
Numerical Solutions of Fractional Differential
Equations
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ABSTRACT

Fractional analysis has almost the same history as classical calculus. Fractional anal-

ysis did not attract enough attention for a long time. However, in recent decades,

fractional analysis and fractional differential equations become very popular because

of its powerful applications. A large number of new differential models that involve

fractional calculus are developed. For most fractional differential equations we can not

provide methods to compute the exact solutions analytically. Therefore it is necessary

to revert to numerical methods.

The structure of this thesis is arranged in the following way. We begin by recalling

some classical facts from calculus. Partically, we recall definition and some properties

of gamma, beta and Mittag-Leffler function. Then, in Chapter 3, we introduce the fun-

damental concepts and definitions of fractional calculus. This includes, in particular,

some basic results concerning Riemann–Liouville differentiation and integration, and

basic properties of Caputo derivative. In Chapter 4 we discuss fractional variant of the

classical second-order Adams–Bashforth–Moulton method. It has been introduced by

K. Diethelm, A.D. Freed, and discussed in book by K. Diethelm.

Keywords: R-L Fractional Derivative, Caputo Fractional Derivative, Adams-Bashforth-

Moulton Method, Fractional Differential Equations
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ÖZ

Kesirli analiz, klasik kalkülüs ile hemen hemen aynı tarihe sahiptir. Kesirli analiz uzun

bir süre dikkat çekmemesine rağmen son yıllarda güçlü uygulama alanları olduğu or-

taya çıktıktan sonra kesirli diferansiyel denklemler ile birlikte en popüler çalışma alan-

ları olmuştur. Bununla birlikte kesirli kalkülüsü de kapsayan çok sayıda diferansiyel

model geliştirilmiştir. Birçok kesirli diferansiyel denklemlerin kesin çözümleri için

analitik metodlar yetersiz kalmaktadır. Bu nedenle sayısal yöntemlere dönmek gerek-

mektedir.

Bu tezin yapısı şu şekilde düzenlenmiştir: Öncelikle klasik kalkülüsün bazı özellikleri

hatırlatılacaktır. İkinci kısımda gamma, beta, mittag-leffler gibi bazı özel fonksiy-

onların tanım ve bazı özellikleri hatırlanacaktır. Daha sonra üçüncü bölümde kesirli

analizin tanım ve temel kavramları tanıtılacaktır. Bu kısım Abel integral denkleminin

çözüm koşullarını, Riemann-Liouville kesirli integral ve türevinin temel sonuçlarını

ve Caputo kesirli türevinin tanım ve bazı temel özelliklerini içermektedir. Dördüncü

bölümde ise ikinci dereceden klasik Adams-Bashford-Moulton metodunun kesirli varyan-

tını tartışıp, hata analizini yapılacaktır. Bu method K. Diethelm ve A.D. Freed tarafın-

dan tanıtılmış ve K. Diethelm tarafından yazılan kitapta bahsedilmiştir.

Anahtar kelimeler: R-L Kesirli Turev, Caputo Kesirli Turev, Adams-Bashforth-Moulton

Metodu, Kesirli Diferensiyel Denklemler.
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Chapter 1

PRELIMINARIES

The fraction

( f (d)− f (c))
(d− c)

defines the slope of the straight line joining (c, f (c)) and (d, f (d)), that is a chord of

the graph of f . On the other hand f ′(x) defines the slope of the tangent to the curve at

the point (x, f (x)). Therefore the MVT state that we can find a point lying between the

end-points of the chord of a given smooth curve, s.t. the tangent at that point is parallel

to the chord.

Theorem 1.0.1 (Mean Value Theorem) [5] Let f ∈ C [c,d] , and f ∈ D(c,d), where

c < d. Then there exists some ξ in (c,d) s.t.

f ′(ξ ) =
f (d)− f (c)

d− c
. (1.0.1)

Theorem 1.0.2 (Fubini’s Theorem) : Assume that Φ1 = [a,b],Φ2 = [c,d],−∞≤ a <

b≤∞,−∞≤ c < d ≤∞, and let f (x,y) be a measurable function defined on Φ1×Φ2.

Then the following integrals coincide

∫
Φ1

dx
∫
Φ2

f (x,y)dy,
∫
Φ2

dy
∫
Φ1

f (x,y)dx,
∫∫

Φ1×Φ2

f (x,y)dxdy,

if at least one of them is absolutely convergent. By using this theorem , we can inter-
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change the order of integration in repeated integrals. The following special case of

Fubini’s Theorem is called Dirichlet Formula, which is,

∫ b

a
dx
∫ x

a
f (x,y)dy =

∫ b

a
dy
∫ b

y
f (x,y)dx.

Here we assume that one of these integrals is absolutely convergent.

Theorem 1.0.3 (Taylor’s theorem) If f ∈Cn[c,d], and f (n) ∈D(c,d), then ∃ξ between

c and d such that

f (d) = f (c)+ f ′(c)(d−c)+
f ′′(c)

2!
(d−c)2+ ...+

f n(c)
n!

(d−c)n+
f n+1(ξ )

(n+1)!
(d−c)n+1.

Definition 1.0.4 (Divided difference)

f [z,z0] =
f (z)− f (z0)

z− z0

f ]z,z0,z1] =
f [z0,z1]− f [z,z0]

z1− z0
.

Theorem 1.0.5 (Divided difference) Let z,z0,z1, ...,zk ∈ [c,d] , f (k) ∈ C[c,d],, and

assume that f (k+1) exist on (c,d). Then ∃ ξ y ∈ (c,d), so that

f (z)− pk(z) = (z− z0)(z− z1)...(z− zk)
f (k+1) (ξ z

)
(n+1)!

(1.0.2)
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Proof. To prove the theorem, we repeatedly use Rolle’s theorem. We define the func-

tion

H(z) = f (z)− pk(z)−
(z− z0)...(z− zk)

(α− z0)...(α− zk)
· ( f (α)− pk(α)) (1.0.3)

where α ∈ [c,d] \ {z0,z1, ...,zk}. [1] Notice that H has at least k+ 2 zeros. Namely

α,z0,z1, ...,zk. Then from theorem, we claim that H ′ must have at least k+1 zeros. By

repeatedly applying this theorem, we claim that H ′′ has at least k zeros (if k ≥ 1), H(3)

has at least k−1 zeros (if k ≥ 2), and at the end that H(k+1) has at least one zero, let’s

say at z = ξ α . Therefore, if we differentiate (1.0.3) k+1 times and inserting z = ξ α ,

we get the following

0 = f (k+1)(ξ α)−
(k+1)!( f (α)− pk(α))

(α− z0)...(α− zk)

To finish the proof we solve the above equation for f (α)− pk(α), and then write z

instead of α , and insert the obtained representation into (1.0.3). [1]

Now, let’s obtain another error term for the interpolating polynomial. We start by using

the following

f [z0,z1, ...,zk] =
f [z1,z2, ...,zk]− f [z0,z1, ...,zk−1]

zk− z0

to represent the divided difference f [z,z0,z1, ...,zk] of f [z0,z1, ...,zk] and

f [y,y0,y1, ...,yk−1]. Regulating this, we get

f [y,y0, ...,yk−1] = f [y0, ...,yk]+ (y− yk) f [y,y0, ...,yk] (1.0.4)
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Likewise, we have the following equation

f (z) = f (z0)+(z− z0) f [z,z0]. (1.0.5)

Next, replace f [z,z0], using (1.0.4) with k = 1 on the RHS of (1.0.5) , to give

f [z] = f [z0]+ (z− z0) f [z0,z1]+ (z− z0)(z− z1) f [z,z0,z1], (1.0.6)

and notice that (1.0.6) can be written in the form

f (z) = p1(z)+(z− z0)(z− z1) f [z,z0,z1].

Now let’s replace f [z,z0,z1] with k = 2 in (1.0.6), using (1.0.4). Continuing in this

way, we finally get

f (z) = pk(z)+(z− z0)···(z− z0) f [z,z0,z1, . . . ,zk]. (1.0.7)

If comparing (1.0.7) and (1.0.2), we can easily see that if the conditions of Theorem 3.

holds, then there exists a number ξ z s.t.

f [z,z0,z1, . . . ,zk] =
f (k+1)(ξ z)

(k+1)!

Since this holds for any z ∈ [c,d] and inside of which f holds the requirements. Now

Let’s write k−1 instead of k, insert z = zk, then get

f [z0,z1, ...,zk] =
f (k) (ξ )

k!
(1.0.8)

where ξ ∈ [c,d]. [1]
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Definition 1.0.6 (Laplace Transform) Suppose that f (t) is a piecewise continuous on

[0,∞) and it is of exponential order α . Then the L-transform of the function f (t) exists

for all k > α and real numbers c≥ 0, which is given by:

F(k) =
∫

∞

0
e−kc f (c)dc

Where k is a complex number:

k = σ + iw,

with σ ,w ∈ R.

Remark 1.0.7 The Laplace transform has many properties that make it useful for an-

alyzing LDE. The most important advantage is differentiation become multiplication.

Due to this feature the L-transform k is also known as operator in the L domain: either

derivative or (for k−1) integration operator. The transform turns integral equation and

differential equation to polynomial equation. These equations can be easily solved.

Once these equations are solved, the use of the inverse L-transform reverts to the time

domain.

Definition 1.0.8 A function f (x) is called absolutely continuous on an interval Ω, if

for any ε > 0 there exists a δ > 0 such that for any finite set of pairwise nonintersecting

intervals [ak,bk]⊂Ω,k = 1,2, . . . ,n, such that

n

∑
k=1

(bk−ak)< δ ,
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the inequality

n

∑
k=1
| f (bk)− f (ak)|< ε

holds. The space of these functions is denoted by AC(Ω).

Definition 1.0.9 (The spaces Lp and Lp(p)) Let Ω = [a,b], −∞ ≤ a < b ≤ ∞. We

denote by Lp = Lp(Ω) the set of all Lebesgue measurable functions f (x), complex

valued in general for which
∫
Ω

| f (x)|p dx < ∞, where 1≤ p < ∞. We set

‖ f‖Lp(Ω) =


∫
Ω

| f (x)|p dx


1/p

.

If p = ∞ the space Lp(Ω) is defined as the set of all measurable functions with a

finite norm

‖ f‖L∞(Ω) = ess sup
x∈Ω

| f (x)| ,

where esssup | f (x)| is an essential maximum of the function | f (x)| .
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Chapter 2

SOME SPECIAL FUNCTIONS

In this chapter we provide the definitions and give certain features of some well-known

functions such as the Beta, Gamma and Mittag-Leffler functions.

2.1 The Gamma Function

Definition 2.1.1 (The Gamma function [2]) It is given by the Euler integral of the

second kind

Γ(n) =
∫

∞

0
tn−1e−tdt (Re(n)> 0) (2.1.1)

where tn−1 = e(n−1) log(t).(2.1.1) is convergent for all n ∈ C with positive real part

Re(n)> 0. [3]

We list some features of the Gamma function :

(i)

Γ(n+1) = nΓ(n) (Re(n)> 0) ; (2.1.2)

using this relation, the Euler Gamma function is extended to the half-plane Re(n)≤ 0

(Re(n)>−n;n ∈ N;k /∈ Z−0 = {0,−1,−2, . . .}) by

Γ(n) =
Γ(n+ k)
(n)k

.
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Here (n)k is the Pochammer symbol, defined for complex n ∈ C and non-negative

integer, with k ∈ N, by

(n)0 = 1 and (n)k = n(n+1) · · ·(n+ k−1).

(ii)

Γ(z+1) = (1)z = z! (z ∈ N0) (1.3)

with (as usual) 0! = 1.

(iii)

Γ(n)Γ(1−n) =
π

sin(πn)
(n /∈ Z0; 0 < Re(n)< 1, (2.1.3)

Γ

(
1
2

)
=
√

π, (2.1.4)

(iv) Legendre duplication formula

Γ(2n) =
22n−1
√

π
Γ(n)Γ

(
n+

1
2

)
(n ∈ C) (2.1.5)

2.2 The Beta Function

Definition 2.2.1 (Beta Function [2]) The Beta function β is given by the integral

B(z,w) =
∫ 1

0
tz−1(1− t)w−1dt (Re(z)> 0; Re(w)> 0) , (2.2.1)
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The Beta function and the Gamma function are related by [2]

B(z,w) =
Γ(z)Γ(w)
Γ(z+w)

(z,w /∈ Z−0 = {0,−1,−2, ...}). (2.2.2)

2.3 Binomial Coefficients

Definition 2.3.1 (Binomial coefficients [2]) They are defined as

(
γ

0

)
= 1,

(
γ

n

)
=

γ(γ−1) · · ·(γ−b+1)
b!

=
(−1)b(−γ)b

b!
. (2.3.1)

As a special case, when α = a, n ∈ N0 = {0,1, . . .}, with a≥ b, we have

(
a
b

)
=

a!
b!(a−b)!

(2.3.2)

and

(
a
b

)
= 0 (a,b ∈ N0; 0≤ a < b) (2.3.3)

[3] If γ /∈ Z−= {−1,−2,−3, . . .}, the formula (2.3.1) can be expressed via the Gamma

function by the following

(
γ

b

)
=

Γ(γ +1)
b!Γ(γ−b+1)

(γ ∈ C; γ /∈ Z−; b ∈ N0). (2.3.4)

Next, we give the definitions and some well-known features of the Mittag-Leffler func-

tions.
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2.4 Mittag-Leffler Function

Definition 2.4.1 (Mittag-Leffler Function [2]) Mittag-Leffler Function Eα(n) is given

by

Eα(n) =
∞

∑
k=0

nk

Γ(αk+1)
(n ∈ C; Re(α)> 0). (2.4.1)

As a special case for α = 1,2

E1(n) = en and E2(n) = cosh(
√

n). (2.4.2)

Eα,β (n), generalizing the one in (2.4.1), is given by

Eα,β (n) =
∞

∑
k=0

nk

Γ(αk+β )
(n,β ∈ C; Re(α)> 0). (2.4.3)

As a special case, [3] when β = 1,wehave

Eα,1(n) = Eα(n) (n ∈ C; Re(α)> 0) (2.4.4)

and for β = 1,wehave

E1,2(n) =
en−1

n
, and E2,2(n) =

sinh(
√

n)√
n

. (2.4.5)

The Eα,β (n) has the integral expression

Eα,β (n) =
1

2π

∫
C

tα−β et

tα −n
dt,
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|arg(t)| ≤ π on C. (2.4.6)

Here C is a loop with base point at −∞ and encircles the circular disk |t| ≤ |n|1/α in

the positive sense.
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Chapter 3

FRACTIONAL DERIVATIVE

In this chapter we give the descriptions and some well-known features of Caputo and

Riemann-Liouville types fractional derivatives and integrals.

3.1 R-L fractional integrals and derivatives

3.1.1 The Abel Integral Equation

Abel equation is given by

1
Γ(α)

∫ x

0

g(t)dt
(x− t)1−α

= f (x), x > 0, 0 < α < 1. (3.1.1)

The uniqueness of the solution of this equation can be shown as follows

Writing t instead of x and s instead of t in (3.1.1), we get

1
Γ(α)

∫ t

0

g(s)ds
(t− s)1−α

= f (t)

multiplying both sides of the equation by (x− t)−α , we obtain

1
Γ(α)

∫ t

0

g(s)ds
(t− s)1−α(x− t)α

=
f (t)

(x− t)α

multiplying both sides by Γ(α) and integrating we have

∫ x

a

1
(x− t)α

dt
∫ t

a

g(s)ds
(t− s)1−α

= Γ(α)
∫ x

a

f (t)
(x− t)α

Now, interchanging the order of integration in the left-hand side by DirichletfFormula,
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we get

∫ x

a
g(s)ds

∫ x

s

dt
(x− t)α(t− s)1−α

= Γ(α)
∫ x

a

f (t)dt
(x− t)α

. (3.1.2)

Putting t = s+u(x− s) at the inner integral and using properties of Beta Function we

have

∫ x

s
(x− t)−α(t− s)α−1dt =

∫ 1

0
uα−1(1−u)du

= B(α,1−α) = Γ(α)Γ(1−α).

if we substitute this result into (3.1.2) we get

∫ x

a
g(s)ds =

1
Γ(1−α)

∫ x

a

f (t)
(x− t)α

(3.1.3)

If we differentiate (3.1.3) we have

g(x) =
1

Γ(1−α)

d
dx

∫ x

a

f (t)
(x− t)α

. (3.1.4)

Therefore, if (3.1.1) has a solution, this solution is necessarily given by (3.1.4). This

means it is unique.

Similarly, the Abel equation in the form

1
Γ(α)

∫ b

x

g(t)dt
(t− x)1−α

= f (x), x≤ b, (3.1.5)

is considered and in place of (3.1.4) one obtains for 0 < α < 1 the below inversion
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formula

g(x) =− 1
Γ(1−α)

d
dx

∫ b

x

f (t)dt
(t− x)α

. (3.1.6)

3.1.2 On the Solvability of the Abel equation in the space of integrable functions

Let us start with investigating the conditions on f (x) where the Abel equation is

solvable. To formulate the main result of this section, we give the notation

f1−α(x) =
1

Γ(1−α)

∫ x

a

f (t)
(x− t)α

. (3.1.7)

It’s clear that

∫ b

a
| f1−α(x)|dx≤ 1

Γ(2−α)

∫ b

a
| f (t)|(b− t)1−αdt, (3.1.8)

so f (x) ∈ L1(a,b) implies that f1−α(x) ∈ L1(a,b) as well.

Theorem 3.1.1 Abel Equation (3.1.1) with 0 < α < 1 is solvable in L1(a,b) iff

f1−α(x) ∈ AC([a,b]) and f1−α(a) = 0. (3.1.9)

Proof. Necessity. Let (3.1.1) be solvable in L1(a,b). Then all considerations of the

previous section are correct, the possibility of changing the order of integration in

(3.1.2) being proved with the aid of Fubini Theorem. Thus (3.1.3) is valid. Hence we

obtain (3.1.9).
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Sufficiency. Since f1−α(x)∈AC([a,b]), we have f
′
1−α

(x)= d
dx f1−α(x)∈ L1(a,b).

So the function given by (3.1.4) exists almost everywhere and belongs to L1(a,b). Now,

let’s show that it is indeed a solution of (3.1.1). For this purpose we put it into LHS of

(3.1.1) and give the result by g(x), i.e.

1
Γ(α)

∫ x

a

f ′1−α
(t)

(x− t)1−α
dt = g(x). (3.1.10)

We should show that g(x) = f (x), which proves the theorem. (3.1.10) is an equation of

type (3.1.1) with respect to f ′1−α
(x). It is certainly solvable since it is merely a notation.

So by (3.1.4) we get

f ′1−α(x) =
1

Γ(1−α)

d
dx

∫ x

a

g(t)dt
(x− t)α

.

i.e. f ′1−α
(x) = g′1−α

(x). Functions f1−α(x) and g1−α(x) are absolutely continuous,

the first by assumption, the second by virtue of (3.1.3) with g(x) in the RHS. Hence

f1−α(x)− g1−α(x) = c note that the condition of absolute contunuity is essential in

this reasoning : it can not be weakened to continuity, since it is known that there are

continuous but not absolutely continuous functions different from constant and having

the derivative equal to zero almost everywhere. We have f1−α(a) = 0 by conjecture,

while g1−α(a) = 0 because (3.1.10) is a solvable equation. Hence c = 0, so

∫ x

a

f (t)−g(t)
(x− t)

dt = 0.

The second is an equation of the form (3.1.1). The uniqueness of its solution leds to

the relation f (t) = g(t) = 0, which completes the proof.

The criterion of solvability for Abel’s equation is given in below theorem in terms
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of the auxilary function f1−α(x). The following lemma and corollary give a simple

sufficient solvability condition in terms of the function f (x) itself.

Lemma 3.1.2 If f (x) ∈ AC([a,b]), then f1−α(x) ∈ AC([a,b]) and

f1−α(x) =
1

Γ(2−α)
[ f (a)(x−a)1−α +

∫ x

a
f ′(t)(x− t)1−αdt]. (3.1.11)

Proof. Substitute

f (t) = f (a)+
∫ t

a
f ′(s)ds

into (3.1.7) we have

f1−α(x) =
1

Γ(1−α)

∫ x

a

f (a)+
∫ t

a f ′(s)ds
(x− t)α

dt

=
1

Γ(1−α)
[
∫ x

a

f (a)
(x− t)α

dt +
∫ x

a

∫ t

a

f ′(s)ds
(x− t)α

dt (3.1.12)

For the fist term in the RHS if we substitute

u = x− t and

du = −dt
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we get

1
Γ(1−α)

f (a)[−
∫ 0

x−a

1
uα

du]

=
1

Γ(1−α)
f (a)

[
− u1−α

1−α

∣∣∣∣0
x−a

]

=
1

Γ(1−α)
f (a)

[
(x−a)1−α

1−α

]
=

1
(1−α)Γ(1−α)

f (a)(x−a)1−α

=
1

Γ(2−α)
f (a)(x−a)1−α

not putting this result into (3.1.12) we have

f1−α(x) =
f (a)

Γ(2−α)
(x−a)1−α

+
1

Γ(2−α)

∫ x

a

dt
(x− t)α

∫ t

a
f ′(s)ds. (3.1.13)

The first term here is an absolutely continuous function because

(x−a)1−α = (1−α)
∫ x

a
(t−a)−αdt.

Since

∫ x

a

dt
(x− t)α

∫ t

a
f ′(s)ds =

∫ x

a

(∫ t

a

f ′(s)ds
(t− s)α

)
dt (3.1.14)

which may be verified by direct interchange of order of integration in both parts of the

equation, second term in (3.1.13) is also a primitive of a summable function hence it

is absolutely continuous. The representation (3.1.12) follows from (3.1.13) after the

interchange of the order of integration. This completes the proof.
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Corollary 3.1.3 If f (x) ∈ AC([a,b]), then Abel’s equation (3.1.1) with 0 < α < 1 is

solvable in L1(a,b) and its solution (3.1.4) can be represented in the form

g(x) =
1

Γ(1−α)
[

f (a)
(x−a)α

+
∫ x

a

f ′(s)ds
(x− s)α

]. (3.1.15)

Indeed the solvability conditions (3.1.9) are satisfied owing to above Lemma and

(3.1.13) and (3.1.14). Since g(x)= d
dx f1−α(x) we observe that (3.1.15) can be obtained

by differentiating (3.1.11), the differentiation itself under the sign of an integral being

easily proved with the aid of (3.1.14).

We should also like to emphasize that we have simultaneously obtained a new

form, (3.1.15), of Abel’s integral equation inversion, which is applicable to absolutely

continuous right-hand sides f (x).

Similarly to above theorem one may show that (3.1.5) is solvable in L1(a,b) iff

f̃1−α(x) ∈ AC([a,b]) and f̃1−α(b) = 0, where

f̃1−α(x) =
1

Γ(1−α)

∫ b

x

f (t)dt
(t− x)α

, 0 < α < 1.

The solution (3.1.6) of (3.1.5) with f (x) ∈ AC([a,b]) may be written down similarly to

(3.1.15) as follows

g(t) =
1

Γ(1−α)
[

f (b)
(b− t)α

−
∫ b

t

f ′(s)ds
(s− t)α

]. (3.1.16)
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3.1.3 Definitions of R-L Fractional Integral and Derivatives and Some of Their

Properties

Definition 3.1.4 [2] Assume that Ω = [a,b] ⊂ R. The R-L fractional integrals RLIγ

a+ f

and RLIγ

b− f of order γ (Re(γ)> 0) are presented by

(RLIγ

a+ f
)
(x) =

1
Γ(γ)

∫ x

a

f (t)dt
(x− t)1−γ

(x > a;

γ ∈ C, Re(γ)> 0)(3.1.17)and

(RLIγ

b− f
)
(x) =

1
Γ(γ)

∫ b

x

f (t)dt
(t− x)1−γ

(x < b;

γ ∈ C, Re(γ)> 0)(3.1.18) respectively.

Definition 3.1.5 [2] The RLDγ

a+y and RLDγ

b−y of order γ(Re(γ)≥ 0) [3] are given by

(RLDγ

a+y)(x) =
(

d
dx

)n

(RLIn−γ

a+ y)(x) (x > a), (3.1.19)

and

(RLDγ

b−y)(x) =
(
− d

dx

)n

(RLIn−γ

b− y)(x) (x < b), (3.1.20)

where (γ ∈ C), in the given order, with n =− [−Re(γ)] , where [·] denotes the integral

part of the argument, that is

n =

{
[Re(γ)]+1 for γ /∈ N0,

γ for γ ∈ N0.
(3.1.21)
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As a special case, when γ = n ∈ N0, then

(RLD0
a+y)(x) = (RLD0

b−y)(x) = y(x), (3.1.22)

(RLDn
a+y)(x) = y(n)(x), (RLDγ

b−y)(x) = (−1)ny(n)(x), (3.1.23)

y(n)(x) is the usual derivative of y(x) of order n.

Proposition 3.1.6 [2] We have

(RLIγ

a+(t−a)β (x) =
Γ(β +1)

Γ(β + γ +1)
(x−a)β+γ , (3.1.24)

(RLDγ

a+(t−a)β (x) =
Γ(β +1)

Γ(β − γ +1)
(x−a)β−γ , (3.1.25)

(RLIγ

b−(b− t)β (x) =
Γ(β +1)

Γ(β + γ +1)
(b− x)β+γ , (3.1.26)

(RLDγ

b−(b− t)β (x) =
Γ(β +1)

Γ(β − γ +1)
(b− x)β−γ . (3.1.27)

Where γ,β ∈ C, Re(γ)≥ 0 and Re(β )> 0.

For 0 < Re(γ)< 1 this falls down to

(RLDγ

a+1)(x) =
(x−a)−γ

Γ(1− γ)
, (RLDγ

b−1)(x) =
(b− x)−γ

Γ(1− γ)
, (3.1.28)
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and for j = 1,2, ...,n =−[−Re(γ)], we get

(RLDγ

a+(t−a)γ− j)(x) = 0, (RLDγ

b−(b− t)γ− j)(x) = 0 (3.1.29)

From (3.1.29) we deduce that (Dγ

a+y)(x) = 0 is holds iff,

y(x) =
n

∑
j=1

c j(x−a)γ− j,

where n = [Re(γ)]+1 and c j ∈R, ( j = 1, . . . ,n) are constant. As a special case, when

0 < Re(γ)≤ 1, (RLDγ

a+y)(x) = 0 valid iff, y(x) = c(x−a)γ−1 with any c ∈ R. [2]

Similarly, the equality (RLDγ

b−y)(x) = 0 is holds iff,

y(x) =
n

∑
j=1

d j(b− x)γ− j,

where d j ∈ R ( j = 1, . . . ,n) are const. As a special case, when 0 < Re(γ) ≤ 1,

(RLDγ

b−y)(x) = 0 valid iff, y(x) = d(b− x)γ−1 with any d ∈ R.

Proposition 3.1.7 (p.1) The following results give us an another representation of the

RLDγ

a+ and RLDγ

b−, for Re(γ)≥ 0, n = [Re(γ)]+1,

(RLDγ

a+y)(x) =
n−1

∑
k=0

y(k)(a)
Γ(1+ k− γ)

(x−a)k−γ +
1

Γ(n− γ)

∫ x

a

y(n)(t)dt
(x− t)γ−n+1 ,

(3.1.30)

and

(RLDγ

b−y)(x) =
n−1

∑
k=0

(−1)ky(k)(b)
Γ(1+ k− γ)

(b− x)k−γ +
(−1)n

Γ(n−α)

∫ b

x

y(n)(t)dt
(t− x)γ−n+1 .
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(3.1.31)

(p.2) The semigroup property of the RLIγ

a+ and RLIγ

b− provides that, if Re(γ) > 0 and

Re(β )> 0, then the following equations

(RLIγ

a+
RLIβ

a+ f )(x) = (RLIγ+β

a+ f )(x) and

(RLIγ

b−
RLIβ

b− f )(x) = (RLIγ+β

b− f )(x), (3.1.32)

are hold almost everywhere since f ∈ Lp(a,b), p≥ 1,.

Proof.

Iγ

a+Iβ

a+ f =
1

Γ(γ)

∫ x

a

1
(x− t)1−α

(Iβ

a+ f )(t)dt

=
1

Γ(γ)Γ(β )

∫ x

0

∫ t

0

f (u)
(t−u)1−β (x− t)1−α

dt

=
1

Γ(γ)Γ(β )

∫ x

a

∫ x

u

f (u)dt
(x− t)1−γ(t−u)1−β

du

Now if we substitute

t = u+ s(x−u) and

dt = (x−u)ds

we get

1
Γ(γ)Γ(β )

∫ x

a
f (u)

∫ 1

0

(x−u)dsdu
[(x−u)(1− s)]1−γ [s(x−u)]1−β

=
1

Γ(γ)Γ(β )

∫ x

a

f (u)du
(x−u)1−γ−β

∫ 1

0

ds
(1− s)1−γs1−β
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Here, if we consider on second integral, we can easily see that

∫ 1

0

ds
(1− s)1−γs1−β

= B(β ,γ)

and we know that

B(β ,γ) =
Γ(γ)Γ(β )

Γ(γ +β )

if we use this, we obtain the following desired result

1
Γ(γ +β )

∫ x

a

f (u)du
(x−u)1−γ−β

= Iγ+β

a+ f

(p.3) Likewise, we have the following index formulae

(RLDγ

a+
RLDβ

a+ f )(x) = (RLDγ+β

a+ f )(x)−
m

∑
j=1

(RLDβ− j
a+ f )(a+)

(x−a)− j−γ

Γ(1− j− γ)
,

(3.1.33)

since α,β > 0, s.t. n−1 < γ ≤ n, m−1 < β ≤ m (n,m ∈ N) and γ +β < n.

For f (x) ∈ Lp(a,b) (1≤ p≤ ∞), the composition relations

(Dβ

a+Iγ

a+ f )(x) = Iγ−β

a+ f (x) and (Dβ

b−Iγ

b− f )(x) = Iγ−β

b− f (x), (3.1.34)

since Re(γ) > Re(γ) > 0., valid almost everywhere on [a,b] between Dβ

a+andIγ

a+ [3].

As a special case, when β = k ∈ N and Re(γ)> k, then

(DkIγ

a+ f )(x) = Iγ−k
a+ f (x) and (DkIγ

b− f )(x) = (−1)kIγ−k
b− f (x). (3.1.35)
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This shows us that the fractional differentiation is an operation inverse to fractional

integration from the left and

(Dγ

a+Iγ

a+ f )(x) = f (x) and (Dγ

b−Iγ

b− f )(x) = f (x), (3.1.36)

since Re(γ)> 0, valid almost everywhere on [a,b]. [3]

(p.4) Besides,the following relation valid almost everywhere on [a,b]

(Iγ

a+Dγ

a+ f )(x) = f (x)−
n

∑
j=1

f (n− j)
n−γ (a)

Γ(γ− j+1)
(x−a)γ− j (3.1.37)

if Re(γ) > 0, n = [Re(γ)] + 1 and fn−γ(x) = (In−γ

a+ f )(x). Also, if gn−γ(x) =

(In−γ

b− g)(x), then the formula

(Iγ

b−Dγ

b−g)(x) = g(x)−
n

∑
j=1

(−1)n− jg(n− j)
n−γ (a)

Γ(γ− j+1)
(b− x)γ− j, (3.1.38)

almost everywhere on [a,b].

Assume that Re(γ) ≥ 0, m ∈ N and D = d/dx, then if the (Dγ

a+y)(x) and (Dγ+m
a+ y)(x)

exist, we have

(DmDγ

b−y)(x) = (Dγ+m
a+ y)(x), (3.1.39)

and, if the (Dγ

b−y)(x) and (Dγ+m
b− y)(x) exist, then

(DmDγ

b−y)(x) = (−1)m(Dγ+m
b− y)(x). (3.1.40)
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If Re(γ)> 0 and n = [Re(γ)]+1, we have

(L Dγ

0+y)(s) = sγ(L y)(s)−
n−1

∑
k=0

sn−k−1Dk(In−γ

0+ y)(0+) (3.1.41)

for (Re(s)> q0). [3]

Next, we have two formulas for fractional integration by parts :

a) For ϕ(x) ∈ Lp(a,b) and ψ(x) ∈ L1(a,b), we have

∫ b

a
ϕ(x)(Iγ

a+ψ)(x)dx =
∫ b

a
ψ(x)(Iγ

b−ϕ)(x)dx. (3.1.42)

b) We have

∫ b

a
f (x)(Dγ

a+g)(x)dx =
∫ b

a
g(x)(Dγ

b− f )(x)dx. (3.1.43)

If f (x)= (Iγ

b−h1)(x) with some h1(x)∈Lp(a,b) and g(x)= (Iγ

a+h2)(x) with some

h2(x) ∈ Lq(a,b),

Now let γ > 0, p ≥ 1, q ≥ 1, and (1/p)+ (1/q) ≤ 1+ γ (p 6= 1 and q 6= 1 in the case

when (1/p)+(1/q) = 1+ γ).

The extended fractional Leibniz formula for the R-L derivative, applied to sufficiently

good function on [a,b], gives

[Dγ

a+( f g)](x) =
∞

∑
j=0

(
γ

j

)
(Dγ− j

a+ f )(x)(D jg)(x), (3.1.44)

where γ > 0. Next, we give three special cases to demonstrate this feature.
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a) Assume that f (x) = x and g(x) be a sufficiently good function. Then for 0 < γ < 1.,

we have

[Dγ

0+( f g)](x) = x(Dγ

0+g)(x)+(I1−γ

0+ g)(x). (3.1.45)

b) Let f (x) = xγ−1 and g(x) be a sufficiently good function. Then for 0 < γ < 1., we

have

[Dγ

0+( f g)](x) =
∞

∑
j=1

(
γ

j

)
Γ(γ)

Γ( j)
x j−1g( j)(x). (3.1.46)

c) Let p ∈ N, f (x) be a sufficiently good function. Then for γ > 0,

(Dγ

0+t p f )(x) =
p

∑
j=0

(
γ

j

)
(D jxp)(Dγ− j

0+ f )(x). (3.1.47)

Computing fractional R-L derivative of the composition of two sufficiently good func-

tion can be very intricated. The following formula

[Dγ

a+( f (g))](x) =
(x−a)−γ

Γ(1− γ)
f (g(x))

+
∞

∑
j=1

(
γ

j

)
j!(x−a) j−γ

Γ( j+1− γ)

j

∑
r=1

[Di f (g)](x)

·∑
j

∏
r=1

1
ar!

(
(Drg)(x)

r!

)ar

(3.1.48)

where ∑
j
r=1 rar = j and ∑

j
r=1 ar = i, displays the intricate structure very openly.
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3.1.4 Fractional Integration and Differentiation as Reciprocal Operations

We already know that the ordinary differentiation and integration are reciprocal

operations if the integration applied first as following

d
dx

∫ x

a
f (t)dt = f (x).

On the other hand, generally

∫ x

a
f ′(t)dt 6= f (x)

because of the constant − f (a).

Similarly,

(
d
dx

)nIn
a+ f ≡ f ,

but

In
a+ f (n) 6= f

because of a polynimial of the order n−1. Similarly, we should always have

Dγ

a+Iγ

a+ f ≡ f ,

but Iγ

a+Dγ

a+ f doesn’t necessarily coincide with f (x) because of the function (x−

a)α−k,k = 1,2, . . . [Reα]+ 1, can be arise, the linear combinations of which play the

role of polynomials for fractional differentiation.
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3.2 Caputo Fractional Derivatives

Definition 3.2.1 [2] The Caputo and Riemann-Liouville fractional derivatives have

close relations. Assume that [a,b]⊂ R. the left-sided and right-sided Caputo fractional

derivatives of order α are defined by

(CDγ

a+y)(x) =
1

Γ(n− γ)

∫ x

a

y(n)(t)dt
(x− t)γ−n+1 = (RLIn−γ

a+ Dny)(x), (3.2.1)

α ∈ C (Re(γ)≥ 0) and

(CDγ

b−y)(x) =
(−1)n

Γ(n− γ)

∫ b

x

y(n)(t)dt
(t− x)γ−n+1 = (−1)n(RLIn−γ

b− Dny)(x), (3.2.2)

γ ∈ C (Re(γ)≥ 0)respectively, where D = d
dx and n =−[−Re(γ)], i.e.

n =


[Re(γ)]+1 for γ /∈ N0

γ for γ ∈ N0

As a special case

(CDγ

a+y)(x) =
1

Γ(1− γ)

∫ x

a

y′(t)dt
(x− t)γ

= (RLI1−γ

a+ Dy)(x), (3.2.3)

0 < Re(γ)< 1.and

(CDγ

b−y)(x) =− 1
Γ(1− γ)

∫ b

x

y′(t)dt
(t− x)γ

= (RLI1−γ

b− Dy)(x), (3.2.4)

0 < Re(γ)< 1.

Proposition 3.2.2 [3] The relations between the Caputo and the R-L derivatives are
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defined as following

(CDγ

a+y)(x) =

(
RLDγ

a+

[
y(t)−

n−1

∑
k=0

y(k)(a)
k!

(t−a)k

])
(x) (3.2.5)

and

(CDγ

b−y)(x) =

(
RLDγ

b−

[
y(t)−

n−1

∑
k=0

y(k)(b)
k!

(b− t)k

])
(x), (3.2.6)

respectively.

As a special case, (3.2.5) and (3.2.6) take the below forms

(CDγ

a+y)(x) = (RLDγ

a+[y(t)− y(a)])(x), (3.2.7)

0 < Re(γ)< 1,

(CDγ

b−y)(x) = (RLDγ

b−[y(t)− y(b)])(x), (3.2.8)

0<Re(γ)< 1. If γ = n∈N0 and the classical derivative y(n)(x) exists, then (CDn
a+y)(x)

coincides with y(n)(x), while (CDn
b−y)(x) coincides with y(n)(x) up to the const factor

(−1)n, i.e.,

(CDn
a+y)(x) = y(n)(x) and (CDn

b−y)(x) = (−1)ny(n)(x) (n ∈ N). (3.2.9)

The (CDγ

a+y)(x) and (CDγ

b−y)(x) have some features similar to those defined in equa-

tions (3.1.25) and (3.1.27) for the R-L fractional derivatives. [2] If Re(γ) > 0, n =

29



−[−Re(γ)] is defined by (3.1.21) and Re(β )> n−1, then

(CDγ

a+(t−a)β )(x) =
Γ(β +1)

Γ(β − γ +1)
(x−a)β−γ (3.2.10)

and

(CDγ

b−(b− t)β )(x) =
Γ(β +1)

Γ(β − γ +1)
(b− x)β−γ . (3.2.11)

Besides, for k = 0,1, ...,n−1, we get

(CDγ

a+(t−a)k)(x) = 0 and (CDγ

b−(t−a)k)(x) = 0 (3.2.12)

In particular,

(CDγ

a+1)(x) = 0 and (CDγ

b−1)(x) = 0 (3.2.13)

Besides, for any α ∈ R,

(CDγ

a+eλ t)(x) 6= λ
γeλx, (3.2.14)

Re(γ)> 0, λ > 0.

Let y(x) be a appropriate function, for instance y(x)∈C[a,b]. Then the CDγ

a+ and CDγ

b−

provide operations inverse to the Iγ

a+ and Iγ

b− from the left, that is

(CDγ

a+Iγ

a+y)(x) = y(x) and (CDαγ

b−Iγ

b−y)(x) = y(x), (3.2.15)

since γ ∈ N.
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On the other hand,

(CDγ

a+Iγ

a+y)(x) = y(x)−
(Iγ+1−n

a+ y)(a+)

Γ(n− γ)
(x−a)n−γ , (3.2.16)

Re(γ) ∈ N, Im(γ) 6= 0,and

(CDγ

b−Iγ

b−y)(x) = y(x)−
(Iγ+1−n

b− y)(b−)
Γ(n− γ)

(b− x)n−γ , (3.2.17)

Re(γ) ∈ N, Im(γ) 6= 0. However, if Re(γ) > 0 and n = −[−Re(γ)] is defined by

(3.1.21). Then, under good enough conditions for y(x)

(Iγ

a+
CDγ

a+y)(x) = y(x)−
n−1

∑
k=0

y(k)(a)
k!

(x−a)k (3.2.18)

and

(Iγ

b−
CDγ

b−y)(x) = y(x)−
n−1

∑
k=0

(−1)ky(k)(b)
k!

(b− x)k. (3.2.19)

As a special case, if 0 < Re(α)≤ 1, then

(Iγ

a+
CDγ

a+y)(x) = y(x)− y(a) and (Iγ

b−
CDγ

b−y)(x) = y(x)− y(a). (3.2.20)

Under good enough conditions, the L-transform of the Caputo fractional derivative

CDγ

0+y is given by

(L CDγ

0+y)(s) = sα(L y)(s)−
n−1

∑
k=0

sγ−k−1(Dky)(0). (3.2.21)
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As a special case

(L CDγ

0+y)(s) = sγ(L y)(s)− sγ−1y(0), (3.2.22)

if 0 < γ ≤ 1. We have identified the Caputo derivatives on [a,b]. (3.2.1) and (3.2.2) can

be used to define the Caputo fractional derivatives on the whole axis R. Therefore the

corresponding Caputo fractional derivative of order α ∈ C can be presented as below

[2]

(CDγ

+y)(x) =
1

Γ(n− γ)

∫ x

−∞

y(n)(t)dt
(x− t)γ+1−n (3.2.23)

and

(CDγ

−y)(x) =
(−1)n

Γ(n− γ)

∫
∞

x

y(n)(t)dt
(t− x)γ+1−n , (3.2.24)

with x ∈ R.

The (CDγ

+y)(x) and (CDγ

−y)(x) have the following features

(CDγ

+eλ t)(x) = λ
γeλx and (CDγ

−e−λ t)(x) = λ
γe−λx. (3.2.25)
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Chapter 4

AN ALGORITHM FOR SINGLE-TERM EQUATIONS

We can call this method "indirect" because, rather than discretizing the differential

equation

Dn
∗0y(x) = f (x,y(x))

with appropriate i.c. (initial conditions)

Dky(0) = y(k)0 , k = 0,1, . . . ,dne−1

directly, it requires some preliminary analytical manipulation, namely an application of

Lemma 6.2 in order to convert the IVP for the differential equation into an equivalent

Volterra integral equation,

y(x) =
m−1

∑
k=0

xk

k!
Dky(0)+

1
Γ(n)

∫ x

0
(x− t)n−1 f (t,y(t))dt where m = dne (4.0.1)

We will consider on fractional variant of the classical second-order Adams-Bashforth-

Moulton method.

4.1 Classical Formulation

For motivating the construction of the method, firstly, we should shortly remember the

basic the logic behind the classical Adams-Bashford-Moulton algorithm for first-order
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equations. Thus, ivp should be considered for the first-order differential equation;

Dy(x) = f (x,y(x)) (4.1.1)

y(0) = y0 (4.1.2)

Let the f to be a unique solution exists on [0,T ]. We will use the predictor-corrector

technique and we let that we are working on a uniform grid
{

t j = jh
}

where { j = 0,1, . . . ,N}

with some integer N and h = T
N .

The main idea in this method is, we let that the estimations y j ≈ y(t j) ( j = 1,2, ...,k)

are already calculated , that we try to get the approximation yk+1 by means of the

y(tk+1) = y(tk)+
∫ tk+1

tk
f (z,y(z))dz (4.1.3)

This equation follows upon integration of (4.1.1) on the interval [tk, tk+1]. Surely, we

know neither of the expressions on the RHS of (4.1.3) exactly, but we have yk, which

is an approximation for y(tk), and we can use it instead of y(tk).We write the following

two-point trapezoidal quadrature formula instead of the integral

∫ b

a
g(z)dz≈ b−a

2
(g(a)+g(b)) (4.1.4)

therefore defining an equation for the unknown approximation yk+1, it being

yk+1 = yk +
tk+1− tk

2
( f (tk,y(tk))+ f (tk+1,y(tk+1))) (4.1.5)
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where again we have to write yk instead of y(tk) and y(tk+1) instead of yk+1. This gives

the following equation for the implicit one-step Adams-Moulton method

yk+1 = yk +
tk+1− tk

2
( f (tk,yk)+ f (tk+1,yk+1)) (4.1.6)

The unknown quantity yk+1 that appears on LHS and RHS is the problem with this

equation, and because of the nonlinear property of the function f we can not solve for

yk+1 directly in general.Therefore, we may use (4.1.6) in an iterative process, adding

a preliminary estimation for yk+1in the RHS in order to define a better estimation that

we can use later.

Likewise, we obtain the preliminary approximation yp
k+1, the so-called predictor via

only writing the rectangle rule instead of trapezoidal quadrature formula

∫ b

a
g(z)dz≈ (b−a)g(a) (4.1.7)

defining the explicit (one-step Adams-Bashforth or forward Euler) method

yp
k+1 = yk +h f (tk,yk) (4.1.8)

It is well known that the process given by (4.1.8) and

yk+1 = yk +
h
2
( f (tk,yk)+ f (tk+1,y

p
k+1)) (4.1.9)
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known as the one-step Adams-Bashford-Moulton technique, is convergent of order 2,

i.e.

max
j=1,2,...,N

|y(t j)− y j)|= O(h2) (4.1.10)

In a actual implementation, we begin by evaluating the predictor in (4.1.8), then we

evaluate f (tk+1,y
p
k+1), use this to calculate the corrector in (4.1.9), and finally evaluate

f (tk+1,yk+1) that is why this method is type of the PECE (Predict,Evaluate,Correct,Evaluate).

4.2 Fractional Formulation

We now attempt to continue the necessary concept to the fractional-order problem with

some unavoidable modifications. We now derive an equation similar to (4.1.3), which

is (4.0.1). Because the integration starts at 0 instead of tk, equation (4.0.1) looks a little

bit different from (4.1.3). This but doesn’t affects major problem in our try to general-

ize the Adams method.

Merely what we do is replacing the integral by using the product trapezoidal quadra-

ture, i.e. we use the nodes t j ( j = 0,1, ...,k+1) and interpret the function (tk+1−·)n−1

as a weight function for the integral. On the other hand, we apply the approximation

tk+1∫
0

(tk+1− z)n−1g(z)dz≈
∫ tk+1

0
(tk+1− z)n−1 g̃k+1(z)dz, (4.2.1)

where g̃k+1(z) is the piecewise linear interpolant for g with nodes and knots selected

at the t j, j = 0,1, ...,k+1. We can write the integral on the RHS of (4.2.1) as

∫ tk+1

0
(tk+1− z)n−1g̃k+1(z)dz =

k+1

∑
j=0

a j,k+1g(t j), (4.2.2)
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where

a j,k+1 =
∫ tk+1

0
(tk+1− z)n−1

Φ j,k+1(z)dz (4.2.3)

and

Φ j,k+1(z) =



(z−t j−1)
(t j−t j−1)

if t j−1 < z≤ t j

(t j+1−z)
(t j+1−t j)

if t j < z < t j+1

0 else

. (4.2.4)

This is clear because the function Φ j,k+1 satisfy

Φ j,k+1(tµ) =


0 if j 6= µ

1 if j = µ

and that they are continuous and piecewise linear with breakpoints at the nodes tµ , so

they must be integrated exactly by our formula.

Let j = 0

a0,k+1 =
∫ tk+1

0
(tk+1− z)n−1

Φ0,k+1(z)dz =
∫ t1

t0
(tk+1− z)n−1 (t1− z)

(t1− t0)
dz

using integration by parts with

u = (t1− z)

du =−dz
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and

dv = (tk+1− z)n−1dz

v = −(tk+1−z)n

n

we get

1
(t1− t0)

[
−(t1− z)

(tk+1− z)n

n

]t1

t0
− 1

n

∫ t1

t0
(tk+1− z)ndz

=
1
t1

(
t1(tk+1)

n

n
+

1
n

[
(tk+1− z)n+1

n+1

]t1

t0

)

=
tn
k+1

n
+

(tk+1− t1)n+1− (tk+1)
n+1

t1.n.(n+1)
=

(tk+1− t1)n+1 + tn
k+1(t1 +nt1− tk+1)

t1.n.(n+1)

= a0,k+1 (4.2.5)

now let j ∈ [1,k]

a j,k+1 =
∫ tk+1

0
(tk+1− z)n−1

Φ j,k+1(z)dz

=
∫ t j

t j−1

(tk+1− z)n−1 (z− t j−1)

(t j− t j−1)
dz (4.2.6)

+
∫ t j+1

t j

(tk+1− z)n−1 (t j+1− z)
(t j+1− t j)

dz (4.2.7)

for the integral on the (4.2.6) we have

∫ t j

t j−1

(tk+1− z)n−1 (z− t j−1)

(t j− t j−1)
dz

using integration by parts with

u = (z− t j−1)

du = dz
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and

dv = (tk+1− z)n−1dz

v = −(tk+1−z)n

n

we get

1
(t j− t j−1)

[
−(z− t j−1)

(tk+1− z)n

n

]t j

t j−1

− 1
n

∫ t j

t j−1

(tk+1− z)ndz

=
1

(t j− t j−1)

(
−(t j− t j−1)

(tk+1− t j)
n

n
+

1
n

[
−(tk+1− z)n+1

n+1

]t j

t j−1

)

=
−(tk+1− t j)

n

n
+
−(tk+1− t j)

n+1 +(tk+1− t j−1)
n+1

(t j− t j−1).n.(n+1)

=
(tk+1− t j−1)

n+1 +(tk+1− t j)
n(t j−1 +n(t j−1− t j)− tk+1)

(t j− t j−1).n.(n+1)

and for the integral on the (4.2.7) we have

∫ t j+1

t j

(tk+1− z)n−1 (t j+1− z)
(t j+1− t j)

dz

using integration by parts with

u = (t j+1− z)

du =−dz

and

dv = (tk+1− z)n−1dz

v = −(tk+1−z)n

n
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we get

1
(t j+1− t j)

[
−(t j+1− z)

(tk+1− z)n

n

]t j+1

t j

− 1
n

∫ t j+1

t j

(tk+1− z)ndz

=
1

(t j+1− t j)

(
(t j+1− t j)

(tk+1− t j)
n

n
+

1
n

[
−(tk+1− z)n+1

n+1

]t j+1

t j

)

=
(tk+1− t j)

n

n
+
−(tk+1− t j)

n+1 +(tk+1− t j+1)
n+1

(t j+1− t j).n.(n+1)

=
(tk+1− t j+1)

n+1− (tk+1− t j)
n(−t j+1 +n(t j− t j+1)+ tk+1)

(t j+1− t j).n.(n+1)

Therefore, for the j ∈ [1,k] we have

a j,k+1 =
(tk+1− t j−1)

n+1 +(tk+1− t j)
n(t j−1 +n(t j−1− t j)− tk+1)

(t j− t j−1).n.(n+1)

+
(tk+1− t j+1)

n+1

(t j+1− t j).n.(n+1)

−
(tk+1− t j)

n(−t j+1 +n(t j− t j+1)+ tk+1)

(t j+1− t j).n.(n+1)
(4.2.8)

now let j = k+1, then

ak+1,k+1 =
∫ tk+1

0
(tk+1− z)n−1

Φk+1,k+1(z)dz

=
∫ tk+1

tk
(tk+1− z)n−1 (z− tk)

(tk+1− tk)
dz

using integration by parts with

u = (z− tk)

du = dz

and

dv = (tk+1− z)n−1dz

v = −(tk+1−z)n

n
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we get

1
(tk+1− tk)

([
−(z− tk)

(tk+1− z)n

n

]tk+1

tk

+
1
n

∫ tk+1

tk
(tk+1− z)ndz

)

=
−1

(tk+1− tk)n

([
(tk+1− z)n+1

n+1

]tk+1

tk

)

=
(tk+1− tk)n

n(n+1)

= ak+1,k+1 (4.2.9)

Therefore, from (4.2.5, 4.2.8 and 4.2.9) (taking t j = jh with some fixed h)

a j,k+1 =



hn

n(n+1)(k
n+1− (k−n)(k+1)n) if j = 0

hn

n(n+1)

[
(k− j+2)n+1 +(k− j)n+1−2(k− j+1)n+1] if j ∈ [1,k]

hn

n(n+1) if j = k+1
(4.2.10)

(4.2.10) gives the corrector formula as following

yk+1 =
m−1

∑
j=0

t j
k+1

j!
y( j)

0

+
1

Γ(n)

(
k

∑
j=0

a j,k+1 f (t j,y j)+ak+1,k+1 f (tk+1,y
p
k+1)

)
(4.2.11)

[4] The calculation of the predictor formula yp
k+1 is the remaining problem.The way

that we are going to use for generalize the one-step Adams–Bashforth method is the

following: We write product rectangle rule instead of the integral on the RHS of (4.0.1)

∫ tk+1

0
(tk+1− z)n−1g(z)dz≈

k

∑
j=0

b j,k+1g(t j) (4.2.12)
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where now

b j,k+1 =
∫ t j+1

t j

(tk+1− z)n−1dz =
(tk+1− t j)

n− (tk+1− t j+1)
n

n
(4.2.13)

This expression for weights can be derived in a way similar to the method used in the

derivation of (4.2.10).However, here we are dealing with a piecewise constant approx-

imation and not a piecewise linear one, and hence we have to replace the “hat-shaped”

functions Φk j by functions being of constant value 1 on
[
t j, t j+1

]
and 0 on the remain-

ing parts of the interval [0, tk+1]. Again, in the equispaced case, we have the simpler

expression

b j,k+1 =
hn

n
((k+1− j)n− (k− j)n) (4.2.14)

Thus, the predictor yp
k+1 is given by the fractional Adams-Bashforth method

yp
k+1 =

m−1

∑
j=0

t j
k+1

j!
y( j)

0 +
1

Γ(n)

k

∑
j=0

b j,k+1 f (t j,y j) (4.2.15)

Therefore, the fractional Adams-Bashford-Moulton method, is completely defined now

by (4.2.15) and (4.2.11) with the weight a j,k+1 and b j,k+1 being defined according to (

(4.2.5, 4.2.8, 4.2.9)) and (4.2.13), respectively.
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Chapter 5

ERROR ANALYSIS

For the error analysis of this algorithm, we will work on the case of an equispaced grid,

i.e. from now on we assume that t j = jh = jT/N with some N ∈ N.

What we need for our purposes is some information on the errors of the quadrature

formulas that we have used in the derivation of the predictor and the corrector, respec-

tively. We first give a statement on the product rectangle rule that we have used for the

predictor.

Theorem 5.0.1 (a) Assume that z ∈C1[0,T ]. Then,

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1z(t)dt−

k

∑
j=0

b j,k+1z(t j)

∣∣∣∣∣≤ 1
n

∥∥z′
∥∥

∞
tn
k+1h

(b) Assume that z(t) = t p for some p ∈ (0,1). Then,

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1z(t)dt−

k

∑
j=0

b j,k+1z(t j)

∣∣∣∣∣≤CRe
n,ptn+p−1

k+1 h

where CRe
n,p is a const. that depends on n and p.
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Proof. By construction of the product rectangle formula, we find in both cases that the

quadrature error has the representation

∫ tk+1

0
(tk+1− t)n−1z(t)dt−

k

∑
j=0

b j,k+1z(t j)

=
k

∑
j=0

∫ ( j+1)h

jh
(tk+1− t)n−1(z(t)− z(t j))dt (5.0.1)

To prove statement (a), we apply the MVT of Differential Calculus to the second factor

of the integrand on the RHS of (5.0.1) and derive

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1z(t)dt−

k

∑
j=0

b j,k+1z(t j)

∣∣∣∣∣
=

∣∣∣∣∣ k

∑
j=0

∫ ( j+1)h

jh
(tk+1− t)n−1(z(t)− z(t j))dt

∣∣∣∣∣
=

∣∣∣∣∣ k

∑
j=0

∫ ( j+1)h

jh
(tk+1− t)n−1(t− t j)z′(ξ )dt

∣∣∣∣∣
where t j < ξ < t

≤
∥∥z′
∥∥

∞

k

∑
j=0

∫ ( j+1)h

jh
(tk+1− t)n−1(t− jh)dt

=
∥∥z′
∥∥

∞

k

∑
j=0

∫ ( j+1)h

jh
(tk+1− t)n−1(t− tk+1 + tk+1− jh)dt

=
∥∥z′
∥∥

∞

k

∑
j=0

[∫ ( j+1)h

jh
−(tk+1− t)n +(tk+1− t)n−1(k+1− j)hdt

]

=
∥∥z′
∥∥

∞

k

∑
j=0

[
(tk+1− t)n+1

n+1
− (k+1− j)h

(tk+1− t)n

n

]t=( j+1)h

t= jh

=
∥∥z′
∥∥

∞

k

∑
j=0

(k− j)n+1hn+1

n+1
− (k+1− j)n+1hn+1

n+1

= −((k− j)+1)h
(k− j)nhn

n
+(k− j+1)h

(k+1− j)n

n
hn
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=
∥∥z′
∥∥

∞

k

∑
j=0

hn+1(
1

n(n+1)
(k+1− j)n+1

− 1
n(n+1)

(k− j)n+1− (k− j)n

n
)

=
∥∥z′
∥∥

∞

hn+1

n

k

∑
j=0

(
1

n+1
[
(k+1− j)n+1− (k− j)n+1]− (k− j)n

)

=
∥∥z′
∥∥

∞

hn+1

n

(
(k+1)n+1

1+n
−

k

∑
j=0

jn

)

=
∥∥z′
∥∥

∞

hn+1

n

(∫ k+1

0
tndt−

k

∑
j=0

jn

)

Here the term in parentheses is simply the remainder of the standard rectangle quadra-

ture formula, applied to the function tn, and taken over the interval [0,k+1]. Since the

integrand is monotonic, we may apply some standard results from quadrature theory to

find that this term is bounded by the total variation of the integrand, viz. the quantity

(k+1)n. Thus

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1z(t)dt−

k

∑
j=0

b j,k+1z(t j)

∣∣∣∣∣≤ ∥∥z′
∥∥

∞

hn+1

n
(k+1)n.

Similarly, to prove (b), we use the monotonicity of z in (5.0.1) and derive

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1z(t)dt−

k

∑
j=0

b j,k+1z(t j)

∣∣∣∣∣
=

∣∣∣∣∣ k

∑
j=0

∫ ( j+1)h

jh
(tk+1− t)n−1(z(t)− z(t j))dt

∣∣∣∣∣
≤

k

∑
j=0

∣∣z(t j+1)− z(t j)
∣∣∫ ( j+1)h

jh
(tk+1− t)n−1dt

=
hn+p

n

k

∑
j=0

(( j+1)p− jp)((k+1− j)n(k− j)n)

≤ hn+p

n

(
(k+1)n− kn +(k+1)p− kp + pn

k−1

∑
j=1

jp−1(k− j+q)n−1

)

≤ hn+p

n

(
n(k+q)n−1 + pkp−1 + pn∑ jp−1(k− j+q)n−1)
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by additional applications of the Mean Value Theorem. Here q = 0 if n ≤ 1, and

q = 1 otherwise. In either case a brief asymptotic analysis using the Euler-MacLaurin

formula yields that the term in parentheses is bounded from above by CRe
n,p(k+1)p+n−1

where CRe
n,p is a const depending on h and p.

Next we come to a corresponding result for the product trapezoidal formula that we

have used for the corrector.

Theorem 5.0.2 Suppose z ∈C2 [0,T ],

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1z(t)dt−

k+1

∑
j=0

a j,k+1z(t j)

∣∣∣∣∣≤Cnh2 (5.0.2)

where Cn only depends on n.

Proof.

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1z(t)dt−

k+1

∑
j=0

a j,k+1z(t j)

∣∣∣∣∣
=

∣∣∣∣∫ tk+1

0
(tk+1− t)n−1z(t)dt−

∫ tk+1

0
(tk+1− t)n−1z̃k+1(t)dt

∣∣∣∣
=

∣∣∣∣∫ tk+1

0
(tk+1− t)n−1(z(t)− z̃k+1(t))dt

∣∣∣∣
using divided difference formula (1.0.2)

≤ ‖z′′‖
∞

2

k+1

∑
j=1

∫ t j

t j−1

(tk+1− t)n−1(t j− t)(t− t j−1)dt

=
‖z′′‖

∞
hn+2

2n(n+1)

k+1

∑
j=1

(k− j+2)n+1 +(k− j+1)n+1

+
2

n+2
[
(k− j+2)n+2− (k− j+1)n+2]
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=
‖z′′‖

∞
hn+2

2n(n+1)

k+1

∑
j=1

(
( j+1)n+1 + jn+1 +

2
n+2

(1− (k+1)n+2)

)

= −‖z
′′‖

∞
hn+2

2n(n+1)

(
2
∫ k+1

1
tn+1dt−

k+1

∑
j=1

(( j+1)n+1 + jn+1)

)

≤


‖z′′‖

∞
hn+2

24 ∑
k+1
j=1 jn−1 if n < 1

‖z′′‖
∞

hn+2

24 ∑
k+1
j=1( j+1)n−1 if n≥ 1

≤


‖z′′‖

∞
hn+2

24
∫ k+1

0 tn−1dt if n < 1

‖z′′‖
∞

hn+2

24
∫ k+2

2 tn−1dt if n≥ 1

≤ Cnh2

Lemma 5.0.3 Assume that the solution y of the ivp is s.t.

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1Dn

∗0y(t)dt−
k

∑
j=0

b j,k+1Dn
∗0y(t j)

∣∣∣∣∣≤C1tγ1
k+1hδ 1

and

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1Dn

∗0y(t)dt−
k+1

∑
j=0

a j,k+1Dn
∗0y(t j)

∣∣∣∣∣≤C2tγ2
k+1hδ 2

with some γ1,γ2 ≥ 0 and δ 1,δ 2 > 0. Then, for some suitably chosen T > 0, we have

max
0≤ j≤N

∣∣y(t j)− y j
∣∣= O(hq)

where q = min{δ 1 +n,δ 2} and N = [T/h].

47



Proof. We will show that, for sufficiently small h,

∣∣y(t j)− y j
∣∣≤Chq (5.0.3)

for all j ∈ {0,1, . . . ,N}, where C is a const. The proof will be based on mathematical

induction. In view of the given initial condition, the induction basis ( j = 0) is presup-

posed. Now assume that (5.0.3) is correct for j = 0,1, . . . ,k for some k ≤ N− 1. We

must then prove that the inequality also valid for j = k+1. To do this, firstly, we look

at the error of the predictor yp
k+1. By construction of the predictor we find that

∣∣y(tk+1)− yp
k+1

∣∣ =
1

Γ(n)

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1 f (t,y(t))dt−

k

∑
j=0

b j,k+1 f (t j,y j)

∣∣∣∣∣
≤ 1

Γ(n)

∣∣∣∣∣
∫ tk+1

0
(tk+1− t)n−1Dn

∗0y(t)dt−
k

∑
j=0

b j,k+1Dn
∗0y(t j)

∣∣∣∣∣
+

1
Γ(n)

k

∑
j=0

b j,k+1
∣∣ f (t j,y(t j))− f (t j,y j)

∣∣
≤

C1tγ1
k+1

Γ(n)
hδ 1 +

1
Γ(n)

k

∑
j=0

b j,k+1LChq

≤ C1T γ1

Γ(n)
hδ 1 +

CLT n

Γ(n+1)
hq (5.0.4)

Here we have used the Lipschitz property of f , the assumption on the error of the rect-

angle formula, and the facts that, by construction of the quadrature formula underlying

the predictor, b j,k+1 > 0 for all j and k and

k

∑
j=0

b j,k+1 =
∫ tk+1

0
(tk+1− t)n−1dt =

1
n

tn
k+1 ≤

1
n

T n.

On the basis of the bound (5.0.4) or the predictor error we begin the analysis of the

corrector error.We recall the relation (4.2.10) which we shall use in particular for j =
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k+1 and find, arguing in a similar way to above, that

|y(tk+1)− yk+1| =
1

Γ(n)
|
∫ tk+1

0
(tk+1− t)n−1 f (t,y(t))dt

−
k

∑
j=0

a j,k+1 f (t j,y j)−ak+1,k+1 f (tk+1,y
p
k+1)|

≤ 1
Γ(n)
|
∫ tk+1

0
(tk+1− t)n−1Dn

∗0y(t)dt−
k+1

∑
j=0

a j,k+1Dn
∗0y(t j)|

+
1

Γ(n)

k

∑
j=0

a j,k+1
∣∣ f (t j,y(t j))− f (t j,y j)

∣∣
+

1
Γ(n)

ak+1,k+1
∣∣ f (tk+1,y(tk+1))− f (tk+1,y

p
k+1)

∣∣
≤

C2tγ2
k+1

Γ(n)
hδ 2 +

CL
Γ(n)

hq
k

∑
j=0

a j,k+1

+ak+1,k+1
L

Γ(n)

(
C1T γ1

Γ(n)
hδ 1 +

CLT n

Γ(n+1)
hq
)

≤ (
C2T γ2

Γ(n)
+

CLT n

Γ(n+1)

+
C1LT γ1

Γ(n)Γ(n+2)
+

CL2T n

Γ(n+1)Γ(n+2)
hn)hq

in view of the nonnegativity of γ1 and γ2 and the relations δ 2 ≤ q and δ 1 + n ≤ q.

By selecting T good enough small, we can make sure that the second summand in

the parentheses is bounded by C/2. Having fixed this value for T , we can then make

the sum of the remaining expressions in the parentheses smaller than C/2 too (for

sufficiently small h) simply by choosing C sufficiently large. It is then obvious that the

entire upper bound does not exceed Chq.

Theorem 5.0.4 Let 0 < n and assume Dn
∗0y∈C2 [0,T ] for some good enough T . Then,

max
0≤ j≤N

∣∣y(t j)− y j
∣∣=


O(h2) if n≥ 1

O(h1+n) if n < 1
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Before we come to the proof, we note one particular point: The order of convergence

depends on n, and it is a non-decreasing function of n.This is due to the fact that we

discretize the integral operator in (4.0.1) which behaves more smoothly (and hence

can be approximated with a higher accuracy) as n increases. In contrast, socalled

direct methods like the backward differentiation method use a different approach; as

the name suggests they directly discretize the differential operator in the given ivp. The

smoothness properties of such operators (and thus the ease with which they may be

approximated) deteriorate as n increases, and so we find that the convergence order

of the method from is a non-increasing function of n; in particular no convergence is

achieved there for n ≥ 2. It is a distinctive advantage of the Adams scheme presented

here that it converges for all n > 0.

Remark 5.0.5 We formally recover the error bound (4.1.10) if we set c = 1.

Proof. In view of Theorem 1., we may apply Lemma 1. with γ1 = γ2 = c > 0,δ 1 = 1

and δ 2 = 2. Thus, defining

q = min{1+ c,2}=


2 if c≥ 1,

1+ c if c < 1,

we find an O(hq) error bound.

Conjecture 5.0.6 Let n > 0 and assume that Dn
∗0y ∈Cs[0,T ] for some s≥ 3 and some

suitable T . Then

y(T )− yT/h =
s1

∑
j=1

a jh2 j +
s2

∑
j=1

d jh j+n +O(hs3)
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where s1,s2, and s3 are fixed constants depending only on s and holds s3 >max(2s1,s2+

n).

Note that the asymptotic expansion starts with an h2 term and continues with h1+n for

1 < n < 3, whereas it starts with h1+n, followed by h2, for 0 < n < 1.
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Chapter 6

NUMERICAL EXAMPLE

Now we present a numerical example to illustrate the error bounds stated above.

We only looked at example with 0 < α < 2 since the case α ≥ 2 does not seem to be

of major practical interest.

Our example covers the case where the given function f (the RHS of the differ-

ential equation) is smooth. We look at the homogeneous linear equation

Dα
∗ y(x) =−y(x), y(0) = 1, y′(0) = 0

(the second of the initial condition only for α > 1 of course). It is well known that the

exact solution is

y(x) = Eα(−xα),

where

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)

is the Mittag-Leffler function of order α.

In Table 1 we state some numerical results for this problem in the case α < 1. The

data given in the tables is the error of the Adams scheme at the point x = 1. We can see

from the last line that the order of convergence is always close to 1+α. In contrast,
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Table 2 displays the case α > 1; here the results confirm the O(h2) behaviour. This

reflects the statement of equation which is

max
j=0,1,...N

|y(t j)− yh(t j)|= O(hp)

where

p = min(2,1+α)

and the quantities h and N are related according to h = T/N, and T is the upper bound

of the interval on which we are looking for the solution.
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