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ABSTRACT

In this thesis, process of Riemann integral is tackled. Firstly, theorems and their proofs

of Proper Riemann integral are explained. After that, improper Riemann integral with

the same proof techniques is handled. Riemann Steiltjes integral with examples and

theorems of continuous linear function in Riesz Representation theorem is explained.

Finally, Kurzweil-Henstock and Lebesgue integrals are handled with theorems and

proofs.

Keywords: Riemann Integral, Riemann Steiltjes Integral, Riesz Representation Theo-

rem, Kurzweil-Henstock and Lebesgue Integral
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ÖZ

Bu tezde Riemann integralinin başlangıcından gelişimingünümüze kadar olan süreci

işlenmiştir. İlk olarak teoremler ve ispatlarıyla has Riemann integraliaçıklanmıştır.

Aynı ispat teknĭgi ile sınırsız alanda has olmayan Riemannİntegrali ele alınmıştır.

Sürekli linear fonksiyonların Riesz gösteriminden yardımalarak Riemann Steiltjes in-

tegrali anlatılmıştır. Son olarak Kurzweil-Henstock ve Lebesgue’nin uygulamarıyla

tezde amaçlanan hedefe ulaşılmıştır.

Anahtar kelimeler: Riemannİntegral’i, Riemann SteiltjeṡIntegral’i, Riesz Göster-

imi, Kurzweil-Henstock ve Lebesgueİntegral’i
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Chapter 1

INTRODUCTION

The idea of integration arose in the works of ancient Greek mathematicians as a calcu-

lation of areas of different geometric figures. It was rediscovered by European math-

ematicians in the seventeenth century. A number of mathematicians contributed to

integration. They used different methods and completed theory of integration for func-

tions of a single variable. In this thesis integration of functions of single variable is

handled.

A descriptive approach was used by Newton to integrals. Iff ′(x) is a derivative of

the functionF(x), then we definedF(x) as an antiderivative off (x). This leads to the

familiar formula

F(x) =
∫

f ′(x)dx+c.

Presently, this is a powerful method of calculation of proper and improper integrals if

antiderivative is elementary function. This method does not work for functions such as

ex2
, sin(x2), sinx

x etc. since the antiderivatives of them are not elementary.

The other two approaches to integral, developed by Riemann and Lebesgue, respec-

tively, are constructive. They are based on partitioning and integral sums. Riemann’s

approach uses partitioning in the domain of an integrand, but the Lebesque approach

in the range. Both these approaches can be modified so that to cover all possible func-
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tions of single variable which can be integrated.

The Lebesgue approach is more advance and generates such branches of mathematics

as measure theory, abstract integration, probability theory etc. Modern mathematical

analysis is based on Lebesque integration. At the same time,Riemann integration is

relatively simple. In this thesis we overview Riemann integration, generalisation of

Riemann integration, leading to Riemann–Stieltjes and Henstock–Kurzweil integra-

tion.

The definition of the Riemann integral includes two major steps. In the first step, Rie-

mann integral is defined for integrands with bounded domain and range. This is called

a proper or definite Riemann integral. In the second step, theintegrands which have

a finite number of improperness are handled. An impropernessmay have two forms:

unbounded domain from the left and write, and also an infinitebehaviour of an inte-

grand about some point in the domain. After reviewing Riemann integral we consider

its generalisation in two directions, called Riemann–Stieltjes and Henstock–Kurzweil

integrals, respectively.
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Chapter 2

PROPER RIEMANN INTEGRAL

2.1 Definition

In this section we define a proper Riemann integral of a function f (x),that is bounded

in an interval [a,b], assuming that−∞ < a< b<∞. Shortly, a proper Riemann integral

will be called a Riemann integral or an integral. The collection of all bounded functions

on [a,b] is denoted byB(a,b).

A partition of the interval [a,b] is a collection of numbersx0, x1, . . . , xn, satisfying

a= x0 < x1 < · · · < xn = b.

This partition is denoted by

P= {x0, x1, . . . , xn}.

The number

‖P‖ =max{x1− x0, . . . , xn− xn−1}

is called a mesh or a norm of the partitionP. Actually,P is a partition because it splits

the interval [a,b] into subintervals

[x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn],

but we think aboutP as a finite sequence of the end points of these subintervals inthe

increasing order. A partitionQ is called a refinement of the partitionP if Q contains
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all points ofP. This is written asQ⊇ P. Clearly,Q= P1∪P2 is a refinement of both

partitionsP1 andP2 of [a,b]. For f ∈ B(a,b) andP= {x0, x1, . . . , xn}, the sum

S( f ,P) =
n
∑

i=1

f (ci)(xi − xi−1), (2.1.1)

whereci ∈ [xi−1, xi ] for i = 1, . . . ,n, is said to be a Riemann sum off . The numbers

c1,c2, . . . ,cn are called the tag numbers or simply tags of the partitionP.

A proper Riemann integral can be defined in the different equivalent forms. The fol-

lowing definition is one of them.

Definition 2.1.1 A function f in B(a,b) is said to be integrable in the Riemann sense

or, briefly, integrable if there exists a number S such that for all ε > 0 there exists a

partition Pε of the interval[a,b] such that

|S( f ,P)−S| < ε

for everyP⊇Pε and for every selection of the tags. This number S is called a Riemann

integral or an integral of f and denoted by

∫ b

a
f (x)dx

The function f is referred as an integrand. Conventionally,

∫ a

a
f (x)dx= 0 and

∫ a

b
f (x)dx= −

∫ b

a
f (x)dx.

Proposition 2.1.2 The Riemann integral of f∈ B(a,b) is unique if it exists.

4



Proof. Assume the contrary thatS1 andS2 are two distinct numbers, satisfying the

condition in Definition 2.1.1. Letε = |S1−S2|/2 > 0. By Definition 2.1.1 there are

partitionsPε andQε of [a,b] such that

|S( f ,P)−S1| < ε for P⊇ Pε,

and

|S( f ,Q)−S2| < ε for Q⊇ Qε.

Then for the refinementPε∪Qε of Pε andQε, we obtain the following contradiction:

ε =
|S1−S2|

2
≤ |S( f ,Pε∪Qε)−S1|+ |S( f ,Pε∪Qε)−S2|

2
<
ε+ε

2
= ε.

This proves the proposition.

The collection of all bounded functions that are integrablein the Riemann sense on

[a,b] is denoted byR(a,b). Clearly,R(a,b) ⊆ B(a,b). The following examples show

thatR(a,b) , ∅ andR(a,b) , B(a,b).

Example 2.1.3 Let f be a constant function, that is, f(x)= c for everyl a≤ x≤ b. Take

any partition P= {x0, . . . , xn} of [a,b]. Then

S( f ,P) =
n
∑

i=1

c(xi − xi−1) = c(b−a).

Therefore,|S( f ,P)− c(b−a)| = 0< ε for all partitions of [a,b] and for all ε > 0, and
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this is independent on the tags. Thus,

∫ b

a
cdx= c(b−a).

Example 2.1.4 (Dirichlet function) Define a function f on[a,b] by

f (x) =































1 if x is rational,

0 if x is irrational.

This function is called Dirichlet function and it is not Riemann integrable. To prove,

observe that for all partition P of[a,b],

S( f ,P) =
n
∑

i=1

1 · (xi − xi−1) = b−a

if the tags are rational, and

S( f ,P) =
n
∑

i=1

0 · (xi − xi−1) = 0

if they are irrational. Therefore, ifε = b−a
2 , then there is no number S , satisfying

|S( f ,P)−S| < ε

for both rational tags and irrational tags. This proves thatthe Dirichlet function be-

longs to B(a,b) but not to R(a,b).

These two examples demonstrate thatR(a,b) is a nonempty and proper subset of

B(a,b).

6



1
x

2
x

3
x

4
x

5
x

6
x

7
x

0
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

0
x

Figure 2.1. Upper and lower Darboux sums.

2.2 Existence

There are several theorems about existence of Riemann integral. In this section these

theorems are discussed.

Let f ∈ B(a,b) and letP = {x0, . . . , xn} is a partition of [a,b]. Since f is bounded, for

i = 1, . . . ,n, we can define the following numbers:

Mi = sup{ f (x) : xi−1 ≤ x≤ xi} and mi = inf { f (x) : xi−1 ≤ x≤ xi}. (2.2.1)

Furthermore, using these numbers, we can define the sums

S∗( f ,P) =
n
∑

i=1

Mi(xi − xi−1) andS∗( f ,P) =
n
∑

i=1

mi(xi − xi−1),

which said to be the upper and lower Darboux sums off for the partitionP, respec-

tively. In Figure 2.1,S∗( f ,P) andS∗( f ,P) are shown as the areas of the shaded regions.

Lemma 2.2.1 Let f ∈ B(a,b), let P be a partition of[a,b] and let Q⊇ P. Then

S∗( f ,P) ≤ S∗( f ,Q) ≤ S∗( f ,Q) ≤ S∗( f ,P).
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Proof. The second inequality is trivial. The proof of the first and the third inequalities

are similar. Therefore, we will prove just one of them, say, the first one.

Let P = {x0, . . . , xn}. ThenQ is the union of partitions of the intervals [xi−1, xi ],

i = 1, . . . ,n. Therefore,

Q= {x1,0, . . . , x1,k1, x2,0, . . . , x2,k2, . . . , xn,0, . . . , xn,kn},

where

xi−1 = xi,0 < · · · < xi,ki = xi i = 1, . . . ,n.

Letting

Mi, j = sup{ f (x) : xi, j−1 ≤ x≤ xi, j}, i = 1, . . . ,n, j = 1, . . . ,ki ,

and assuming thatMi , i = 1, . . . ,n, are defined in (2.2.1), we obtain

S∗( f ,P) =
n
∑

i=1

Mi(xi − xi−1) =
n
∑

i=1

ki
∑

j=1

Mi(xi, j − xi, j−1)

≥
n
∑

i=1

ki
∑

j=1

Mi, j(xi, j − xi, j−1) = S∗( f ,Q).

This proves the first inequality in the lemma.

Lemma 2.2.2 Let f ∈ B(a,b). For every two partitions P and Q of[a,b], the following

inequality holds:

S∗( f ,P) ≤ S∗( f ,Q).
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Proof. Consider the refinementP∪Q of P andQ, by Lemma 2.2.1,

S∗( f ,P) ≤ S∗( f ,P∪Q) ≤ S∗( f ,P∪Q) ≤ S∗( f ,Q).

This proves the lemma.

By Lemma 2.2.2, the upper Darboux sums off ∈ B(a,b) are bounded below and the

lower Darboux sums off are bounded above. Therefore, we can define

S∗( f ) = inf
P

S∗( f ,P) and S∗( f ) = sup
P

S∗( f ,P),

where infimum and supremum are taken over all possible partitions of [a,b]. S∗( f )

andS∗( f ) are called the upper and lower Riemann integrals off ∈ B(a,b), respectively.

Clearly,

S∗( f ) ≤ S∗( f ).

Theorem 2.2.3 (Darboux) A function f∈ B(a,b) is integrable in the Riemann sense

and its Riemann integral equals to S if and only if S∗( f ) = S∗( f ) = S .

Proof. Assume that the Riemann integral off equals toS. We will prove thatS∗( f ) =

S. Then in a similar way it can be proved thatS∗( f ) = S. This will resultS∗( f ) =

S∗( f ) = S, proving the necessity part of the theorem.

To proveS∗( f ) = S, assume the contrary, that is,S∗( f ) , S. Denote

ε =
|S∗( f )−S|

3
> 0.
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SinceS∗( f ) = supPS∗( f ,P), there exists a partitionQε of [a,b], satisfying

0≤ S∗( f ,Qε)−S∗( f ) < ε.

There exists also a partitionPε of [a,b] with

|S( f ,P)−S| < ε

for everyP⊇ Pε and every tags ofP. Particularly, this inequality holds for the refine-

mentPε∪Qε of Pε. By Lemma 2.2.1, we also have

0≤ S∗( f ,Pε∪Qε)−S∗( f ) ≤ S∗( f ,Qε)−S∗( f ) < ε.

Furthermore, assumingPε∪Qε = {x0, . . . , xn}, selectci ∈ [xi−1, xi ], satisfying

Mi − f (ξi) <
ε

b−a
, i = 1, . . . ,n,

whereMi , i = 1, . . . ,n, are defined by (2.2.1). ConsiderS( f ,Pε∪Qε) corresponding to

the tagsc1, . . . ,cn. This implies

0≤ S∗( f ,Pε∪Qε)−S( f ,Pε∪Qε) <
ε

b−a

n
∑

i=1

(xi − xi−1) = ε.
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Therefore,

|S∗( f )−S| ≤ |S∗( f )−S∗( f ,Pε∪Qε)|

+ |S∗( f ,Pε∪Qε)−S( f ,Pε∪Qε)|

+ |S( f ,Pε∪Qε)−S|

< 3ε.

This contradicts to the definition ofε and proves the necessity.

Conversely, assumeS∗( f )=S∗( f )=S. Take arbitraryε > 0. Then there exist partitions

Pε andQε of [a,b] with

S∗( f ,Pε) < S∗( f )+ε

and

S∗( f ,Qε) > S∗( f )−ε.

ConsiderPε∪Qε. Then everyP⊇ Pε ∪Qε is a refinement ofPε andQε. By Lemma

2.2.1,

S∗( f ,P) ≤ S∗( f ,Pε) < S∗( f )+ε

and

S∗( f ,P) ≥ S∗( f ,Qε) > S∗( f )−ε.
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Therefore,

S−ε < S∗( f ,P) ≤ S( f ,P) ≤ S∗( f ,P) < S+ε

or

|S( f ,P)−S| < ε

for everyP ⊇ Pε ∪Qε and every selection of the tags. Thus,f is Riemann inferable

and its integral equals toS. The sufficiency is proved.

Theorem 2.2.4 (Riemann)A function f∈ B(a,b) is integrable in the Riemann sense

iff for everyε > 0 there exists a partition Pε of [a,b] with S∗( f ,Pε)−S∗( f ,Pε) < ε.

Proof. Assumef ∈ R(a,b). By Theorem 2.2.3,S∗( f ) = S∗( f ). Take arbitraryε > 0.

Then there are partitionsP′ε andP′′ε of [a,b] with

S∗( f ,P′ε) < S∗( f )+
ε

2

and

S∗( f ,P′′ε ) > S∗( f )− ε
2
.

DenotePε = P′ε∪P′′ε . SincePε is a refinement ofP′ε andP′′ε , by Lemma 2.2.1,

S∗( f ,Pε)−S∗( f ,Pε) ≤ S∗( f ,P′ε)−S∗( f ,P′′ε )

< S∗( f )+
ε

2
−S∗( f )+

ε

2
= ε.
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Figure 2.2. The difference of upper and lower Darboux sums.

Thus the necessity part of the theorem is proved.

Conversely, assume that for allε > 0 there exists a partitionPε of [a,b] satisfying

S∗( f ,Pε)−S∗( f ,Pε) < ε.

This implies

0≤ S∗( f )−S∗( f ) ≤ S∗( f ,Pε)−S∗( f ,Pε) < ε.

Thus from the arbitrariness ofε > 0, we receiveS∗( f ) = S∗( f ). Then by Theorem

2.2.3, we obtainf ∈ R(a,b).

Geometrically, the difference

S∗( f ,P)−S∗( f ,P) =
n
∑

i=1

(Mi −mi)(xi − xi−1)

for P= {x0, . . . , xn} is illustrated by the shaded region in Figure 2.2.

Theorem 2.2.5 A continuous function on[a,b] is integrable in the Riemann sense on

the interval[a,b], that is, C(a,b) ⊆ R(a,b).

13



Proof. At first note that a continuous function on the interval [a,b] is bounded. So,

C(a,b) ⊆ B(a,b). Take f ∈ C(a,b). Let ε > 0. Since f is continuous on the interval

[a,b] it is uniformly continuous. This means that there isδ > 0 with

| f (x)− f (y)| < ε

b−a

for everyx,y∈ [a,b] satisfying|x−y| < δ. Consider a partitionPε = {x0, . . . , xn} of [a,b]

with the mesh‖Pε‖ < δ. Since a continuous function takes its maximum and minimum

on compact set,

Mi = max
[xi−1,xi ]

f (x) = f (c′i ) and mi = min
[xi−1,xi ]

f (x) = f (c′′i )

for somec′i ,c
′′
i ∈ [xi−1, xi ]. Since|c′i −c′′i | < δ, we obtain

Mi −mi < ε/(b−a).

This implies

S∗( f ,Pε)−S∗( f ,Pε) =
n
∑

i=1

(Mi −mi)(xi − xi−1) <
ε

b−a

n
∑

i=1

(xi − xi−1) = ε.

Hence, by Theorem 2.2.4,f ∈ R(a,b).

A function f : [a,b] → R is said to be increasing iff (x1) ≤ f (x2) wheneverx1 < x2.

Similarly, f : [a,b]→ R is said to be decreasing iff (x1) ≥ f (x2) wheneverx1 < x2. A

function is said to be monotone if it is either increasing or decreasing.

Theorem 2.2.6 A monotone function on[a,b] is integrable in the Riemann sense on

the interval[a,b].

14



Proof. We can assume thatf : [a,b] → R is increasing. Thenf (a) ≤ f (b). If f (a) =

f (b), then f is a constant function and it is integrable in the Riemann sense by Example

2.1.3. Let f (a) < f (b). Takeε > 0 and let

δ =
ε

f (b)− f (a)
.

Take a partitionPε = {x0, . . . , xn} of [a,b] with ‖Pε‖ < δ. If Mi andmi are defined by

(2.2.1), then

Mi −mi ≤ f (xi)− f (xi−1).

Therefore,

S∗( f ,Pε)−S∗( f ,Pε) =
n
∑

i=1

(Mi −mi)(xi − xi−1)

< δ

n
∑

i=1

( f (xi)− f (xi−1)) =
ε( f (b)− f (a))

f (b)− f (a)
= ε.

Hence, by Theorem 2.2.4,f is integrable in the Riemann sense on [a,b]. A condi-

tion, completely describing the integrable in the Riemann sense functions, belongs to

Lebesgue. According to this condition, the Riemann integrable functions are contin-

uous everywhere except a "negligible number" of points. Here, a set of a "negligible

number" of elements is a set of measure zero.

A setE ⊆R is said to be of measure zero if for everyε > 0, there is a countable number

of closed intervals [an,bn], n= 1,2, . . . , such thatE ⊆⋃∞n=1[an,bn] and
∑∞

n=1(bn−an) <

ε.

Example 2.2.7 A countable set A= {x1, x2, . . .} ⊆R is of measure zero. Indeed, for any

15



ε > 0, include the point xn in to interval[an,bn] with bn−an < ε/2n. Then

A⊆
∞
⋃

n=1

[an,bn] and
∞
∑

n=1

(bn−an) ≤ ε
∞
∑

n=1

1
2n = ε.

There are uncountable sets of measure zero as well. For example, a famous Cantor

ternary set is uncountable set of measure zero.

Theorem 2.2.8 (Lebesgue)A function f∈ B(a,b) is Riemann integrable if and only if

it is continuous on[a,b] except the points that form a set of measure zero.

The proof of this theorem can be found in books on measure and integration. The

following is an immediate consequence of Theorem 2.2.8 and useful for proving prop-

erties of Riemann integral.

Corollary 2.2.9 If f ∈ R(a,b), g∈ R(c,d) and c≤ f (x) ≤ d for all x ∈ [a,b], then(g◦

f ) ∈ R(a,b), where(g◦ f )(x) = g( f (x)) for x ∈ [a,b].

Proof. This follows from the fact that the discontinuity points off andg◦ f are same.

By Theorem 2.2.8, the set of discontinuity points off form a set of measure zero. Then

the same holds for (g◦ f ) as well. Thus, (g◦ f ) ∈ R(a,b).

2.3 Properties

Theorem 2.3.1 If f ∈ R(a,b) and c∈ R, then c f∈ R(a,b) and

∫ b

a
c f(x)dx= c

∫ b

a
f (x)dx.

16



Proof. If c= 0 then the theorem is trivial. Assumec, 0. The proof is based on

S(c f,P) = cS( f ,P),

if the same tags are used in the Riemann sums in this equality.Let

S =
∫ b

a
f (x)dx.

Takeε > 0. Consider the partitionPε of [a,b] with

P⊇ Pε ⇒ |S( f ,P)−S| < ε|c|

for all selections of the tags. Then

|S(c f,P)−cS| ≤ |c||S( f ,P)−S| < ε|c||c| = ε.

for all selections of the tags. Hence,c f ∈R(a,b) and the equality in the theorem holds.

Theorem 2.3.2 If f ,g ∈ R(a,b), then f+g ∈ R(a,b) and

∫ b

a
( f (x)+g(x))dx=

∫ b

a
f (x)dx+

∫ b

a
g(x)dx.

Proof. The theorem is based on

S( f +g,P) = S( f ,P)+S(g,P),

17



if the same tags are used in the Riemann sums in this equality.Let

S1 =

∫ b

a
f (x)dx and S2 =

∫ b

a
g(x)dx.

Takeε > 0. Consider the partitionsPε andQε of [a,b] with

P⊇ Pε ⇒ |S( f ,P)−S1| <
ε

2

and

P⊇ Qε ⇒ |S(g,P)−S2| <
ε

2

for all selections of the tags. ThenP⊇ Pε∪Qε implies

|S( f +g,P)−S1−S2| ≤ |S( f ,P)−S1|+ |S(g,P)−S2| <
ε

2
+
ε

2
= ε.

for all selections of the tags. Hence,f + g ∈ R(a,b) and the equality in the theorem

holds.

Theorem 2.3.3 If f ,g ∈ R(a,b), then f g∈ R(a,b).

Proof. By Corollary 2.2.9,f 2 ∈ R(a,b). Then from

f g=
( f +g)2− ( f −g)2

4
,

we conclude thatf g∈ R(a,b).

18



For f ∈ R(a,b) anda≤ c< d ≤ b, we denote

∫ d

c
f (x)dx=

∫ b

a
f |[c,d](x)dx,

where f |[c,d] denotes the restriction off to the interval [c,d].

Theorem 2.3.4 Let a< c< b. Then f∈ R(a,b) iff f |[a,c] ∈ R(a,c) and f|[c,b] ∈ R(c,b).

Furthermore,

∫ b

a
f (x)dx=

∫ c

a
f (x)dx+

∫ b

c
f (x)dx. (2.3.1)

Proof. A subset of a set of measure zero is again a set of measure zero.Therefore, by

Theorem 2.2.8,f ∈ R(a,b) implies f |[a,c] ∈ R(a,c) and f |[c,b] ∈ R(c,b). Conversely, the

union of two sets of measure zero is again a set of measure zero. Then by the same

thorem, f |[a,c] ∈ R(a,c) and f |[c,b] ∈ R(c,b) imply f ∈ R(a,b).

To prove the equality (2.3.1), let

S1 =

∫ c

a
f (x)dx and S2 =

∫ d

c
f (x)dx.

Take anyε > 0. Then there exists partitionsPε andQε of [a,c] and [c,b], respectively,

such that

P⊇ Pε ⇒
∣

∣

∣S
(

f |[a,c] ,P
)−S1

∣

∣

∣ <
ε

2
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and

P⊇ Qε ⇒
∣

∣

∣S
(

f |[c,b],P
)−S2

∣

∣

∣ <
ε

2

for all selections of the tags. ThenPε ∪Qε is a partition of [a,b]. Moreover, if P ⊇

Pε∪Qε, thenP∩ [a,c] ⊇ Pε andP∩ [c,b] ⊇ Qε. Hence, for everyP⊇ Pε∪Qε,

|S( f ,P)−S1−S2| ≤
∣

∣

∣S
(

f |[a,c] ,P∩ [a,c]
)−S1

∣

∣

∣+

∣

∣

∣S
(

f |[c,b],P∩ [c,b]
)−S2

∣

∣

∣ < ε

for all selections of the tags. This proves the equality (2.3.1).

Theorem 2.3.5 If f ∈ R(a,b) and f(x) ≥ 0 for all a ≤ x≤ b, then

∫ b

a
f (x)dx≥ 0.

Proof. This follows from S∗( f ,P) ≥ S∗( f ,P) ≥ 0 for everyl partitionsP of [a,b].

Hence,S∗( f ) = S∗( f ) ≥ 0.

Corollary 2.3.6 If f ,g∈ R(a,b) and f(x) ≤ g(x) for all a ≤ x≤ b, then

∫ b

a
f (x)dx≤

∫ b

a
g(x)dx.

Proof. This follows from the application of Theorem 2.3.5 to the functiong− f

Corollary 2.3.7 If f ∈ R(a,b), then| f | ∈ R(a,b) and

∣

∣

∣

∣

∣

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤
∫ b

a
| f (x)|dx.
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Proof. By Corollary 2.2.9, we have| f | ∈ R(a,b). Then use

−| f (x)| ≤ f (x) ≤ | f (x)|

and apply Corollary 2.3.6.

Theorem 2.3.8 (Mean-value theorem for integrals)If f ∈ C(a,b), then there exists

a≤ c≤ b such that

∫ b

a
f (x)dx= f (c)(b−a).

Proof. Let

M =max{ f (x) : a≤ x≤ b} and m=min{ f (x) : a≤ x≤ b},

which exist becausef is continuous on [a,b]. By Corollary 2.3.6,

m(b−a) ≤
∫ b

a
f (x)dx≤ M(b−a),

or

m≤ 1
b−a

∫ b

a
f (x)dx≤ M.

Then by intermediate value theorem, there existsa≤ c≤ b such that

f (c) =
1

b−a

∫ b

a
f (x)dx.

This proves the theorem.
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For f ∈ R(a,b), by Theorem 2.3.4, we can define the function

F(x) =
∫ x

a
f (t)dt, a≤ x≤ b. (2.3.2)

This function has the following properties.

Theorem 2.3.9 (First fundamental theorem of calculus)For f ∈R(a,b) define F by

(2.3.2). If f is continuous at the point c∈ [a,b], then F is differentiable at the point c

and F′(c) = f (c).

Proof. Take anyε > 0. Sincef is continuous atc, there existsδ > 0 such that

f (c)−ε < f (x) < f (c)+ε

whenever|x−c| < δ andx ∈ [a,b]. Takeh with |h| < δ andc+h ∈ [a,b]. Then

∫ c+h

c
( f (c)−ε)dx≤

∫ c+h

c
f (x)dx≤

∫ c+h

c
( f (c)+ε)dt.

This implies

( f (c)−ε)h≤ F(c+h)−F(c) ≤ ( f (c)+ε)h.

Therefore,

∣

∣

∣

∣

∣

F(c+h)−F(c)
h

− f (c)
∣

∣

∣

∣

∣

< ε.

This means thatF is differentiable atc andF′(c) = f (c).

Theorem 2.3.10 (Second fundamental theorem of calculus)If f : [a,b] → R is dif-
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ferentiable and f′ ∈ R(a,b), then

∫ b

a
f ′(x)dx= f (b)− f (a). (2.3.3)

Proof. Consider any partitionP = {x0, . . . , xn} of [a,b]. By mean-value theorem of

differentiation, there existsci ∈ (xi−1, xi) such that

f (xi)− f (xi−1) = f ′(ci)(xi − xi−1), i = 1, . . . ,n.

Therefore,

n
∑

i=1

f ′(ci)(xi − xi−1) =
n
∑

i=1

( f (xi)− f (xi−1)) = f (b)− f (a).

Then from

S∗( f ′,P) ≤
n
∑

i=1

f ′(ci)(xi − xi−1) ≤ S∗( f ′,P),

we obtain

S∗( f ′,P) ≤ f (b)− f (a) ≤ S∗( f ′,P),

implying

S∗( f ′) ≤ f (b)− f (a) ≤ S∗( f ′).

Since f ′ ∈ R(a,b), we haveS∗( f ′) = S∗( f ′). This implies (2.3.3).

Theorem 2.3.11 (Integration by parts) If f and g are differentiable on[a,b] and
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f ′,g′ ∈ R(a,b), then

∫ b

a
f (x)g′(x)dx= f (b)g(b)− f (a)g(a)−

∫ b

a
f ′(x)g(x)dx.

Proof. The proof is based on the product rule (f g)′ = f ′g+ f g′ of differentiation.

Applying Theorem 2.3.10, we obtain

∫ b

a
f ′(x)g(x)dx+

∫ b

a
f (x)g′(x)dx=

∫ b

a
( f g)′(x)dx= f (b)g(b)− f (a)g(a).

This proves the theorem.

Theorem 2.3.12 (Change of variable)If g is differentiable on[a,b], g′ ∈ C(a,b) and

f ∈C(R(g)), where R(g) is the range of g, then

∫ g(b)

g(a)
f (x)dx=

∫ b

a
f (g(t))g′(t)dt.

Proof. Define

G(t) =
∫ t

a
f (g(x))g′(x)dx, a≤ t ≤ b,

and

F(u) =
∫ u

g(a)
f (x)dx, u∈ R(g).

By Theorem 2.3.9,

G′(t) = f (g(t))g′(t), a≤ t ≤ b,

24



½

3

2

1

0 1³

f

1

f
2

f

3

Figure 2.3. Functionsfn from Example 2.4.1.

and

F′(u) = f (u), u ∈ R(g).

Therefore,G′(t) = (F ◦ g)′(t), a ≤ t ≤ b. ThenG(t)− F(g(t)) = const., a ≤ t ≤ b. For

t = a, we haveG(a)− F(g(a)) = 0. This impliesG(t)− F(g(t)) = 0, a ≤ t ≤ b. Then

G(b)−F(g(b)) = 0. Theorem is proved.

2.4 Dependence on Parameter

Is it possible to interchange the limit and integral, in other words, if { fn} is a sequence

of functions inR(a,b) converging pointwise to a functionf : [a,b] → R asn→∞ for

everya≤ x≤ b, can we assert that

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a
f (x)dx?

The following example demonstrates that we cannot.

25



Example 2.4.1 Define

fn(x) =



















































2n2x if 0≤ x≤ 1/2n,

2n−2n2x if 1/2n< x≤ 1/n,

0 if 1/n< x≤ 1.

The graphs of f1, f2 and f3 are given. The function fn increases on[0,1/2n] linearly,

gets a peak at x= 1/2n, decreases on[1/2n,1/n] linearly and vanishes on[1/n,1].

The graph of fn and x-axis form a triangle, that has the area to be1/2. Therefore,

∫ 1

0
fn(x)dx=

1
2
.

On the other hand,limn→∞ fn(x) = f (x) = 0 for all 0 ≤ x ≤ 1 because1/n→ 0 and

fn(0)= 0. Thus,

lim
n→∞

∫ 1

0
fn(x)dx=

1
2
, 0=

∫ 1

0
f (x)dx.

Therefore, an additional condition is required for the interchange of the limit and inte-

gral. This condition is a uniform convergence.

Definition 2.4.2 A sequence of functions fn : [a,b] → R is said to be uniformly con-

vergent to f: [a,b] → R if for everyε > 0, there exists a positive integer N such that

for all n > N and for all a≤ x≤ b, | fn(x)− f (x)| < ε.

Theorem 2.4.3 (Interchange of limit and integral) If a sequence{ fn} of functions in

R(a,b) converges uniformly to f on[a,b] as n→∞, then f∈ R(a,b) and

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a
f (x)dx.
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Proof. Take anyε > 0. Sincefn converges tof uniformly, there isN such that for all

n> N,

fn(x)−ε ≤ f (x) ≤ fn(x)+ε, for all a≤ x≤ b.

Therefore,f ∈ B(a,b) and

∫ b

a
( fn(x)−ε)dx≤ S∗( f ) ≤ S∗( f ) ≤

∫ b

a
( fn(x)+ε)dx. (2.4.1)

This implies

0≤ S∗( f )−S∗( f ) ≤ 2ε(b−a).

Sinceε > 0 is an arbitrary positive number, we conclude thatS∗( f ) = S∗( f ), i.e., f ∈

R(a,b). Moreover, from (2.4.1), for everyn> N, we have

∣

∣

∣

∣

∣

∫ b

a
fn(x)dx−

∫ b

a
f (x)dx

∣

∣

∣

∣

∣

≤ ε(b−a).

Hence the limit in the theorem holds.

Theorem 2.4.4 (Continuity under the integral) Let f ∈C([a,b] × [c,d]). Define

F(y) =
∫ b

a
f (x,y)dx, c≤ y≤ d.

Then F∈C(c,d), that is, for all y0 ∈ [c,d],

lim
y→y0

∫ b

a
f (x,y)dx=

∫ b

a
lim
y→y0

f (x,y)dx=
∫ b

a
f (x,y0)dx.
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Proof. The continuity off on [a,b] × [c,d] implies its uniform continuity. Therefore,

for everyε > 0, there existsδ > 0 such that

| f (x,y)− f (x0,y0)| < ε

b−a

for all pairs (x,y) ∈ [a,b] × [c,d] satisfying

(x− x0)2
+ (y−y0)2 < δ2.

This holds ifx= x0 and|y−y0| < δ as well. Therefore,

|F(y)−F(y0)| ≤
∫ b

a
| f (x,y)− f (x,y0)|dx≤ ε.

This means thatF is continuous at arbitraryy0. HenceF ∈C(c,d).

Theorem 2.4.5 (Interchange of differentiation and integration) Assume that a func-

tion f : [a,b]× [c,d] is so that f(·,y) ∈R(a,b) for all y ∈ [c,d] and f′y ∈C([a,b]× [c,d]).

Then the function

F(y) =
∫ b

a
f (x,y)dx, c≤ y≤ d.

is differentiable on[c,d] and

F′(y) =
∫ b

a
f ′y(x,y)dx, c≤ y≤ d.
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Proof. Take anyy0 ∈ [c,d] andy ∈ [c,d] \ {y0}. By mean value theorem of differentia-

tion, we have

F(y)−F(y0)
y−y0

=

∫ b

a

f (x,y)− f (x,y0)
y−y0

dx=
∫ b

a
f ′y(x,z)dx,

for some numberz betweeny and y0. Here,z→ y0 when y→ y0. Therefore. by

continuity of f ′y on [a,b] × [c,d], we can apply Theorem 2.4.4 to the last integral and

complete the proof.

Theorem 2.4.6 (Interchange the order of integration)Let f ∈ C([a,b] × [c,d]) and

define

F(y) =
∫ b

a
f (x,y)dx, c≤ y≤ d,

and

G(x) =
∫ d

c
f (x,y)dy, a≤ x≤ b.

Then F∈ R(c,d) and G∈ R(a,b) and

∫ d

c
F(y)dy=

∫ b

a
G(x)dx.

Respectively,

∫ b

a

(

∫ d

c
f (x,y)dy

)

dx=
∫ d

c

(

∫ b

a
f (x,y)dx

)

dy.
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Proof. According to Theorem 2.4.4, we have

F ∈C(c,d) ⊆ R(c,d)

and

G ∈C(a,b) ⊆ R(a,b).

Define functionsF̄ : [a,b]→ R andḠ : [a,b]→ R by

F̄(t) =
∫ t

a

(

∫ d

c
f (x,y)dy

)

dx,

and

Ḡ(t) =
∫ d

c

(

∫ t

a
f (x,y)dx

)

dy.

By Theorems 2.4.5 and 2.3.9,̄F andḠ are differentiable and

F′0(t) =G′0(t) =
∫ d

c
f (t,y)dy.

Hence,F̄(t) = Ḡ(t) for all a≤ t ≤ b sinceF̄(a) = Ḡ(a). This impliesF̄(b) = Ḡ(b). This

proves the theorem.
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Chapter 3

Improper Riemann Integral

3.1 First Kind Improper Integrals

Proper Riemann integral can be extended to unbounded integrands on unbounded in-

tervals in the following way.

Definition 3.1.1 (First kind improper integral) Let I be an interval of one the form

[a,∞) or (−∞,b] and let f be a function on the interval I such that f is properly

integrable in the Riemann sense on every compact subinterval of I. Denote

∫ ∞

a
f (x)dx= lim

b→∞

∫ b

a
f (x)dx if I = [a,∞),

and

∫ b

−∞
f (x)dx= lim

a→−∞

∫ b

a
f (x)dx if I = (−∞,b].

These are called first kind improper integrals of f on I. If therespective limit exists,then

the improper integral is said to be convergent. Otherwise, it is said to be divergent. In

the convergent cases f is said to be improperly Riemann integrable on I.

First kind Improper integrals are continuous analogs of series. Therefore, many theo-

rems about series valid for them as well.

Theorem 3.1.2 (Comparison test for improper integrals)Assume that either I= [a,∞)
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or I = (−∞,b], f and g are functions on the interval I that are properly Riemann on

every compact subinterval of I, and

0≤ | f (x)| ≤ g(x), x ∈ I ,

If the improper integral of g on I is convergent, then the improper integral of f on I

is also convergent. If the improper integral of| f | on I is divergent, then the improper

integral of g on I is also divergent.

Proof. Consider the caseI = [a,∞). Denote

F(y) =
∫ x

a
| f (x)|dx and G(y) =

∫ y

a
g(x)dx, y≥ a.

Here, F and G are increasing functions withF(y) ≤ G(y) and limy→∞G(y) exists.

Therefore,F is an increasing and bounded function on [a,∞). By monotone bounded

convergence theorem, limy→∞F(y) exists. Thus,

∫ ∞

a
| f (x)|dx= lim

y→∞
F(y)

is convergent. Define

f +(x) =































f (x) if f (x) ≥ 0,

0 if f (x) < 0

and f −(x) =































− f (x) if f (x) ≤ 0,

0 if f (x) > 0

The following relations are obvious:

f (x) = f +(x)− f −(x), 0≤ f +(x) ≤ | f (x)|, 0≤ f −(x) ≤ | f (x)|.
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Thus

∫ ∞

a
f +(x)dx and

∫ ∞

a
f −(x)dx

are convergent. This implies that

∫ ∞

a
f (x)dx= lim

y→∞

∫ y

a
f +(x)dx− lim

y→∞

∫ y

a
f −(x)dx

is also convergent. The caseI = (∞,b] can be proved similarly.

Theorem 3.1.3 (Integral test) Let f : [1,∞)→ R be a positive decreasing function.

Then the improper integral

∫ ∞

1
f (x)dx

converges if and only if the series
∑∞

n=1 f (n) converges.

Proof. Introduce the functionsg andh by

g(x) = f (n) andh(x) = f (n+1) if n≤ x< n+1, n= 1,2, . . . .

Then

0≤ h(x) ≤ f (x) ≤ g(x), x≥ 1.

Therefore, it remains to apply Theorem 3.1.2 to complete theproof.
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Example 3.1.4 It is known that the series

∞
∑

n=1

1
np

converges if and only if p> 1. Therefore, by Theorem 3.1.3, the improper integral

∫ ∞

1

dx
xp

converges if and only if p> 1.

3.2 Second Kind Improper Integrals

Definition 3.2.1 (2nd kind improper integral) Let I be an interval of one the form

[a,b) or (a,b] and let f be a function on the interval I such that f is unbounded on I

but properly Riemann integrable on every compact subinterval of I. Denote

∫ b

a
f (x)dx= lim

c→b−

∫ c

a
f (x)dx if I = [a,b),

and

∫ b

a
f (x)dx= lim

c→a+

∫ b

c
f (x)dx if I = (a,b].

These are called second kind improper integral of f on I. If the respective limit exists,

the improper integral is said to be convergent. Otherwise, it is said to be divergent. In

the convergent cases f is said to be improperly Riemann integrable on I.

An analog of Theorem 3.1.2 is valid for second kind improper integrals as well in

the form
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Theorem 3.2.2 (Comparison test for improper integrals)Assume that either I= [a,b)

or I = (a,b], f and g are functions on I that are properly Riemann on every compact

subinterval of I, and

0≤ | f (x)| ≤ g(x), x ∈ I ,

If the improper integral of g on I is convergent, then the improper integral of f on I

is also convergent. If the improper integral of| f | on I is divergent, then the improper

integral of g on I is also divergent.

Proof. This is similar to the Theorem 3.1.2.

Example 3.2.3 Consider the second kind improper integral

∫ 1

0

dx
xp ,

noticing that forp≤ 0 it is a proper integral and has a finite value. If p= 1, then

∫ 1

0

dx
x
= lim

y→0+

∫ 1

y

dx
x
= lim

y→0+
ln x|1y = − lim

y→0+
lny=∞.

Therefore, the given improper integral diverges for p= 1. Let p> 0 and p, 0. Then

∫ 1

0

dx
xp = lim

y→0+

∫ 1

y

dx
xp = lim

y→0+

x1−p

1− p

∣

∣

∣

∣

1

y
= lim

y→0+

1−y1−p

1− p
.

This limit equals to1/(1− p) if 0 < p < 1 and to∞ if p > 1. Thus the given integral

converges iff p< 1.
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In case if a function has a finite number of improperness of thefirst or second kind, then

the intervalI is devided into finite number of subintervals so that the given function

has a single improperness on each subinterval. If the improper integrals of the given

function on all these subintervals are convergent, then thetotal improper integral is said

to be convergent. If at least one of them is divergent, then the total improper integral is

said to be divergent.

Example 3.2.4 The improper integral

∫ ∞

0

dx
xp

is divergent for all values of p. Indeed it has two improperness and can be divided into

two improper integrals with single improperness:

∫ ∞

0

dx
xp =

∫ 1

0

dx
xp +

∫ ∞

1

dx
xp .

By Example 3.1.4, the second improper integral in the right side is divergent if p≤ 1,

and, by Example 3.2.3, the first improper integral in the right side is divergent if p≥ 1.

Anyway, the total improper integral is divergent.

3.3 Absolute and Conditional Convergence

According to Theorems 3.1.2 and 3.2.2, the convergence of the first or second kinds

improper integrals of| f | implies the convergence of the respective improper integral for

f . But the converse is not always true. Respectively, we give the following definition.

Definition 3.3.1 A first or second kind improper integral of the function f is said to

be absolutely convergent if the respective improper integral of | f | converges. If the
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improper integral of f converges while the respective improper integral of| f | diverges,

then the improper integral of f is said to be conditionally convergent.

Example 3.3.2 A convergent improper integral of a positive function is obviously ab-

solutely convergent since in this case f= | f |. A conditionally convergent improper

integral can be constructed by use of relationship between improper integrals and se-

ries.

Take, for example, the conditionally convergent numericalseries

∞
∑

n=1

(−1)n/n.

Consider the improper integral

∫ ∞

1
f (x)dx,

where the function f: [1,∞)→ R is defined by

f (x) =
(−1)n

n
if x ∈ [n,n+1), n= 1,2, . . .

Then

∫ ∞

1
f (x)dx=

∞
∑

n=1

(−1)n

n

and

∫ ∞

1
| f (x)|dx=

∞
∑

n=1

1
n
.
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Therefore, given improper integral is conditionally convergent.
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Chapter 4

The Riemann–Stieltjes Integral

4.1 Definition

Assume that−∞ < a< b<∞. The definition of the Riemann–Stieltjes integral differs

from the definition of Riemann integral by replacement of thelinear functionu(x) = x,

a≤ x≤ b, with a general functionu on [a,b].

Let f ,u∈ B(a,b) and consider a partitionP= {x0, . . . , xn} of [a,b]. Define the Riemann–

Stieltjes sum similar to Riemann sums by

S( f ,u,P) =
n
∑

i=1

f (ci)(u(xi)−u(xi−1)),

whereci , . . . ,cn are the tags of the partitionP.

Definition 4.1.1 A function f∈ B(a,b) is said to be integrable in the Riemann-Stieltjes

sense with respect to u∈ B(a,b) or, briefly, integrable if there is a number S such that

for all ε > 0 there is a partition Pε of [a,b] with

|S( f ,u,P)−S| < ε

for every P⊇ Pε and for every selection of tags. This number S is called a Riemann–

Stieltjes integral of f with respect to u and denoted by

∫ b

a
f (x)du(x).
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The functions f and u are referred as integrand and integrator, respectively. Conven-

tionally,

∫ a

b
f (x)du(x) = −

∫ b

a
f (x)du(x),

Comparing the definitions of Riemann and Riemann–Stieltjesintegrals, it is easily

seen that the integral off in the Riemann sense off is the Riemann–Stieltjes sense

with respect to the functionu(x) = x, a≤ x ≤ b. Notice that unlike the integral in the

Riemann sense,

∫ a

a
f (x)du(x) , 0

sinceu may have a discontinuity ata.

The collection of all pairs (f ,u) of functions f ,u ∈ B(a,b), for which the Riemann–

Stieltjes integral off with respect tou exists, is denoted byRS(a,b). For every

f ∈ B(a,b) and for a constant functionu on [a,b], we have (f ,u) ∈ RS(a,b) because

S( f ,u,P) = 0 for every partitionP of [a,b] and for all tags. At the same time, (f ,u) <

RS(a,b) if f is Dirichlet function from Example 2.1.4 andu(x)= x. Therefore,RS(a,b)

is not a rectangle (a set of the formA×B) in B(a,b)×B(a,b). Therefore, it is important

to find a sufficiently large rectangleA×B in B(a,b)×B(a,b) such thatA×B⊆RS(a,b).

4.2 Properties

Properties of the integrals in the Riemann–Stieltjes sensein comparison to properties

ofintegral in the Riemann sense can be devided into three groups:
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(a) Those which are same as the respective property of Riemann integral.

(b) Those which essentially generalize the respective property of Riemann integral.

(c) Those which have not an analog in Riemenn integration.

The next three theorems are same as in Riemann integration.

Theorem 4.2.1 If ( f ,u) ∈ RS(a,b) and c∈ R, then(c f,u) ∈ RS(a,b) and

∫ b

a
c f(x)du(x) = c

∫ b

a
f (x)du(x).

Theorem 4.2.2 If ( f ,u), (g,u) ∈ RS(a,b), then( f +g,u) ∈ RS(a,b) and

∫ b

a
( f (x)+g(x))du(x) =

∫ b

a
f (x)du(x)+

∫ b

a
g(x)du(x).

Theorem 4.2.3 Let a< c < b. Then( f ,u) ∈ RS(a,b) if and only if ( f |[a,c],u|[a,c]) ∈

RS(a,c) and( f |[c,b],u|[c,b]) ∈ R(c,b). Furthermore,

∫ b

a
f (x)du(x) =

∫ c

a
f (x)du(x)+

∫ b

c
f (x)du(x).

Theorems 4.2.1 and 4.2.2 are valid with regards tou as well which have no analog in

Riemann integration.

Theorem 4.2.4 If ( f ,u) ∈ RS(a,b) and c∈ R, then( f ,cu) ∈ RS(a,b) and

∫ b

a
f (x)d(cu(x)) =

∫ b

a
f (x)du(x).
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Theorem 4.2.5 If ( f ,u), ( f ,v) ∈ RS(a,b), then( f ,u+v) ∈ RS(a,b) and

∫ b

a
f (x)d(u(x)+v(x)) =

∫ b

a
f (x)du(x)+

∫ b

a
f (x)dv(x).

The next theorem is regarded as the integration by parts formula for the Riemann–

Stieltjes integrals and it is an essential generalization of the integration by parts formula

for the Riemann integral.

Theorem 4.2.6 If ( f ,u) ∈ RS(a,b), then(u, f ) ∈ RS(a,b) and

∫ b

a
f (x)du(x)+

∫ b

a
u(x)d f(x) = f (b)u(b)− f (a)u(a).

Proof. Take arbitraryε > 0. Let Pε = {x0, . . . , xn} be a partition of [a,b] with P ⊇ Pε

implies

∣

∣

∣

∣

∣

S( f ,u,P)−
∫ b

a
f (x)du(x)

∣

∣

∣

∣

∣

< ε.

Consider arbitrary tagsc1, . . . ,cn of P. Then

S(u, f ,P) =
n
∑

i=1

u(ci) f (xi)−
n
∑

i=1

u(ci) f (xi−1)

and

f (x)u(x)|ba =
n
∑

i=1

f (xi)u(xi)−
n
∑

i=1

f (xi−1)u(xi−1).
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Therefore,

f (x)u(x)|ba−S(u, f ,P) =
n
∑

i=1

f (xi)(u(xi)−u(ci))+
n
∑

i=1

f (xi−1)(u(ci)−u(xi−1)).

One can see that the right side is the Riemann–Stieltjes sumS( f ,u,Qε) for the partition

Qε = {x0,c1, x1,c2, . . . ,cn, xn},

if the tags are selected asx0, x1, x1, . . . , xn−1, xn−1, xn. HereQε ⊇ P⊇ Pε. Therefore,

∣

∣

∣

∣

∣

f (x)u(x)|ba−S(u, f ,P)−
∫ b

a
f (x)du(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

S( f ,u,Qε)−
∫ b

a
f (x)du(x)

∣

∣

∣

∣

∣

< ε,

proving the theorem.

The next theorem is a reduction formula of the Riemann–Stieltjes integral to the Rie-

mann integral and has no analog in Riemann integration.

Theorem 4.2.7 Assume that f∈ R(a,b) and u is differentiable on[a,b] with u′ ∈

R(a,b). Then( f ,u) ∈ RS(a,b) and

∫ b

a
f (t)du(x) =

∫ b

a
f (x)u′(x)dx.

Proof. Take any partitionP= {x0, . . . , xn} of [a,b]. By mean value theorem of differen-

tiation,

u(xi)−u(xi−1) =
∫ xi

xi−1

u′(x)dx.
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Therefore,

S( f ,u,P) =
n
∑

i=1

f (ci)
∫ xi

xi−1

u′(x)dx=
n
∑

i=1

∫ xi

xi−1

f (ci)u
′(x)dx

for the arbitrary tagsc1, . . . ,cn of P. This implies

∣

∣

∣

∣

∣

S( f ,u,P)−
∫ b

a
f (x)u′(x)dx

∣

∣

∣

∣

∣

≤
n
∑

i=1

∫ xi

xi−1

| f (ci)− f (x)||u′(x)|dx

If M = sup[a,b] |u′(x)|, then

∣

∣

∣

∣

∣

S( f ,u,P)−
∫ b

a
f (x)u′(x)dx

∣

∣

∣

∣

∣

≤ M
n
∑

i=1

∫ xi

xi−1

| f (ci)− f (x)|dx

≤ M(S∗( f ,P)−S∗( f ,P)),

Now take anyε > 0 and choose partitionPε of [a,b], satisfying

S∗( f ,Pε)−S∗( f ,Pε) <
ε

M
.

Then for everyP⊇ Pε, we have

∣

∣

∣

∣

∣

S( f ,u,P)−
∫ b

a
f (x)u′(x)dx

∣

∣

∣

∣

∣

≤ M(S∗( f ,P)−S∗( f ,P))

≤ M(S∗( f ,Pε)−S∗( f ,Pε)) < ε.

This proves the theorem.

Finally, we present mean value theorems for Riemann–Stieltjes integrals.

Theorem 4.2.8 If f ∈ C(a,b) and u is an increasing function on[a,b], then there is
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c ∈ [a,b] such that

∫ b

a
f (x)du(x) = f (c)(u(b)−u(a)).

Proof. . The theorem is trivial ifu is a constant function. Therefore we assume

u(b) > u(a). Since f ∈C(a,b), we can let

M = sup{ f (x) : a≤ x≤ b}

and

m= inf{ f (x) : a≤ x≤ b}.

Then fromm≤ f (x) ≤ M we obtain

m(u(b)−u(a)) ≤
∫ b

a
f (x)du(x) ≤ M(u(b)−u(a)).

This implies

m≤ 1
u(b)−u(a)

∫ b

a
f (x)du(x) ≤ M.

Therefore, by intermediate value theorem, there isc ∈ [a,b] such that

f (c) =
1

u(b)−u(a)

∫ b

a
f (x)du(x).

This proves the theorem.

Theorem 4.2.9 If f is an increasing function on[a,b] and u∈ C(a,b), then there is
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c ∈ [a,b] with

∫ b

a
f (x)du(x) = f (a)(u(c)−u(a))+ f (b)(u(b)−u(c)).

Proof. By Theorem 4.2.6,

∫ b

a
f (x)du(x) = f (b)u(b)− f (a)u(a)−

∫ b

a
u(x)d f(x).

By Theorem 4.2.8, there exists ofc ∈ [a,b] such that

∫ b

a
u(x)d f(x) = u(c)( f (b)− f (a)).

Combining, we obtaion

∫ b

a
f (x)du(x) = f (b)u(b)− f (a)u(a)−u(c)( f (b)− f (a))

= f (a)(u(c)−u(a))+ f (b)(u(b)−u(c)).

This proves the theorem.

4.3 Existence

Assume thatu is an increasing function on [a,b] and f ∈ B(a,b). Consider a partition

P= {x0, . . . , xn} and let

Mi = sup{ f (x) : xi−1 ≤ x≤ xi}, i = 1. . . . ,n,
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and

mi = inf { f (x) : xi−1 ≤ x≤ xi}, i = 1. . . . ,n.

Define the upper and lower Darboux sums by

S∗( f ,u,P) =
n
∑

i=1

Mi(u(xi)−u(xi−1))

and

S∗( f ,u,P) =
n
∑

i=1

mi(u(xi)−u(xi−1)).

Let

S∗( f ,u) = inf
P

S∗( f ,u,P)

and

S∗( f ,u) = sup
P

S∗( f ,u,P).

Here infimum and supremum are over all partitionsP of [a,b]. Theorems similar to

Theorems 2.2.3 and 2.2.4 can be proved for Riemann–Stieltjes integral as well.

Theorem 4.3.1 (Darboux) Assume that u is an increasing function on[a,b] and f ∈

B(a,b). Then( f ,u) ∈RS(a,b) and its Riemann-Stieltjes integral equals to S if and only

if S∗( f ) = S∗( f ) = S .

Theorem 4.3.2 (Riemann)Let u be an increasing function on[a,b] and f ∈ B(a,b).
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Then( f ,u) ∈ RS(a,b) if and only if for everyε > 0 there exists a partition Pε of [a,b]

such that S∗( f ,Pε)−S∗( f ,Pε) < ε.

The proof of these theorems are similar to the proofs of Theorems 2.2.3 and 2.2.4. An

analog of Theorems 2.2.5 can also be proved for Riemann–Stieltjes integral. For this

we need in the following.

Definition 4.3.3 A function u: [a,b]→ R is said to have a bounded variation if it can

be shown as a difference of two increasing functions on[a,b]. The collection of all

functions of bounded variation on[a,b] is denoted by BV(a,b).

Theorem 4.3.4C(a,b)×BV(a,b) ⊆ RS(a,b) and BV(a,b)×C(a,b) ⊆ RS(a,b).

Proof. By Theorem 4.2.6, it suffices to prove onlyC(a,b)×BV(a,b) ⊆ RS(a,b) and

by Definition 4.3.3 and Theorems 4.2.4 and 4.2.5 it suffices to prove that iff ∈C(a,b)

andu is increasing, then (f ,u) ∈ RS(a,b). The proof in this case is similar to the proof

of Theotrem 2.2.5.

Remark 4.3.5 While everything in Riemann–Stieltjes integration is going parallel to

Riemann integration, there are issues in Riemann–Stieltjes integration which do not

arise in Riemann integration. One of them is the following. The points of discontinuity

of f and u must be consistent in order the Riemann–Stieltjes integral

∫ b

a
f (x)du(x)

to be existent. More specifically, if u is an increasing function on [a,b] and f ∈ B(a,b)

so that f and u have a right discontinuity at the same number c∈ [a,b), that is, f(c) ,
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f (c+) and u(c) , u(c+), then the Riemann–Stieltyes integral of f with respect to u

does not exist. The same happens if f and u have a left discontinuity at the same

number c∈ (a,b], that is, f(c) , f (c−) and u(c) , u(c−). This problem does not arise

in Riemann integration since in this case u(x) = t is a continuous function.

4.4 Riesz Representation

One of important applications of Riemann–Stieltyes integration is a representation of

continuous linear functionals in the spaceC(a,b). More specifically, we give the fol-

lowing.

Definition 4.4.1 A function F from a Banach space E toR is said to be additive func-

tional if

F(x+y) = F(x)+F(y) for every x,y ∈ E,

homogenous functional if

F(ax) = aF(x) for every x∈ E and a∈ R,

and a linear functional if it is additive and homogenous.

A linear functional may be continuous or not. A simple necessary and sufficient con-

dition for continuity of the linear functionalF : E→ R is the existence ofc> 0 such

that

|F(x)| ≤ c‖x‖ for all x ∈ E.
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To prove that a given functional is linear and continuous it is sufficient to prove the

above mentioned inequality and the additivity because the homogeneity is a conse-

quence from them.

Example 4.4.2 Fix y= (y1, . . . ,yk) ∈ Rk. The function

F(x) =
k
∑

i=1

xiyi , x= (x1, . . . , xk) ∈ Rk, (4.4.1)

is a continuous linear functional onRk. The linearity can be verified easily. The

continuity follows from the Cauchy–Schwarz inequality

∣

∣

∣

∣

∣

k
∑

i=1

xiyi ,

∣

∣

∣

∣

∣

≤

√

√

√ k
∑

i=1

x2
i

√

√

√ k
∑

i=1

y2
i ,

where

‖x‖ = ‖(x1, . . . , xk)‖ =

√

√

√ k
∑

i=1

x2
i

is the Euclidean norm inRk.

It turns out that every linear continuous functional onRk can be described in the form

(4.4.1) for some y= (y1, . . . ,yk) ∈ Rk. For this, let G be any linear functional onRk.

Denote

e1 = (1,0, . . . ,0), e2 = (0,1, . . . ,0), . . . , ek = (0,0, . . . ,1).

Define

y1 =G(e1),y2 =G(e2), . . . ,yk =G(ek).
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Then for every x= (x1, . . . , xk) ∈ Rk,

G(x) =G
( k
∑

i=1

xiei

)

=

k
∑

i=1

xiG(ei) =
k
∑

i=1

xiyi .

This proves the representation (4.4.1) for G. Moreover, this proves that every linear

functional onRk is continuous.

Following this example remind that the Riemann–Stieltjes integral

∫ b

a
f (x)du(x)

is linear functional inf ∈ C(a,b) for fixed u ∈ BV(a,b), and inu ∈ BV(a,b) for fixed

f ∈C(a,b). Note thatC(a,b) is a Banach space with the norm

‖ f ‖C =max{ f (x) : a≤ x≤ b}.

Also, for u ∈ BV(a,b) we can define its variation on [a,b] by

V( f ;a,b) = sup
P

n
∑

i=1

(u(xi)−u(xi−1),

where supremum is taken over all partitionsP= {x0, . . . , xn} of [a,b]. ThenBV(a,v) is

a Banach space with the norm

‖u‖BV = |u(a)|+V( f ;a,b).

Lemma 4.4.3 For every( f ,u) ∈C(a,b)×BV(a,b), the following inequality holds:

∣

∣

∣

∣

∣

∫ b

a
f (x)du(x)

∣

∣

∣

∣

∣

≤ ‖ f ‖C‖u‖BV. (4.4.2)
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Proof. For the partitionP= {x0, . . . , xn} of [a,b], we have

|S( f ,u,P)| ≤ ‖ f ‖C
n
∑

i=1

|u(xi)−u(xi−1)| ≤ ‖ f ‖CV(u;a,b).

Therefore this inequality holds for the limit as well, producing (4.4.2).

Example 4.4.4 Fix u ∈ BV(a,b). Then the function

F( f ) =
∫ b

a
f (x)du(x), f ∈C(a,b), (4.4.3)

is a continuous linear functional on C(a,b). The linearity was mentioned previously.

The continuity follows from the inequality (4.4.2).

Example 4.4.5 Fix f ∈C(a,b). Then the function

F(u) =
∫ b

a
f (x)du(x), u ∈ BV(a,b), (4.4.4)

is a continuous linear functional on BV(a,b). The linearity was mentioned previously.

The continuity follows from the inequality (4.4.2).

The following theorem stating the form of linear continuousfunctionals inC(a,b) due

to Riesz is spectacular.

Theorem 4.4.6 (Riesz)Every continuous linear functional F on the Banach space

C(a,b) has a representation in the form of Riemann–Stieltjes integral (4.4.3) for some

u ∈ BV(a,b).
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Remark 4.4.7 It should be noticed that while every continuous linear functional on

C(a,b) can be represented in the form (4.4.3) as a Riemann–Stieltjes integral, the same

does not hold about representation (4.4.4) on BV(a,b).
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Chapter 5

Kurzweil–Henstock Integral

5.1 Definition

Riemann integral was defined in two steps for the proper and improper cases. Making

a change in the definition of the Riemann integral, we can jointhese cases into one and,

additionally, cover all the functions that can be integrable in general. To present this

extension let us start from the easy case of bounded interval[a,b] for −∞ < a< b<∞

and consider the following condition for the proper Riemannintegrability.

Theorem 5.1.1 A function f∈ B(a,b) is integrable in the Riemann sense on[a,b] and

its Riemann integral equals to S if and only if for everyε > 0, there existsδ > 0 such

that for every partition P of[a,b] with ‖P‖ < δ,

S( f ,P) =
n
∑

i=1

f (ci)(xi − xi−1) (5.1.1)

holds independently on the tags.

Proof. We first prove the sufficiency part of the theorem. Takeε > 0 and letδ > 0 be so

that (5.1.1) holds for every partitionP= {x0, . . . , xn} of [a,b] with ‖P‖< δ independently

on the tags. Denote byPε one of such partitions. ThenP ⊇ Pε implies ‖P‖ < δ.

Therefore, (5.1.1) holds for everyP⊇Pε independently on the tags. Then by Definition

2.1.1, f ∈ R(a,b) and its Riemann integral equals toS.
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Now consider the necessity part. Letf ∈ R(a,b) and

S =
∫ b

a
f (x)dx.

Then S∗( f ) = S∗( f ) = S, reminding thatS∗( f ) and S∗( f ) are the upper and lower

Riemann integrals off on [a,b], respectively. Take arbitraryε > 0 and selectσ > 0 in

the following way. Denote the change off by

d= sup
[a,b]

f − inf
[a,b]

f .

Since

S = S∗( f ) = inf
P

S∗( f ,P),

we can find a partition

Pε = {x′0, . . . , x
′
m}

of [a,b] such that

S∗( f ,Pε) < S+
ε

2
.

Let

σ =
ε

2m(d+1)
.
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Now consider any partitionP= {x0, . . . , xn} of [a,b] with ‖P‖ < σ. Let

Q= P∪Pε = {x′′0 , . . . , x
′′
k }.

SinceQ⊇ Pε, we have

S∗( f ,Q) ≤ S∗( f ,Pε) < S+
ε

2
.

Furthermore, denote

Mi = sup{ f (x) : xi−1 ≤ x≤ xi}

and

M′′j = sup{ f (x) : x′′j−1 ≤ x≤ x′′j }.

If we eliminate the equal terms inS∗( f ,P) andS∗( f ,Q), the difference

S∗( f ,P)−S∗( f ,Q) =
n
∑

i=1

Mi(xi − xi−1)−
k
∑

j=1

M′′j (x′′j − x′′j−1)

equals to the sum of no more thatm−1 terms and each term is smaller thanσd. Hence,

we have

S∗( f ,P)−S∗( f ,Q) < (m−1)σd =
(m−1)εd
2m(d+1)

<
ε

2
.

This implies

S∗( f ,P)−S = S∗( f ,P)−S∗( f ,Q)+S∗( f ,Q) < S+ε.
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Similarly, we can findσ′ > 0 such that for all partitionP of [a,b] satisfying‖P‖ < σ′,

S−ε < S∗( f ,P).

Lettingδ =min{σ,σ′}, we arrive to

S−ε < S∗( f ,P) ≤ S( f ,P) ≤ S∗( f ,P) < S+ε,

that is, (5.1.1) holds for all partitionP of [a,b] with ‖P‖ < δ independently on the tags.

This completes the proof.

By Theorem 5.1.1, we can write

∫ b

a
f (x)dx= lim

‖P‖→0
S( f ,P). (5.1.2)

But this limit is complicated since the Riemann sumS( f ,P) depends the tags as well.

Therefore, under (5.1.2), we mean that that this limit is independent on the tags. More

precisely, for allε > 0, there isδ > 0 such that for every partitionsP with ‖P‖ < δ and

for all possible tags, the inequality (5.1.1) holds.

In Kurzweil–Henstock integrationδ is selected dependently on the tags. This allows

for essential enlargement of the classR(a,b). In definition of the Kurzweil–Henstock

integral the concepts of gauge and tagged partition play a central role.

Definition 5.1.2 Any functionδ : [a,b] → (0,∞) is said to be a gauge on the interval

[a,b]. A partition P= {x0, . . . , xn} is called a tagged partition if it employs one fixed

57



choice of tags c1, . . . ,cn. The symbol

P̂= {x0, . . . , xn;c1, . . . ,cn}

is used for the tagged partition P= {x0, . . . , xn} together with the fixed tags c1, . . . ,cn.

The tagged partition̂P = {x0, . . . , xn;c1, . . . ,cn} is said to beδ-fine if xi − xi−1 ≤ δ(ci) for

all i = 1, . . . ,n.

The first question toward Kurzweil–Henstock integral is whether aδ-fine tagged parti-

tion exits for a given gaugeδ. The following positively answers to this question.

Theorem 5.1.3 Given a gaugeδ on [a,b], there is aδ-fine tagged partition of[a,b].

Proof. Take any gaugeδ on [a,b]. Define by A a set of allx ∈ (a,b] such that a

δ|[a,x]-fine tagged partition of [a, x] exists. Then for

x1 =min{b,a+δ(a)},

the tagged partition̂P= {a, x1;a} on [a, x1] is δ|[a,x1]-fine. This impliesx1 ∈ A, that is,

A, ∅. Furthermore,b is clearly an upper bound ofA. Therefore,c= supA exists. We

assert thatc= b.

To prove this assertion assume the contrary, that is,c< b. Denote by

Q̂= {a, x1, . . . , xn;c1, . . . ,cn}
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aδ|[a,xn]-fine tagged partition of [a, xn] assuming that

xn =max{x1,c−δ(c)/2}.

The existence of such a tagged partition follows fromxn ∈ A. Then

R̂= {a, x1, . . . , xn, xn+1;c1, . . . ,cn,c}

is aδ|[a,xn+1]-fine tagged partition of [a, xn+1], assuming that

xn+1 =min{b,c+δ(c)/2}.

Therefore,xn+1 ∈ A and this contradicts toc< xn+1. This proves thatc= b. In a similar

manner it can be proved thatc∈ A. Thus, there exists aδ-fine tagged partition of [a,b].

Based on this theorem the Kurzweil–Henstock integral is defined in the following way.

Definition 5.1.4 A bounded or unbounded function f: [a,b] → R is said to be inte-

grable in the Kurzweil–Henstock sense and its Kurzweil–Henstock integral is equal to

S if for everyε > 0 there exists a gaugeδ : [a,b]→ (0,∞) such that for allδ-fine tagged

partitionP̂ of [a,b],

∣

∣

∣S
(

f , P̂
)−S
∣

∣

∣ < ε.

The set of all Kurzweil–Henstock integrable functions on[a,b] is denoted by KH(a,b).
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Similar to the case of Riemann integral, it can be proved thatif the Kurzweil–Henstock

integral of f on [a,b] exists, then it is unique. To prove, assume the contrary. Then

there are numbersS1 andS2 with S1 , S2, satisfying. Let

ε =
|S1−S2|

2
.

Then there are two gaugesδ1 andδ2 with

∣

∣

∣S
(

f , P̂
)−S1

∣

∣

∣ <
ε

2

wheneverP̂ is δ1-fine, and

∣

∣

∣S
(

f , P̂
)−S2

∣

∣

∣ <
ε

2

wheneverP̂ is δ2-fine. Denote

δ(x) =min{δ1(x), δ2(x)}.

Take arbitraryδ-fine tagged partition̂P. Obviously,P̂ is δ1- andδ2-fine. This implies

the following contradiction:

ε =
|S1−S2|

2
≤
∣

∣

∣S
(

f , P̂
)−S1

∣

∣

∣+

∣

∣

∣S
(

f , P̂
)−S2

∣

∣

∣

2
<
ε+ε

2
= ε.

Assuming that the gaugeδ is a constant function, let‖P‖ < δ. Therefore, all tagged

partitionsP̂, constricted overP is δ-fine. Hence, by Theorem 5.1.1, all properly Rie-

mann integrable functions are Kurzweil–Henstock integrable. In other words,R(a,b)⊆

KH(a,b), and the Riemann and Kurzweil–Henstock integrals of them are equal. There-
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fore, there is no ambiguity in using the same notation

∫ b

a
f (x)dx

for Kurzweil–Henstock integral off . Similar to Riemann integration, we also conven-

tionally let

∫ a

a
f (x)dx= 0 and

∫ a

b
f (x)dx= −

∫ a

a
f (x)dx.

The following examples give some ideas about wideness ofKH(a,b) in comparison to

R(a,b).

Example 5.1.5 By Example 2.1.4, the Dirichlet’s function f: [a,b]→ R, defined by

f (x) =































1 if x is rational,

0 if x is irrational.

is not integrable in the Riemann sense. But it is integrable in the Kurzweil–Henstock

sense and its Kurzweil–Henstock integral equals to 0. To porove take anyε > 0. Denote

byQ the system of rational numbers. Since[a,b]∩Q is a countably infinite set, we can

write

[a,b]∩Q = {a1,a2, . . . }.

Define the gauge

δ(x) =































1 if x ∈ [a,b] \Q,

ε/2k+1 if x = ak.
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Let

P̂= {x0, . . . , xn;c1, . . . ,cn}

be aδ-fine tagged partition of[a,b]. Then

∣

∣

∣

∣

∣

n
∑

i=1

f (ci)(xi − xi−1)
∣

∣

∣

∣

∣

≤
∑

ci∈[a,b]∩Q
(xi − xi−1)

≤
∞
∑

k=1

ε

2k+1
=
ε

2
< ε.

This means that f∈ KH(a,b) while f < R(a,b). Thus R(a,b) is a proper subset of

KH(a,b).

Example 5.1.6 Define the function f by

f (x) =































1/
√

x if 0< x≤ 1,

0 if x = 0.

From

∫ 1

0

dx
√

x
= lim

a→0+

∫ 1

a

dx
√

x
= lim

a→0+
(2−2

√
a) = 2,

this function is improperly Riemann integrable on(0,1] and its improper integral on

(0,1] equals to 2.

Let us prove that f∈ KH(a,b) and its Kurzweil–Henstock integral on[0,1] equals to
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2. For this, take anyε > 0 and define the gauge

δ(x) =































ε2/64 if x = 0,

min{x/2, εx
√

x/8} if 0< x≤ 1.

Take aδ-fine tagged partition̂P= {x0, . . . , xn;c1, . . . ,cn} on [0,1]. If ci , 0, then we have

that

|x−ci | ≤ δ(ci)

implies

x≥ ci −δ(ci) ≥
ci

2
.

Therefore,

∣

∣

∣

∣

∣

1
√

ci
− 1
√

x

∣

∣

∣

∣

∣

=
|x−ci |√

xci(
√

x+
√

ci)
≤ δ(ci)

x
√

ci
≤ 2δ(ci)

ci
√

ci
≤ ε

4
.

Then xi − xi−1 ≤ δ(ci) implies

1
√

ci
− ε

4
≤ 1
√

xi
≤ 2
√

xi +
√

xi−1
≤ 1
√

xi−1
≤ 1
√

ci
+
ε

4
.

This implies

| f (ci)(xi − xi−1)−2(
√

xi −
√

xi−1)| ≤ (xi − xi−1)ε
4

<
(xi − xi−1)ε

2

for ci , 0. Additionally, for c1 = 0, we have x1 ≤ δ(0)= ε2/64, producing

| f (c1)(x1− x0)−2(
√

x1−
√

x0)| = 2
√

x1 ≤
ε

4
<
ε

2
.
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The last two inequalities yield

∣

∣

∣

∣

∣

n
∑

i=1

f (ci)(xi − xi−1)−2
∣

∣

∣

∣

∣

≤
n
∑

i=1

| f (ci)(xi − xi−1)−2(
√

xi −
√

xi−1)| < ε.

This means that f∈KH(0,1), that is, the Kurzweil–Henstock integral of the improperly

Riemann integrable function f exists and equals to 2.

All 2nd kind improperly Riemann integrable functions are Kurzweil–Henstock inte-

grable. This is a consequence of the following theorem .

Theorem 5.1.7 (Hake)The following statements hold:

(a) f ∈ KH(a,b) if and only if f|[c,b] ∈ KH(c,b) for every a< c< b, and

lim
c→a+

∫ b

c
f (x)dx

exists.

(b) f ∈ KH(a,b) if and only if f|[a,c] ∈ KH(a,c) for every a< c< b, and

lim
c→b−

∫ b

c
f (x)dx

exists.

In both these cases

lim
c→a+

∫ b

c
f (x)dx= lim

c→b−

∫ c

a
f (x)dx=

∫ b

a
f (x)dx.
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By this theorem, the limits, producing the 2nd kind improperRiemann integrals, do

not provide further extension ofKH(a,b). This means that all 2nd kind improperly

Riemann integrable functions on the intervals (a,b] and [a,b) belong toKH(a,b). Just

these functions should be considered on [a,b] and for this an arbitrary value should be

assigned ata or b to these functions.

By operation with the gauges on the extended real lineR̄= [−∞,∞], Kurzweil–Henstock

integral can be allowed to the 1st kind improperly Riemann integrable functions as

well.

Now a functionδ : R̄→ (0,∞) will be called a gauge. Instead of tagged partition,

now we will consider tagged subpartition ofR, that isP̂ = {x0, . . . , xn;c1, . . . ,cn} with

−∞ < x0 < · · · < xn < ∞ andci ∈ [xi−1, xi ] for i = 1, . . . ,n. A tagged subpartition̂P =

{x0, . . . , xn;c1, . . . ,cn} of R is δ-fine if xi − xi−1 ≤ δ(ci) for everyi = 1, . . . ,n and

x0 ≤ −
1

δ(−∞)
and

1
δ(∞)

≤ xn.

Now assume thatI equals to one of the intervals [a,b], [a,∞), (−∞,b] and (−∞,∞).

Let f : I → R be given. Extendf to R by making it vanish outside ofI . Then f is

said Kurzweil–Henstock integrable onI and its Kurzweil–Henstock integral equals to

S if for every ε > 0 there is a gaugeδ on R̄ such that for allδ-fine tagged subpartition

P̂= {x0, . . . , xn;c1, . . . ,cn} of R̄,

∣

∣

∣

∣

∣

n
∑

i=1

f (ci)(xi − xi−1)−S
∣

∣

∣

∣

∣

< ε

By modification of the Hake’s theorem to infinite intervals, it is seen that this defini-

tion covers all properly as well as 1st and 2nd kind improperly Riemann integrable
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functions. This general Kurzweil–Henstock integral onI is still denoted by

∫

I
f (x)dx.

5.2 Properties

The following three properties of Kurzweil–Henstock integral are similar to Riemann

integral.

Theorem 5.2.1 Let I be a closed subinterval ofR. If f ∈ KH(I ) and c∈ R, then

c f ∈ KH(I ) and

∫

I
c f(x)dx= c

∫

I
f (x)dx.

Theorem 5.2.2 Let I be a closed subinterval ofR. If f ,g∈KH(I ), then( f +g) ∈ KH(I )

and

∫

I
( f (x)+g(x))dx=

∫

I
f (x)dx+

∫

I
g(x)dx.

Theorem 5.2.3 Let I be a closed subinterval ofR and let c be an interior point of I.

Denote I1 = I ∩ (−∞,c] and I2 = I ∩ [c,∞). Then f∈ KH(I ) if and only if f|I1 ∈ KH(I1)

and f|I2 ∈ KH(I2). Moreover,

∫

I
f (x)dx=

∫

I1
f (x)dx+

∫

I2
f (x)dx.

For the fundamental theorem of calculus for the Kurzweil–Henstock integral, we will

consider the case of finite interval [a,b]. It is said that the propertyP(x), which depends
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on x ∈ [a,b], holds almost everywhere (shortly a.e.) on [a,b] if P(x) holds for allx ∈

[a,b] \E, whereE ⊆ [a,b] is a set of measure zero. In particular,f is a.e. differentiable

on [a,b] if it is differentiable at everyx∈ [a,b] except the set of points of measure zero.

Theorem 5.2.4 (First fundamental theorem of calculus)If f ∈ (C(a,b) is differen-

tiable on[a,b] except a countable set of points, then f′ ∈ KH(a,b) and

∫ b

a
f ′(x)dx= f (b)− f (a).

Theorem 5.2.5 (Second fundamental theorem of calculus)Let f ∈ KH(a,b) and

F(x) =
∫ x

a
f (x)dx.

Then F∈C(a,b), F is a.e. differentiable on[a,b] and F′(x) = f (x) at every point x of

continuity of f .

5.3 Lebesgue Integral

Lebesgue integral can be obtained as a particular Kurzweil–Henstock integral. For

this, we first consider the following example.
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Example 5.3.1 Consider the function f defined on[0,1] by

f (x) =



















































































































2 if 1/2< x≤ 1,

−3 if 1/3< x≤ 1/2,

4 if 1/4< x≤ 1/3,

−5 if 1/5< x≤ 1/4,

· · · · · · · · · · · ·

0 if x = 0.

We have

∫ 1

1/n
=

n−1
∑

i=1

(−1)i+1(i +1)
(1

i
− 1

i +1

)

=

n−1
∑

i=1

(−1)i+1

i

This is a partial sum of alternating harmonic series and it isconvergent. Therefore,

f ∈ KH(0,1) and

∫ 1

0
f (x)dx=

∞
∑

n=1

(−1)n+1

n
.

On the other hand,

| f (x)| =



















































































































2 if 1/2< x≤ 1,

3 if 1/3< x≤ 1/2,

4 if 1/4< x≤ 1/3,

5 if 1/5< x≤ 1/4,

· · · · · · · · · · · ·

0 if x = 0,
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and, therefore, similarly to above calculations we have

∫ 1

0
f (x)dx=

∞
∑

n=1

1
n
=∞.

Thus unlike Riemann integral, we obtain that f∈ KH(0,1) while | f | < KH(0,1). This

example suggests the following definition.

Definition 5.3.2 If f ∈ KH(a,b) and also| f | ∈ KH(a,b), then f is said to be Lebesgue

integrable and the Kurzweil–Henstock integral of f is also called the its Lebesgue

integral. The collection of all Lebesgue integrable function on [a,b] is denoted by

L(a,b).

The relations between the sets of functions integrable in the Riemann, Lebesgue

and Kurzweil–Henstock senses can be given by

R(a,b) ⊂ L(a,b) ⊂ KH(a,b),

noticing thatR(a,b) is a proper subset ofL(a,b) and L(a,b) is also a proper subset

of KH(a,b). L(a,b) is an important class of functions betweenR(a,b) andKH(a,b).

It is possible to define a powerful norm inL(a,b), making it a Banach space, while

there is no an efficient norm inR(a,b) and KH(a,b). The Lebesgue integration is

indeed another kind of developments in integration leadingto such important topics in

mathematics as measure theory , probability theory etc. These subjects are out of the

scope of this thesis.
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