.16	13.16	13.16	13.16	0														
	Glass Bottle	SALES 1	8686	3477	2833	32729	3967	15792	16386	0														
		SKU	PC 25	7UP 25	YM 25	PC 20	DPC 20	7UP 20	YM 20	FRG 20														
		INCOME	239407 PC 25	98410.5 7UP 25	114755 YM 25	114913 PC 20	100	877447	0	0	26.78 1418804	165741	26.78 1626617	54122.4	25119.6	406178								1 3F+07
011	u	SALES UNIT PRIGINCOMESKU	26.32	26.32	26.32	26.32	26.78	26.78	0	0	26.78	26.78	26.78	26.78	26.78	23.29								
YEAR 2011	Can	SALES .	9606	3739	4360	4366	293932	32765	0	0	52980	6189	60740	2021	938	17440								
255		SKU	40577 PCK 25	56573 DPCK 25	7UPK 25	116674 YMK25	PC 33	DPC 33	PTW 33	19638.2 PCMAX 33	7UP 33	D7UP 33	YM 33	FRT 33	FRS 33	CHR 33				6 30 6 6				
		NCOME	40577	56573	0	116674	77296.8 PC 33	101046 DPC 33	38388.4 PTW 33	19638.2														450193
	et-2	UNIT PRICINCOME SKU	6.45	6.45	0	6.45	6.45	6.45	20.65	20.65														
	Pet	SALES 1	6291	8771	0	18089	11984	15666	1859	951														
		SKU	16.68 1561198 FANA 33	106569 FMING 33	226414 FMUZ 33	FCLK 33	398735 FLIM 33	3180973 FMIX 33	FLIM 1	FMIX 1														
		INCOME	1561198	106569	226414	0	398735	3180973	643509 FLIM	0	617551	169088	863899	135911	132107	373253	0	117538	138393	0	0	1294801	377670	1F.+07
		UNIT PRIGINCOME SKU	16.68	16.68	16.68	0	16.68	22.73	22.73	22.73	22.73	22.73	22.73	16.5	16.75	13.56	13.56	13.56	13.56	14.35	14.35	6.16	6.16	
	Pet-6	SALES 1	93597	6389	13574	0	23905	139946	28311	0	27169	7439	38007	8237	7887	27526	0	8668	10206	0	0	210195	61310	
		SKU	PC 45	DPC 45	7UP 45	D7UP 45	YM 45	PC 1	DPC 1	PMAX 1	TUP 1	D7UP1	YM1	FRT 1	FRS 1	PC 1,5	DPC 1,5	7UP 1,5	YM 1,5	PC 2	YM 2	PC 2,5	YM 2,5	TOTAL

	UNIT PRICE INCOME	21.45 1012118	21.45 106607	21.45 262548	21.45 176255	21.45 281424																
Premix	UNIT PE			8.6				c														
P	SALES	47185	4970	12240	8217	13120																
	SKU	PC 18	135827 DPC 18	7UP 18	YM 18	58156.2 FRS 18																
	INCOME	362596 PC 18		134843	1370831 YM 18	58156.2	476828	278233	22419.5													
ottle	UNIT PRIGINCOME SKU	17.56	17.56	17.56	13.85	13.85	13.85	13.85	10.14													
Glass Bottle	SALES [20649	7735	7679	98977	4199	34428	20089	2211													
	SKU	PC 25	7UP 25	YM 25	104291 PC 20	DPC 20	7UP 20	239333 YM 20	FRG 20													
	INCOME	225423 PC 25	29112.7	107975	104291	28.19 8213100	28.19 1071446 7UP 20		0	1418436	204096	1498411	53166.3	66302.9	558320							
	UNIT PRIGINCOME SKU	27.7	27.7	27.7	27.7	28.19	28.19	28.19	0	28.19	28.19	28.19	28.19	28.19	24.52							
Can	SALES	8138	1051	3898	3765	291348	38008	8490	0	50317	7240	53154	1886	2352	22770							
	SKU	PCK 25	DPCK 25	7UPK 25	105659 YMK25	PC 33	91962 DPC 33	PTW 33	116113 PCMAX 33	7UP 33	D7UP 33	YM 33	FRT 33	FRS 33	CHR 33							
	NCOME	22495.2 PCK 25	24757.2	0	105659	66674.4 PC 33	91962	98661.8 PTW 33	116113													
t-2	UNIT PRICINCOME SKU	7.8	7.8	7.8	7.8	7.8	7.8	21.36	21.36				()									
Pet-2	SALES	2884	3174	0	13546	8548	11790	4619	5436													
. 1	SKU	1053460 FANA 33	FMING 33	205434 FMUZ 33	FCLK 33	280503 FLIM 33	3634405 FMIX 33	FLIM 1	FMIX 1													
	INCOME	1053460	81355.5	205434	0	280503	3634405	671937	0	636200	200402	957781	175401	152165	830671	0	215677	267377	0	0	3798099	000000000
	UNIT PRIGINCOME SKU	17.56	17.56	17.56	0	17.56	23.92	23.92	23.92	23.92	23.92	23.92	17.63	17.63	14.27	14.27	14.27	14.27	0	0	19.45	1. 0.
Pet-6	SALES	59992	4633	11699	0	15974	151940	28091	0	26597	8378	40041	9949	8631	58211	0	15114	18737	0	0	195275	· COLL
	SKU	PC 45	DPC 45	7UP 45	D7UP 45	YM 45	PC 1	DPC 1	PMAX 1	7UP 1	D7UP1	YM1	FRT 1	FRS 1	PC 1,5	DPC 1,5	7UP 1,5	YM 1,5	PC 2	YM2	PC 2,5	

		NCOME	23.6 1097683	111628	306588	239233	334506														() — () ((—)				1 - 1 8 - 2	100 C	2089638
- 22	nix	UNIT PRICE INCOME	23.6	23.6	23.6	23.6	23.6				· · · · ·				0 0										2		
j	Premix	SALES U	46512	4730	12991	10137	14174				2		8 <u>-</u>								2						2
		SKU	PC 18	DPC 18	57983.7 TUP 18	898299 YM 18	41214.4 FRS 18																				ŧ
3		INCOME	83151.6 PC 18	49399.3	57983.7	898299	2.6	125798	144789	98834.6	12650.6	10711.4	34384.8		5 X	3 X		3	3		8 X		3		90 20		1557216
	ottle	UNIT PRIGINCOME SKU	19.51	19.51	19.51	15.39	15.39	15.39	15.39	15.39	15.39	15.39	11.27														
	Glass Bottle	SALES 1	4262	2532	2972	58369	2678	8174	9408	6422	822	6969	3051														
		SKU	PC 25	7UP 25	YM 25	I PC 20	DPC 20	7UP 20	YM 20	YP 20	VKPN 20	YE 20	FRG 20														
		NCOME	190651 PC 25	1292.76 7UP 25	99050 YM 25	86584.1 1	9074672 DPC 20	1045231	235758 YM 20	0	1504059 YKPN 20	222098 YE 20	1436888 FRG 20	71620.4	24280.8	821232											1 5F+07
CT		UNIT PRIGINCOME SKU	30.78	30.78	30.78	30.78	31.33	31.33	31.33		31.33	31.33	31.33	31.33	31.33	27.24		8	8 - 2	8	Se - 3	8 X	8 - 2	(j	(;);	9(16
TEAN 2010	Can	SALES U	6194	42	3218	2813	289648	33362	7525		48007	7089	45863	2286	775	30148											
		50 M 20	PCK 25	DPCK 25	7UPK 25	79088 YMK25	PC 33	77024 DPC 33	PTW 33	PCMAX 33	7UP 33	D7UP 33	YM 33	FRT 33	FRS 33	CHR 33											
		PRICINCOME SKU	0	0	0	79088	48952 PC 33	770241	0	0						-											205064
	Pet-2	UNIT PRICI II	()	8()	8 - 8	8	8	8	3() 	8 - 3	() 	() 	8()	8	()	()	8()	()	()	()	() 	8 <u>.</u>	8 - 3	() 	<u>(</u>		66
	Pe	SALES 1				9886	6119	9628																			
			838033 FANA 33	FMING 33	176156 FMUZ 33	FCLK 33	235135 FLIM 33	FMIX 33	FLIM 1	FMIX 1																	
		NCOME	838033	84049.1	176156	0	235135	4565248 FMIX 33	690283 FLIM 1	0	665218	224335	869007	0	257534	125458	217155	192609	1140366	0	207829	269779	0	0	4038779	1062499	1 6F+07
		UNIT PRIGINCOME SKU	19.51	19.51	19.51	0	19.51	26.58	26.58	0	26.58	26.58	26.58	26.58	26.58	26.58	19.59	19.59	15.86	0	15.86	15.86	0	0	21.61	21.61	
	Pet-6	1 SALES	42954	4308	9029	0	12052	171755	25970		25027	8440	32694		9689	4720	11085	9832	71902		13104	17010			186894	49167	
		SKU	PC 45	DPC 45	7UP 45	D7UP 45	YM 45	PC 1	DPC 1	PNLAX 1	7UP 1	D7UP1	YM1	YP 1	YKPN 1	YE 1	FRT 1	FRS 1	PC 1,5	DPC 1,5	7UP 1,5	YM 1,5	PC 2	YM 2	PC 2,5	YM 2,5	TOTAL

	NCOME	1E+06	60621	346883	285633	392766	4380.2																						Π	1
Premix	INIT PRICE/INCOM	24.2	24.2	24.2	24.2	24.2	24.2															·								
Pre	SALES UNI	49569	2505	14334	11803	16230	<u>10</u>				-22				v2.52								8725C							
or - Annound		PC 18	DPC 18	80910 7UP 18	YM 18	122658 FRS 18	9387.9 PTW 18																							
	NCOM	245699 PC 18	26103	80910	101311	122658	9387.9	64245	54344	13835	153885	86872	0	21984																
ottle	INIT PRICE INCOME SKU	233	21.68	21.68	21.68	17.1	17.1	17.1	17.1	12.52	21.68	21.68	0	21.68				·					1201			<u>,</u>				
Glass Bottle	SALES UNIT	11333	1204	3732	4673	7173	549	3757	3178	1105	2098	4007	0	1014	VZZ				NZ2C				N735							
		194803 PC 25	0 DPC 25	106020 7UP 25	98154 YM 25	TE+07 PC 20	TE+06 DPC 20	438397 7UP 20	189923 YM 20	2E+06 FRG 20		2E+06 TTKPN NF	83126 TTE NR 25	22801 TTG NR 25	1E+06	205936														
	IT PRICEINCOMESKU	34.2 19	2.3	34.2 10		34.81 18	34.81 16	1.3		34.81 28	1	1.5	34.81 8		6.3	34.81 20		0	2.2			£	813	- 5				-		
Can	SALES UNIT	5696	0	3100	2870	276680	32110	12594	5456	53770	7213	49345	2388	655	48287	5916				0			835 819					- 0		
1. 10. 40. 40. 40. 4	SKU	PCK 25	DPCK 25	7UPK 25	YMK25	PC 33	DPC 33	PTW 33	PCMAX 3	7UP 33	D7UP 33	328978 YM 33	314119 FRT 33		\Box	TTG 33			2.9				843				2.9	3		
	FINCOME	0	0	0	0	0		0		1 3E+06	1 546871		1 314119	-	2 776248	2 421676	218928	101210	0	0		0	0			0	0	0	0	
	UNIT PRICE INCOME SKU		949				848			19.1	<u>.</u> 6	Ξ	<u>6</u>		18.2	18.2	18.2	18.2					813	5				50		
P(SALEG	0	0	0	0	0	0	0	0	2E+05	28632	17224	16446	0	42651	23169	12029	5561	2494	638	328	1094	1006	0	4762	1539	1416	493	1362	
10.000 A	ESKU	914788 FANA 33	9 FMNG 33	185355 FMUZ 33	0 FCLK 33	257190 FLIM 33	4E+06 FMIX 33	756697 FLIM 1	0 FMIX1	7 TLIMK 1	t TLIMN 1	5 TLIMP 1	D TLIMYE 1	P		·	· ·		TTICES4	0 TTICEL45			TTP45	TTKPN45	TTG45	TTM1	TTP1	TTKPN1	TTG1	
0.000.000.000	INCOMESKL	e e e		193		1000	12.2.5	1.1	- 2		1 261754		5 242820	100	E+06		230470	229353	5 119714		1 4E+06	1 1E+06						- 24		
9	UNIT PRICE	21.68	21.68	21.66		21.68	29.54	29.54		29.54	29.54	29.54	21.76	21.76	17.62		17.62	17.62	18.65		24.01	24.01								
Pet-6	SALES (42195	4117	8550	0	11863	128522	25616	0	27158	8861	34496	11159	10858	69899	0	13080	18692	6419	0	187264	55342								
Tables of	SKU	PC 45	DPC 45	7UP 45	D7UP 45	YM 45	PC1	DPC 1	PMAX1	7UP 1	D7UP1	YM1	FRT 1	FRS1	PC 1.5	DPC 1,5	7UP 1,5	YM 1.5	PC 2	YM2	PC 2,5	YM 2,5								

	NCOME	1E+06	59433	344723	279603	433383	27984														Γ									2E+06
ix	IT PRICE	26.45	26.45	26.45	26.45	26.45	26.45																							
Premix	SALES UNIT	43899	2247	13033	10571	16385	1058	2552			0	2554				259				259			-	259				2552		
8		PC 18	DPC 18	7UP 18	YM 18	-RS 18	9612 PCMAX 1								10															
	PRICE INCOME SKI	3777391	531931	132470	173113	1802.8 FRS 18	96121	3474	5184	5220	0	2358	179981	98400	64489	184386														1E+06
ottle	UNIT PRICE!	22.82	22.82	22.82	22.82	22.82	œ	œ	œ	φ	0	œ	22.82	22.82	22.82	22.82	-		-	2005.2										
Glass Bottle	SALES U	16553	2331	5805	7586	52	534	193	288	290	0	131	7887	4312	2826	8080			5	2222				2554				12524		
8		PC 25	DPC 25	7UP 25	86904 YM 25	1E+07 FRG 25	TE+06 PC 20	4396.8 DPC 20	7UP 20	YM 20	FRG 20	PCMAX 20	TTK NR 25	TTM NR 29	TTP 25	TTG NR 25														
	PRICE/INCOMESKL	252360	0	108792	86904	1E+07	1E+06	4396.8	361600	2E+06	239039	2E+06	79839	22131	2E+06					1535				1000			2	1000		2E+07
п	F	36	0	36	36	36.64	36.64	36.64	36.64	36.64	36.64	36.64	36.64	36.64	31.86															
Can	SALES L	7010	0	3022	2414	265355	29801	120	6986	54462	6524	48962	2179	604	47494	525			2	525				525				525		
	SKU	PCK 25	DPCK 25	7UPK 25	YMK25	PC 33	DPC 33	PTW 33	PCMAX 3		D7UP 33	YM 33	FRT 33	2E+06 FRS 33	176024 CHR 33				2	100								535		
0	CEINCOMESKI	0	0	0	0	0	0	0	0	1E+06	209020	0	143445	200	1.25	145632		117963	44035	11555	0	3879.4	17731	0		2953.6	17473	0	13711	4E+06
	T PBI								2012	21.27	21.27	0	21.27	14.36	22.2	22.2	0	21.27	16.82	16.82	0	22.82	22.82	22.82	22.82	31.09	31.09	0	31.09	
Pet-2	SALEGUN	0	0	0	0	0	0	0	0	60863	9827	0	6744	1E+05	7929	6560	0	88. 1		687		170	177	0	467	35	562	0	441	
		FANA 33	FMNG 33	FMUZ 33	FCLK 33	222472 FLIM 33	4E+06 FMIX 33	FLIM1	31619 FMIX 1		TLIMN1	TLIMP 1	TLIMYE 1	TLIMK 25	TICES 1	TICEL 1	TICEOM 1	TICESF 1	TTICES45	TTICEL49	TTICEOM	TTM45	TTP45	TTKPN45	TTG45	TTMI	TTP1	TTKPN1	TTG1	
	INCOME SKI	577962	70080	175417	0	222472	4E+06	608835 FLIM 1	31619	799355	220894	1E+06	224472	254645	1E+06	0	282721	1.00	213731	66114	4E+06	763407					6			1E+07
	JIT PRICE	22.82	22.82	22.82	0	22.82	31.09	31.09	31.09	31.09	31.09	31.09	22.91	22.91	18.55	0	18.55	18.55	19.63	19.63	25.27	25.27								
Pet-6	SALES UNI	25327	3071	7687	0	9749	122419	19583	1017	25711	7105	32424	8626	11115	56768	0	15241	18765	10888	3368	159520	30210					6			
2	sku Is	PC 45	DPC 45	7UP 45	D7UP 45	YM 45	PC1	DPC1	PMAX1	7UP1	D7UP1	YM1	FRT 1	FRS1	PC 1,5	DPC 1.5	7UP 1,5	YM 15	PC 2	M2	PC 2,5	YM 2,5		220				325		TOTAL