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ABSTRACT 

In this work we are interested in the approximation of some type of operators called 

Bernstein-type. For this purpose, the operator     , 0,nL f x f C   called the 

Bernstein-type approximation operator is considered. The aim is to use some 

probabilistic properties to improve and sharp to operator defined above. Also, the rates 

of convergence as well as the continuity of the operator are studied.  Various methods 

of approaching the problem are evaluated in this study.  

Keywords: Bernstein type operator, probabilistic approach, binomial distribution, 

rates of convergence.  
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ÖZ 

Bu çalışmada Bernstein - tipi operatörlerin yaklaşımlarıyla ilgilenilimiştir.Bunun için 

    , 0,nL f x f C  olarak belirtilen Bernstein tipi yaklaşım operatörü ele 

alınmıştır. Yukarıda verilen operatör için bazı olasılıksal metodlar kullanılarak 

yaklaşım özellikleri çalışılmıştır. Ayrıca, yakınsama hızı yanı sıra operatörün 

sürekliliği incelenmiş olup farklı yöntemlerle yaklaşım problemi de bu çalışmada 

değerlendirilmiştir. 

 

Anahtar kelimeler: Bernstein tipi operatörler, olasılıksal yaklaşım, binom dağılımı, 

yaklaşım hızı.  
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Chapter 1  

INTRODUCTION 

 
This work is divided in three main chapters as well as the introductory part and the 

conclusion. An overview of what is developed in each of the chapter is given here. 

The idea in chapter 2 is the following. Considering  0,C 
 
to be the space of 

continuous functions on the half open interval  0, , , and given a function

 0,C  , Butzer, Hahn and Bleimann  1 introduced an approximation operator 

called the Bernstein-type operator for approximation and defined it as follows: 
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 1.1  

They later proved the convergence of    ,kL t t   (as k  ) for each  0, .t   

The convergence of the function mentioned above is investigated by the estimation of 

the quantity    , .kL t t 
 
This investigation is actually possible provided that the 

continuity of the function  0, .BC   The notation  0,BC   is set for the space of 

all the functions which converge uniformly and are bounded on the half open interval 

 0, .  Some probabilistic arguments are used in what will follows to sharp, and add 

accuracy to the results mentioned above. The first two module of the continuity are 

used to establish the rates of convergence.
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In the third chapter, the idea developed is the studies of two related approximation 

problems of the Bernstein polynomials type  kB t  if given continuous function 

on the closed interval
 
 0,1 :  The following two results are investigated. The first is 

that there is no any Gibbs phenomenon at any jump type discontinuity points of   and 

second result is the convergence of the first derivative    kB t   of the initial 

polynomial  kB t  towards the first derivative  .t  The well-known and classical 

probabilistic arguments are used to prove the above results. The second result for 

instance is obtained based on the computation of the expectation of a function of 

random variables. 

The fourth chapter which is the third main chapter of this work is centered on the 

following idea. From the poineenring work of Bernstein, various research results have 

proven that probabilistic arguments are suitable for any approximation problem which 

is based on positive linear operators. 

The problem is usually defined as follows, given I a real valued interval and given

1 2,  R ,  R ,...,t t tR
 
I-valued random variables with their density depending on a parameter 

.t I  Let us consider two linear operators Y and  kY  positively defined associated to 

the random variable tR  and t

kR  respectively. By the mean of 

                     
   , ,tY t E R 

 
     , ,  ,t

k k BY t E R C I   
 

,t I  

with E  being the mathematical expectation of a random variable.  BC I  is the space 

of all real valued continuous functions which are bounded on the interval I. 
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Chapter 2 

BERNSTEIN OPERATOR 

2.1 Introduction 

Consider the space  0,C   of real valued continuous functions defined  on the half 

open interval  0, .  Let us consider also the function  0, .C   The 

approximation operator of the Bernstein type initially defined by  Hahn, Butzer, and 

Bleimann, is given by                                  
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 2.1  

They proved that    ,kL t t   (as k  ) for any  0, ,t    they also 

established that the convergence rate can be investigated by estimating

   ,kL t t   of a continuity function  0, .BC   Some probabilistic arguments 

are used in what will follows to sharp, and add accuracy to the results mentioned above. 

The first two module of the continuity are used to establish the rates of convergence. 

We prove the relation       2
, 3 , 1 ,kL t t t t k       where  ,    stands 

for the first modulus continuity of .  What follows is an improvement of the above 

theorem (inequality) 
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where  2 ,    is the second modulus of continuity of [0, ),BC   and

 0,
sup ( ) .

t
t 

 
  An approximation of the limit of kL  is the so called Szasz 

operator. 

2.2 Evaluation of Convergence Rates 

 Let 1 2 3, , ,...W W W  be independent random variables with some probability distribution 

such that P( 1) ,   P( 0) ,i iW p W q    where / (1 )p t t   and 1/ (1 ),q t   

[0, ).t    In order to avoid the case where 0,t  assume that 0.t   The summation 

1 ...k kS W W    follows a binomial distribution (n, , )b k p  whose parameters are k  

and ,p  and 

              
P( ) ( ) ,        n 0,1,2,..., .k n k n

k nS n p q k  
                                            

 2.2  

Set / ( 1),  k 1,2,...,k k kT S k S     it follows from  2.1  that ( , ) ( ),k kL t E T   

with the character E  being the expectation operator. The convergence of 

kT p q t   in probability as ,k   implies that  , ( ) as kkL t t    by the 

law of large numbers for  0, .C   To get an accurate result, we first calculate 

kET  and 2

kET  and
 
secondly, we estimate the quantity 2( ) ( ) .k ke t E T t   It is an easy 

task to prove that 

              
k

kET t tp t    , as .k 
                                                               

 2.3  

It follows from kT and  2.2  that 

             

2
2

2
0

( )
( 1)

k

k k

n

n
ET p S n

k n

 
 

  



5 

 

                     
    

2

1

!
0

1 1 ! !

k
n k n

n

n k
p q

k n k n k n n





 
    

  

                     
      

2

1

!

1 1 ! 1 !

k
n k n

n

n k
p q

k n k n k n n n






     

  

                     
     1

!

1 1 ! 1 !

k
n k n

n

n k
p q

k n n k n k n






     

  

                    
    1

!

1 1 ! 1 !

k
n k n

n

n k
p q

k n n k n






    

  

 Letting  1n m   

                   

 

    

11

1
0

1 !

1 1 1 1 ! 1 1 !

mk

m k
m

m k p

k m m k m q



 





       
  

                   

11

1
0

( 1) !

( ) ! ( )!

mk

m k
m

m k p

k m m k m q



 





 
  

                   
       

1 11 1

1 1
0 0

! 1 !

! ! ! !

m mk k

m k m k
m m

m k p k p

k m m k m q k m m k m q

  

   
 

 
   

   

                   
       

1 11 1

1 1
1 0

! !
0

! ! ! !

m mk k

m k m k
m m

m k p k p

k m m k m q k m m k m q

  

   
 

  
   

 
  

                   
         

1 11 1

1 1
1 0

! !

1 ! ! ! !

m mk k

m k m k
m m

m k p k p

k m m m k m q k m m k m q

  

   
 

 
    

   

                   
        

1 11 1

1 1
1 0

! !

1 ! ! ! !

m mk k

m k m k
m m

k p k p

k m m k m q k m m k m q

  

   
 

 
    

 
 

                  
        

1
1 1 0 1 0 1

1

! !

1 ! ! 0 0! 0 !

k
m k m k

m

k k
p q p q

k m m k m k k


     



 
    

  

                                                                              
   

1
1 1

1

!

! !

k
m k m

m

k
p q

k m m k m


  




 

  

          
    

1 1
1 1

1

!

1 ! !

k k
m k m

m

pq k
p q

k k m m k m

 
  



 
  

  



6 

 

                                                                             
   

1
1 1

1

!
.

! !

k
m k m

m

k
p q

k m m k m


  




 


 

         
    

1

1
1 1

1

1 1

!1 1 1

1 ! !

k

k
m k m

m

t

kt t t
p q

k k m m k m




  



    
    
       

  
  

                                                                              
   

1
1 1

1

!

! !

k
m k m

m

k
p q

k m m k m


  




 

  

       
   

 
    

1
1 1

1

1 1 !
1

1 1 ! !1

k
m k m

k
m

t k
t p q

t k k m m k mt


  



  
   

  

                                                                              
   

1
1 1

1

!

! !

k
m k m

m

k
p q

k m m k m


  




 

  

     

 

    

1 1

1
1

1 !

1 ! !

k m k

m k
m

t t p k

k q k m m k m

  

 



 

  
  

                                                                                 
   

1 1

1
1

!
.

! !

m k

m k
m

p k

q k m m k m

 

 



 

  

Letting 1n m   and exploiting the binomial distribution condition 1p q  

/ (1 )t t  it follows that 

  
       

1 12
2

1 1
0

!

1 ! 1 1 ! 11

nk

k k n k
n

t k k n p
ET

k n n k n k n qk t

 

  



 

      
  

                                                          
     

1 12

1 1
0

!

1 ! 1 ! 1

nk

n k
n

k k n p

k n n k n k n q

 

  





     
  

          
      

22

2
0

!

1 ! !1

nk

k n k
n

t k k n p

k n n k n qk t



 



 

  
  

                                                                    
      

22

2
0

!

1 1 ! !

nk

n k
n

k k n p

k n n k n n q



 





   
  



7 

 

       

 
 

 
 

  

2 22 2

2 2
0 0

1

1 1 1

k n nk k
k k

n nn k n k
n n

t t k n p k n p

k k n q k n n q

   

   
 

  
  

    
   

       

 
 

22

2
0

(1 )

1 ( 1)( 1)

k nk
k

n n k
n

t t p k n k n

k q k n n k n

 

 


   
   

     
  

       

 
    

  

22

2
0

1(1 )

1 1

k nk
k

n n k
n

k n n k nt t p

k q k n n

 

 


    
   

   
  

       

 
   

  

22

2
0

1 1(1 )

1 1

k nk
k

n n k
n

k n nt t p

k q k n n

 

 


         
    

  

       

 
  

  

22

2
0

2(1 )
.

1 1

k nk
k

n n k
n

n k nt t p

k q n k n

 

 


 
 

  
  

Since 

               

  

  

2 1 1( 2)( )

( 1)( 1) 1 1

n k nn k n

n k n k n n

    


     
 

     

   

  

  

  

 

  

1 1 1

1 1 1 1 1 1

n k n n k n k n

n k n n k n n k n

     
  

        
 

     

    
  

 

  

1 1 1

1 1 1 1

n k n k n

n k n n k n

    
 

     
 

     

  

  

 

  

 

  

1 1 1

1 1 1 1 1 1

n k n n k n

n k n n k n n k n

    
  

        
 

     
 

 

  

1 11
1

1 1 1

k n

k n n k n

  
  

    
 

     
 

 

  

1 11
1

1 1 1

k n

k n n k n

  
  

    
 

     
      

1 1 1
1

1 1 1 1k n n n k n
   

     
 



8 

 

     
 

 

  

1 11
1

1 1 1

n

n k n n

 
  

   
 

          
 

 

  

2 1 11
1

1 1 1

n

n n k n

  
  

   
 

     
 

 

     

11 1
1

1 1 1 1 1

n

n n k n n k n


   

      
 

     

   

  

 

  

1 1 1 1 1 1
1 1

1 1 1 1

k n n k n n

n k n n k n

         
   

     
 

                     

  

  

 

  

2 1
1 ,

1 1 1 1

k n n k

n k n n k n

  
 

     
 

then we have, 

   

 
 

2 2
2 2 2 2 2

0 0

( 1) !

(1 ) ( )! ! 1 ( 1)

k k
k n k n n k n

k nk
n n

t k k
ET p q p q

k t k n n n k n

 
     

 


  

    
   

           

 
 

2 2
2 2 2 2

0 0

( 1)!

(1 ) ( )!(n 1)! 1

k k
k n k n n k n

nk
n n

t k
p q p q

k t k n k n

 
     

 


  

    
   

           
     2 2 1 2 1 2 2 2

1

0(1 )

k
k n k n k k k k k k k k

n k kk
n

t
p q p q p q

k t

          





   


  

                                                                      
 

2
2 2

0

( 1)!

( )! 1 !( 1)

k
n k n

n

k
p q

k n n k n


  






   
  

          

 
   

2 1

2
0

!

(1 ) 1 ! 1 !

n kk
k

nk n k
n

t p k p

k t q k k k q

 

 


  
   

  

                                            
   

2 22

2 2
0

! ( 1)!

! ! ( )! 1 !( 1)

n nk

n k
n

k p k p

k k k q k n n k n q

 

 



 

    
  

          

 
 

 

2 2
1 1

2 2
0

1 ! !

(1 ) 1! 1 ! 0! !

n nk
k k

nk n k
n

k kt p k p
p q

k t q k k q

 
 

 



   

 
  

                                                                           
 

22

2
0

( 1)!

( )! 1 !( 1)

nk

n k
n

k p

k n n k n q



 





   
  



9 

 

          
  2 2 2 2 1 1

0(1 )

k
k n k n k k

nk
n

t
p q p q kp q

k t

      



   


  

                                                                      
 

2
2 2

0

( 1)!

( )! 1 !( 1)

k
n k n

n

k
p q

k n n k n


  






   
  

          

 

2

2 2

2
0

11

(1 ) 1 11

1

kk
k n k n

nk
n

t

t tt
p q

k t t t

t

 





 
 
          

      
 
 

  

                                 
 

1 1 2
2 2

0

1 ( 1)!

1 1 ( )! 1 !( 1)

k k
n k n

n

t k
k p q

t t k n n k n

  
  



   
    

        


 

           
 

 
   

 
2 2

2 2

2 2
1 1

(1 ) 1 1 1

k

kk

t t t t
t t

k t t t t
    

     

                               
   

 
 

2
2 2

0

( 1)!
1

( )! 1 !( 1)1 1

k k
n k n

k
n

tt k
k t p q

k n n k nt t


  




  

    


 

          

2 2 ,
(1 ) 1 1

k k

k

t t t
t t kt R

k t t t

   
       

                                                 
 2.4  

where 

                
 

2
2 2

0

( 1)!
.

( )! 1 !( 1)

k
n k n

n

k
R p q

k n n k n


  






   
  

Let us now analyze the term .R Letting 1n m   we obtain 

                     

 

   
 

 

1 1 1 11 1
1

  m

1 1

1 !
.

1 ! !

m k m m k mk k
k

m m

k p q p q
R

k m m k m k m

      


 


 

   
   

Since    
 

   
 

 

 
1 12 21

2
2

k m k m
k m k m

k m k m k m

    
    

   
 

        

 
 

   
 

1 12 2
2 2 1 ,        1 -1

k m
k m k m m k

k m k m k m

   
          

   
 



10 

 

        
   

1 2
2 1 3 2 ,

1
k m k m

k k

  
       

  
 

   
            

   
1

3 2 ,k m k m


     

 2 ,k 
 
we obtain 

        

 
 

 
 

 
 

1 1 1 1 1 1 11 1 1
1 1 1

2
1 1 0

3
3 3

2 2 2

m k m m k m m k mk k k
k k k

m m m

m m m

p q p q p p q
R

k m k m q k m

           
  

  

  
     

    

            

 

 
   

1
11 1

2
0

3 1
2 ,

1 1

k
k m k m

m

m

t t
p q k m

t


  




  


  

with

   
 

1

0

; 1, 1
k

m

b m k p




  , considering the binomial distribution  ,b k p  

              
 

   
2 1

3 1 2
1

t
R t E k m

t


   


. 

       
1 1

3 1 1 1 3 1 1 ,R t t E k m t t E 
 

       
 

where W follows binomial 

distribution  1, ,b k p  and 1k W     with  1, ,b k q
 

1 .q p   Hence a result 

of Chao and Strawderman [2, p. 430] gives 

             

  
 

23 1 1

2

kt t p
R

k q

 



 

                 

    
  

2
3 1 1 1

2 1 1

k
t t t t

k t


  


 

 

                 

      
   

2 2
3 1 1 1

2 1

k k
t t t t

k t

 
  


 

 

                 

 
   

 

 

 

2 2

2

1 1
3 1

21

k k

k

t t t
t t

kt

 



   
   

   

 

                

    
     

  
   

2 2 22 2

2

3 1 1 3 1

1 1 2 1 2

k kk k

k k

t t t t t t t

t t k t k

      
 

    
 



11 

 

                

 

   

 

       

2 23 33 1 3 3 1 3

1 2 1 2 1 2

k kk k

k k k

t t t t t t

t k t k t k

    
  

     
 

                

 

     

 

 

2 233 1 3 13

2 21 2

k

k

t t t tt

k kt k

 
  

  
 

                               

 

 

2
3 1

.
2

t t
R

k





                                                                     2.5  

Letting    
2

k ke t E T t   it follows from    2.3 ,  2.4 ,  and  2.5  that 

              
     

2 2 22k k k ke t E T t E T tT t      

              
  2 22k k ke t ET tET t    

             

 
 

 2 2 22
1 11

k k

k

k k

t t t
e t t t kt R t t tp t

t tk t

   
          

    
 

            

 
 

2 2 2 2 22 2
1 1 11

k k

k k

t t t t
e t t t kt R t t t

t t tk t

     
            

       
 

            

 
 

2

1 11

k k

k k

t t t
e t t kt R

t tk t

   
      

    
 

            

 
   

 
2

2
3 1

1 21 1

kk

k k k

t kt t t
e t kt t

t kk t t

 
    

   
 

                      
 

 
22 1

2
3 1

.
1 21

kk

k

t tt k t t k
t

t k kk t

   
   

  
 

Since     1 1 ,
k

t t t k    we have 

                  
 

   
22 1 3 1

 k

t t t tt
e t

k k k

 
    



12 

 

                              
  

 
2

3 1
1 1

t tt
t t

k k


     

                              
 

 
2

2
3 1

1
t tt

t t
k k


     

                              
 

 
2

2
3 1

1 2
t tt

t t
k k


     

                              

     
2 2 2

1 3 1 4 1t t t t t t

k k k

  
    

                   
 

 
2

4 1
 .k

t t
e t

k




                                                                            
 2.6

 

Consider the space  0,BC    of continuous function which is bounded on the half open 

interval  0, .  It is clear that the space,  0,BC 
 
defined previously. To produce our 

first result, let us consider   0,BC  
 

and set 

       , sup : ,  , 0, ,  0.t w t w t w              The convergence rate 

is obtained in terms of the first modulus of continuity  , ,  
 
as defined in the 

following theorem. 

Theorem 1. Consider  ,kL t  be defined by  2.1  and  0, .BC    Then 
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        2 2 2  0, .Bt y t y t C             

Let us define the second modulus of continuity by 

             
  2

2
: 

, sup ,
y y 

   


 

 

0.   

Setting ,kg T t   it follows from  2.3  that 
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,kEg ET t   

with
     

k

kET t tp t      as    .k   

             
kEg t tp t    

             
  1

k

Eg t t t t t     

             
  1

k

Eg t t t    

             
  1

k

Eg t t t   

             

 1
.

1

k
tt

Eg t t
t k

 
  

                                                                        
 2.8

 

An improved version of a result established by Bleimann, Butzer, and Hahn is given 

below by dropping the condition
 

   24 1k N t t    in Theorem 2  of  1 .
 
Let us 

consider the following trivial result. Consider
 

 0,Bh C  h   and  0, .Bh C    

 With kg T t 
 
we note that 

             
     

0

g

kh T h t h t y dy    

             
 u h t y 

         
 du h t y dy   

             1dv                       v y  

            
         

0 0

g g

kh T h t h t y dy gh t g yh t y dy           

            

       
2

0
2

g

k

y
h T h t gh t g h t y       

            
       21

2
kh T h t gh t g g h t g      . 
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Taking expectation and using  2.6  and  2.8  it is easy to see that  

         
    21

,
2

kL h t h t Eg h Eg h     

         
   

 
 

21 1
,

2
k k

t t
L h t h t h E t t h

k


      

where          
2

k ke t E t t   

         
     

 11
,

2
k k

t t
L h t h t h e t h

k


     

where        
 

2
4 1

k

t t
e t

k


  

              
   

   
2

1 4 11
, .

2
k

t t t t
L h t h t h h

k k

 
     

It follows that 

              
   

 
 

2
2 1

, .k

t t
L h t h t h h

k


   

                                              
 2.9  

Using  2.9  the following stronger version of the theorem is obtained. 

Theorem 2. Consider
 

   0, ,   t 0, .BC      Then for 1,  2,  ...,k   

                  

   
   

2 2

2

1 1
, 2 , ,k

t t t t
L t t C

k k
    

   
    
  

  

 

where C is a constant, with the saturation condition given by
 

     1

0sup , .t kL t t O k  
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The saturation properties depend on   and   , it is not an improvement of Theorem

2.  

2.3 Limitation Property of kL  

Consider the function  0,BC   and define the Szasz operator by 

          

 
 

0

, ,
!

n

jt

j

n

jtn
S t e

j n
 






 
  

 
          0,t 

                                              
 2.10                            

with j  being a positive and fixed integer.  ,jS t  is a suitable limit function of
 kL

is an interesting consequence. The limiting property established is proved via the 

following lemma. 

Lemma.  Let
 

      , 1 ,
n jkjk

n njk t t k t k


  
 

0,  1,  ...,  ,n jk  and 

               
    exp !,

n

n jt jt jt n            0,  1,  2,  ...n   Then 

      
 i

 
        exp 1 1 ,n njt n n jk n jk t       

                                                                       
    2exp ,n jt jt n t   

       
 ii

 
   

0

, 0
jk

n n

n

jk t jt


     as  ,k   

       
 iii

 
   

0
max , 0n n

n jk
jk t jt

 
    as .k   

Proof. Since  1 0 1 ,ye y y      it follows that 

            
   , 1

n jk

jk

n n

t t
jk t

k k



   
     

   
 

            
   , 1

n n jk

jk

n n

t k t t
jk t

k k t k


     

       
     

 

            
   ,

n n jk

jk

n n

t k t k t
jk t

k t k k
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   ,

n n jk

jk

n n

t k k
jk t

k t k t k t



     
       

       
 

            
   ,

n jk n

jk

n n

t k t t
jk t

k t k t


    

     
    

 

            
   ,

n jk n

jk

n n

t k t t
jk t

k t k t k t


   

     
     

 

            
   , 1 1

n n jk

jk

n n

t t t
jk t

k t k t k t



     
        

       
 

            
   , 1

n n jk

jk

n n

t k t t t
jk t

k t k t k t


      

       
       

 

             

   
 

 
, 1

n jkn
jk

n n n n

k tt t
jk t

k k tk t

  
   

 
 

             

 
 

 

!
, 1

! !

jkn

n n

jk t t
jk t

jk n n k k t

 
   

  
 

Since       ! ! ,
n

jk jk n jk   we have 

             
 

   
, 1

! !

n njk jkn

n n

jk jtt t k t t
jk t

n k k t k t n

    
      

    
 

             
 

 
, 1 ,

!

njk

n

jtt
jk t

k t n

 
   

   

where   
 

,
!

n

jt

n

jt
jt e

n
          0,  1,  2, ...n   

            

 
 

!

n

jt

n

jt
jt e

n
  

      
   , 1 .

jk

jt

k n

t
jk t jt e

k t


 
   

 
 

Since   1 0 1 ,ye y y      it follows that 
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          , exp expn njk t jt jt t jk k t     

                           
    expn jt jt jkt k t    

                           
       expn jt jt k t jkt k t     

                           
      2expn jt jkt jt jkt k t     

          
      2, exp .n njk t jt jt k t  

 

Since       1 exp 1  0 1 ,          it follows that 

           
   , 1

n jk

jk

n n

t t
jk t

n k



   
     

   
 

           

 
 

 

!
,

! !

jkn

n n

jk t k t
jk t

jk n n k k


 

   
  

 

           

 
 

 

!
,

! !

jkn n

n n n

jk j t k
jk t

jk n n j k k t

 
   

  
 

           

 
 

 

!
,

! !

jkn n

n n n

jkj t k t t
jk t

n jk n j k k t

  
   

  
 

           

 
   

   

!
,

! !

n jk

n n

jt jk k t t
jk t

n k t k tjk n jk

 
   

  
 

           

 
       

   

1 ... 1 !
, 1

! !

n jk

n n

jt jk jk jk n jk n t
jk t

n k tjk n jk

     
   

 
 

           

 
      

 

1 ... 1
, 1

!

n jk

n n

jt jk jk jk n t
jk t

n k tjk

    
   

 
 

           

 
   

 

 

 

 1 1
, 1

!

n jk

n

jt jk jk jk n t
jk t

n jk jk jk k t
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1

1
, 1 1

!

n jkn

n

i

jt i t
jk t

n jk k t

   
     

  
  

           

 
  1

, 1 1 .
!

nn jk

n

jt n t
jk t

n jk k t

   
      

  
 

Since      exp !,
n

n jt jt jt n      n  being a positive integer, 

Thus,     

         

 
   exp

!

n

n

jt
jt jt

n
 . 

      

     
1

, exp 1 1

n jk

n n

n t
jk t jt jt

jk k t


   
      

  
. 

Since        1 exp 1 ,  0 1,for          

       

     
 1 1

, exp exp 1n n

n n n
jk t jt jt

jk jk


    
    

  
 

                                                                                            

 
exp 1

t jk t

k t k t

  
  

     

       

     
 1 1

, exp expn n

n n jk n
jk t jt jt

jk jk


     
    

    

                                                                                                 

 
exp

t jk k

k t k t

  
  

   
 

       

     
 

 

 1
, exp exp

1
n n

n n jk
jk t jt jt

jk jk n


  
      

 

                                                                                                      
 

 
exp

k tjkt

k t k
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1

, exp exp exp
1

n n

n n
jk t jt jt jt

jk n


  
   

  
 

        
        , exp 1 1 .n njk t jt n n jk n       

 To prove  ii  let    , ,n n nu jk t jt  
 

     2exp 1 ,n n jt jt k t     and 

 
 

       1 exp 1 1 .n n jt n n jk n        

Since n n nu    from   ,i  and ,n n nu     we have  

              0 0 0

.
jk jk jk

n n n

n n n

u  
  

                                                                               
 2.11  

It is obvious that 

           
     2exp 1n n jt jt k t     

       
     2

0 0

exp 1
jk jk

n n

n n

jt jt k t 
 

     

       
     2

0 0

exp 1
jk jk

n n

n n

jt k t jt 
 

     

       
      2

0 0

exp 1 exp !
jk jk

n

n

n n

jt k t jk jt n
 

      

       
       2

0 0

exp 1 exp !
jk jk

n

n

n n

jt k t jk jt n
 

      

    
       2

0 0

exp 1 exp !
jk

n

n

n n

jt k t jk jt n


 

     , 

where

    
   

0

! exp
n

n

jt n jt




  

        
       2

0

exp 1 exp exp
jk

n

n

jt k t jk jt
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   2

0

exp 1 0
jk

n

n

jt k t


      as  .k 
                                        

 2.12  

            

 
 

 

1
1 exp

1
n n

n n
jt

jk n
 

   
        

 

       

 
 

 0 0

1
1 exp

1

jk jk

n n

n n

n n
jt

jk n
 

 

   
        

  , 

since      exp 1 min 1,  0 ,       it follows that 

       

 
 

0 0

1
1 1 min 1,

1

jk jk

n n

n n

n n
jt

jk n
 

 

   
           

   

                 

 
 

0

1
1 1 min 1,

1

jk

n

n

n n
jt

jk n




  
        
  

    

    

 
 

0 0

1
min 1,

1

jk jk

n n

n n

n n
jt

jk n
 

 

 
  

  
   

                 
 

 

0

1
1 exp ,

1

jk

n

n

n n
jt

jk n




   
       
  

where     
 1

1
1

n n

jk n




 
. Using, 

        
   1 1 0n n jk n      

                   
1n jk   

we have 

       
 

 1

0 2

1
0

1

jkjk

n n

n n

n n
jt

jk n
 



 


 

 
   

       

 
 

 
 1

0 2 1 1

1 1
0

1 1

jkjk

n n n

n n jk

n n n n
jt jt

jk n jk n
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   1

0 2 1 1

1 1
0 exp ,

1 ! 1

njkjk

n n

n n jk

n n jt n n
jt jk

jk n n jk n
 

 

   

 
   

   
    

where  
 

   
 

exp
!

n
jt

P U n jt
n

    

       
 

 
 

1

0 2

1
1 ,

1

jkjk

k n

n n

n n
jt P U jk

jk n
 

 
 

 


   

 
   

with U being the Poisson random variable with mean .jt  One can easily check the 

following relation 

            

 

 
 

2

0

1 0
1 1

jk

n

n

jt
P U jk

jk jk




    
  

 , as  .k                       
 2.13

 ii  results from  2.11 ,  2.12 ,  and  2.13 , and  ii  implies  .iii  

Theorem 3. Consider kL  and 
jS  defined by  2.1  and  2.10

 
respectively for

 0, .BC 
 
It follows that for each  0,t    and for any fixed integer ,j  

            

 , ,
1

jk j

kt t
L S t

t k
 
  

  
  

,       as   .k                                        2.14  

Proof. From  2.1  and  2.10  we have 

             

 
0

1
, 1

1 1 1

n jkjk
jk

jk n

n

kt t kn jk n t t
L

t k n jk n k k
 





         
        

           
  

            

 
0

1
, 1

1 1 1

n jkjk
jk

jk n

n

kt t kn jk n t t
L

t k jk n n jk n k k
 





         
        

             
  

           
 

 
 

0

1
, 1

1 1 1

n jkjk
jk

jk n

n

jk nkt t kn t t
L

t k jk n jk k k
 





        
                     
  

          
   

0

, 1 ,
1 1

n jkjk
jk

jk n k

n

kt t kn t t
L j t

t k jk k k
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0

,  , , ,
1 1

jk

jk n k

n

kt t kn
L jk t j t

t k jk
  



   
     

     
  

and 

            

 
 

0

, ,
!

n

jt

j

n

jtn
S t e

j n
 






 
  

 
      0t   

            

   
 

0

, exp
!

n

j

n

jtn
S t jk

j n
 





 
  

 
  

            

   
 

 
 

0 1

, exp exp
! !

n njk

j

n n jk

jt jtn n
S t jt jt

j n j n
  



  

   
      

   
   

            

     
0 1

,
jk

j n n

n n jk

n n
S t jt jt

j j
    



  

   
    

   
   

                          
   , , .k kQ j t R j t 

 

Thus 

             

       , , , , ,
1

jk j k k k

kt t
L S t j t Q j t R j t

t k
  
  

     
  

 

             

       , , , , , .
1

jk j k k k

kt t
L S t j t Q j t R j t

t k
  
  

     
           

 2.15  

The function   is bounded, thus the following relation holds 

             

     
1 1

, 0k n n

n jk n jk

n
R j t jt M jt

j
  

 

   

 
   

 
      as   .k 

  
 2.16  

Furthermore, 

             

     
0

, , ,
1

jk

k k n

n

kn
j t Q j t jk t

jk
 



 
   

 
  

0

jk

n

n

n
jt

j
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0 0

,
1 1

jk jk

n n

n n

kn kn
jk t jt

jk jk
  

 

   
     

    
   

                                                                      

   
0 01

jk jk

n n

n n

kn n
jt jt

jk j
   

 

   
    

   
   

                                               

   
0 0

,
1 1

jk jk

n n

n n

kn kn
jk t jt

jk jk
  

 

   
     

    
   

                                                                    

   
0 01

jk jk

n n

n n

kn n
jt jt

jk j
   

 

   
    

   
   

                                               

   
0

,
1

jk

n n

n

kn
jk t jt

jk
 



 
   

 
  

                                                                                     

 
0 1

jk

n

n

kn n
jt

jk j
  



   
    

   
  

                                              
   

0

,
jk

n n

n

M jk t jt


    

                                                                                     

 
0

.
1

jk

n

n

kn n
jt

jk j
  



   
    

   
  

Since the function   is uniformly continuous on the interval  0, ,  it follows that, 

for a given 0   there exists an integer 0N  such that for any integer 0 ,k N  

                    

 
0

  .
1

jk

n

n

kn n
jt

jk j
   



   
    

   
  

Thus for 0k N  we have  

                   
       

0

, , , .
jk

k k n n

n

j t Q j t M jk t jt  


      

We obtain by the previous Lemma that 
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   , , 0    as    k ,k kj t Q j t   

                                           
 2.17       

and  2.14  follows from  2.15 ,  2.16 ,  and  2.17 .  
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                                    Chapter 3 

APPROXIMATION PROPERTIES OF BERNSTEIN 

POLYNOMIALS VIA PROBABLISTIC TOOLS 

 
3.1 Introduction 

Consider a real valued function  , defined on the closed interval  0,1 . Consider 
,k tS  

to be a Binomial random variable whose  parameters are k and ,t  and let  E T being 

the expectation  value of the random operator .T  In the previous chapter we proved 

the derivative of the convergence rate of the Bernstein polynomial from the large 

deviation theory as follows: 

            

      ,

0

1
k

k j k tk j

k j

j

Sj
B t t t E

k k
  





  
     

   
 .

                                                
 3.1

 

The optimal convergence rates of Lipshitz function is 
1 2.k 

 For a Hölder continuous 

function with exponent   for some 0 1,   the convergence rate is 2 .k


 

The following two questions come to mind when comparing the given approximation 

of .  The first is the behavior of  0kB t  when a jump discontinuity appears at a 

given point 0.t  Secondly does the Gibbs phenomenon appear also? 

The probabilistic tools are still used in this chapter for the approximation properties of 

 kB t
 
when the function   is not continuous. We showed approximating smooth 
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function defined piecewise with left and right derivative, by Bernstein polynomials 

there is no appearance of the Gibbs phenomenon. Let us consider a jump function and 

let us prove that       0 0 0

1
0 0

2
kB t t t       as ,k   with a monotone 

convergence on both left and right sides of the discontinuity. We also prove that for a 

given bounded function ,  the derivative function
 
   kB t   converges to  t  

wherever  t  is defined. 

Consider k  
which approximate   in a piecewise form and which possesses left and 

right derivatives at every point. For the general case, the Gibbs phenomenon is 

described as follows: 

       
 i  If 0t  is a discontinuity point of ,  then 

                               
 

   0 0
lim .

2
k

k

t t
t

 




  
  

      
 ii  On any closed sub interval  1 2,t t  on which the function is continuous, the 

function is uniformly convergent: 

                               
   

1 2

lim  max 0.k
k t t t

t t 
  

   

      
 iii  On any subinterval containing a single discontinuity 0t  of the function, we 

have Gibbs phenomenon: for small 0   

                             
       

00

0 0lim  max min 0 0 ,k k
k t tt t

t t Q t t


   
   

      
 

 

where 
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0

2 sin
1.18.

t
Q dt

t





 
  

 
  

In what follows we will prove that the Bernstein Polynomial approximant satisfies the 

conditions  i  and  ii
 
above also that  iii  holds under the condition 1Q 

whenever   is a finite sum of jump functions. Finally we write    kB t 
 
in the form 

of the expectation of a function of a binomial variable and then we investigate its’ rate 

of convergence to  .t  

3.2 Investigation of No Gibbs Phenomenon of Bernstein Polynomials 

Consider a simple jump function 

               
 

 
0

0

                      t<t
.

            t

c
t

d c t



 

 
                                                                                      

 3.2  

The Bernstein polynomial is given by 

             

   , , ,

0 0 0 ,
k t k t k t

k

S S S
B t cP t dP t c d c P t

k k k


     
            

     
 

and the following boundedness condition holds: 

              
     0 1 .k k kc B B t B d     

                                                       
 3.3  

The function kB 
 
increases because of that if t w for 0 n k   we have  

     
           , ,1 1 .

k j k jk j k j

k t j j k w

j n j n

P S n t t w w P S n
 

 

               
 3.4  

Left and right sides of  3.4  are all equal to 1 for 0.n   
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A great technique to obtain  3.4
 
is to choose many copies of the bivariate 0 – 1-

valued independent variables  , ,j jT W 1 ,j k   with joint distribution defined by 

the following probabilities  1j jP T W t   ,
 

 1,  W 0 0j jP T     and 

 0 1 .j jP T W w   
 
If we consider Z  and W to be respectively 

1

k

jj
Z T




 
and

 

1
,

k

jj
Y W


  it follows that the distribution of Z  and W are respectively those of,

 

,k tS  and 
, ,k wS

 
one can therefore construct    ,Z n Y n    such that 

                              , , .k t k wP S n P Z n P Y n P S n        

Let us now focus on the uniform convergence on the interval      1 2 0, 0,1 .t t t 
 
Let 

us first consider 2 0.t t  It follows by Chebyschev's inequality that 

               

, ,

0 0

k t k tS S
P t P t t t

k t

  
      

   
 

                                     

 

   
2 2

0 0 2

1 1
,

4

t t

k t t k t t


 

                                               
 3.5

implying that    kB t c t   , uniformly on the interval  1 2, .t t  The same 

argument holds when we choose  1 2,t t t  such a way that 0 1.t t  

On the other side, if 0t t  then 

                                  

    0,

0 0 .
k t

k

S
B t c d c P t

k


 
    

 
 

If we now consider ,1 ,jT j k   as a sequence of independent Bernoulli random 

variables with parameter 0t  it follows: 
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0

01

, 0 0

1 0 0

1
0 0

21

k
k

jj

k t j

j

T t
P S k t P T t P

kt t





  
        
    


   as ,k 

using  the Central Limit Theorem (CLT), and the relation 

           

  0,

0 0

1
0

2 2

k t

k

Sc d
B t c d P t

k


 
      

 
          as      ,k   

this means that  0kB t  is convergent to the average left and right limits of the 

function   at 0.t  

The computations above verify the conditions  i  and  ii  for a jump function as 

described in  2 .  

To check whether  iii  holds with the value 1,Q   i.e., we consider the relation 

               
       

00

0 0max min ,k k k k
t tt t

B t B t B t B t


     
  

      

if n   then from  ii  on 0t 
 
and 0t   it follows that  

              
       

00

0 0lim max mink k
k t tt t

B t B t t t


     
   

      
 

 

                                                               
   0 00 0 .t t      

Comments After all the investigation done so far, the conclusion is that the 

approximation by Bernstein polynomials has no Gibbs phenomenon. 

If 0t  is a discontinuity of   then 

                   
       

00

0 0
0

lim lim max min 0 0 .k k
k t tt t

B t B t t t
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The equation above lead to the following situation (problem) that seems to have no 

answer: Iis there a special type of sequence which cause overshoot phenomenon when 

we are approximating a jump? Is the approximation by orthogonal polynomial cause a 

jump? If the answer to second question is yes, let us not forget that Bernstein 

polynomial does not cause a jump. Is it because such polynomials are smooth? From 

the questions stated above, one can conclude that there is no general formula to 

approximate the solution. Nevertheless, Gibbs phenomenon may occur when the 

approximation is at an arbitrary order. The approximation by Bernstein polynomials 

holds only up to order 1,k   though it is smooth polynomial. 

 We did not focus in our previous chapter on the convergence speed. That is one of our 

purpose of interest in this section.  

Lemma. For a binomial variable 
,k tS  with 0c   chosen arbitrarily, we have 

           
22

 

, 2 .
c

k
k tP S kt c e



  
                                                                          

 3.6  

It follows for instance that the convergence bound 
1

N
k

 
 
 

 given in  ii  computed by 

Chebyschev’s inequality in  3.5  can be increased up to the exponential bound 

 
2

02
2 .

k t t
e
 

 Similarly, the condition  iii  can be checked and it can be proved that the 

convergence speed limit is exponential. 

3.3 The Convergences Speed of   kB t   towards  t  

We previously showed that the function increases kB 
 
is as the jump type function 

  increases using the binomial distribution. A general result is that when
 

 t
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increases (respectively. decreases), then the derivative    kB t 
 
of   kB t  is 

positive (respectively. negative), thus kB 
 
also increases (respectively. decreasing). 

Proposition 1. The following is the Bernstein polynomial kB   can be expressed 

derivative  

                 

   
 

  

2

,
, ,

1

k t

k

S kt
B t E G k t

kt t
 

     
     

                                                   
 3.7  

where 
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As assumed. 

It is therefore obvious that    kB t   is positive (negative) when   ,G k t  is 

positive (negative), and also that this exists only if  increases (decreases). 

Moreover, if  the first derivative is defined at a given point t      ,G k t t 
 
as 

,k   and  also if the squared part of the  integral  3.7 ,
 
from  limit theory it is 

convergent  to the square of  the standard normal random variable. It will follow that 

     kB t t    when k is choose to be large. The probabilistic proof is used for 

rigor. 

Proposition 2. Consider 
   0,1

sup .
t

t M


   it follows for any t such that  t  

is defined that 
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k
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Because  t  is defined for 0,   there is 0   such that if 
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t
k

  , then 

  , .H k t   We show that the absolute value in  3.8  goes to zero if we split 

and bound it as follows: 
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where 1H  is the indicator function of the set .H  The first summand in  3.9  can be 

bounded by 
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     as  0k  , by the  Central Limit Theorem. 

2nd  summand can be evaluated as follows: 
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where the last inequality uses the fact that the square of the distance of the points 
,k tS
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and t  in the interval  0,1  is less than 1. Now  3.11  can be bounded, using  3.6  by 
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                                         Chapter 4 

LIMITING PROPERTIES OF SOME BERNSTEIN-TYPE 

OPERATORS 

 
4.1 Introduction 

From its establishment by Bernstein, probabilistic methods have been widely used for 

the approximation purpose. 

To prepare our mind for understanding, let us consider I to be a real valued interval 

and let us consider 
1 2,  R ,  R ,...,t t tR

 
I-valued random variables with probability 

distribution depending upon the parameter .t I  Assume that Y and kY  are two  

positive operators which are linear and associated with tR  and t

kR  respectively using 

                
   , ,tY t E R 

 
     , ,  ,t

k kY t E R CB I   
 

.t I  

We now state the following theorem. 

Theorem 1.   t I  the following statements are equivalent: 

(a) t

kR Converges in distribution to tR  .k   

(b)  𝑌𝑘(𝜑, 𝑡) → 𝑌(𝜑, 𝑡)(𝑘 → ∞)  for all  belonging to the space of all 

continuous and bounded functions on I. 

 (c) The space in the assertion  b  changed by real valued uniform, bounded and    

continuous function on the interval I. 
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Modes of convergence of probability theory are enough to approach the problems of 

approximation. 

On the other hand, to determine the rate of convergence, we can estimate 

    Y , , ,k t Y t   the probabilistic technique work also for this purpose.           The 

following are the operators and notations involved in the mentioned result above. 

For any 𝑘 ∈ ℕ, 0,t   and [0, )BC   define 

                    
     

0

, 1
1

k
k k n

k n

n

n
L t t t

k n
 





 
   

  
 , 

which is the operator introduction by Bleimann, Butzer, and Hahn. 

Similarly       

                   
   

 

0

,
!

n
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k

n
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S t e n k

n
 






   

is the Szasz operator. 

The Baskakov operator is defined by  
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, 1 ,
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n
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1

0
,                                        if  t >0

1 !,

0 ,                                                                               if   t =0

n
k h t

k

t
h k h e dh

kG t









 


 




 

is the well known Gamma operator.  

Finally, for 𝑘 ∈ ℕ, 0 1,t   [0,1],C   ,kB t  define by  
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0

, 1
k

k nk n

k n

n

B t n k t t 




   

is called the Bernstein operator. 

4.2 Limiting Properties 

Theorem 2. Let us choose j to be an integer and let us consider the function   to be 

real valued, bounded and continuous function on  0, .  The following statements 

hold for each 0t   as k  . 

       
        1 , , ,jk ja L kh h t k S t    

       
       , , ,jk jb B kh t k S t   

       
      * , , ,jk jc B kh t k S t   

       
      * , , .j jd B h k kt G t   

 Proof. To prove  a
 
first observe that  

                      
  1

1,
1

t

jk k

kh
L t k E j k U

h
 


  

   
  

 

and  

                      
   1, ,t

jS t E j R    

where t

kU
 

is a binomial distribution random variable with parameters jk  and 

   
1
,p p k t k t


    and tR  is a Poisson distribution random variable having the 

mean .jt  Since  jkp k jt  (as )k   it follows that t

kU
 
is converges in law to 

tZ  which implies that  
1

1 t

kj k U


  converges in law to 1 .tj R  We can then 

conclude using Theorem 1.  

Similarly we can prove  .b  At this point let us consider k t  and the fact that 
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    1, ,t

jk kB kh t k E j V    

with t

kV  having a binomial distribution with parameters jk ; .p t k  We now deal 

with  c ;  .d  It easy follow that  

                                 
    * 1, t

jk kB kh t k E j W    

and 

                                
    * 1 1, ,t

j kB h k kt E j k Y     

with
 

t

kW  having a negative binomial distribution of parameter jk ;  
1

p k k t


  and 

t

kY  having a negative binomial distribution of parameter j ;  
1

1 .p kt


 
 
The 

characteristic functions of t

kW
 
and 1  t

kk Y  are defined respectively by 

                                 
    11 1

jk
iy

k y k t e


    

and  

                                  
    1 1

j
iy k

k y kt e


    

since  

                                  
    exp 1iy

k y jt e    

and 

                                  
   1

j

k y ity


   

(as k  ), the continuity of Levy theorem is used to conclude that t

kW ( 1  t

kk Y ) is 

convergent to a Poisson random variable with mean jt  (a gamma random variable of 

parameters 1 ;t  ,j if 0,t   or that the distribution will degenerate at 0  if the time 

0).t   
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4.3 Convergence Rates 

Theorem 3. Let us consider j  to be an integer and let us consider   to be a real 

valued continuous and bounded function on the interval  0, .  Then we have: 

       
 a  0,k t   

            
      , , 2  min 2, .jk j

t
B kh t k S t jt

k
     

        
 b  For 0t  and 1,  2,  ...k   

             , ,
1

jk j

kh
L t k S t

h
 
  

  
  

       22 , 1 2 1 2 jtt jk t t k j jt e       

with   being  the sup norm of the function   and  ,  
 
being the first modulus 

of continuity of the function .  

 Proof. The notations are the same with those used in Theorem 2 to prove the relation

 a  we first observe that, for any 0,k t   
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jk n
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jk j n

n
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k k
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where, for n  is an positive integer  
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P k P V n t k

k



 
    

 
 

and 
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Now, using Prokhorov's inequality it follows that 
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n

P k C p 




   

where 

                
   1 2min 2, ,C  

 

t
mean jk jt

k
     and 

t
P

k
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0

2min 2,n n

n

t
P k C p

k
  





    

                     
      , , 2 min 2,jk j

t
B kh t k S t jt

k
     

whence the result. 

 To prove  b  observe that, for 0t   and 1,  2, ...,k   it is possible to write 
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1 1, ,
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t t

jk j k
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L t k S t E j k U E j R
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1
1 1 t t

k kE j k U j U 


     

                                                               
   1 1 .t t

kE j U E j R   
                

 4.1
 

We first estimate the right hand side of the term in  4.1
 
separately. Let us consider

0   and define  
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1 1 1t t

k kj k U j U 
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It follows obviously that 
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with tR  being a Poisson distribution random variable with  a  mean .jt  

          

 1
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On taking t jk   we obtain 

           
      

1
1 1 2 , .t t

k kE j k U j U t jk   


             4.2  

Let us now estimate the second term on the right of  4.1
 
similar to  .a  
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0
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E j U E j R P k   


 



  
                                  

 4.3  

With, for 0,  1, 2, ...,n   
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n jk n

t jk

n k n

t k
P k P U n
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It follows that 
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n

P k jkt k t e Q k t






    
                                  

 4.4  

with 

               
      1

, sup :  0 1 ,Q k t jky t k t jty y


      

since, for any 0 1y   

               
          

1 1 1
jky t k t jty jky t k t jyt k t k t

  
        

            
       

1 1 12jky t k t jkyt k t jyt k t
  

       

            
   

12jky t jkyt jyt k t
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12jyt t k t


    

            
 2 1,j t t k    



47 

 

we have 

             
    1, 1 ,Q k t jt t k  

                                                                            
 4.5  

and so the result  b  comes from the inequalities    4.1 4.5 .  

        

 , ,
1

jk j

kh
L t k S t

h
 
  

  
  

 

                                                          
       22 , 1 2 1 2 .jtt jk t t k j jt e       

A consequence of Theorem 3 is given by the following corollary. 

Corollary. 

 a  Considering any real valued bounded and continuous function   on
 
 0,  the 

convergence of 

                                
    , ,jk jB kh t k S t   k   

is a uniform convergence on each bounded subinterval  0, .a  

 b  For any real valued uniform, bounded and continuous function   on the interval 

 0,  the convergence   

                                 

 , ,
1

jk j

kh
L t k S t

h
 
  

  
          

 k   

is uniform on bounded subinterval  0, .a  Moreover, the convergence rates come from 

Theorem 3. 
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Chapter 5 

CONCLUSION 

 
The aim of our work was to study the properties of Bernstein-type operators. The 

following results are observed. 

We considered and evaluated two similar problems based on the approximation using 

Bernstein polynomials  kB t
 
of a given continuous function   on the interval  0,1 .

 

We also proved that this method leads to an absence of the Gibbs phenomenon even 

at a jump point, due to the smoothness of the Bernstein polynomials. We established 

the convergence rate of    kB t   towards  .t  All the results mentioned above 

were also obtained using probabilistic assumption and computing expected value of a 

function of some special random variable.  
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