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ABSTRACT 

Automation system of agricultural crop plantation requires many subsystems such as 

low level tracking, path planning, obstacle detection, manoeuvres at the path 

terminations, etc. This study proposes semantic annotation for the information flow 

between the automation subsystems, filling the gap between the planning and 

implementation of crop production by developing two missing subunits: 

determination of obstacles that may threaten agricultural vehicles using the satellite 

images of target field, and determination of proper path for the agricultural vehicles 

to process rows of crops. For the attributes of obstacles, semantic annotation on the 

map of target field is preferred using Resource Description Framework/Extensible 

Mark-up Language (RDF/XML) in order to be exchangeable and reusable with other 

stages, systems, devices and applications. Developed Matlab code determines the 

target field by a GPS coordinate inside the field. An interactive initialization stage 

provides download of the satellite images from Google Maps API for determination 

of the field boundaries. The code for detection and positioning of the circular shaped 

obstacles are using Prewitt, Sobel, Roberts, and Canny edge detection, and Hough 

transformation algorithms. The developed method is tested on 51 target fields. It 

provides 45% improvement in detection error rate compared to raw application of the 

algorithms. 

Keywords: Image processing, Obstacle detection, Path planning, Semantic 

annotation, RDF/XML mapping.  
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ÖZ 

Tarımsal tahıl üretimi otomasyon sistemlerinde alt düzey iz takibi, yol planlaması, 

engel tayini, yol sonunda manevra gibi birçok alt sistem gerekir. Bu çalışma, tarımsal 

otomasyonu gerçekleştirmede gereken tarım aracına tehdit olabilecek engelleri uydu 

görüntüsünden tanıma ve araçların ürün sıralarını işlemesine uygun yol planlama alt 

sistemleri arasındaki bilgi akışının semantik işaretleme yoluyla çözülmesi 

önerilmektedir. Engellerin özellikleri hedef tarlanın haritasına RDF/XML kullanarak 

semantik işaretleme yöntemiyle kaydedilmekte, böylece birimler arasında verimli 

bilgi akışı sağlanmaktadır. Bilginin başka sistem, araç, ve uygulamalar için 

dönüştürülebilir ve tekrar kullanılabilirliği için semantik işaretlemede RDF/XML 

tercih edilmiştir. Geliştirilen Matlab kodu tarlayı içindeki her hangi bir GPS 

koordinatından belirlemektedir. Google Maps API kullanarak indirilen uydu 

görüntüsünde tarla sınırları etkileşimli giriş aşamasıyla belirlenmektedir. Çembersi 

biçimleri bulmak ve yerini belirlemek üzere Prewitt, Sobel, Roberts, ve Canny kenar 

belirleme ile Hough dönüşümü kullanılmaktadır. Geliştirilen yöntem 51 hedef tarla 

üzerinde sınanmıştır. Geliştirilen yöntem, kenar bulma ve Hough dönüşümlerinin 

ham kullanımına göre engel bulma hatasını %45 düşürmüştür. 

Anahtar Sözcükler:  Görüntü işleme, Engel bulma, Yol planlama, Semantik 

işaretleme, RDF/XML haritalama.  
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Chapter 1 

INTRODUCTION  

1.1 Automation of Crop Plantation in Agricultural Industry 

Developments of modern agricultural machinery and genetically improved seed 

technology opened a new perspective in agricultural production that allows very high 

efficiency per labour through the mechanization of plantation and harvest of 

agricultural crop production, which is a part of agricultural industrialization. Parallel 

to the mechanization of the agricultural processes such as ploughing, seeding, and 

harvesting the crops, in the recent decades, the rapid developments of the artificial 

intelligence and robotics provided new kind of automation tools that combines the 

intelligence of image and sensory signal processing to the mechanized production 

tools of the agricultural industry to satisfy the demands of market for high volume 

production at better quality than the traditional manual agriculture. V. Blanco 

reported that increasing volume and quality together with the production efficiency 

depends largely on increased accuracy and efficiency of ploughing, seeding, 

harvesting, fertilization methods [1]. In most of the agricultural production systems, 

including the traditional plantation methods, planting crops in regular rows at 

homogenous crop density is critical point to increase the production efficiency. 

Efficient application of various kinds of agricultural vehicles in agricultural 

processes such as for ploughing, seeding, fertilizing and harvesting requires tracking 

regular lines of plantation in the fields.  
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Many methods for the automation of these agricultural vehicles have been proposed 

by researchers based on the trajectory tracking techniques, which is a common 

concept of robotics and automation. The term “control of autonomous agricultural 

vehicles” describes the systems developed to keep a tractor on a pre-planned desired 

trajectory with minimum lateral error along the trajectory. The lateral error 

corresponds to perpendicular distance to the desired trajectory. Lateral error is one of 

the key optimization variables in control of autonomous agricultural vehicles, and it 

has been studied by many researches. J. Gomez-Gil proposed inexpensive GPS 

measurement system together with a Kalman-filter which provides less than 6 mm 

lateral error [2].  Even at low speeds, the lateral control of the tractor is relatively 

hard problem compared to the moderate speed highway vehicle because considerable 

side slip of the tires makes the system unstable, almost comparable to driving on 

loose or slippery ground. Adaptive and/or predictive control laws that adapts on the 

parameters which produce the side slip provide sufficiently low lateral error in 

tracking the linear trajectories [3]. But, adaptive nature of control develops 

unexpectedly high lateral errors especially at the curvatures of the trajectories. 

Double Look-Ahead Reference Point (LARP) approach reduces the maximum lateral 

errors at the curvatures down to 3 or 4 mm [4].  Further automation of the process 

requires planning of the optimum paths which may be converted to a convenient 

trajectory during the operation of the agricultural vehicle for most common 

agricultural processes in the fields.  

1.2 Agricultural Path Planning and Image Processing 

Path planning for the agricultural machinery has attracted considerable attendance of 

the researchers. It has its own characteristic constraints that is not exhibited by 

ordinary off-road path planning algorithms [5]. Timo Oksanen and his co-author 
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proposed top down and bottom up algorithms to split a field systematically into 

subfields and merge these trapezoidal areas to larger blocks to search optimum or 

valid routes in straight lines [6]. Zhang proposed a path search algorithm with 

dynamic model of a tractor to guide the manoeuvre of the tractors at the end of the 

fields using real time kinematic global positioning system with less than 3 cm 

positional error [7]. Ant colony optimization methods have been introduced for 

optimal route planning to accomplish optimization criteria such as B-patterns to 

minimize the operational time, non-working travelled distance, and fuel consumption 

at 2011 [8]. 

Some agricultural forestry lands may contain obstacles on the already specified 

desired paths, which shall be detected and reconsidered for modification of the 

desired trajectory. For the unplanned obstacles on the trajectories, probabilistically 

robust path planning algorithms have been proposed using rapidly exploring random 

trees which provides efficient identification and execution of paths in real-time [9]. 

Similar to the agricultural cases, a path-planning algorithm is proposed to generate 

dynamic paths to cover an area completely, using a neural network to solve the 

obstacle avoidance problem of a cleaning robot [10]. Any problem related to 

multiple tractors in the same field may be solved using the algorithms developed for 

multiple semi-autonomous vehicles in the traffic, where, the optimization of real 

time path planning was accomplished by a 4-layer path-planning algorithm to ensure 

the paths without collision [11]. 

Once the geographical map of the agricultural land is known, various search 

techniques may be employed to increase the performance of agricultural machines by 

searching an optimal path of operation. A path planning algorithm has been proposed 
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to minimize a cost function minimization for the complete coverage of a farm field 

by a trajectory using a greedy search and a heuristic algorithm that determine the 

minimum of a cost function for the best Hamiltonian solution in the graph [12]. 

Another study proposed a depth-first search algorithm by dividing the field to several 

sub regions and covering all sub regions along their length with the trajectories to 

reduce the number of turns [13]. An algorithm to determine the turning areas has 

been proposed for complete coverage of a field minimizing the overlap of processed 

paths [14]. An approach has been proposed to solve path planning problem in a field 

considering the kinematic constraints of the agricultural machines, and their short 

and long term dynamic accuracy, which raises problems especially when there are 

various kinds of obstacles in the fields [1].  

Locating the position and orientation of an agricultural machine in the land exerts an 

important problem in the automation and control of the machinery. There are local 

methods based on optical sensors with cameras, and infrared or laser beams, which 

has important drawbacks due to extreme dusty operating conditions of the 

agricultural machines. Methods using GPS to ensure the lateral stability of a vehicle 

has been proposed with considerable low lateral measurement errors down to 6 cm in 

[15], [16].  An algorithm that use Kalman-filtered laser scanner measurements has 

been developed to detect obstacles on a field to accomplish real time autonomous 

operation of a tractor, reducing the error of estimated position down to 2.7 cm [17]. 

Combining several sources of information to obtain a more detailed and accurate 

environment model is another important topic in agricultural industrialization as well 

as in many other fields such as land exploratory robots. In a study, a hybrid method 

has been developed to merge two or more semantic cartographic maps of obstacles in 
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a single annotated map by generating and processing cartographic information 

layers. This method is promising to develop more detailed semantic map and objects 

of agricultural fields starting from satellite images [18]. 

At the image processing and object recognition side, the problem is considered at 

much larger perspectives rather than processing the image for only agricultural 

purposes. The global features of the images, which is called “gist of scene”, has been 

included to object detection algorithm to reduce the ambiguity in local features of the 

image to improve the speed of local detector systems that can be applied to obstacle 

detection systems [19]. The recognition performance for objects were enhanced by 

using discriminative image patches instead of the complete image of the object by 

image patch histograms classification and modelling [20].  

An important development in the semantic annotation field was development of dual 

multi-scale grey level morphological reconstructions, shortly SEGON, which 

segments the objects in an image to improve image retrieval performance [21]. 

SEGON can classify patches of large images in semantic concepts by learning to 

distinguish objects based on the latent Dirichlet allocation model [22]. Filtering a 

noisy image is necessary in many cases to prepare an image for object recognition 

tasks. A median filtering method was developed for noisy compound images of text 

and objects to reduce salt and pepper noise before further processing. Finally, a 

framework for detecting objects in static images by trained log-linear models of 

image patches was proposed to recognize given set of objects, using an Adaptive 

Combination of Classifiers (ACC) [23] 
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1.3 Industrial Automation of Crop Plantation Systems 

An ideal automated agricultural plantation requires a complex system architecture 

made of several levels of subsystems, such as collection of data about the target 

piece of land, recognition and planning of agricultural areas, detection of possible 

obstacles in and at the border of the land, determination of optimum paths and 

trajectories for the target agricultural applications on plantation area, scheduling, 

determination of tractor location and direction,  and tracking the trajectories along 

the pre-determined paths, manoeuvre at the path terminations, keeping logbook for 

records of successful  and problematic tasks during the process, etc. Implementation 

of each of these subsystems requires an application layer that needs considerable 

information exchange to accomplish a successful and efficient operation of the 

overall system.  

Many subsystems of this ideal architecture have been covered in literature as 

explained shortly in the previous subsections. Modern differential GPS based 

location and direction system employs ordinary GPS and a Kalman-filter to 

determine tractor location with less than 6 cm tolerance while the tractor goes on a 

linear trajectory at a speed of 5 m/s [2]. A typical lateral deviation less than 5 cm is 

achieved by predictive and adaptive predictive control methods considering the side-

slip motion of the tractors on the linear trajectories [3]. The considerably high lateral 

error of predictive control methods at the curvatures of the trajectory is reduced to 

less than 0.5 cm by using LARP method [4]. There are path planning systems 

available in literature that determines the optimum paths once a geographic map is 

available. 
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Industrialized crop plantation is always carried by seeding the crop in rows like the 

traditional agriculture. The rows of crops were a result of a sequence of traditional 

agricultural phases of ploughing, seeding, and harvesting. For an efficient farming of 

crops, several types of implants carry out the necessary tasks on appropriate number 

of rows per pass. Some of these tasks require higher precision than the others. In 

general, a precision of about 10 cm is necessary for efficient ploughing and 

harvesting. Improving the accuracy better down to 2 cm reported to provide higher 

efficiency for seeding, fertilization, pesticide application, thus improves overall 

efficiency of agricultural production.  

Path planning for the tractors is a typical problem of agricultural robotics, where the 

vehicles shall operate in the field to process rows of plants. Naturally, the automation 

of industrialized agriculture was first started in cultivation of crops, maize and 

potatoes at very large lands, in US, Canada, and Spain, where a human operator sets 

the tractors to track a pre-specified trajectory which and the lateral controller on the 

tractor manages to track a pre-specified trajectory to complete the assigned task. In 

the semi-automated application, some parts of the tasks are fully automatic and an 

operator is required to be on the board continuously to check the performance of 

automated process. In practice, the application of semi-automatic tractors is 

economically feasible to only for processing very large lands which are already 

refined from obstacles, since an unplanned action introduce considerable interruption 

of operational time. As a result, the technology of industrialized agriculture is at a 

stage of change to full-automation of the processes, which means, agricultural 

machinery once prepared and set for operation in a field shall carry the task 
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uninterruptedly for all expected and unexpected cases without depending on an 

operator during the operative part of the process. 

1.4 Path Planning Using Satellite Images 

A real-time agricultural obstacle detection and path planning system for fields of 

crops obviously requires real-time observations. Such real time observations may be 

obtained by optical methods such as video image analysis of mobile or stationary 

cameras, radar or laser beam scanning, along with commercial professional real-time 

geographical satellite images. However, the status of the obstacles in an agricultural 

field mostly shows very slow changes even in a couple of years, and drastic changes 

can be easy to detect before starting the automatic process on the field. Therefore, 

this thesis was conducted using the freely accessible geographical satellite images 

rather than using images from a commercial real-time satellite image provider. Real 

time path planning that considers even the short term changes in the environment is a 

necessity especially when the agricultural automation targets whole system to run 

without human labour, relying on the high level automation algorithms that searches 

the optimum path when the obstacle is stationary, and adjusts its speed when the 

obstacle is a moving object such as another tractor, a human, or an animal. 

In this thesis, the source of observations for agricultural path planning system is the 

satellite image of the field at the geographical map server of Google-Maps. This data 

base is developed and managed by a division of US Company Google, which is 

called Google-Maps. It provides satellite images of land along with street maps of 

cities. Google-Maps provides many services along with the geographic images, such 

as, car, train, bus, bike or walking route planning, travel scheduling, describing local 
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public transportation systems, and search of local public transportation options in 

most of the metropolitan areas. 

Google has a group of geographic moderators who approves public labels suggested 

by users on the map as described on “wikihow” web page. Google-Maps service 

provides a search tool to start a text search for a public label. It is possible to zoom in 

and out for 23 zoom levels, and pan on the map to up, right, down or left directions. 

Each geographic map can be precisely accessed by the zoom level and the 

geographic coordinates of the map centre.  

1.4 Access to Google Satellite Images 

Google Company manages two commercial satellite image interface systems, 

Google-Earth, and Google-Maps, by user friendly graphical interface applications. 

The update rate of the images is 1 to 3 years. Compared to the other free access web 

mapping services, the satellite images provided by Google are both better updated, 

and higher in accuracy. These two factors made Google preferable over the other free 

satellite image services like Yahoo or Terrafly for many application fields. Images of 

many areas are as old as five years, but at urban areas, they are refreshed almost 

monthly. Google declares on their web pages that their applications Google-Maps 

and Google-Earth use the same satellite data bank.  The web page 

developers.google.com explains how to access to google map service to get a static 

map by an application program interface through the web on an example for a 

600x300 pixel satellite image of New York city at zoom level 13 is shown in Figure 

1. The image received in return to this code may be mapped to world geographical 

coordinate system which links the pixels of the images to the GPS coordinates on the 

earth accurately by the 3rd version of adjusted API.  
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Figure 1: Sample of Google-Maps API to access a satellite image 

1.5 Coordinate Systems of Google Satellite Images 

A region on the spherical shaped globe is mapped to Google-Maps satellite images 

by method of Mercator cylindrical projection standardized at 1984 with the name 

World Geodetic System 1984, shortly WGS84. Mercator projection is a geodesic 

projection system to map the points on the earth on a plane, invented by cartographer 

Gerardus Mercator in 1569. It is basically the surface of sphere projected on a 

cylinder wrapped to the sphere around the equator. Although it distorts the map more 

and more while approaching the poles, it is still in common use since most urban 

land is around eclipses, far away from the poles. And in this region, deformation of 

shape for small lands such a single country is below detectable limits of human eye. 

It is also the simplest projection to map the points of GPS coordinates to a planar 

surface in shortest time with minimum computational effort. 

Two Example HTML Codes to get an image from Google-Maps Satellite Image Database  

Centre Point: EMU, CMPE Department, Cyprus,  Zoom Level: Z=18 

https://www.google.com/maps/@35.
1462487,33.9081493,18z/ 
opens a javascript map which allows you 
to get satellite, or hybrid (satellite with 
map overlay) images.  
Specified GPS coordinate points to EMU, 
CMPE department building. 

 
 
Centre Point: New York City Centre, NY,  Zoom Level: Z=13 

 
http://maps.googleapis.com/maps/
api/staticmap?center=New+York,NY
&zoom=13&size=600x300 
 
opens a controlled web image which 
allows you to get map or satellite (Earth) 
images. 
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Google map database uses three kinds of coordinate systems because it keeps the 

details of the map at 23 zoom levels, Z=0, …, 22, in 256 by 256 pixel tiles. Zoom 

level Z=0 is a single tile that represents Mercator projection of the satellite image of 

Earth as an 256 by 256 pixel image as demonstrated in Figure 2. Pixels in each tile 

are addressed by the pixel coordinate, with pixel(0,0), pixel(0,255) and pixel 

(255,255) indicating the top-left, top-right, and bottom-right corner pixels of the tile 

respectively. Zoom level Z partitions the first zoom-level tile into 2Z by 2Z tiles. Each 

tile is addressed by a coordinate such as tile(0,0), tile(0, 2Z– 1), and tile(2Z –1, 0) are 

coordinates of the top-left, top-right, and bottom-left corners respectively. 

Google-Maps server addresses the points on the Earth using the old Navstar 

coordinate system, which is now named the Global Positioning System, or shortly 

GPS coordinate system. It is common coordinate system of standard GPS modules 

using WGS84 standard coordinate system to address any point on Earth precisely 

using decimal latitude and longitude angles in degrees. Intersection of Greenwich 

longitude and Equatorial line is the origin, (0,0) of GPS coordinates. But, WGS84 

uses multiple reference datum points to correct errors developed by several reasons 

such as ellipsoid shape of the Earth.   

The main advantage of Mercator projection is in preserving the x- and y-direction 

scale ratio of distances locally for any location of Earth surface. That means for 

larger zoom levels, the distance scales of tiles are scaled by cosine of latitude in both 

x- and y- direction equally. Consequently the deformation in the maps of cities, or 

small countries is at negligible level, although the Earth distance per pixel of map 

image changes by cosine of latitude of pixel(0,0) of that tile. 
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As an example, the GPS coordinates for Eastern Mediterranean University, 

Computer Engineering Department Parking entrance is (lat=35.1462487, 

long=33.9081493) as used in Figure 1, to access the map around CMPE building at 

zoom level 18. 

 
Figure 2: Google’s method of tiling the Mercator projection of the Earth 

1.6 Image Processing Tools for Detection and Locating Obstacles.  

Detection of obstacles on a satellite image requires a series of image processing 

methods to be applied on the image to filter noises, and clear out the externals of the 

target land. Another set of image processing algorithms are necessary to isolate the 

obstacles to the agricultural vehicles for the determination of the location and size of 

the obstacles. This thesis targeted to use well defined and standardized image 

processing methods which are available in Matlab Image Processing Toolbox, 

mainly to simplify the reproducibility of the results.   

 

Z=1, 1/4 of level 0 tile 

Tile (0,0) 

Tile (1,0) 

Tile (1,1) 

Z=3, 1/(22*3) of level 0 tile 

Tile (0,0) 

Tile (7,0) 

Tile (0,7) 

Map	image	of	Earth	at	zoom	Level	Z=n	is	made	of	2n	x	2n	tiles,		
each	having	256x256	pixels.	

Mercator projection WGS84 maps a point on spherical Earth to a point 
on the cylindrically wrapped plane surface at exactly rE =6378137 meters 
radius, which is Google’s official radius of Earth in projecting maps.  

Z=0, level 0 tile is entire Earth 

Pixel (0,0) 

 Pixel(255,0) 

 Pixel(255,255) 
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1.6.1 Image Filtering and Processing 

Although Google-Maps satellite images were pre-processed for best noise and 

contrast conditions to have best images for human eye, the images are quite noisy for 

detection of large objects such as a tree on the field. Any small and undesired objects 

and marks which appear on the image is removed or filtered by median filtering to 

reduce a false or misdetection. Median filtering is a well-known method which 

appears in image processing textbooks, where the target pixel value of resulting 

image is replaced by the median of the values of the pixels in a neighbourhood of the 

target pixel in the input image. It is mostly applied for a neighbourhood of 3x3 or 

5x5 matrix.  It removes sharp singular marks, and noisy spots preserving the edges of 

the large objects [24]. Keeping the edges of the field, and large obstacles are 

essential to perform obstacle detection and field extraction, therefore this method is 

preferred to other noise reduction methods in this study.  

1.6.2 Edge and Shape Detection Algorithms 

Detection of objects in the field is possible by many methods including template 

matching as well as searching and classifying the objects after edge detection and 

segmentation techniques. In general, template matching is a method with 

computation complexity higher than order-2 with respect to the number of pixels in 

the image, while most of the edge detection algorithms has computational 

complexity order-1. This fact is one of the significant reasons to prefer edge 

detection rather than template matching in determination of the attributes and 

location of the obstacles in this study. As seen in Figure 3, the edge detection 

methods considered in this study are Roberts, Prewitt, Sobel and Canny, all available 

in the Image Processing Toolbox of Matlab [25] [26] [27] .  
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(a)                          (b)                              (c)                           (d) 

Figure 3: Inverted outputs of edge detection methods 

Once the edges of a region are determined, detection of the shape of that region is 

possible by Hough transformation. Originally, the Hough transformation is 

developed and patented by Paul Hough to detect the continuity of two line segments 

in 1962. Later, the method is adapted for circular and elliptic shapes [28]. Today, the 

generalized version of this method is available as a standard image processing tool in 

Textbooks, and in the Image Processing Toolbox of Matlab.  

1.7 Annotation of Information into Map Images 

The image processing methods provide critical information for the location and size 

of the obstacles in the field, which is critical information of path planning algorithm 

to determine the obstacle free trajectories. The critical information obtained from the 

image processing of the satellite image is transferred to the image using semantic 

annotation in Resource Description Framework/Extended Markup Language 

(RDF/XML) [29].  

1.8 Focus of the Thesis, and the Problem Definition 

The previous subsections described the developments of the agricultural industry for 

automation of the crop plantation, and states the availability of key technologies to 

develop fully automated agricultural machineries. Although the proposed methods in 

the literature provide some solutions for several levels of an agricultural automation 

system, none of them provided a practically applicable precise global positioning 

based path planning environment for annotation methods starting with a satellite 
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image of an agricultural field. In the existing literature, most authors considered the 

obstacles to be processed manually, and therefore they considered each subsystem as 

an individual system with its own particular geographic map, list of restricted areas, 

and trajectory to cover the entire field completely. This type of isolation of 

subsystems from each other reduces the possibilities of information-exchange 

between the consecutive subsystems. 

This gap in the automation of the agricultural machines directed this study to develop 

a system for planning the motion of the agricultural machines in the fields of crops. 

The availability of the satellite images with sufficient resolution shaped one bounds 

of the study, while so many published trajectory tracking studies determined the 

other bound at the planning of the trajectories, rather than developing low level 

control to track a trajectory [30].  

Consequently, this study focus on detection of the location of typical obstacles for 

agricultural machines in a field by processing the Google-Maps Satellite image of the 

field, and annotate their position, type, and properties on the map of the field, which 

is proposed to support the information-exchange between the subsystems of an 

automated agricultural plantation system. Even though this thesis is carried on the 

images supplied by the free services of Google-Maps, the methods proposed in this 

thesis are expected to be directly applicable on higher-resolution images supplied by 

other commercial non-free satellite services for obstacle detection and trajectory 

generation purposes.  

The principal contribution of the thesis is to propose a methodology of precise 

geographical mapping for agricultural lands starting from a satellite image of the 
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target land. It targets to fill the gap of preparation of a suitable geographic map for 

the path planning steps of the agricultural automation, which requires typical data for 

types of soil, slope of land, boundaries of the field, locations and types of the 

obstacles, etc. Along with this principal contribution, this thesis aims to contribute in 

image processing area to develop methods of obstacle detection, and to determine the 

best edge detection algorithm among the four well known and widely used methods: 

Sobel, Prewitt, Roberts, and Canny, together with the Circular Hughes 

Transformation, for the purpose of recognition of the obstacles. 

One of the aims of this study is to generate precise trackable trajectory points for  

specific tasks to be performed by autonomous agricultural vehicles. At the 

implementation, the preferred path planning algorithm simply generates the crop 

lines parallel to the longest edge of the target field with a constant crop-row distance, 

because this study does not aim to develop a new path planning algorithm. Rather, it 

targets to introduce a convenient semantic annotation to implant available path 

planning algorithms which may generate trajectory points to satisfy the concern of 

agricultural policies.  Considering agricultural efficiency, the type of the plantation 

crop, the soil properties and condition of the field, available tools, and surrounding 

environment may affect the crop-row direction, distance, and depth. Higher level 

crop policy algorithms shall be implemented in future to determine the crop-lane 

directions, crop-row distance, and depth depending on many factors other than the 

satellite image. 

Along with automatic obstacle recognition and crop-row determination, this thesis 

implemented standard semantic annotation system to describe several properties of 

the agricultural land, obstacles, and designed crop-row paths for agricultural 



	 	

17	
	

machinery and tasks. The implemented subsystems provide simple, but robustly 

efficient examples of using the proposed semantic annotated map to fulfil a frontier 

role in filling the gap of information flow from a geographical map image to vehicle 

trajectories with semantic annotation. 

1.9 Contents of Further Chapters 

In the remaining chapters of this dissertation the architecture of the proposed system 

and the preliminaries of this architecture are introduced in Chapter 2, where the 

detailed information about each stage of the implementation is explained together 

with the initialization process of the application for a target field, giving examples of 

operations at each stage on a set of field samples. Experimental results are presented 

in Chapter 3 for a set of almost 50 target fields, and interpretations of results are 

discussed in Chapter 4. Finally, Chapter 5 states the conclusion for the overall thesis.   
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Chapter 2 

DESCRIPTION OF PROPOSED SYSTEM 

2.1 System Architecture  

The proposed system requires completing some stages before presenting adequate 

semantic annotations. The process starts with capturing the top-view image of the 

target field. Also, obstacles are to be recognized and trajectory points to be produced 

before forming the exchangeable data. As demonstrated in Figure 4 the developed 

system consists of four main stages. The first stage, “Initialization,” is used to locate 

the field and receive the satellite image. In the second stage, "Field Extraction," the 

target agricultural area is extracted from the obtained image. “Obstacle Detection,” 

the third stage, is used to detect, recognize, and annotate obstacles and store the 

results. The trajectory reference points are generated and annotated in the final stage. 

 
Figure 4: Four stages of the developed system 
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2.2 Initialization 

At the initialization step, the system requires the GPS coordinate GPSF=(latF, longF), 

of any point F in the target field to describe the field location, and get the satellite 

image of that location. The developed system uses Google-Maps service API for 

locating and importing the satellite image containing the target field using an API 

code. As mentioned in the previous chapter, Google-Maps service provides various 

zoom levels, from one to twenty-two. At zero zoom level, which is the minimum 

possible zoom, the entire earth fits in the picture, and each higher zoom level doubles 

the detail of map, doubling pixel per distance both in x and y axis. The boundaries of 

the desired field are determined using the highest possible zoom level (largest Z) that 

allows the entire field to fit into the image frame. Depending on the size of the target 

field, proper value of Z is determined manually before initialization of automatic 

image processing, because this step relies on the user’s information for the 

boundaries of the field.  

During the image processing phase, median filtering is applied to the image to reduce 

and remove noise (also referred to as salt and pepper noise). The median filtering 

uses a 3x3 neighbourhood matrix [31]. 

2.3 Segmentation and Extraction of Target Field 

The second stage of the process converts the received satellite image into grayscale 

for extraction of the target field purpose, by reducing the hue and saturation while 

maintaining the luminance. This conversion is performed by using weighted sum of 

Red, Green and Blue components of the coloured image in (0.298 Red + 0.587 Green 

+ 0.114 Blue). Representing the image in the grayscale format by this weighted 
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colour composition improves the opportunity of detecting the regions in addition to 

detecting the edges more precisely. Additionally, application of 3x3 median filtering 

on the grey scaled image minimizes the effect of noises in detecting the regions. The 

target area is extracted from the original satellite image by using the segmentation 

and sectioning methods developed in [32], [33].  

Figure 5b shows the image of the target field in binary format after the noise 

reduction. In the filtered grey scale image, adjacent pixels of the same colour value 

(ni) are connected to form regions (Ri). The regions are numbered and sorted based 

on the number of connected pixels as illustrated in Figure 5c. The target field is 

detected as the region with the highest number of connected pixels which contains 

the centre pixel of the image. Also, the centre pixel of the image is mapped to mark 

the location of the GPS point supplied by the user at the initialization stage. This 

mark is necessary to save the pixel coordinate of the GPS point for the further 

positioning calculations [34].  

The bounding box information of the extracted field is used to remove all 

unnecessary parts of the image by cropping the bounded region tightly. Cropping 

results in a smaller image, which contains the target field with much less irrelevant 

areas as shown in Figure 5d and Figure 5e. The effect of cropping the image on 

reducing the error in obstacle detection is small but positive. Appendix A presents 

corresponding Matlab codes for segmentation and extraction. 
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Figure 5: Progress of image processes to extract the field and obstacles. a- Raw 
image input, b- binary conversion (inverted), c- segmented image, d- cropped picture 

to fit the field in frame, e- the field in original colours 
 

2.4 Detection of Obstacles on the Field 

The next stage of the process is to find obstacles on the obtained satellite image. The 

following sections describe the three sub-stages related to the obstacle detection 

stage: detection, positioning and semantic annotation of obstacles. 

2.4.1 Detection Algorithm 

After the image is tightly cropped to the bounds of the field, the image is processed 

to detect objects inside the field boundaries (Appendix B). But any spurious noise in 

the image, some of them outside the boundaries of the field, is expected to appear 

because of the grey-scale conversion operation. Removal of this noise is necessary 

even if they appear outside of the boundaries since noise creates problems, and 

increases error rate in detection of obstacles.  

Figure 6a shows some examples of these spurious noises inside and outside of the 

field boundaries. This noise is eliminated by reconstructing the image from the 

largest stored region, and filling the outside of this region on the image of target 

field. Figure 6b shows the reconstructed and filled image that eliminates the noise 

outside the field boundaries. 

(a) (b) (c) 

(d) 

(e) 
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a	 b	 c	

Figure 6: Images while morphological reconstruction to filter noise, a- Undesired 
segments on a binary image, b- undesired segment are removed from outside, c- 

desired field free off undesired objects 
 

Noises which are at the regions out of boundaries of the field are removed and 

filtered by applying morphological image reconstruction [35]. Removal of some 

objects is necessary because they are too small to be counted as an obstacle such as 

large thorns. The output of this procedure is a more precise and clear image, and, 

after the inversion, white regions denote obstacles while dark region represents the 

field as shown in Figure 6c. The pixel values of inverted binary image are used in 

obstacle detection phase through segmentation method.  

As stated earlier, each zoom level of Google tiles covers different surface areas. 

Consequently, the same object may have different radius value in pixels when 

processed at different zoom levels. Based on our observations, at zoom level Z =18, 

a typical obstacle on the field may have radius in the range of 4 to 18 pixels. 

Therefore, in the obstacle detection stage zoom level is set to 18 in all experiments to 

provide consistency in calculating efficiency and comparing the results.  

Usually top-view graphical appearance of trees on satellite images is elliptic or 

circular shaped. This kind of round objects can be easily recognized by Circular 

Hough Transform. In the application, the object polarity for the Hough transform is 

noise outside  
	

noise inside  
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set to "bright", and the value of edge gradient threshold is set to 0.27, default value of 

sensitivity factor = 0.85 is preferred, and computation method is set to "Phase Code". 

During detection phase, any recognized obstacle is validated by a duplicity check 

algorithm and is accepted as a new entry if the detected obstacle passes the test as 

seen in Appendix C. The duplicity check works by comparing the centre pixel value 

of the detected obstacle with the centre pixel values of validated obstacles in the list, 

and if no duplicated values are found will pass the test. Upon validation, the obstacle 

including its centre pixel value and the radius is saved to the list of identified 

obstacles for later determination of its diameter in the metric system.  

2.4.2 Calculation of Positions 

Google Maps works on GPS coordinates and Mercator projection, which provides 

equal scaling of x- and y-direction at any location of the Earth for sufficiently small 

parts on globe [36]. GPS coordinates of a location A, GPSA, is a vector with two 

components, the first component is the latitude angle in degrees, and the second 

component is the angle of longitude of the target location, as shown in Figure 7.  

 
Figure 7. GPS coordinates of a location. 
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Image resolution of each tile in the map is 256x256 pixels, and first zoom level tile 

covers the whole Earth exactly in a single tile. Google-Maps service provides the 

GPS coordinates of any point in the image, but the coordinates are not embedded 

into the picture. Therefore, while processing the images, any associated GPS 

coordinate is expected to shift depending on image operations. The well-known 

method to convert the GPS coordinates to distances is the Haversine formulas. 

However, this thesis is concentrated on the distances corresponding to the Google-

Maps tile pixels, and therefore the following paragraphs develop pixel based distance 

calculations on Google-Maps images.  

Mercator projection delivers vertical and horizontal direction of the map always 

equally scaled at any location of the projection, but the scaling factor gets smaller 

while the location gets closer to the Poles, because scaling factor changes by cosine 

of longitude. Appendix D presents the developed geographical positioning code. 

Google officially assumes the Earth a sphere with radius exactly rE = 6378137 

meters. Accordingly, one complete tour of 𝜃)=360 degrees along the circumference 

(i.e., equator line) of the Earth is approximately LE= 40,075,017 meters. Increasing 

Google-Map zoom level Z one step increases the details of the map twice in 

horizontal and twice in vertical direction. At any zoom level Z, the distance LE, or 

complete revolution around Earth, 𝜃)=360o, is covered by 2Z tiles. Each tile has 256 

pixels, giving total Nz = 256´2Z = 2Z+8 pixels around Equator. Consequently, at zoom 

level Z the angular displacement corresponding to each pixel is 

∆+=
𝜃)
2./0 																																																						(1) 
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where, DG denotes degrees of latitude per pixel in x-axis direction, or equivalently 

degrees of longitude per pixel in y-axis direction on a tile if Z is sufficiently large to 

ignore projection distortions in the tile. For example, at Z =18, one pixel movement 

in north or east direction corresponds to DG = 5.36441803 x 10-6 degrees change in 

GPS longitude or latitude. If the location is on the equatorial line, the Earth 

resolution at this tile is calculated by using the circumference of the Earth along 

Equator 

 DE = LE/NZ ,    (2) 

where, ∆5 denotes the distance on Earth per pixel on any tile centred at latitude = 0.  

Equation (2) provides also the distance along Equator in meters per pixel of image. 

For example according to (2), at zoom level 18, each pixel at the equator corresponds 

to 0.5971645 meters. 

If the pixel on the image is not on Equator line, the distance equivalent of the pixel in 

x-direction requires a correction for the spherical shape of the Earth. For a point C on 

the Earth closer to the poles, the round trip distance along a parallel is shorter 

compared to equatorial round trip LE. This round trip distance decrements by the 

cosine of latitude of the GPS coordinate. Consequently the Earth resolution around a 

centre point C gets smaller  

/cos( )C E r d Cc latD = D      ,                                            (3) 

where, latC is the angular latitude of C in degrees; cr/d = p/180 is the conversion 

factor from degrees to radian; and DC is the distance on Earth in meters per Google-

Maps pixel, which depends on latC of the centre point and mostly called as Earth 
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resolution of image at tile centre. The target field is identified by the GPS coordinate 

of a location inside the field. But, most of the operations are carried on the tile image 

using pixel coordinates, and the objects are decided using their sizes in meters. 

Therefore, determination of the distance in meters is of particular interest. The GPS 

resolution of a zoom level, that is the angular displacement of longitude per pixel of 

a Google map is constant, DG=360/Nz . But the Earth resolution DC, that is, the 

distance on Earth in meters per pixel of image, depends on latitude, and requires a 

correction.  

The pixels of an image is conventionally addressed using (0,0) for top-left corner. 

But, on the satellite image received from the Google service, the specified centre 

GPS address, GPSC, is located always at the centre of the original image. Therefore 

the pixel coordinate of original centre pixel, pOCP = (xOCP, yOCP), is required for 

further pixel coordinate calculations. The original centre pixel, pOCP, becomes shifted 

by the coordinate of bounding box start pixel, pBBP = (xBBP, yBBP) while cropping the 

image at the field extraction stage. Coordinate calculations need offset correction for 

this shift of centre pixel. An example of cropping is demonstrated in Figure 8, where 

a bounding box with pBBP = (163.19, 173.11) is applied on original image to get the 

cropped image with the origin shifted 163 pixel along x, and 173 pixel along y 

direction.  The offset of pixel(0,0) of the cropped image in the original image is 

necessary to transfer the pixel coordinates on the cropped and original images back 

and forth. The correction offset in pixels, pCCP  =  ( xCCP, yCCP) for the cropped image 

is   

 xCCP = xOCP – xBBP ;  and  yCCP = yOCP – yBBP .   (4) 
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Pivot GPS coordinates of the target field F is given by the pairs of latitude, latF, and 

longitude, longF, in degrees with decimal fractions. For example, latitude and 

longitude of the centre pixel o C f the sample field shown in Figure 8.a are at latC = 

35.075373 and longC = 33.531142. The centre pixel is the pivot point for all further 

coordinate calculations. Its exact pixel location in the image is maintained by OCP 

coordinate and the offset of cropping in pixels is specified by CCP.  

The corrected centre pixel coordinate in cropped image correspond to pivot GPS 

coordinate of the target field, (latC, longC). Calculation of original pixel coordinate of 

an object i is possible by using CCP and the pixel coordinates of each object pT,i = 

(xT,i , yT,i). At the end of determination of obstacles, procedure is completed by 

calculating GPS coordinate GPST,i = (latT,i, longT,i) of the obstacle's centre from its 

pixel coordinate (xT,i , yT,i) by equations (5) and (6).  

, , /( )cos( )T i C G CCP T i r d Clat lat x y c lat= +D - 	 	 	 (5) 

, ,( )T i C G CCP T ilng lng y x= -D - 		 	 	 	 (6) 

where DG =360o/NZ is the GPS resolution of the images. After validating that the 

obstacle is not a duplicate, the properties of the obstacle is stored including its index, 

position, pixel coordinates, radius, latitude and longitude; and its position is 

graphically marked by a red circle as described in next section. 
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a	 b	

Figure 8. Trimming image size for the target field a- Mapping of field's latitude and 
longitude coordinated to the center pixel of original image, b- Offset calculation of 

center point 
 

2.4.3 Semantic Annotation 

Identified obstacles are stored and presented in a descriptive format readable by both 

humans and machines. Detected obstacles are semantically annotated and graphically 

marked to represent them both in text format, and by marking them on the image. 

Documenting data with proper standardized titles and formats to remove any 

ontological ambiguity is accomplished by semantic annotation [37]. 

In the semantic annotation of the detected obstacles RDF/XML which is defined by 

W3C [45]. RDF/XML uses triples of Subject, Predicate, and Object to define an 

entity. The proposed RDF data graph to semantically annotated and represent 

detected obstacles is shown in Figure 9. 
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Figure 9: RDF/XML data graph of detected tree 

To define the detected obstacle’s type which in our case is a tree, we have imported 

the Plant Onology (PO) [46].  The namespace defined by PO http://purl. 

obolibrary.org/obo/PO_0000003/hasNarrowSynonym/Tree narrows down the whole 

plant anatomy to a “Tree”. Using this namespace, we have semantically represented 

the detected obstacles “type” as a tree. To have a semantic representation of the tree, 

its calculated GPS coordinates are expressed by importing W3C Geospatial 

Ontologies (OGC) [47]. This ontology defines latitude and longitude coordinates 

with http://www.w3.org/2003/01/geo/wgs84_pos/lat and http://www.w3.org/2003/01 

-/geo/wgs84_pos/long accordingly. In addition, to define the pixel coordinates of the 

tree Scalable Vector Graphics (SVG) is imported. This ontology defines the tree with 

its center points x,y pixel coordinates and its radius as “svg:cx”, “svg:cy”, and 

“svg:r” attributes on the obtained image. The item number of the tree “obt:no” define 

as an integer in accordance with XML schema. Figure 10. shows the structure of 

semantic annotation for a detected and validated obstacle in RDF/XML format. 
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Figure 10: Semantic annotation structure of obstacles in RDF/XML file 

2.4.4 Improved Detection Algorithm 

In the preceding stages of this study, out of four nominated edge detection methods 

(Canny, Prewitt, Sobel, and Roberts), Sobel was selected as the main edge detection 

method. This selection took place based on Sobel's overall performance which was 

higher than the others. However, during the study, we realized that Sobel does not 

provide the best result as expected in some cases. This lack of performance led us to 

investigate deeper for possible enhancements in the edge detection algorithm. As a 

result, three methods including "T-range", "Max of All" and "Double Layered Check 

(DLC)" are introduced and explained in the following sections. 

<?xml version="1.0" encoding="utf-8"?> 
<rdf:RDF  
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  
xmlns:dc="http://purl.org/dc/elements/1.1/"  
xmlns:obt="http://www.DLC.org/Obstacle#" 
xmlns:foaf="http://xmlns.com/foaf/0.1/"  
xmlns:gn="http://www.geonames.org/ontology#" 
xmlns:wgs84_pos="http://www.w3.org/2003/01/geo/wgs84_pos#" 
xmlns:item="http://purl.obolibrary.org/obo/PO_0000003/hasNarrowSynonym
#" 
xmlns:svg="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd/circle#"> 
<rdf:Description rdf:about="http://www.DLC.org/Obstacle#"/> 
<item:tree> 
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/> 
 <obt:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
Number of the tree </obt:no> 
 <wgs84_pos:lat> latitude of tree </wgs84_pos:lat> 
 <wgs84_pos:long> longitude of tree </wgs84_pos:long> 
 <svg:cx> x coordinate of tree in the image </svg:cx> 
 <svg:cy> y coordinate of tree in the image </svg:cy> 
 <svg:r> radius of the tree</svg:r> 
</item:tree> 
</rdf:RDF>  
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2.4.4.1 T-range 

Initially, Sobel was used with its default threshold value (0.27) in Matlab. However, 

we have decided to consider the complete threshold range for Sobel. Outputs are 

analysed to find the best possible threshold value in which Sobel reaches its 

maximum number of detection. Figure 11 shows the results on ten test fields.  As 

presented in this figure, for each field Sobel reaches its detection's peak with a 

various threshold value. Having such a variety of the threshold values indicates that 

size, type, and obstacles within the field have a direct impact on choosing the best 

threshold value. Therefore, Sobel's performance can be improved by selecting the 

right threshold value for each field. 

 
Figure 11: Detection results using threshold range on Sobel. 
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2.4.4.2 Max-of-All 

In this method, outcomes of all four nominated edge detection algorithms on each 

field are taken into account. As indicated before, in some fields Sobel was not 

functioning as expected and had much lower performance comparing to the other 

three methods (Canny, Roberts, and Prewitt). We found higher detection potentials 

by investigating the results from other edge detection methods (especially Canny) in 

the fields which Sobel failed. Therefore, a dynamic selection method (Max-of-All) is 

introduced to determine the best edge detection algorithm on each field individually. 

The Max-of-All determines which edge detection method finds highest number 

obstacles (trees) in individual agricultural fields. For example, Canny might find 

higher number of obstacles in a particular field in comparison to Sobel, Prewitt, and 

Roberts, therefore, Canny would be the nominated edge detection method for that 

particular field. However, it does not mean that Canny have reached the highest 

number of “correct detections”. It simply implies that Canny found higher number of 

obstacle-candidates which includes correct detections, incorrect detection or both. 

The decision on which of the detections are correct is made after applying gray-level 

intensity threshold, which classifies the detections into two categories of correct and 

incorrect detections. Then we can decide which detection is valid and which one is 

invalid. This evaluation is done in section 2.4.5 (Accuracy and Error Evaluation). 

2.4.4.3 Double Layered Check (DLC) 

In the previous section "Max-of-All" method improved T-range's results overlay. 

However, there were still some cases in which T-range performed better than the 

Max-of-All regarding obstacle detection. The inconsistency in achieving the best 

result by either of these two methods (T-range and Max-of-All) led use to investigate 

even further more to achieve the best result. To overcome this issue, a new algorithm 
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called Double Layered Check (DLC) is introduced which merges T-range and Max-

of-All as coded in Appendix F. DLC applies both threshold range and the maximum 

number of obstacle detection on each edge detection algorithm (Canny, Roberts, 

Sobel, and Prewitt) for each field individually. 

2.4.5 Accuracy and Error Evaluation 

Two types of error and a location mapping test are used to evaluate the developed 

system. All the error evaluation tests are applied to the individual edge detection 

methods before and after improvements to compare and observe the enhancement 

level. The first error type is FPE (False Positive Error), which refers to the missed 

obstacle in the detection. If there exists an obstacle within the field and the detection 

method fails to capture the obstacle, it would be counted as an FPE.  

In order to reduce the FPE error the proposed system takes advantage of grey-level 

intensity threshold to differentiate correct and incorrect candidates as coded in 

Appendix G. During the evaluation process grey-level intensity value of each 

detected candidate is compared to a specified threshold value. If the grey-level is 

below the threshold value, the obstacle-candidate is considered as a correct detection 

and is processed accordingly. Otherwise the obstacle-candidate is considered as a 

wrong detection and discarded. 

The second type of error represents wrong detections in which an obstacle has been 

detected and captured; however, such an obstacle does not exist. This kind of error 

could happen due to the noise and inaccurate parameter sets for example threshold. 

This type of error is called FNE (False Negative Error). 
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As discussed before the proposed system works with a single GPS coordinate of the 

target agricultural. This point is provided during the initialization stage, and all 

further positioning procedures rely on that single point. A comparison test is 

performed to evaluate the accuracy of the system in mapping that single GPS 

coordinate to pixels and locating obstacles. This test inserts the calculated location of 

an obstacle in Google Maps and checks if it points to the right object. 

2.5 Trajectory Points  

One of the primary goals of the implemented system is to generate trajectory 

reference points which autonomous agricultural vehicles could follow. These 

traceable points will form a sequence of GPS coordinates. The list of path points 

consists of tracking paths and sectors, and it is produced after computing all 

necessary information about the field area and the obstacles within. The developed 

system is capable of integrating the generated trajectory points into any path 

planning algorithm. The produced trajectory points may need further processing to 

determine the direction along these trajectories, and the depth of the crop rows to be 

executed by agricultural vehicles.  In the implemented coding, the route planning 

algorithm creates paths parallel to the longest edge of the field. The path planning 

unit is purposely coded in simplest form since this thesis aims only to validate the 

integration of a path planning unit to the obstacle mapping unit, and in practice path 

planning unit may be replaced by codes of already available better crop-row 

trajectory planning algorithms. 

2.5.1 Generation of Trajectories 

In the trajectory point generation phase, we have to make sure that no collision 

occurs while vehicles are following the reference points. To have a collision free 

path we have to avoid placing any trajectory point on the detected obstacles. In the 
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binary image, the area with white pixels represents the main field. As mentioned 

before, the path planning algorithm proposed in this study creates paths parallel to 

the longest edge of the field. This longest edge is detected using Standard Hough 

Transform (SHT). The angle between the origin to the closest point (𝜃6) is set to 

90	≤ 𝜃6 < 89 in the algorithm. Also, the distance is set to 0.5 between the line (𝜌6) 

and the origin correspondingly. The length of each edge in the field can be calculated 

by Pythagorean Theorem using equation (7), since both the pixel coordinate axes and 

also Earth coordinate axes are perpendicular. Let the coordinate of the first and 

second points be denoted by p1 = (x1, y1) and p2 = (x2, y2). Pythagorean equation finds 

the Euclidian distance between these points, d(p1,p2), which is also the length of the 

line from point p1 to point p2.  

d(𝑝<, 𝑝>) = 	 𝑥> − 𝑥< > + 𝑦> − 𝑦< >                          (7) 

Among the distances between the consecutive corner points, the highest distance and 

its corner points are saved as EDm={pEDm,1=(xEDm,1, yEDm,1), pEDm,2= (xEDm,2, yEDm,2)}, 

the longest side of the field. The slope of this edge is  

𝑚5D# 	= 	
EFGEH
'FG'H

	  ,                                             (8) 

The bolded and highlighted blue line shows 𝐸𝐷#	in Figure 10a. The crop rows are 

generated parallel to EDm, with dms, the user set crop row spacing. The distance 

between the rows, dms, is entered in meters. But for pixel domain calculations, it is 

converted to pixels and denoted by dps. 
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𝒹LM 	= 𝑑#M/∆P                                                 (9) 

The crop rows are generated on the image with constant spacing 𝒹LM which is 

entered by the user by setting dms in meters. As shown in Figure 12.b, anchor dots in 

red (temporary points) are placed as reference points to mark spacing of each row on 

the perpendicular line starting from the midpoint of EDm towards the centre of field 

C. Drawing lines through these anchor points results in equally spaced rows with a 

distance dps. For the anchor points, the midpoint pEDmp and the slope of the anchor 

line are calculated by  

𝑝5D#L = 	
	'QRS,H/'QRS,F

>
, 	EQRS,H/EQRS,F

>
  ,                           (10) 

𝑚5D#L 	= 	 atan 	(𝑚5D#)  ,      

where  mEDmp  is the slope of the perpendicular line to the edge EDm. Crop row 

anchor points, Ai, are inserted on the image with a constant increment dpx  and dpy to 

have equal distance from each other using the equations until generated point lies 

outside the field boundaries using (11) and (12).  

𝑥W,$ 	= 		 𝑥5D#L 	+ 	𝑖	𝑑L'	sin 𝑚5D#L	                          (11) 

𝑦W,$ = 		 𝑦5D#L 	+ 	𝑖	𝑑LE		cos 𝑚5D#L		                         (12) 

After this step, a sequence of the trajectory reference points is generated in a straight 

line using y = m x + y0 for parametric values of x starting from 1, ending at Nx, the 

width of image in pixel coordinates.  As a result, pR,i,k = (xR,i,k , yR,i,k ) pixel 
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coordinates are generated to form trajectory points for the crop row, or track-line 

parallel to the longest edge by the expressions 

     for k = 1 … Nx , {  x^,$,_ 	= 		𝑘	; y^,$,_ 	= 		𝑚5D#		 𝑥bc,$,_ 	− 	𝑥W,$ + 		yW,$ }.   (14) 

The generated track line points, (xR,i,k, yR,i,k), k=1 … Nx are tested for the collision 

condition to an object or to the boundaries of the field to prevent any overlap of the 

produced trajectory points with the detected obstacles. The obstacle avoidance 

algorithm works by mapping the coordinate of each trajectory point in pixel 

coordinates (x, y) to the binary image of the target field and obstacles. If the colour of 

corresponding pixel is 0, the trajectory point is discarded, since colour 0 indicates 

that the point is in an area of an obstacle, or it is outside of the field. If the colour of 

the trajectory point pixel is 1, the point is accepted to be on the crop row. If the test is 

positive, trajectory points are marked on the image of the field to form a sequence of 

red dots that appears as a straight line as presented in Figure 12.a. 

 
Figure 12: Production reference and trajectory points, a- overview, b- details 
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2.5.2 Annotation of Trajectory Points 

The trajectory points are produced for automation of agricultural vehicles which 

shall process the field along the crop rows by tracking these trajectories. The 

agricultural vehicles, which are installed with GPS tracking devices, shall follow 

reference points in GPS coordinates rather than pixel coordinates. Therefore, it is 

necessary to re-map the produced trajectory points from pixel format into GPS 

coordinate format. As mentioned before, the distance on Earth is not proportional to 

the angular GPS distance. Accordingly, the precise length of a single degree of 

longitude per pixel (LDPP) needs to be calculated to have high accuracy in 

positioning. The Pixel-to-GPS coordinate mapping operation converts the crop-row 

points from pixel coordinates to GPS coordinates, and stores them in m×4NR format 

2D-array, where the points on each track are represented on a row of four columns, 

{(xR,i,k, yR,i,k), (latR,i,k, longR,i,k)},  as presented partially in Table 1, where the first two 

columns are pixel, and the last two are GPS coordinates of the points on the path. A 

path may contain several gaps, corresponding to obstacles marked on image. Data in 

Table 1 shows a part of the first track, and the complete path table contains 4n 

columns for total NR reference trajectory paths (or tracks), so that columns 1-4 

represents the first track, 5-8 represents the second, and so on. The pixel coordinates 

of each trajectory point in pixel Ri,k = (xR,i,k , yR,i,k) are presented in the first pair of 

columns, and the same point’s GPS coordinates (latR,i,k , longR,i,k) are shown in the 

second pair of columns.  
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Table 1: Trajectory points of each track in pixel and GPS pairs 

k xR,1,k yR,1,k latR,1,k longR,1,k 

23 63 12.391… 35.07558507 33.53089255 
24 64 12.836… 35.07558409 33.53089524 
25 65 13.281… 35.07558311 33.53089792 
26 66 13.725… 35.07558214 33.53090060 
27 67 14.170… 35.07558116 33.53090328 
28 77 18.619… 35.07557139 33.53093011 
29 78 19.064… 35.07557042 33.53093279 
30 79 19.509… 35.07556944 33.53093547 

 

If a crop row passes through an area occupied by an obstacle, it results in a gap on 

the crop row, by breaking the line into two line segments and a gap segment which is 

specified by its terminal points. A gap G={(xG,1,yG,1), (xG,2,yG,2)} on the crop row 

represents the location of an obstacle. For a solid example, in Table 1 and Figure 13, 

xR,1,k jumps from 67 to 77 indicating the occupied location by an obstacle, where the 

gap segment is specified by pixel coordinates G={(67, 14.17), (77, 18.619)}. This 

gap also indicates the end point of one path segment and the start point of the next 

one. Total number of tracks, NR, is determined by counting the anchor points that 

generates any valid reference path in the field. As a result, the columns of matrix 

enlarges to m = 4NR. Number of gaps on a track-line, NG,i, is counted by testing 

sequence of the first column for each track, segments of each track, NS,i, is obtained 

by checking first column and counting the gaps on each crop row. The total number 

of segments in the entire path NS, are calculated using following equations 

respectively. 

 NR = m / 4     (15) 

 NS,i = NG,i +1     (16) 

  NS  =  ,0
RN

S ii
N

=å     (17) 
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Figure 13: An obstacle on a track-line appears in the form of a gap  

2.5.3 Semantic Annotation  

Detected obstacles and generated trajectory points are semantically annotated and 

stored in RDF/XML format. These annotations make the computed data 

exchangeable between other sub-systems or ontologies that work on arable lands. 

Figure 14 shows the RDF data graph of a generated trajectory point.  

 
Figure 14: RDF/XML data graph representing a trajectory point 

Ontologies are imported to describe a set of terms to represent the generated 

trajectory points semantically. Each trajectory point is identified as an “item” in the 

semantic annotation process. Dublin Core metadata ontology is used to describe that 

the knowledge provided in this study belongs to an image file type [49]. An ontology 

of Open Geospatial Consortium (OGC) is imported to define the GPS coordinates of 
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the generated trajectory points. OGC provides spatial metadata to be used by other 

ontologies. The namespace defined to use OGC is xmlns:item="http://www. 

opengis.net/gml/". OGC defines any GPS coordinates by latitude (item:lat) and 

longitude (item:long). Data type of the trajectory point’s number (trj:no) and the 

track which it belongs to (trj:track) are defined as integer based on SML schema. 

Scalable Vector Graphics (SVG) ontology is imported to semantically annotate the 

pixel coordinates of each trajectory point. Each x-pixel coordinate and y-pixel 

coordinate is presented by “svg:cx” and “svg:cy” respectively [48]. Figure 15 shows 

the RDF/XML structure to describe and annotate trajectory points. 

Figure 15: Semantic annotation structure of the trajectory points   

<?xml version="1.0" encoding="utf-8"?> 
<rdf:RDF  
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:dc="http://purl.org/dc/elements/1.1/"  
xmlns:foaf="http://xmlns.com/foaf/0.1/" 
xmlns:trj="http://www.DLC.org/trajectory#" 
xmlns:item="http://www.opengis.net/gml/" 
xmlns:svg="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd/circle#"> 
<rdf:Description rdf:about="http://www.DLC.org/Trajectory#"/> 
<item:point> 
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/> 
 <item:pos>	GPS Coordinate </item:pos> 
 <item:lat>Point Latitude</item:lat> 
 <item:long>Point longitude</item:long> 
 <trj:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 

Point Number</trj:no> 
 <trj:track rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 

Track Number</trj:track> 
 <svg:cx>Pixel-X Coordinate</svg:cx> 
 <svg:cy>Pixel-Y Coordinate </svg:cy> 
</item:point> 
</rdf:RDF> 
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Chapter 3 

RESULTS 

3.1 Extraction and Detection  

The method proposed in this research is developed and tested using the technical 

programming language platform developed by MathWorks Inc, called MATLAB. 

The hardware platform used for experiments is an Apple (MacBook Pro) running on 

Mac OSX Yosemite (10.10.3), 8 GB of RAM and Intel i7 2.8 GHz CPU. Satellite 

images used in this study are accessed using an API suggested by Google. These 

images are received with the maximum resolution of 640 x 640 dpi.   

Top-view satellite image of 51 agricultural fields are used in this experiment to 

evaluate the developed system. These areas have various shapes, sizes, environments 

and number of obstacles. The zoom level is set to 18 in all the experiments to 

maintain consistency of the comparisons. The radius range used in this study is in 

between ℛ𝛼#$% = 4 and ℛ𝛼#&'= 18 corresponding to ∆𝓏 = 18 for obstacle detection 

purposes. The obtained image is cropped to fit the field's area in the picture to 

improve accuracy. Figure 16 shows some examples of the cropped images. The total 

number of obstacles in these 51 test fields is equal to 1602. Appendix H lists counts 

of initial obstacle detection and their error counts for default sensitivity-threshold 

value. 
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Figure 16: Examples of cropped images with various size, shape and complexity 

3.1.1 Canny  

Initial results of the experiment show that Canny with default parameter sets detected 

1565 obstacles out of 1602. 1282 obstacles identified correctly (80.02%), and 323 

obstacles missed which represents an FPE (false positive error) of 25.16% inside the 

fields. The FNE (false negative error) result for Canny is approximately 18.07% 

which indicates 283 wrong obstacle detections on the fields. Ten sample fields are 

presented in Figure 17 to demonstrate the correct detections, FPE and FNE of the 

Canny.  Figure 17-a.1 to 14-j.1 shows binary images of Canny’s edge detection 

results and Figure 17-a.2 to 14-j.2 shows final detection's graphical annotations on 

the actual image of the field. 

 
Figure 17: Canny edge and obstacle detection results 
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3.1.2 Prewitt 

Prewitt identified 1616 obstacles in total with the default parameter sets. Out of 1602 

obstacles in all the fields, 1333 obstacles (83.2%) were detected correctly. FNE 

result of Prewitt is 16.8% which denotes 283 missed obstacles inside the fields. The 

number of wrong detections is equal to 155 which represent an FPE of 9.67%. Figure 

18-a1 to 15j1 shows the detected edges of the obstacles on the binary images of the 

fields. Figure 18-a2 to 15-j2 shows final detection's graphical annotations on the 

actual image of the fields. 

 
Figure 18: Canny edge and obstacle detection results 

3.1.3 Roberts 

Results show that Roberts with default parameter set identified 1044 correct 

obstacles out of 1602, which is equal to 65.16% accuracy in detection. The FPE 

result for Roberts is 34.76% which indicates 557 missed obstacles. With the total of 

105 wrong obstacle detections, Roberts FNE is 9.13%. Figure 19-a1 to 16-j1 shows 
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binary images of Robert’s edge detection results and Figure 19-a2 to 16-j2 shows 

final graphical annotations on the image of the field. 

 
Figure 19: Robert edge and obstacle detection results 

3.1.4 Sobel 

Sobel with default parameter sets identified 1350 correct obstacles in total, which is 

equal to 84.26% accuracy in detection. Sobel's PFE result is 15.73% which denotes 

252 missed obstacles on the fields. 106 obstacles incorrectly detected by Sobel that 

results in an FNE of 7.88%. Figure 20-a1 to 17j1 represents the detected edges and 

obstacles on the binary images of the fields. Figure 20-a2 to 17-j2 shows the final 

graphical annotation of obstacles on the actual image of the field. 
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Figure 20: Samples results of Sobel's edge and obstacle detection 

3.1.5 Detection Improvement Results 

In the second phase of the obstacle detection process, a great potential was 

discovered to improve the obstacle detection. This discovery led us to develop three 

experimental methods. Up to this point, Sobel was the nominated edge detection 

method due to its higher performance in detection comparing to Canny, Roberts, and 

Prewitt. This decision was made using the default parameter sets of the edge 

detection techniques, however, with customized parameters better results achieved as 

demonstrated in the following sections. 

3.1.5.1 T-Range Results 

As stated before, Sobel could perform better in detecting the obstacles after tuning 

threshold finely. After employing the T-Range algorithm, we achieved an 

improvement of 21.43% in detection rates by Sobel. Figure 21 illustrates the 

detection improvements using Sobel with T-Ranged technique. The chart clearly 

shows enhanced detections (green line) on most of the fields comparing to the initial 
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detection results (blue line). However, in some cases like field 4 or 32, the primary 

method still performs better which led us to examine for further improvements. 

 
Figure 21: T-Range outcomes on Sobel comparing to default threshold 

3.1.5.2 Max of All Results 

The second method proposed to improve the obstacle detection is Max-of-All. Using 

this method, we achieved 16.67% increase in the obstacle detection in overall. The x-

axis in Figure 22 indicates the preferred method to Sobel in the case of improvement.  

These methods which include Canny, Prewitt, Roberts, and Sobel, are abbreviated to 

C, P, R and S accordingly. As expected in many cases Canny and Prewitt are 

preferred to Sobel. The red line in Figure 22 represents the Max-of-All method's 

results in comparison the initial detections of Sobel with default parameter sets. 

Although less overall improvement achieved (16.67%) comparing to the results of T-

Range (21.43%), but we have noticed that in some cases like in field 29 and 39 

(Figure 20) Max-of-All method still performs better. This inconsistency in achieving 

the highest detection result in all fields led us to develop the DLC approach. 
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Figure 22: Max-of-All method comparing to Sobel with default parameter sets 

 
Figure 23: Comparison between T-Range and Max-of-All 
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3.1.5.3 DLC Results 

Double Layered Check (DLC) approach works with merging T-Range and Max-of-

All methods. DLC applies both methods at the same time on each field, compares the 

results and chooses the best among them. By using DLC, either of the T-Range or 

Max-of-All methods can act as a complementary method to cover each other. 

Consequently, the obstacle detection rate improved up to 45.5% in overall comparing 

to the Sobel detection with default parameter sets. Results in Figure 24 indicate that 

the detection has either improved or remained unchanged in most of the fields. 

However, in the previous methods, we had many cases with reduced percentage in 

detection. Appendix I lists counts of detected obstacles and error counts after using 

DLC method. 

 
Figure 24: DLC detection results comparing to Sobel with default parameter-sets 
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3.1.6 FPE and FNE Reduction 

DLC increased the number of obstacle detections which could include the actual 

obstacles and the wrong detection at the same time. Using DLC we have maximized 

the number of the hits on the field to detect obstacles.  Having more hits on the field's 

area increases the chance of detecting any real obstacle. This would result in less 

FPE percentage comparing to the other methods. However, by increasing the number 

of detections, we potentially increase FNE or wrong detections. To increase the 

detection precision, FNE must be minimized, same as FPE. To do so, we have 

developed a classification algorithm to differentiate correct and incorrect detection 

using the grey-level intensity threshold value of 127.37. In Figure 25 correct 

detections are presented with yellow dots and wrong detections are shown with red 

dots. 

 
Figure 25: Classes of correct and incorrect detections  
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As the chart in Figure 26 illustrates, DLC improved the FNE by 80% on overall. This 

improvement resulted in a higher accuracy in the detection by eliminating the 

majority of the wrong detections. 

 
Figure 26: FNE improvements using DLC 

Figure 27 shows some sample results of the FNE improvements. The blue circles on 

these images represent correct detections, and the red circles show suppressed FNEs. 

Red circles were counted as correct detections before implementation of the DLC. 

However, the wrong detections (red circles) eliminated by using DLC, which results 

in improvements on FNE. 
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Figure 27: Suppressed FNE using DLC 

3.1.7 Locating Accuracy Check  

The proposed method provides significant precision for detection and locating of 

obstacle and producing trajectory points within agricultural fields. This precision, 

however, highly depends on Google Maps' accuracy in mapping GPS coordinates to 

pixels in the images. To evaluate the accuracy of positioning obstacles, the location 

of a detected obstacle is compared with Google Map’s search result as shown in 

Figure 28. Following detection of an obstacle, the centre pixel's coordinates of the 

obstacle maps to GPS coordinates (right image in Figure 28). Then the calculated 

GPS coordinates are searched by Google Maps, and the result is shown in the left 

image of Figure 28. The search result indicates that Google’s pin (on the left picture) 

points exactly to the centre of the obstacle detected by the proposed system. 
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Figure 28: Developed system’s obstacle positioning accuracy checked against 

Google Maps at Lat: 35.218108 and Long: 33.572233 
 

Another advantage of the proposed method is the ability to calculate each detected 

obstacle’s dimensions with significant accuracy. This is important as obstacles 

appear in different sizes on the field and their dimensions are required to avoid any 

collision. To demonstrate this, we have considered a sample tree and had its diameter 

measured in three different ways.  

First using the proposed method, and the result is 10.14 meter which is equal to 

20.74 pixels on the image as shown in Figure 29a. Second is using Google Maps’ 

scale bar which is almost equal to 10 meters as shown in Figure 29b.  The last one 

was by measuring at the spot which was 11.1 meters (Figure 29c).  

Comparing the proposed method’s result with Google Maps' scale bar we can see 

that the difference is as small as 14 cm which denotes a very low percentage of error. 

However, there is a significant difference between our result and the measured 

diameter in the spot. The reason is that images provided by Google are usually two to 

three years old hence not being up to date and the tree's growth not being captured. 
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Figure 29: Detected obstacle dimensions calculated by the developed method 

compared with google and its actual size (from left to right) 
 

3.2 Trajectory Points Generation 

As stated before the intention of this study is to produce GPS trajectory points to be 

followed by GPS-enabled agricultural vehicles. To demonstrate the functionality and 

compatibility of the proposed system with any path planning algorithm, we have 

integrated the system into a path planning algorithm. A simple path planning 

algorithm which produces parallel paths in agricultural fields is selected, and an 

example of this kind is presented in Figure 30. 

Unlike most of the path planning algorithms which draw lines on the image, the 

developed system produces sequences of points. These points are initially generated 

based on the pixels in the picture. These points must not overlap any obstacles and 

must be in the field area.  

This results in a sequence of points with some gaps in between as shown in Figure 

31. These gaps divide each track into segments and are either due to an obstacle or 

un-straight borders of the field. The selected path planning algorithm produces 

tracking paths parallel to the longest straight edge of the field.  
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Figure 30: An example of parallel path planning in an agricultural field 

 
Figure 31: Trajectory reference points plotted on the field`s image 

This edge is detected using Standards Hough Transform on the binary image and 

presented with a bold line in Figure 32. The rests of the tracks on the field are 

parallel to this line. Generated sequence of trajectory points in pixel coordinates are 

later mapped into GPS coordinates using the Pixel-to-GPS conversion algorithm. 
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The produced path which includes tracks, segments and points saved to be used by 

tracking devices.  

 
Figure 32: Demonstrating the longest straight edge of the field 

Table 2 represent some statistic details of the path in Figure 31. As we can see from 

the table, the generated path contains 2428 points which are all mapped into GPS 

points. It also shows that this particular path contains 28 tracks which are formed of 

35 segments. The total number of the obstacle detected in the field is 2, and the 

length of the path is 5698.46 meters excluding required turns. 

Table 2: Statistics of the trajectory path presented in Figure 28 
Total GPS Points 2428 

Total Tracks 28 
Total Segments 35 
No of Obstacle 1 

Total Path Distance (m) 5698.465393 
 

Table 3 presents details of each track. As shown the table track one is divided into 

two segments. This track is the leftmost track on Figure 31 and split into two due to 
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an un-straight edge of the field.  Moreover, the total number of points in this track is 

35. Tracks 16, 17 and 18 also divided into two segments due to the same obstacle in 

the field. 

Table 3: Track and segment details of the example in Figure 28 
Track 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 Segments 2 2 1 1 1 1 1 1 1 1 1 1 1 1 
 Points 35 84 93 92 93 93 94 94 93 93 94 94 94 94 
                 Track 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total 

Segments 1 2 2 2 1 1 1 1 1 1 1 2 1 2 35 
Points 94 92 90 91 93 94 94 94 93 93 92 78 61 29 2428 

 

Depending on the agricultural product on a field, farming might require different row 

spacing. For example, one type product may require 1m distance between rows and 

another one may require 3m distance in between each row. Row spacing (dms) is an 

input parameter of the proposed system in generating trajectory points. 

Demonstration of the trajectory generation algorithm is tested for the effect of row 

spacing with three different row distances, (𝒹#M = {2, 4, 6} meters), applied on the 

same set of fields. The results presented in Table 4 shows that the computational 

time is in the range of 2.04 to 25.95 seconds for the row distance of 2m, 1.35 to 

14.47 seconds for the row distance of 4m and 1.15 to 10.7 seconds for 6m row 

distance. 
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Table 4: Computation time and details for various row distances 
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1 2.04 28 35 2428 1.35 14 16 1213 1.15 10 13 808 

2 2.22 64 72 2601 1.58 32 37 1325 1.34 22 26 877 

3 23.04 106 128 37553 13.54 53 40 18776 10.3 36 29 12480 

4 25.95 107 130 46027 14.47 54 69 23085 10.7 36 47 15436 

5 4.13 20 62 5576 2.96 10 39 2684 2.29 7 15 1930 

6 5.51 33 93 8422 3.55 17 49 4226 2.86 11 35 2807 

7 12.19 64 531 21140 7.29 32 286 9648 5.66 22 193 6438 
 

3.3 Semantic Annotation  

Following the detection and positioning of the obstacles, results are semantically 

annotated. The annotation is done in two different ways, graphical and textual. After 

computing location on the image and the radius for any detected obstacle, it is 

graphically annotated on the picture with circles.Figure 33  shows an example of the 

graphical annotation. Also, all the detections are semantically annotated and captured 

in RDF/XML format. This figure also represents a portion of an RDF/XML file 

generated during the semantic annotation phase of the field. This annotation refers to 

the obstacle pointed with a white arrow in the figure. As shown, it is the first 

detected obstacle on the field with X, Y coordinates of 72.441 and 16.951 on the 

image. Its radius is 2.52 meters and geographically located on a point with the 

latitude of 35.0755749 and the longitude of 33.5309169 degrees. 
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<?xml version="1.0" encoding="utf-8"?> 
<rdf:RDF 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  
xmlns:dc="http://purl.org/dc/elements/1.1/"  
xmlns:obt="http://www.DLC.org/Obstacle#" 
xmlns:foaf="http://xmlns.com/foaf/0.1/"  
xmlns:gn="http://www.geonames.org/ontology#" 
xmlns:wgs84_pos="http://www.w3.org/2003/01/geo/wgs84_pos#" 
xmlns:item="http://purl.obolibrary.org/obo/PO_0000003/hasNarrowSynonym#" 
xmlns:svg="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd/circle#"> 
<rdf:Description rdf:about="http://www.DLC.org/Obstacle#"/> 
<item:tree> 
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/> 
 <obt:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 1 </obt:no> 
 <wgs84_pos:lat>35.07557</wgs84_pos:lat> 
 <wgs84_pos:long>33.53091</wgs84_pos:long> 
 <svg:cx>72.4411204</svg:cx> 
 <svg:cy>16.9516487</svg:cy> 
 <svg:r>2.5275816</svg:r> 
</item:tree> 
</rdf:RDF>  

Figure 33: Graphical and semantic annotation of obstacles,  

Table 5 represents the details of the first detected obstacle on the target field which is 

shown in Figure 33. The first column in the table represents the number of the 

obstacle. This numbering is based on the order of the detection, for example, number 

1 means the first detected obstacle. Columns two and three shows pixel coordinates 

of the obstacle’s center. Columns four and five shows obstacle`s radius in pixels on 

the image and meters on the ground. The last two columns represent the mapping of 

the obstacle`s pixel location to latitude and longitude coordinates. Presented data are 

used to annotate obstacles semantically and generate the RDF/XML file. 
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Table 5: Obstacle detection and positioning data included in semantic annotation 
Obstacle 

No. 
X coord. 

(pix) 
Y coord.  

(pix) 
Radius 
(pix) 

Radius 
(meters) 

Lat 
(degrees) 

Long 
(degrees) 

1 72.44112 16.951649 4.23264 2.52758 35.075575 33.530917 
2 137.15192 118.71556 5.56901 3.32561 35.075351 33.531091 
3 105.87311 105.21672 6.53522 3.9026 35.075382 33.531008 
4 43.966544 77.133502 6.13732 3.66499 35.075443 33.530842 
5 75.269715 91.760577 5.4431 3.25042 35.07541 33.530925 
6 59.345833 128.49931 5.6869 3.39602 35.075331 33.530882 
7 29.058078 113.67778 5.90732 3.52764 35.075362 33.530801 
8 123.36508 77.755344 4.55023 2.71724 35.075441 33.531053 
9 214.81828 116.68807 4.99847 2.98491 35.075355 33.5313 

10 91.965574 143.67425 5.96041 3.55935 35.075296 33.53097 
11 154.61818 170.45598 6.11502 3.65167 35.075239 33.531139 
12 123.00124 157.28777 6.76373 4.03906 35.075268 33.531053 
13 169.02055 132.87294 5.24449 3.13182 35.07532 33.531177 
14 185.39867 185.43027 6.17136 3.68532 35.075206 33.53122 
15 231.4479 161.99766 5.33967 3.18866 35.075257 33.531343 
16 199.4047 146.87946 5.58356 3.3343 35.07529 33.531257 
17 263.72562 175.68854 6.53168 3.90048 35.075226 33.531432 
18 247.3087 128.95209 4.53204 2.70637 35.075329 33.531386 
19 294.86756 189.76737 5.3989 3.22403 35.075195 33.531515 
20 310.64187 155.64186 5.26233 3.14248 35.07527 33.531558 
21 280.90302 143.26558 4.89839 2.92514 35.075298 33.531477 
22 218.10521 199.43954 5.79499 3.46056 35.075175 33.531308 
23 251.76515 213.31047 5.34811 3.1937 35.075145 33.531399 
24 282.55477 227.76111 5.57833 3.33118 35.075112 33.531483 
25 328.28792 203.63418 5.69524 3.40099 35.075164 33.531603 
26 316.49374 242.74324 5.81192 3.47067 35.075079 33.531571 

 

In addition to the annotation of obstacles, generated trajectory points are 

semantically annotated and captured in RDF/XML format. During the generation and 

positioning of the trajectory reference points, the results are saved into an array. 

Rows in the array indicate the sequence number of the points in each track and 

columns represents the location of the points. These points are presented with two 

pairs of values. The first pair is the pixel location of the point on the image and the 

second pair represents latitude and longitude of the point on the ground. Part of the 
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results array is shown in Table 6, and zero values in the rows indicate the end of the 

track. 

Table 6: Array of trajectory points in pairs of x, y and lat, long. 
Trajectory 

point 
Track 1 Track 2 

x y lat long x y lat long 

1 24 2.0414 35.16743 33.51162 16 11.555 35.16739 33.51158 
2 25 2.1113 35.16743 33.51163 17 11.624 35.16739 33.51158 
3 26 2.1812 35.16743 33.51163 124 19.099 35.16735 33.51216 
4 27 2.251 35.16743 33.51164 125 19.169 35.16735 33.51216 
5 28 2.3209 35.16743 33.51164 126 19.238 35.16735 33.51217 
6 29 2.3907 35.16743 33.51165 127 19.308 35.16735 33.51217 
7 30 2.4606 35.16743 33.51165 128 19.378 35.16735 33.51218 
8 31 2.5304 35.16743 33.51166 139 20.147 35.16735 33.51224 
9 32 2.6003 35.16743 33.51166 140 20.216 35.16735 33.51224 

10 33 2.6701 35.16743 33.51167 141 20.286 35.16735 33.51225 
11 34 2.74 35.16742 33.51167 142 20.356 35.16735 33.51225 
12 0 0 0 0 143 20.426 35.16735 33.51226 
13 0 0 0 0 144 20.496 35.16735 33.51226 
14 0 0 0 0 156 21.334 35.16734 33.51233 
15 0 0 0 0 157 21.404 35.16734 33.51233 
16 0 0 0 0 158 21.474 35.16734 33.51234 

 

The data presented in Table 6 are used to annotate trajectory points using the data 

structure explained earlier. The "Path" is marked up as the root, and the "Track" as a 

child node. Each child node consists of two elements, "Number" and “gpsPoint”, and 

each would have their attributes. A section of the generated RDF/XML file shown in 

Figure 34 includes the Path and Track number 1. The first trajectory point of the 

track is located at latitude 35.075595 and longitude 33.530909 coordinates on the 

ground. The same point on the image is located on pixel coordinates of X=69 and 

Y=7.7293. 
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Figure 34:Section of the annotation file in RDF/XML syntax format 

	  

<?xml version="1.0" encoding="utf-8"?> 
<rdf:RDF  
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:dc="http://purl.org/dc/elements/1.1/"  
xmlns:foaf="http://xmlns.com/foaf/0.1/" 
xmlns:trj="http://www.DLC.org/trajectory#" 
xmlns:item="http://www.opengis.net/gml/" 
xmlns:svg="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd/circle#"> 
<rdf:Description rdf:about="http://www.DLC.org/Trajectory#"/> 
<item:point> 
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/> 
 <item:pos>	35.075595, 33.530909</item:pos> 
 <item:lat>35.075595</item:lat> 
 <item:long>33.530909</item:long> 
 <trj:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 

1</trj:no> 
 <trj:track rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 

1</trj:track> 
 <svg:cx>69</svg:cx> 
 <svg:cy>7.7293</svg:cy> 
</item:point> 
<item:point> 
 <dc:type rdf:resource="http://purl.org/dc/dcmitype/Image"/> 
 <item:pos>	35.075593,33.530914</item:pos> 
 <item:lat>35.075593</item:lat> 
 <item:long>33.530914</item:long> 
 <trj:no rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 

1</trj:no> 
 <trj:track rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 

1</trj:track> 
 <svg:cx>71</svg:cx> 
 <svg:cy>8.61913</svg:cy> 
</item:point> 
</rdf:RDF> 
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Chapter 4 

DISCUSSION 

The proposed method requires only a GPS point inside the target field for 

initialization, and provides the least complexity for the end user. The developed 

system is capable of detecting obstacles and generating trajectory points. Also, this 

system can be used by any path planning algorithm. The output is a path consisting 

of points sequences in the form of GPS points, making the path traceable with any 

GPS-enabled autonomous vehicle. Google Map's free API used in this study which 

provides low-quality images. However, experimental results show that the developed 

system provides significant precision in detecting and positioning of obstacles and in 

generating trajectory points. 

4.1 Effect of Zoom Level and Noise Reduction Algorithm 

Zoom level plays a major role in the detection phase since higher accuracy could 

achieve at higher zoom levels. The free API provides images with dimensions of 640 

by 640 pixels. These dimensions limit us to choose the highest zoom level (Z = 18) 

to fit the entire field. Consequently, low-quality images are captured. However, using 

the Business API provided by Google the image quality can improve significantly.  

The Business API provides images with dimensions of 2048x2048 pixels which can 

fit the same fields with higher zoom level (Z= 20). This improves the picture quality 

by four which would result in considerable improvements in the detection of 

obstacles. As shown in Figure 35 the same field with Z= 19 has twice visibility and 
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quality comparing to the same field with  Z = 18 and this visibility and quality 

increases to four times with Z = 20. 

The developed system shows sufficient performance to detect and extract the target 

field, however, under some circumstances; it struggles to find the target field and 

fails to detect boundaries because the edges of the field are not clearly visible for the 

detection methods which are used to identify the field. The issue arises when the 

target field is in the same contrast and brightness of the surrounding areas. 

 
Figure 35: Correlation between zoom level on the map and the image quality 

Using noise reduction algorithms removes some existing obstacles in the field like 

rocks, bushes, old boughs on the ground and etc. which may cause dangerous and 

harmful operation of vehicles. Although noise reduction algorithms remove these 

objects from obstacle detection image, they are still visible on the annotation image 

to the human eyes. Therefore, it is possible to process them during a user 
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intervention step before the path planning, and rely on user intervention to clear them 

from the list of obstacles. 

4.2 Effect of Edge Detection Algorithms   

Initially, Sobel was selected as the primary edge detection method for obstacle 

detection due to its higher performance. Table 7 represents the comparison results 

between Sobel, Canny, Prewitt and Roberts. This comparison was made using the 

default parameter sets in the beginning. Table 7 shows that Sobel had better results in 

correct detection and false negative error (wrong detection).  

In regards to the false positive error, although Roberts scored better result comparing 

to Sobel, the difference is not significant enough to consider. All initial experiments 

with Sobel and other edge detection methods were conducted using default threshold 

value of 0.27. However, referring to Figure 11, our observations indicated that Sobel 

behaves differently with various threshold values while detecting obstacles. 

Table 7: Initial comparison of edge detection methods 
  Detection 

Method Correct  FPE FNE  % 

Canny 1282 283 323 80.02 

Prewitt 1044 155 283 65.17 
Roberts 1333 105 557 83.21 

Sobel 1350 106 253 84.27 
 

Figure 36 shows results of applying the entire threshold range from zero to one on 

Sobel. This figure only shows a portion of the results as the number of detections 

seeks to zero while reaching large threshold values. The chart indicates that Sobel 
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reaches the maximum number of detections with a threshold value of 0.059 on 

average. 

 
Figure 36: No. of detections using the entire range threshold on Sobel in all fields 

Our experiments results show that T-range method improved correct detections up to 

21.43% in overall. The improvement of detections is due to the fact that by applying 

the complete sensitivity-threshold range on Sobel we have increased the possibility 

of detecting the correct obstacle. The reason is that using T-range and finding the 

best threshold value will result in the algorithm to find more edges which are like 

obstacles.  

However, these detections may include correct and incorrect obstacles. The 

verification of correct and incorrect detections is done using another algorithm. This 

algorithm uses gray-level intensity threshold to differentiate correct detections from 

the incorrect ones and discard wrong detections. Also, false positive error improved 

by 20.83% which means fewer obstacles missed during the detection phase. 
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Table 8: Detection improvements from Sobel with static threshold value to Sobel 
with dynamic threshold 

Field 
Sobel 

(Default 
Thr.) 

Sobel 
(dynamic 

Thr.) 
Field 

Sobel 
(Default 

Thr.) 

Sobel 
(Dynamic 

Thr.) 
1 1 2 27 33 33 
2 5 29 28 27 32 
3 12 7 29 40 30 
4 53 45 30 15 22 
5 17 25 31 32 37 
6 10 22 32 47 22 
7 18 16 33 4 13 
8 14 17 34 65 67 
9 14 16 35 18 27 

10 18 26 36 9 16 
11 31 44 37 19 14 
12 2 7 38 11 16 
13 5 27 39 22 14 
14 11 14 40 11 14 
15 27 53 41 5 3 
16 1 11 42 38 40 
17 9 15 43 17 14 
18 22 100 44 13 32 
19 11 54 45 45 86 
20 3 9 46 56 50 
21 37 33 47 56 67 
22 33 31 48 30 30 
23 8 9 49 3 2 
24 5 8 50 54 65 
25 9 9 51 14 21 
26 12 13       

 

After considering Sobel with the dynamic threshold (T-range), we have applied the 

Max-of-All method on all fields and compared the counts of obstacle-candidate 

detections in Table 9.  Values in bold on each row shows improvements made by the 

Max-of-All method. By comparing the results in Table 8 and Table 9, we can see 

that the Max-of-All made less enhancement (values marked by a) (16.67%) compared 

to the T-range (21.43%), however, its enhancement is independent of Max-of-All 

since it provides enhancement on a different set of images as seen in Table 9. 
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Table 9: Correct detections by Sobel with default-threshold and Max-of-All methods  

Field Default Thr. Max-of-All Field Default Thr. Max-of All 

1 1 2 27 33 34 
2 5 27 28 27 27 
3 12 13 a 29 40 40 
4 53 59 a 30 15 17 
5 17 27 31 32 32 
6 10 18 32 47 48 a 

7 18 18 33 4 7 
8 14 15 34 65 65 
9 14 15 35 18 18 

10 18 25 36 9 12 
11 31 42 37 19 19 
12 2 4 38 11 17 
13 5 19 39 22 22 
14 11 11 40 11 23 
15 27 54 41 5 5 
16 1 7 42 38 38 
17 9 13 43 17 17 
18 22 106 44 13 22 
19 11 46 45 45 83 
20 3 7 46 56 57 a 

21 37 54 a 47 56 70 
22 33 33 48 30 40 
23 8 8 49 3 5 a 

24 5 5 50 54 61 
25 9 9 51 14 19 
26 12 14       

 

The Max-of-All method was successful in improving the detection process in some 

of the fields which T-range failed to improve. These fields are marked by a in Table 

9. The T-range method applies over complete threshold range only on Sobel. 

However, DLC applies the entire threshold range on all four edge detection methods. 

Instead of using T-range, application of DLC combines the partial improvements 

together with other edge detection algorithms. Only the meaningful parts of the 

results are presented in Figure 34 because from the threshold value 0.14 onward the 

number of detections seeks to zero. From the chart, we can immediately notice that 
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Roberts and Prewitt reach their highest number of detections with almost the same 

threshold value of Sobel. However, Canny reaches its maximum number of 

detections with a higher threshold value. 

 
Figure 37: Maximum detection of obstacle-candidates for edge detection methods 

using dynamic threshold 
 

After applying the entire threshold range on all four edge detection methods, the one 

with the best performance is selected for each field. DLC results are presented in 

Table 10 which indicates detection improvements on all the fields but two (marked 

by a). Correct detections are improved up to 45% in overall using DLC. The false 

positive error improved by 33.3% and the false negative error minimized to almost 

one-fifth comparing to the initial results gained using Sobel with default parameter 

sets. 
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Table 10: DLC vs. Sobel with default threshold in detection 

Field 
Sobel 

(Default 
Thr.) 

DLC Field 
Sobel 

(Default 
Thr.) 

DLC 

1 1 6 27 33 40 
2 5 34 28 27 35 
3 12 8 a    29 40 40 
4 53 54 30 15 22 
5 17 27 31 32 37 
6 10 23 32 47 50 
7 18 20 33 4 14 
8 14 20 34 65 69 
9 14 18 35 18 28 

10 18 29 36 9 19 
11 31 51 37 19 19 
12 2 8 38 11 28 
13 5 27 39 22 20 a 

14 11 16 40 11 23 
15 27 57 41 5 10 
16 1 16 42 38 50 
17 9 18 43 17 17 
18 22 108 44 13 34 
19 11 54 45 45 87 
20 3 9 46 56 61 
21 37 51 47 56 74 
22 33 34 48 30 37 
23 8 9 49 3 3 
24 5 8 50 54 72 
25 9 9 51 14 21 
26 12 14       

 

Grey-level intensity threshold has a significant impact on minimizing wrong 

detections by classifying correct and incorrect detections. As shown in Figure 25, 

grey-level intensity threshold value 127.37 was used to classify results and remove 

the wrong detections. Although this assisted the system to minimize wrong 

detections, yet, there exist cases which could be improved. Results in Figure 25 

indicate that there are overlapping correct and incorrect detections in the areas close 

to the preferred grey-level intensity threshold value. The overlapped values introduce 

additional complexity to the elimination of wrong detections.    



	 	

71	
	

4.3 Discussion on Path Planning Methods and Semantic Annotation  

The policy to generate trajectory points depends on the selected path planning 

algorithm. A path planning algorithm might more suitable depending on the decision 

of the type of the crop, properties of the soil, geometry and slope of the field. Some 

crops may require deeper crop rows with more distance in between and some may 

require shallow rows with less distance from each other. The crop selection policy 

may be influenced by the cultural conventions, regional climate, geographical 

location of the field, slope and shape of the field and some many other factors, which 

are beyond the scope of this thesis.    

The developed system was tested using a simple path planning algorithm to 

demonstrate its capability of integration with any path planning algorithm, and to 

focus on development of obstacle recognition and semantic annotation. Having 

parallel and straight lines are the main features of the selected path planning 

algorithm. Crop-lanes are planned parallel to the longest edge of the field, with a 

constant crop-row distance which is entered at the start of the application.  A line 

equation according to the baseline with fixed increments and various Y-intercepts 

used to make sure these paths are correctly created. A sample of the generated 

trajectory points in pixel coordinates and their conversion to GPS coordinates are 

presented in Figure 38 and Figure 39 accordingly. Results of the linear equation with 

no exponents higher that one on both figures guarantees the straightness of both 

tracks. 
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Figure 38: Proof of produced trajectory points being in a straight line in pixels 

 
Figure 39: Proof of produced trajectory points being in a straight line in GPS 

coordinates 
 

Figure 40 provides an example for further explanation the developed system and its 

integration into other path planning algorithms. As illustrated in the image, this 

particular path planning algorithm has different rules in creating the path, especially 

when it comes to the turns at the end of each track. Although the tracks are parallel to 

each other, it does not mean that the tractor should follow one after the other. In this 

path, the tractor might need to go from track 1 to 3 due its limitations in manoeuvre 

at the end of some tracks. Current capability of the GPS installed automatic vehicles 

safely provides sufficient tracking accuracy to process all crop-rows with a precision 

less than two cm.  Now, when the proposed system integrates into this particular path 

planning algorithm, we would get a different sort of trajectory points regarding the 

sequence. For example, while the path is in a straight line we will have the same 
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output structure including the track, the segments, and the points. However, when it 

comes to the turns, we might have different sort of point sequence representing a 

semi-circle path to cover the turns. Now, all the autonomous vehicle must do is to 

follow the generated trajectory points to have a successful turn and back on the next 

track. Consequently, the annotation of the track would differ too. For example, when 

it comes to the turns, additional children, sub-children, and elements would be 

generated during the annotation and creation of the RDF/XML file. However, the 

annotation of obstacles would not alter by different planning algorithms as obstacles 

are entirely different entities than the trajectory points. 

   
Figure 40: Sample output of a path planning algorithm 
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Chapter 5 

CONCLUSION 

In this study, we have proposed a state-of-the-art method to fill the information flow 

gap between planning and automation in agricultural environment. The system 

introduced a method to semantically annotate and generate traceable trajectory points 

in agricultural realm. The trajectory points are produced in the form of GPS 

coordinates for autonomous agricultural vehicles to trace. Also, we have proposed a 

new method to recognize, locate and annotate obstacles within the field. This study 

focused on detecting trees which are considered obstacles in many path planning 

strategies. In the interest of simplicity and ease of use, a single GPS coordinate of the 

field's area is required to initiate the process.  This GPS point is crucial to the system 

as all the global positioning computations depend on it. These computations include 

extracting the target field, locating the obstacles and converting pixel coordinates to 

GPS coordinates. Furthermore, detected obstacles and generated trajectory points are 

semantically annotated for data exchange purposes between different sub-systems 

and ontologies of the agricultural domain. 

Various edge detection methods including Canny, Prewitt, Roberts and Sobel are 

used for detection purposes on top-view satellite images. These images are obtained 

using the free Google Map API, which provides images with maximum resolution of 

640 by 640 dpi. On all the experiments the zoom level is set to ∆g=18 for consistency 

and comparison purposes. The success rates of the edge detection methods are 
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compared to select the most feasible method. On the early stages of the study, Sobel 

was chosen as the primary method with default parameter sets. However, by fine-

tuning the sensitivity threshold and introducing T-range, Max-of-All, and DLC 

algorithms, we have achieved higher precision in the detection phase. The Max-of-

All algorithm provided fewer detection improvements (16.6%) comparing to the T-

range (21.43%), however, managed to enhance the detection on some of the fields 

which T-range failed. The DLC algorithm improved the detections up to 45.4% by 

merging the Max-of-All and the T-range. Also, using the DLC method, false positive 

error (FPE) reduced by 33% and by using the grey-level-intensity threshold false 

negative errors (FNE) reduced by 80% on average. 

With the assumption of accurate mappings between the satellite images and GPS 

coordinates by Google Map, the proposed method provides significant precision in 

locating and identifying obstacles. Minimum initialization requirements (one GPS 

point) and considerable low processing time (1.15–25.95 seconds) are some 

advantages of the system. Also, generating reliable and traceable trajectory points in 

the form of GPS coordinates makes this method feasible for further consideration 

and utilization for any path planning algorithm in agricultural automation. 

The main intention of this study was to produce traceable trajectory points for 

autonomous agricultural vehicles rather than developing a new path planning 

algorithm. The developed system integrated into a path planning algorithm for 

evaluation purposes. Results indicate that this method is capable of generating 

trajectory points with significant accuracy while merged into a path planning 

algorithm. Detected obstacles and generated trajectories graphically annotated on the 

image and also semantically annotated and captured in RDF/XML format. The 
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annotation makes the outputs of the system exchangeable between related 

applications, ontologies or subsystems of agricultural automation. And, an emerging 

publication is expected on this issue as a fruit of this dissertation.  

In the field extraction process morphological reconstruction was used to remove 

noises on the obtained image. However, in the future studies, it may be beneficial to 

use nonlinear diffusion filter rather than morphological reconstruction to reduce 

missed obstacle recognition rate. Nonlinear diffusion can remove both high and low 

frequency noises selectively while morphological reconstruction works very 

effectively for the removal of high frequency noises. Another future study may 

consider other detection methods to overcome the brightness and contrast issue to 

improve the field extraction phase. Consequently, more variety of fields will be 

identified even if the field is at the same grey-intensity level as the surrounding area. 

Furthermore, in addition to the threshold value, other parameters like object-polarity, 

computation method, and sensitivity factor could be considered to enhance the object 

detection phase even more. Instantaneous adaptability is another feature we would 

like to study on to integrated the proposed method with real-time systems which 

requires having access to live satellite images. Extending the semantic annotation 

section is another future possibility to support Web Ontology Language (OWL), 

which can describe the semantics of classes and properties used beyond the 

semantics of RDF schema in a formal methodology. Another future improvement 

effort shall be considered for user intervention to validate detections, reduce errors 

and to reduce harmful possibilities.    
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Appendix A: Segmentation and Extraction Source Code 

1.   
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   
14.   
15.   
16.   
17.   
18.   
19.   
20.   
21.   
22.   
23.   
24.   
25.   
26.   
27.   
28.   
29.   
30.   
31.   
32.   
33.   
34.   
35.   
36.   
37.   
38.   
39.   
40.   

% Segmentation and Extraction of Target Field (Automatic) 
if strcmp(Choice2,'a') 

[imWidth,imHeight]=size(BW); 
msk=[0 0 0 0 0; 
    0 1 1 1 0; 
    0 1 1 1 0; 
    0 1 1 1 0; 
    0 0 0 0 0;]; 
% Smoothing image to reduce the number of connected components 
B=conv2(double(BW),double(msk));  
L = bwlabeln(B,8);% Calculating connected components 
mx=max(max(L)); 
ConnectedC = bwconncomp(B); % Find connected components in 

binary image 
  % %%%%% this section will label all the objects based on 
'bwconncomp' 

% Calculate centroids for connected components in the image 
using regionprops 
segSel = regionprops (ConnectedC, 'Centroid');  

  bwh1 = figure, imshow(BW); % show image 
   hold on 

for k = 1:numel(s) 
c = segSel (k).Centroid; 
text(c(1), c(2), sprintf('%d', k), ... 
    'HorizontalAlignment', 'center', ... 
    'VerticalAlignment', 'middle',... 
    'BackgroundColor','green',... 
    'FontSize',16); 
end 

hold off 
saveas (gca,'bwl2.png'); % save image 
figure, imshow(BW); % show image 
AxesL = gca;   % Not the GCF 
figLabeled = getframe(AxesL); 
imwrite(figLabeled.cdata, 'bwLabeled.png'); 
imshow('bwLabeled.png', 'Parent', handles.small_axes2); 
maxObj = CC.NumObjects; % Find total number of objects 
 % %%%this part will select the biggest section and displays  
numPixels = cellfun(@numel,CC.PixelIdxList); % counts number of 
pixels in each object 
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41.   
42.   
43.   
44.   
45.   
46.   
47.   
48.   
49.   
50.   
51.   
52.   
53.   
54.   
55.   
56.   
57.   
58.   
59.   
60.   
61.   
62.   
63.   
64.   
65.   
66.   
67.   
68.   
69.   
70.   
71.   
72.   
73.   
74.   
75.   
76.   
77.   
78.   
79.   
80.   
81.   
82.   
83.   
84.   

[biggest,idx] = max(numPixels); % finds the biggest object based on 
pixel numbers 

for i=1:maxObj % set all pixels in the image to 0 to remove all 
objects 
BW(CC.PixelIdxList{i}) = 0; 
end 

BW(CC.PixelIdxList{idx}) = 1; % set pixels in idx to 1 to show only 
the biggest object 
% display the largest field with label 
BW1 = BW; 
figure, imshow(BW),title('biggest part'); 

  
%%%%%%%%%% this section will label the largest object 
cenSeg = segSel (idx).Centroid; 
text(cenSeg (1), cenSeg (2), sprintf('%d', idx), ... 
'HorizontalAlignment', 'center', ... 
'VerticalAlignment', 'top',... 
'BackgroundColor','green',... 
'FontSize',16); 
figure, imshow(BW),title('before crop'); 
saveas(gca,'bwl3.png') 
AxesL1 = gca;   % Not the GCF 
figLabeled1 = getframe(AxesL1); 
imwrite(figLabeled1.cdata, 'bwLabeled1.png'); 
imshow('bwLabeled1.png', 'Parent', handles.small_axes3); 
 
%% measuring bounding box of the image 
 selReg = regionprops(BW, 'BoundingBox'); 
 I6 = imcrop(BW1, selReg.BoundingBox); 
imshow(I6),title('after crop');  
AxesL2 = gca;   % Not the GCF 
Labeled2 = getframe(AxesL2); 
imwrite(I6, 'Labeled2.png'); 
hold on 
I3 = imread('temp.jpg'); 
I2 = imcrop(I3, selReg.BoundingBox); %cropping the image 
I4 =  im2bw(I2,graythresh(I2)); 
imshow(I2, 'Parent', handles.main_axes);%display cropped image into 
main axes GUI  
imwrite(I2,'ask_out.png'); % write the result in an image file 
imwrite(I4,'ask_out1.png'); % write the result in an image file 
  
  
% save bounding box info to pass to other procedures  
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85.   
86.   
87.   
88.   
89.   
90.   
91.   
92.   
93.   
94.   
95.   
96.   
97.   
98.   
99.   
100.   
101.   
102.   
103.   
104.   
105.   
106.   
107.   
108.   
109.   
110.   
111.   
112.   
113.   
114.   
115.   
116.   
117.   
118.   
119.   
120.   
121.   
122.   
123.   
124.   
125.   
126.   
127.   
128.   

handles.BoundingBox1 = selReg.BoundingBox(1); 
handles.BoundingBox2 = selReg.BoundingBox(2); 
guidata(hObject, handles) 

elseif strcmp(Choice2,'m') % manual segment selection 
[imWidth,imHeight]=size(BW); 
msk=[0 0 0 0 0; 
    0 1 1 1 0; 
    0 1 1 1 0; 
    0 1 1 1 0; 
    0 0 0 0 0;]; 
% Smoothing image to reduce the number of connected components 
B=conv2(double(BW),double(msk));  
L = bwlabeln(B,8);% Calculating connected components 
mx=max(max(L)); 
 %%%%%%%%% this section will label all the objects based on 
'bwconncomp' 
segSel = regionprops(L, 'Centroid'); 
bwh1 = figure, imshow(BW); % show image 
BW1 = BW; 
figure, imshow(BW),title('biggest part'); 
hold on 

for k = 1:numel(s) 
    c = segSel (k).Centroid; 
    text(segSel (1), segSel (2), sprintf('%d', k), ... 
        'HorizontalAlignment', 'center', ... 
        'VerticalAlignment', 'middle',... 
        'BackgroundColor','green',... 
        'FontSize',16); 
end 

hold off 
% save current fig and display in axes 
saveas(gca,'bwl2.png') 
AxesL = gca;   % Not the GCF 
figLabeled = getframe(AxesL); 
imwrite(figLabeled.cdata, 'bwLabeled.png'); 
imshow('bwLabeled.png', 'Parent', handles.small_axes2); 
figure, BW2 = bwselect(L),title('All segments-Select desired one'); % 
allows you to select segment from the screen 
axes(handles.main_axes); 
selReg = regionprops(BW2, 'BoundingBox'); % find bounding box of 
result 
I3 = imread('temp.jpg'); 
I2 = imcrop(I3, selReg.BoundingBox); % crop the image according to 
the bounding box 
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129.   
130.   
131.   
132.   
133.   
134.   
135.   
136.   
137.   
138.   
139.  
140.   
141.   
142.   
143.   
144.  

imshow(I2, 'Parent', handles.main_axes); %display croped image into 
main axes GUI     
I6 = imcrop(BW1, selReg.BoundingBox); 
imshow(I6),title('after crop');  
AxesL2 = gca;   % Not the GCF 
Labeled2 = getframe(AxesL2); 
imwrite(I6, 'Labeled2.png'); 
imwrite(I2,'ask_out.png'); % write the result in an image file 

   
% save bounding box info to pass to other procedures  
handles.BoundingBox1 = selReg.BoundingBox(1); 
handles.BoundingBox2 = selReg.BoundingBox(2) ;    
guidata(hObject, handles) 

end 
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Appendix B: Obstacle Detection Source Code 

1.    
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   
14.   
15.   
16.   
17.   
18.   
19.   
20.   
21.   
22.   
23.   
24.   
25.   
26.   
27.   
28.   
29.   
30.   
31.   
32.   
33.   
34.   
35.   
36.   
37.   
38.   
39.   
40.   

switch objType 
case 'tree' 
% (Z=17,Rmin=2) (Z=18,Rmin=4) Min radius suitable for different zooms in 
google to find %"tree" or circular shape obstacles 
Rmin = 4; 
% Max radius suitable for zoom=18 in google to find "tree" or circular shape 
obstacles 
Rmax = 18; 
% finding dark circles 
[centersDark, radiiDark] = imfindcircles(outputImage,[Rmin 
Rmax],'ObjectPolarity','dark');  
save('centersDark.mat', 'centersDark') 
save('radiiDark.mat', 'radiiDark') 
regionNumber=handles.region; 
regionChoice=str2double(regionNumber); 
% choosing region to search for obstacles 
ext_SegmentSelection % Call "ext_SegmentSelection.m" to select desired 
region      
k=1; 
numOfCircles=size(centersDark,1); 

if length(centersDark)==0 % search for existing obstacles 
disp(' no tree'); 

end 
% loop into all detected obstacles check and if the detected obstacle is in the 
right area  
for i=1:numOfCircles 

if (centersDark(i,1)>=xMin && centersDark(i,1)<=xMax) && 
(centersDark(i,2)>=yMin && centersDark(i,2)<=yMax) ... 
&& (outputBW1(round(centersDark(i,2)),round(centersDark(i,1))) == 0)  
centerPoint(k,1)=centersDark(i,1); 
centerPoint(k,2)=centersDark(i,2); 
radiiPoint(k,1)=radiiDark(i,1); 
k=k+1; 
viscircles(centerPoint, radiiPoint,'LineStyle','-'); % labelling circles 
%Save found and inbound obstacle into variables 
load('centerP1.mat', 'centerP1') 
load('radiiP1.mat', 'radiiP1')                         
centerP1 = [centerP1; centerPoint] 
radiiP1 = [radiiP1; radiiPoint] 
save('centerP1.mat', 'centerP1') 



	 	

92	
	

41.   
42.   
43.   
44.   
45.   
46.   
47.   
48.   
49.   
50.   
51.   
52.   
53.   
54.   
55.   
56.   
57.   
58.   
59.   
60.    

save('radiiP1.mat', 'radiiP1') 
 

ex_SetTreeGpsCoord % get GPS coordinates of the found tree in the 
cropped image 
%% Semantic annotation preparation for detected obstacles 
treeRaius = radiiDark(i); 
centersDark(i,1); 
centersDark(i,2); 
findX = num2str(centersDark(i,1)); 
findY = num2str(centersDark(i,2)); 
findtTree = ''; 
xDoc = xmlread('output.xml'); 
allListitems = xDoc.getElementsByTagName('PixelCoordinates'); 
 
if (allListitems.getLength) == 0 % check if XML file is empty 
%######## INSERT into XML file for tree for first time ####### 
ext_XmlWriteTree; %Call xmlWriteTree.m to add a tree to XML file 
else 
%   Duplicity check 
end 

end 
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Appendix C: Duplicity Check Source Code 

1.   
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   
14.   
15.   
16.   
17.   
18.   
19.   
20.   
21.   
22.   
23.   
24.   
25.   
26.   
27.   
28.   
29.   

 

%%%   Duplicity check 
for L = 0:allListitems.getLength-1 % check if tree exists in XML file 
thisListitem = allListitems.item(L); 
% Get the label element. In this file, each 
% list item contains only one label. 
xList = thisListitem.getElementsByTagName('X'); 
xElement = xList.item(0); 
xmlX=str2double(xElement.getFirstChild.getData); 
xmlX_string=num2str(xmlX); 
yList = thisListitem.getElementsByTagName('Y'); 
yElement = yList.item(0); 
xmlY=str2double(yElement.getFirstChild.getData); 
xmlY_string=num2str(xmlY); 
% Check whether this is the label you want. 
% The text is in the first child node. 

if strcmp(xmlX_string, findX) && strcmp(xmlY_string, findY) 
treeFound = 1; % tree found will set to 1 if the tree exists in XML 
file 
break; 

else 
treeFound = 0; 

end 
end 

if treeFound == 0 
%######## update XML file for new tree if "treeFound=0" ####### 
ext_XmlWriteTree %Call xmlWriteTree.m to add a tree to XML file 
end 

end 
end 
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Appendix D: Code for Geographical Positioning of Obstacles 

1.   
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   
14.   
15.   
16.   
17.   
18.   
19.   
20.   
21.   
22.   
23.   
24.   
25.   
26.   
27.   
28.   
29.   
30.   
31.   
32.   
33.   
34.   
35.   
36.   
37.   
38.   
39.   
40.   
41.  

%% calculate GPS coordinates of detected obstacles 
hold on 
% calculating target field’s reference point in pixel coordinate 

OrgCenPixelX = imWidth/2;  
OrgCenPixelY = imHeight/2; 

% mapping target field’s reference point in GPS coordinate 
OrgCenPixelLong = str2double(longCoord); 
OrgCenPixelLat = str2double(latCoord); 
disp(OrgCenPixelX); 
disp(OrgCenPixelY); 
disp(OrgCenPixelLong); 
disp(OrgCenPixelLat); 

% calculating reference point’s offset in pixel coordinate after crop using 
bounding box info. 

CropCenPixelX = round(OrgCenPixelX-(handles.BoundingBox1)); 
CropCenPixelY = round(OrgCenPixelY-(handles.BoundingBox2)); 

% mapping the reference GPS coordinate to its new pixel after crop  
CropCenPixelLong = str2double(longCoord); 
CropCenPixelLat = str2double(latCoord); 
disp(CropCenPixelX); 
disp(CropCenPixelY); 
disp(CropCenPixelLong); 
disp(CropCenPixelLat); 

%set zoom level 
disp(zoom);  

% Gps points per pixel 
gpsPP = 360/(((2^(str2double(zoom)))*256));  
disp(gpsPP); 

% calculating gps point per latitude and longitude degree 
gpsPpLat = (((cos(CropCenPixelLat*(pi/180)) * 
111.321)/111.321))*(gpsPP); 
gpsPpLong = 1*(gpsPP); 
disp(gpsPpLat); 
disp(gpsPpLong); 

% calculating obstacles GPS coordinate 
treeGpsLat =(CropCenPixelLat+((CropCenPixelY-
round(centersDark(i,2)))*gpsPpLat)); 
treeGpsLong =(CropCenPixelLong-((CropCenPixelX-
round(centersDark(i,1)))*gpsPpLong)); 
disp(treeGpsLat); 
disp(treeGpsLong); 
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Appendix E: Code for Semantic Annotation of Obstacles  

1.   
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   
14.   
15.   
16.   
17.   
18.   
19.   
20.   
21.   
22.   
23.   
24.   
25.   
26.   
27.   
28.   
29.   
30.   
31.   
32.   
33.   
34.   
35.   
36.   
37.   
38.   
39.   
40.   

if strcmp(handles.procNo,'0') 
%creating the root element "Obstacles" 
docNode = com.mathworks.xml.XMLUtils.createDocument... 
('Obstacles');  
handles.docNode = docNode; 
obstacleRootNode = docNode.getDocumentElement; 
% creating child element "treeElement" for parent element "Obstacles" 
treeElement = docNode.createElement('Tree'); 
obstacleRootNode.appendChild(treeElement); 
handles.treeElement = treeElement; 
xmlwrite('output.xml',docNode); 
guidata(hObject, handles); 

end     
hold on 
% fetching detected obstacles information 
treeRaius = radiiDark(i); 
tPX = centersDark(i,1); 
tPY = centersDark(i,2); 
zoom = handles.zoom; % setting zoom level 
% Calculating obstacle’s dimensions  
NGPPP = 40075017/(((2^(str2double(zoom)))*256)); 
treeDiameter_meter = (2*treeRaius)*NGPPP 
% Add tagged tree to variable 
Tree_Tagged_temp = [centersDark(i,1), 
centersDark(i,2),treeRaius,treeDiameter_meter,treeGpsLat,treeGpsLong] 
Tree_Tagged = [Tree_Tagged ; Tree_Tagged_temp] 

% creating child element "Item" for parent element "Tree"  
treeItem = handles.docNode.createElement('Item'); 
handles.treeElement.appendChild(treeItem); 
 

% creating child element "Number" for parent element "Item" 
treeNumber = handles.docNode.createElement('Number'); 
treeItem.appendChild(treeNumber); 

% setting property of the child element "Number" 
treeNumber.appendChild(handles.docNode.createTextNo
de(sprintf('%i',i))); 
treeItem.appendChild(treeNumber); 

% creating child element "Position" for parent element "Item" 
treePosition = handles.docNode.createElement('Position'); 
treeItem.appendChild(treePosition); 
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41.   
42.   
43.   
44.   
45.   
46.   
47.   
48.   
49.   
50.   
51.   
52.   
53.   
54.   
55.   
56.   
57.   
58.   
59.   
60.   
61.   
62.   
63.   
64.   
65.   
66.   
67.   
68.   
69.   
70.   
71.   
72.   
73.   
74.   
75.   
76.   
77.   
78.   
79.   
80.   
81.   
82.   
83.   
84.   

% setting property of the child element "Number" 
treePosition.appendChild(handles.docNode.createTextNo
de(sprintf('%s',char(regionNumber)))); 
treeItem.appendChild(treePosition); 

% creating child element " PixelCoordinates" for parent element 
"Item" 
treePixelCoordinates = 
handles.docNode.createElement('PixelCoordinates'); 
treeItem.appendChild(treePixelCoordinates); 

% creating child element "X" for parent element " 
PixelCoordinates " 
xCoord = handles.docNode.createElement('X'); 
treePixelCoordinates.appendChild(xCoord); 

% setting property of the child element "X" 
xCoord.appendChild(handles.docNode.createText
Node(sprintf('%f',tPX))); 
treePixelCoordinates.appendChild(xCoord); 

 % creating child element "X" for parent element " 
PixelCoordinates " 
yCoord = handles.docNode.createElement('Y'); 
treePixelCoordinates.appendChild(yCoord); 

% setting property of the child element "Y" 
yCoord.appendChild(handles.docNode.createText
Node(sprintf('%f',tPY))); 
treePixelCoordinates.appendChild(yCoord); 

% creating child element "'Radius" for parent element "Item" 
treeRadius = handles.docNode.createElement('Radius'); 
treeItem.appendChild(treeRadius); 

% setting property of the child element "'Radius" 
treeRadius.appendChild(handles.docNode.createTextNod
e(sprintf('%f',treeRaius))); 
treeItem.appendChild(treeRadius); 

% creating child element "' Latitude" for parent element "Item" 
treeLatitude = handles.docNode.createElement('Latitude'); 
treeItem.appendChild(treeLatitude); 

% setting property of the child element "Latitude" 
treeLatitude.appendChild(handles.docNode.createTextNo
de(sprintf('%f',treeGpsLat))); 
treeItem.appendChild(treeLatitude); 

% creating child element "' Longitude" for parent element "Item" 
treeLongitude = handles.docNode.createElement('Longitude'); 
treeItem.appendChild(treeLongitude); 

% setting property of the child element "Longitude " 
treeLongitude.appendChild(handles.docNode.createTextN
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85.   
86.   
87.   
88.   
89.   
90.   
91.   
92.   
93.   
94.   
95.   
96.   
97.   

ode(sprintf('%f',treeGpsLong))); 
treeItem.appendChild(treeLongitude); 

 % creating child element " GpsPositions " for parent element 
"Item" 
treeGpsPositions = 
handles.docNode.createElement('GpsPositions'); 
treeItem.appendChild(treeGpsPositions); 

% setting property of the child element " GpsPositions " 
treeGpsPositions.appendChild(handles.docNode.createTe
xtNode(sprintf('%f,%f',treeGpsLat,treeGpsLong))); 
treeItem.appendChild(treeGpsPositions); 

 xmlwrite('output.xml',docNode); % write XML file for detected obstacles 
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Appendix F: Code for DLC Algorithm 

1.   
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   
14.   
15.   
16.   
17.   
18.   
19.   
20.   
21.   
22.   
23.   
24.   
25.   
26.   
27.   
28.   
29.   
30.   
31.   
32.   
33.   
34.   
35.   
36.   
37.   
38.   
39.   
40.   

%%%%% DLC algorithm (using ranged threshold) for each field 
%%%%% including Canny, Sobel, Prewitt and Roberts with/without noise 
reduction 
 
clc; 
clear all; 
warning('off','all'); 
%% Load image 
im=imread('img1/croped/2.jpg'); 
im1=rgb2gray(im); %Convert colour image to grayscale 
radius_min = 4; 
radius_max = 18; 
%%  ###### LOOP TO FIND BEST Threshold value for Sobel ###### 
cnt=1; 
Sobel_Best_Result = 0; 
 for Sen_thresh = 0.0:0.001:0.3; %Sensitivity threshold range 
    tic % start timer 
    close all 
    disp (Sen_thresh); %display the current threshold 
    %% ########### Sobel threshold range without noise reduction and 
smoothing 
    [BW,thresh] = edge(im1,'sobel',Sen_thresh); %finding edges 
    %%%% finds circles in the image which are trees with radios range from 4 to 
18 pixels which is best for zoom=18 for google images 
    [centers, radii, metric] = imfindcircles(BW,[radius_min radius_max]); 
    disp ('Detection'); % display 'Detection' note on screen 
    toc % stop timer for detection only and display on screen 
     Sobel_total_detections = size(centers,1); 
    Sobel_Best_Result(cnt,1) = Sobel_total_detections; 
    Sobel_Best_Result(cnt,2) = Sen_thresh 
    %%%Display Images of Sobel without noise reduction for each threshold 
value 
    %%%figure,imshow(BW),title('Sobel Without Smoothing and Noise 
Reduction'); 
    centersStrong5 = centers(1:size(centers,1),:); 
    radiiStrong5 = radii(1:size(centers,1)); 
    metricStrong5 = metric(1:size(centers,1)); 
    %%%viscircles(centersStrong5, radiiStrong5,'EdgeColor','b'); 
    figure,imshow(im),title('Sobel Without Smoothing and Noise Reduction'); 
    viscircles(centersStrong5, radiiStrong5,'EdgeColor','b'); 
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41.   
42.   
43.   
44.   
45.    
46.   
47.   
48.   
49.   
50.   
51.   
52.   
53.   
54.   
55.   
56.   
57.   
58.   
59.   
60.   
61.   
62.   
63.   
64.   
65.   
66.   
67.   
68.   
69.   
70.   
71.   
72.   
73.   
74.   
75.   
76.   
77.   
78.   
79.   
80.   
81.  
82.   
83.   
84.   

     %%% show total number of detections 
    total_detections = size(centers,1); 
    disp ('Tolal detections:'); 
    disp (total_detections); 
    disp (thresh); 
    Best_Result_Nr(cnt,1) = total_detections; 
    Best_Result_Nr(cnt,2) = Sen_thresh; 
    % ############ Sobel threshold range with noise reduction and smoothing 
    [BW_SmNoise,thresh] = edge(im1,'sobel',Sen_thresh); %finding edges 
    [imx,imy]=size(BW_SmNoise); % preparing for noise reduction 
    msk=[0 0 0 0 0; % apply mask for noise reduction using the following matrix 
        0 1 1 1 0; 
        0 1 1 1 0; 
        0 1 1 1 0; 
        0 0 0 0 0;]; 
    B_SmNoise = conv2(double(BW_SmNoise),double(msk));  
%%Smoothing  image to reduce the number of connected components    
  [centers_SmNoise, radii_SmNoise, metric_SmNoise] = 
imfindcircles(B_SmNoise,[4 16]); 
    disp ('Detection'); 
    toc % stop timer 
    %%%%%% Display Images of Sobel with noise reduction 
    %%%figure,imshow(B_SmNoise),title('Sobel With Smoothing and Noise 
Reduction'); 
    centersStrong5_SmNoise = centers_SmNoise(1:size(centers_SmNoise,1),:); 
    radiiStrong5_SmNoise = radii_SmNoise(1:size(centers_SmNoise,1)); 
    metricStrong5_SmNoise = metric_SmNoise(1:size(centers_SmNoise,1)); 
    %%%viscircles(centersStrong5_SmNoise, 
radiiStrong5_SmNoise,'EdgeColor','b'); 
    disp ('Tolal'); 
    toc % stop timer 
     figure,imshow(im),title('Sobel With Smoothing and Noise Reduction'); 
    viscircles(centersStrong5_SmNoise, radiiStrong5_SmNoise,'EdgeColor','b'); 
     %%%%% show total number of detections 
    total_detections = size(centers_SmNoise,1); 
    disp ('Tolal detections:'); 
    disp (total_detections); 
    disp (thresh); 
    Best_Result_Nr(cnt,1) = total_detections; 
    Best_Result_Nr(cnt,2) = Sen_thresh; 
    cnt = cnt+1; 
 pause (0.25); %pause matlab for 1(second) to display result 
end 
save('Sobel_Best_Result.mat', 'Sobel_Best_Result') % Save pixel coordinates of 
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85.   
86.   

trees 
% save('radii_Sobel_SNr.mat', 'radii') % save radius of trees 
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Appendix G: Code for Detection and Verification using Grey-Level 

Intensity Threshold 

1.   
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   
14.   
15.   
16.   
17.   
18.   
19.   
20.   
21.   
22.   
23.   
24.   
25.   
26.   
27.   
28.   
29.   
30.   
31.   
32.   
33.   
34.   
35.   
36.   
37.   
38.   

%%% Minimizing FPE using grey-level intensity threshold 
clc; 
clear all; 
drawnow 
warning('off','all'); 
%% Load image 
im=imread('../img1/croped/2.jpg'); 
im1=rgb2gray(im); %Convert colour image to grayscale 
im1Vector = im1(:); %converting im1 to vector 
%% Canny technique Without Smoothing and Noise Reduction 
tic % start timer 
[BW,thresh] = edge(im1,'sobel',0.054); %finding edges  
[centers, radii, metric] = imfindcircles(BW,[4 18]); 
disp ('Detection'); 
toc % stop timer 
disp (thresh); 
%subplot(2,2,1) 
imshow(im1),title('Canny Without Smoothing'); 
centersStrong5 = centers(1:size(centers,1),:); 
radiiStrong5 = radii(1:size(centers,1)); 
metricStrong5 = metric(1:size(centers,1)); 
viscircles(centersStrong5, radiiStrong5,'EdgeColor','r','LineWidth',2) 
%subplot(2,2,2) 
imshow(im),title('All detections'); 
viscircles(centersStrong5, radiiStrong5,'EdgeColor','b','LineWidth',2); 
total_detections = size(centers,1); 
disp (['Tolal detections:',num2str(total_detections)]) 
save('centers_Canny.mat', 'centers') % Save pixel coordinates of trees 
save('radii_Canny.mat', 'radii') % save radius of trees 
% Create a logical image of a circle with specified 
% diameter, center, and image size. 
% First create the image. 
[imageSizeY,imageSizeX] = size(im1); 
[columnsInImage,rowsInImage] = meshgrid(1:imageSizeX, 1:imageSizeY); 
grayThresh = 127.37; %set Gray brightness level to distinguish between tree 
and non-tree objects, Smaller=Darker 
IsTreeCount = 1; 
NotTreeCount = 1; 
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39.   
40.   
41.   
42.   
43.   
44.   
45.   
46.   
47.   
48.   
49.   
50.   
51.   
52.   
53.   
54.   
55.   
56.   
57.   
58.   
59.   
60.   
61.   
62.   
63.   
64.   
65.   
66.   
67.   
68.   
69.   
70.   
71.   
72.   
73.   
74.   
75.   
76.   
77.   
78.   
79.   
80.   
81.   
82.  

% plotting PEs (possible eleminations) 
%subplot(2,2,3) 
imshow(im),title(['PE (possible eliminations), 
','grayLevel=',num2str(grayThresh)]); 
viscircles(centersStrong5, radiiStrong5,'EdgeColor','b','LineWidth',1); 
indexGray = 0; 
for Circle = 1:total_detections % choose the circle variable number 
     indexGray = 0; 
    % Next create the circle in the image. 
    centerX = centers(Circle,1); 
    centerY = centers(Circle,2); 
    radius = radii(Circle,1); 
    circlePixels = (rowsInImage - centerY).^2 ... 
        + (columnsInImage - centerX).^2 < radius.^2; 
    % circlePixels is a 2D "logical" array. 
    circlePixelsVector = circlePixels(:); 
    cnt = 0; 
    for i = 1:size(circlePixelsVector) 
         if circlePixelsVector(i) == 1 
            cnt = cnt+1; 
            indexGray(cnt,1) = i; 
            indexGray(cnt,2) = im1Vector(i); 
        end 
     end 
    % calculate gray mean of a circle 
    centers(Circle,3) = mean(im1Vector(indexGray(:,1))); 
    centers(Circle,4) = radii(Circle,1); % insert radius of the tree in pixels in the 
fourth 
    column of the "centers" variable 
    viscircles([centerX,centerY], radius,'EdgeColor','y','LineWidth',2); 
    drawnow % update the image when an wrong detection found 
    pause(0.6); 
    %checks if gray mean is > gray-threshold then prints a green circle 
    %indicating not tree 
    if centers(Circle,3) > grayThresh 
        viscircles([centerX,centerY], radius,'EdgeColor','r','LineWidth',2); 
        drawnow % update the image when an wrong detection found 
        centers(Circle,3) % current obstacle's gray-threshold value 
       % k = waitforbuttonpress ; %wait for keyboard or mouse click to continue  
    else 
        viscircles([centerX,centerY], radius,'EdgeColor','g','LineWidth',2); 
        drawnow % update the image when an wrong detectio found 
        centers(Circle,3) % current obstacle's gray-threshold value 
    end 
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83.   
84.   
  
 

end 
toc % stop timer 
saveas(gcf,'F51.png') % Save current figure to png 
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Appendix H:  Obstacle and Error Counts by Default Threshold 

Table continues on the next page. 
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1 39 2 37 12 14 1 38 2 3 0 39 4 4 0 39 0 0 
2 36 27 9 7 34 5 31 1 6 2 34 2 4 0 36 2 2 
3 17 5 12 15 20 12 5 2 14 13 4 2 15 1 16 4 5 
4 74 51 23 41 92 53 21 26 79 59 15 12 71 56 18 12 68 
5 27 27 0 9 36 17 10 1 18 16 11 2 18 1 26 3 4 
6 24 18 6 9 27 10 14 4 14 9 15 3 12 1 23 2 3 
7 22 18 4 9 27 18 4 3 21 18 4 2 20 13 9 3 16 
8 26 15 11 5 20 14 12 6 20 13 13 5 18 9 17 3 12 
9 20 13 7 6 19 14 6 6 20 15 5 5 20 2 18 3 5 

10 35 25 10 8 33 18 17 7 25 18 17 8 26 15 20 2 17 
11 64 42 22 10 52 31 33 6 37 34 30 4 38 4 60 2 6 
12 12 4 8 10 14 2 10 4 6 2 10 3 5 0 12 1 1 
13 35 19 16 5 24 5 30 1 6 5 30 1 6 0 35 2 2 
14 18 6 12 10 16 11 7 3 14 10 8 5 15 6 12 3 9 
15 75 54 21 10 64 27 48 6 33 26 49 6 32 0 75 3 3 
16 106 7 99 5 12 1 105 5 6 2 104 6 8 0 106 3 3 
17 18 13 5 8 21 9 9 2 11 7 11 3 10 0 18 3 3 
18 128 106 22 8 114 22 106 4 26 15 113 2 17 0 128 0 0 
19 66 46 20 10 56 11 55 6 17 11 55 6 17 0 66 5 5 
20 90 7 83 8 15 3 87 10 13 2 88 11 13 1 89 7 8 
21 56 54 2 2 56 37 19 4 41 36 20 3 39 12 44 5 17 
22 45 25 20 78 103 33 12 15 48 33 12 19 52 29 16 8 37 
23 9 8 1 9 17 8 1 6 14 8 1 5 13 8 1 3 11 
24 67 1 66 4 5 5 62 4 9 4 63 4 8 1 66 2 3 
25 9 6 3 7 13 9 0 2 11 8 1 0 8 6 3 5 11 
26 16 12 4 3 15 12 4 1 13 14 2 1 15 9 7 5 14 
27 68 30 38 8 38 33 35 6 39 34 34 6 40 18 50 9 27 
28 42 21 21 10 31 27 15 1 28 26 16 1 27 19 23 1 20 
29 45 23 22 16 39 40 5 7 47 40 5 11 51 37 8 6 43 
30 36 6 30 15 21 15 21 4 19 17 19 4 21 11 25 4 15 
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Table continued from the previous page. 
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31 56 32 24 4 36 32 24 2 34 29 27 2 31 8 48 0 8 
32 52 33 19 24 57 47 5 11 58 48 4 6 54 28 24 7 35 
33 39 7 32 8 15 4 35 4 8 2 37 4 6 1 38 5 6 
34 145 44 101 19 63 65 80 2 67 53 92 7 60 28 117 9 37 
35 76 15 61 13 28 18 58 8 26 16 60 7 23 7 69 7 14 
36 26 12 14 18 30 9 17 6 15 9 17 7 16 1 25 2 3 
37 19 14 5 12 26 19 0 1 20 19 0 2 21 19 0 1 20 
38 40 17 23 8 25 11 29 6 17 12 28 4 16 7 33 3 10 
39 24 16 8 17 33 22 2 11 33 21 3 13 34 21 3 10 31 
40 34 23 11 59 82 11 23 27 38 14 20 25 39 1 33 9 10 
41 23 5 18 24 29 5 18 5 10 3 20 6 9 0 23 3 3 
42 79 26 53 58 84 38 41 6 44 33 46 9 42 1 78 7 8 
43 17 17 0 11 28 17 0 4 21 17 0 5 22 13 4 5 18 
44 36 22 14 19 41 13 23 7 20 13 23 6 19 2 34 4 6 
45 96 83 13 31 114 45 51 26 71 48 48 28 76 22 74 19 41 
46 65 57 8 22 79 56 9 6 62 56 9 5 61 28 37 7 35 
47 76 70 6 36 106 56 20 4 60 57 19 4 61 10 66 5 15 
48 48 40 8 53 93 30 18 24 54 30 18 25 55 21 27 19 40 
49 26 4 22 41 45 3 23 18 21 5 21 17 22 0 26 6 6 
50 85 61 24 9 70 54 31 1 55 55 30 2 57 8 77 3 11 
51 24 19 5 12 31 14 10 6 20 15 9 4 19 0 24 5 5 
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Appendix I: Obstacle and Error Counts for DLC 

  After applying Threshold and Max method (DLC) 
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1 Roberts 6 33 7 13 0.031 7 2 0 
2 Roberts 34 2 3 37 0.06 1 1 2 
3 Roberts 8 9 34 42 0.043 29 1 5 
4 Canny 54 20 71 125 0.14 63 3 8 
5 Canny 27 0 10 37 0.176 9 0 1 
6 Prewitt 23 1 7 30 0.094 7 0 0 
7 Roberts 20 2 8 28 0.047 7 0 1 
8 Roberts 20 6 4 24 0.046 4 1 0 
9 Canny 18 2 4 22 0.516 3 1 1 

10 Prewitt 29 6 8 37 0.087 2 2 6 
11 Roberts 51 13 3 54 0.071 3 1 0 
12 Canny 8 4 10 18 0.138 8 1 2 
13 Sobel 27 8 4 31 0.169 4 0 0 
14 Canny 16 2 10 26 0.328 8 1 2 
15 Canny 57 18 7 64 0.285 5 1 2 
16 Canny 16 90 5 21 0.528 4 1 1 
17 Prewitt 18 0 5 23 0.075 3 0 2 
18 Canny 108 20 6 114 0.325 2 1 4 
19 Sobel 54 12 4 58 0.073 1 3 3 
20 Sobel 9 79 15 24 0.175 5 2 10 
21 Canny  51 4 5 55 0.417 3 0 2 
22 Canny 34 11 94 128 0.15 91 2 3 
23 Sobel 9 0 7 16 0.106 6 1 1 
24 Sobel 8 59 5 13 0.203 4 1 1 
25 Sobel 9 0 2 11 0.152 2 0 0 
26 Prewitt 14 2 4 18 0.1 3 2 1 
27 Roberts 40 28 8 48 0.099 7 2 1 
28 Prewitt 35 7 5 40 0.121 3 3 2 
29 Roberts 40 5 11 51 0.089 10 3 1 
30 Roberts 22 14 16 38 0.074 11 2 5 

 
Table continues on the next page.  
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Table continued from the previous page. 

  After applying Threshold and Max method (DLC) 
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31 Roberts 37 19 4 41 0.117 3 1 1 
32 Canny  50 2 3 53 0.32 2 1 1 
33 Canny 14 25 4 18 0.497 4 1 0 
34 Canny 69 76 15 84 0.462 10 5 5 
35 Canny 28 48 10 38 0.496 7 3 3 
36 Canny  19 7 10 29 0.185 9 3 1 
37 Canny 19 0 40 59 0.122 33 7 7 
38 Canny 28 12 2 30 0.756 2 3 0 
39 Canny 20 4 71 91 0.139 69 1 2 
40 Canny 23 11 125 148 0.197 97 11 28 
41 Canny 10 13 65 74 0.244 45 5 20 
42 Canny  50 29 69 119 0.281 47 7 22 
43 Prewitt 17 0 15 32 0.088 13 2 2 
44 Prewitt 34 2 14 46 0.099 12 3 2 
45 Canny  87 9 28 115 0.414 15 5 13 
46 Roberts 61 4 15 76 0.057 12 4 3 
47 Canny  74 2 39 113 0.238 27 6 12 
48 Canny 37 11 100 137 0.163 68 11 32 
49 Canny 3 23 94 97 0.192 45 21 49 
50 Roberts 72 13 9 81 0.031 7 3 2 
51 Canny  21 3 12 32 0.197 9 1 3 

	


