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ABSTRACT 

β-thalassemia, SCD and other human β-globin gene related diseases are the major sources 

of mortality in the world. Bone marrow transplantation, gene therapy and supporting care 

with transfusion of red blood cells are possible treatments of human β-globin gene related 

diseases. However, none of these treatments has progressed to the level of worldwide 

efficient clinical therapy. Reactivation of γ-globin gene in affected adults is known to be 

an efficient measure to ameliorate the severity of β-thalassemia and SCD.  

In this study, we propose new strategies for β-globin disorders. These approaches are 

centered upon induction of γ-globin gene expression. We use Cell Illustrator software tool 

to create HFPN model of hemoglobin switching network, validate the model with 

available qPCR data and perform simulations to compare the efficiency of the proposed 

strategies with the existing drug and RNAi-mediated therapies. Simulation results show 

that our drug and RNAi-mediated strategies have been postulated to lead to the potential 

induction of γ-globin gene expression. 

Keywords: Quantitative modeling, hybrid functional Petri net, β-thalassemia, 

hemoglobin switching network 
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ÖZ 

β-talasemi ve diğer β-globin geni ile ilgili anomalilerden oluşan hastalıklar dünyada 

mortalitenin en yüksek olduğu önemli bir halk sağlığı sorunudur. Kemik iliği nakli, gen 

terapisi ve kırmızı kan hücrelerinin nakli ile destekleyici bakım, β-globin geni ile ilgili 

anomalilerden oluşan hastalıkların olası tedavileri arasında yer almaktadır. Fakat bu 

tedavilerin hiçbiri dünya genelinde yeterli klinik tedavi seviyesine ulaşmış değildir. 

Ancak γ-globin geninin reaktivasyonu, β-talasemi hastalığının şiddetini iyileştirmek için 

etkin önlem olarak önerilebilir.  

Bu tezde, β-globin geni ile ilgili anomalilerden oluşan bozuklukları çalışmak için γ-globin 

gen ekspresyonunun reaktivasyon olgusuna dayanan yeni stratejiler önerilmiştir. 

“Hemoglobin Switching”, HFPN modeli oluşturarak mevcut qPCR verileri ile, mevcut 

ilaç ve RNAi metodu kullanılan tedavilerle ve önerilen stratejilerin etkinliğini 

karşılaştırmak koşulu ile, “Cell Illustrator” yazılımı kullanılarak in silico simülasyonlar 

gerçekleştirilmiştir. Simülasyon sonuçları, bizim önerdiğimiz ilaç ve RNAi 

aplikasyonlarının γ-globin gen ekspresyonunun yüksek indüklenmesine neden olabilecek 

potansiyel stratejiler olabileceğini göstermektedir. 

Anahtar kelimeler:  Kantitatif modelleme, hibrid fonksiyonel Petri net, β-talasemi, 

hemoglobin anahtarlamalı ağ 
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Chapter 1 

INTRODUCTION 

Over the past decades, owing to the advanced technologies in biological sciences, vast 

amount of biological data and information have been collected from many scientific 

research. The accumulated data yet requires to be compiled, analyzed and interpreted. 

Since handling such large amount of data is not feasible manually, fields such as applied 

mathematics, computer science, computational science, biomathematics and 

bioinformatics arose as essential tools to solve this problem by designing structural 

biological databases, developing software tools along with models to run simulations to 

retrieve useful information from mass of raw biological data. Hence, the data can be 

collected and stored in organized biological databases, analyzed, validated through 

computational models, and finally the biological phenomenon can be interpreted based on 

the accumulated biological data. 

Biological systems are indeed complex and the exact interaction among their components 

are yet unclear. The most common approach to represent these complex biological 

systems is computational modeling. Computational modeling enables us to use current 

known facts and available data from wet lab results not only to have better understanding 

of dynamic behavior of the biological systems, but also to predict the unknown results by 

simulations. In such computational models, biological outcomes are presented as 

variables, and the interaction among these variables are represented by the dynamic 
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behavior of complex biological systems. The initial concentration levels of entities and 

process rates of variable interactions are obtained and validated by the available data. 

Subsequently by creating the new potential scenarios and conditions, it is possible to 

predict the results by running simulations on the proposed models. Obtaining these 

simulation results could be as fast as pressing an enter button on a computer, and running 

such simulations and acquiring new data and information is currently the most feasible 

known approach. Therefore, the mentioned approach has this advantage to obtain useful 

information out of huge number of biological data in shorter time and lower cost 

compared to conducting these experiments in wet laboratory settings. These types of 

computational modeling are categorized in two branches. Qualitative computational 

modeling enables researchers to have better understanding of structure and states of the 

biological system. On the other hand, Quantitative computational modeling is helpful as a 

tool to learn about dynamic behavior of complex biological systems in details. Thus, prior 

to initiating such projects, choosing an appropriate computational modeling tool is 

essential. 

β-globin gene disorders such as β-thalassemia and SCD  are caused by mutations in 

β-globin gene. The mutations in β-globin gene leads to deficiency of β-subunits in 

hemoglobin of human adults. There is not yet a global treatment to cure β-globin gene 

related disorders. In order to reach an ideal treatment for such diseases, understanding the 

developmental stages of hemoglobin switching network, as complex biological systems, 

became crucial. During the last few decades, there have been several studies to find out 

which genes are involved in gene regulation in this network and what the interactions 

among them are [5,7,32,43].  
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There exist some therapies and treatments of β-globin gene disorders such as bone 

marrow transplantation [18,29]  gene therapy [33], red blood cells transfusion [35], and 

chelation therapy particularly for patients who have β-thalassemia [19]. One of the current 

potential treatments of β-globin gene disorders is γ-globin gene induction. Although the 

identification of drugs, which can lead to reactivation of γ-globin gene expression is still 

challenging [15], it is the topic of interest in many research since increasing the level of 

HbF can ameliorate clinical severity and decrease the mortality rates of SCD [34] and 

β-thalassemia patients [47]. 

Since none of the mentioned approaches were ideal to cure β-globin gene disorders, it 

became an interesting subject for researchers to find a potential treatment by induction of 

γ-globin gene expression in human adult with β-globin gene disorders. However, the 

details related to its biological network is still unknown for scientists. Thus, quantitative 

computational modeling can be an alternative tool to reach better understanding of these 

complex biological systems. 

One of those systems, which became interesting due to the necessity for designing 

mathematical models for studying biological systems is Petri nets [13,29,27]. Since there 

are variety of structured processes involved in such complex biological systems, it is more 

efficient to model and analyze them by using HFPN. As examples of HFPNs to describe 

biological systems and analyze them, it is worth mentioning HFPNs to model 

bio-pathways signaling [14,27], p53 transcriptional activity validation [13], role of 

interleukin-6 in human early hematopoiesis [46], cell fate specification during 
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Caenorhabditis elegans vulval development [29], the flower developmental network of 

Arabidopsis thaliana [22], eukaryotic cell cycle [20], and p16-mediated pathway [1]. 

In this study, we concentrate on finding potential treatments for β-globin gene related 

disorders caused by mutations in β-globin gene by constructing and analyzing the most 

detailed quantitative computational HFPN model based on recent biological discoveries 

and latest available biological data obtained by experimental observations. Our 

constructed HFPN model is able to quantitatively compare targeting one or many 

components involved in fetal-to-adult hemoglobin switching pathway by considering 

dynamic behaviors of the main proteins and their complexes for reactivating γ-globin 

gene expression via simulations. This quantitative comparison is carried out by 

performing a series of simulations by targeting all major components involved in 

silencing γ-globin gene expression in HbA to observe which strategy, whether it is based 

on current known drug based treatments and gene therapies or on our proposed potential 

strategy may lead to optimum γ-globin gene induction. By constructing HFPN model and 

analyzing it by carrying out simulation results, not only we shed light on how the 

fetal-to-adult hemoglobin switching network works in human adults, but also identified 

two potential strategies to treat β-globin gene related disorders by reaching optimum 

concentration level of γ-globin mRNA. One of these two strategies is targeting BCL11A 

mRNA and SOX6 mRNA by utilizing a drug called Acy-947 together with targeting ETF 

(GATA1, FOG1, and SOX6). The other strategy is siRNA-mediated knock down of 

BCL11A, HDAC1/2, FOG1, and BCL11A gene transcripts. All of the known strategies to 

find potential cure for such diseases in our HFPN model was validated by available qPCR 
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data obtained from the literature. Additionally, we proposed two potential strategies as 

predicted therapies [28]. 

The rest of the thesis is organized as follows: The basics of Petri Nets is presented in 

Chapter 2. The research conducted in the frame of present thesis is detailed in Chapter 3. 

In this chapter, we describe step-by-step construction of HFPN model of fetal-to-adult 

hemoglobin switching network, validate the model and identify potential optimal 

therapeutic strategies by performing quantitative comparative analysis of existing and 

newly proposed strategies. Finally, the main results are summarized in Chapter 4. 
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Chapter 2 

PETRI NETS 

2.1 Background 

Petri nets are graphical and mathematical modeling tool which can be used for problem 

solving in various areas [30]. There are numerous examples of asynchronous, distributed, 

concurrent, parallel, deterministic, nondeterministic and stochastic dynamic systems 

which can be modeled and analyzed in terms of Petri nets. The main advantage of using 

Petri nets is that it enables visualization and analysis states and subsystems seperately, and 

demonstrates the distributed activities of the whole complex system with high accuracy 

and effectiveness [21]. During the last few decades, Petri nets are increasingly used in 

molecular biology and system biology. Petri nets represent a well-defined technique to 

model various complex systems and analyze them in details. Although classical Petri nets 

were designed to model and analyze behavior of only discrete-event systems, later the 

concept was expanded with such extensions as color, time, hierarchy, fuzziness, 

stochasticity and continuity. It is also common to use combination of the extentions for 

defining new type of extented Petri nets such as HFPN. 

2.2 Basic Definitions and Notations 

A Petri net is a directed graph consisting of places, transitions, and arcs, which are usually 

represented as circles, bars/boxes and arrows, respectively. A pair of place and transition 

can be connected by a directed arc, but there cannot be arc between two places or two 

transitions. An arc is directed from place to transition or vice versa. Arcs are identified by 
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their weights. so that 𝑘-weighted arc is labeled with the weight 𝑘, indicating the number 

of parallel arcs between specified pair of objects.  

A place from which an arc runs to a transition is called the input place of the transition. 

Similarly, a place to which arc runs from a transition is called the output place of the 

transition. Input places in Petri nets are interpreted as preconditions and inputs of the 

model while output places are considered as postconditions and outputs. Transitions in 

Petri nets are usually represented as actions, events, computational steps, logic clauses, 

and processors which can change the states in Petri Nets.  

Dynamic structure of a Petri net can be described in terms of flow of tokens. A state is 

recognized by distribution of the tokens among places, called a marking. The initial state 

of the system is represented by the initial marking 𝑀0. The arrrangement of the tokens in 

a Petri net based on the places can be rearranged and create new marking states. A 

marking 𝑀 is 𝑚-vector where m is the total number of places. 

A classical Petri net or P/T-net [30] is a 5-tuple 𝑃𝑁 =  (𝑃, 𝑇, 𝐴, 𝑊, 𝑀0) where 𝑃 =

{𝑝1, … , 𝑝𝑚} is the set of finite places, 𝑇 = {𝑡1, … , 𝑡𝑛} is the set of finite transitions, 𝐴 ⊆

(𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is the set of arcs, 𝑊: 𝐴 → ℕ is the weight function, and 𝑀0: 𝑃 → ℕ 

is the initial marking. We assume that 𝑇 and 𝑃 are nonempty pairwise disjoint sets, that 

is, 𝑇 ∪ 𝑃 ≠ ∅ and 𝑇 ∩ 𝑃 = ∅. A state of a Petri net can be changed to another state by 

firing of transitions. The weight of arc (𝑝, 𝑡) is denoted by 𝑤(𝑝, 𝑡). A transion 𝑡 is said 

to be enabled in 𝑀  if 𝑀(𝑝) ≥ 𝑤(𝑝, 𝑡) ; It is disabled otherwise. Firing of enabled 

transition 𝑡  changes (𝑚1, … , 𝑚𝑛) to (𝑚1
′ , … , 𝑚𝑛

′ ) as follows 𝑚𝑖
′ = 𝑚𝑖 − 𝑤(𝑝𝑖, 𝑡) . A 
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self-loop is composed of a pair of arcs (𝑝, 𝑡) and (𝑡, 𝑝). A pure Petri net does not have 

any self-loop. 

As an easy example to illustrate how it is possible to construct a Petri net based on a 

simple system, consider the reaction of hydrogen gas 𝐻2  with oxygen gas 𝑂2 . The 

product of these two reactants is a water molecule 𝐻2O. As a chemical reaction, it is 

expressed as 2𝐻2 + 𝑂2 → 2𝐻2O  (see Figure 1). 

a) b)   

Figure 1: A Petri net model of the reaction of hydrogen and oxygen gasses to produce a 

water molecule. 

Two states of Petri net: a) Before transition fires b) After transition fires. 

The main drawback of analyzing heavily loaded dynamic discrete event systems with 

discrete or classical Petri nets is the classical problem known as state explosion which 

consequently leads to memory overflow [36]. Continues Petri Nets are introduced to 

avoid this common disadvantage of classical Petri Nets [10]. A CPN is a 5-tuple 𝐶𝑃𝑁 =

 (𝑃, 𝑇, 𝐴, 𝑊, 𝑀0). The only difference between CPN and P/T-net is that weight function 

and marking are positive and real valued, that is, 𝑊: 𝐴 → ℝ+ and 𝑀0: 𝑃 → ℝ+.  
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The weakness related to CPNs is that, they can not model a systems with different types of 

proceesses such as both continuous and discrete ones. Biological systems consist of such 

different types of processes. For example, biochemical reactions in a biological systems 

are continuous processes, while presence or absence of biological phenomenon, or 

counter-like mechanisms are discrete processes. Thus, to cover both continuous and 

discrece processes in a model, HPNs were introduced [11,23]. HPN is a 6-tuple 𝐻𝑃𝑁 =

(𝑃, 𝑇, 𝐴, 𝑊, 𝑀0, ℎ) where P and T are same to those in definition of CPN with the only 

difference that they can both be continuous and discrete. That is, the discrete part of HPN 

consists of discrete places, 𝑃𝐷, and discrete transitions, 𝑇𝐷, while the continuous part 

consists of 𝑃𝐶  and 𝑇𝐶 nodes as its continuous places and transitions, respectively. An 

arc can be adjacent from a continous place (or transition) to a discrete transition and vice 

versa. Arc weights and initial marking in HPN can take their values from either positive 

real numbers (for continous places where 𝑝𝑖 ∈ 𝑃𝐶) or natural numbers (for discrete places 

where 𝑝𝑖 ∈ 𝑃𝐷). Weight function and the initial marking are defined as 𝑊: 𝐴 → ℝ+ or 

ℕ, and 𝑀0: 𝑃 → ℝ+ or ℕ. ℎ: 𝑃 ∩ 𝑇 → {𝐷, 𝐶} is called hybrid function, In such Petri 

nets, it is possible to use test arcs, which allow a particular component to affect the 

behaviour of other parts without any change in its own marking, and without the need for 

removing any contents from the source place after firing related transition.  

Inhibitory arcs are one of the common arcs which are used in many applications. Although 

it is possible to subsititute inhibitory arc by equivalent net fragments, extended hybrid 

Petri nets are introduced to include inhibitory arcs in case of continuous places [11]. In 

extended HPN, weights can get infinitely small continuous values. That is, 𝑤(𝑝, 𝑡) ∈
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 ℝ+ ∪ {0+}. This also holds for place markings, that is 𝑀(𝑝) ∈  ℝ+ ∪ {0+} where p is a 

continuous place.  

2.3 Hybrid Functional Petri Nets 

HFPN has been developed to model and analyze biological processes [27]. In HFPN the 

rate of a continuous transition can be expressed as a function of concentration. 

Furthermore, different types of functions can be defined for the arcs connecting with 

continuous transitions as firing rules. Morever, each transition can be associated with 

delay function. The possible arc types include test input arc, discrete (input/output) arc, 

and continuous (input/output) arc.  

Let 𝑇 be a continuous transition and let 𝑎1, 𝑎2, … , 𝑎𝑝 and 𝑏1, 𝑏2, … , 𝑏𝑞 be respectively 

input and output arcs (continuous or test) from continuous places 𝑃1, 𝑃2, … , 𝑃𝑝  to 

continuous places 𝑄1, 𝑄2, … , 𝑄𝑞. The contents of corresponding input and output arcs at 

time 𝑡  are represented by 𝑚1(𝑡), … , 𝑚𝑝(𝑡)  and 𝑛1(𝑡), … , 𝑛𝑞(𝑡) . Three major rules 

about continuous transitions are:  

1) The continuous transition 𝑇 fires if and only if the firing condition remains true; 

2) To determine consuming rate from input places 𝑃𝑖 when a continous transition 𝑇 

fires, for all 𝑎𝑖, a funcion 𝑓𝑖 (𝑚1(𝑡), … , 𝑚𝑝(𝑡)) ≥ 0 is defined for 𝑇. In case 𝑎𝑖 

is a test input, 𝑓𝑖 is considered to be equivalent to 0 which means there will not be 

any change in quantity of corresponding 𝑃𝑖;  
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3) To determine adding rate to output places 𝑄𝑗  when a Continous transition 𝑇 

fires, for all 𝑏𝑗, a funcion 𝑔𝑗(𝑚1(𝑡), … , 𝑚𝑝(𝑡)) ≥ 0 is defined for the transition. 

Discrete transition 𝑇 consists of discrete or test type input arcs 𝑎1, 𝑎2, … , 𝑎𝑝 and output 

arcs 𝑏1, 𝑏2, … , 𝑏𝑞 that are directed from discrete places 𝑃1, 𝑃2, … , 𝑃𝑝 to discrete places 

𝑄1, 𝑄2, … , 𝑄𝑞  with contents 𝑚1(𝑡), … , 𝑚𝑝(𝑡)  and 𝑛1(𝑡), … , 𝑛𝑞(𝑡)  at time 𝑡 , 

respectively. The rules applied to discrete transitions are:  

(1) Same as the first rule of continuous transitions with predicate 𝑐(𝑚1(𝑡), … , 𝑚𝑝(𝑡)) 

as firing condition; 

(2) Same as second and third rules of continuous transitions except that for 𝑚𝑖(𝑡) is 

defined in the set of nonnegative integers;  

(3) The delay function for discrete transitions is defined by function 

𝑑 (𝑚1(𝑡), … , 𝑚𝑝(𝑡)), where 𝑚𝑖(𝑡) is defined in the of nonnegative integers. 

Delay function lets 𝑇 fire with delay 𝑑 (𝑚1(𝑡), … , 𝑚𝑝(𝑡)) at time 𝑡 if the firing 

condition holds. During this delay time 𝑑 (𝑚1(𝑡), … , 𝑚𝑝(𝑡)), if the firing rule is 

changed and does not hold anymore, then 𝑇 can not fire and the firing rule will be 

reset. 
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2.4 Modeling Biological Processes with Petri Nets 

Petri nets as a quantitative modeling approach became applicable for modeling biological 

phenomon and processes since 1993 [37]. Since then, there exist many research and 

studies regarding this field. Petri nets have this advantage over other modeling approaches 

that they use simple mathematical model with intuitive graphical presentations, which 

enable not only qualitative analysis, but also quantitative analysis. In the following 

subsections, basic modeling of biological processes are demonstrated. 

2.4.1 Modeling of Unimolecular and Biomolecular Reactions 

A unimolecular reaction or first-order reaction is when a molecule rearranges its atoms to 

form other molecules [4]. When an unstable molecule 𝐴 converts to a stable molecule 𝐵, 

it can be considered as a unimolecular reaction and denoted by 𝐴 → 𝐵. A Petri net 

illustrating unimolecular reaction is illustrated in Figure 2.  

 
Figure 2: Petri net model of a unimolecular reaction. 

Bimolecular reaction or second-order reaction represents binding of two substrates 𝐴 and 

𝐵 to get product 𝐶 as the result. Such a reaction is denoted by 𝐴 + 𝐵 → 𝐶. A Petri net 

representing bimolecular reaction is illustrated in Figure 3. 
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Figure 3: Petri net model of a bimolecular reaction. 

2.4.2 Modeling of Biodegradation and Central Dogma of Biology 

Biodegradation is the chemical dissolution of materials by bacteria or other biological 

means [12]. In Petri nets, it is possible to represent biodegradation by a sink transition (see 

Figure 4). 

 
Figure 4: Petri net model of central dogma of biology. 

Central dogma is related to transferring genetics sequential information such as 

transcription of DNA to RNA, and translation of RNA to protein. It is possible to model 

such descriptions in Petri nets, too (see Figure 4). 
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2.4.3 Modeling of Presence/Absence Type Events 

As mentioned in section 2.2, HPN not only preserves the features of CPN, but it can also 

include discrete components. Presence or absence of a biological phenomenon can be 

presented by a discrete place with Boolean variable. As it is described in section 2.2 

HFPN enable the model to contain inhibitory arcs. For example, when a mutation happens 

in a gene, which in the most extreme case stops the production of a particular protein, can 

be modeled in an extended HPN (see Figure 5). Another example would be the case when 

a drug suppresses the target gene expression by binding to its mRNA (see Figure 6). 

 
Figure 5: Hybrid Petri net model of presence of mutation by using an inhibitory arc. 
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Figure 6: Extended Hybrid Petri net model of presence of drug by using an inhibitory arc. 



16 
 

Chapter 3 

MOLECULAR TARGETS FOR β-GLOBIN DISORDERS 

3.1 Biological Context  

3.1.1 Introduction 

Mutations in β-globin gene may lead to diseases such as β-thalassemia and SCD. 

β-thalassemia is a type of thalassemia disease caused by the reduction or absence of the 

synthesis of the β-globin chains of the hemoglobin tetramer [6]. The absence or reduction 

of β chains causes excessive accumulation of α-globin and precipitation, which leads to 

ineffective erythropoiesis [38]. Presence of mutations in β-globin gene is the main reason 

of causing β-thalassemia. When mutations cause absence of the synthesis of β-globin 

chains, it is called β0 thalassemia. Whereas in the case where mutations result in a 

reduction in the synthesis of β-globin chains, this is then referred to as β+ thalassemia [31]. 

In terms of the severity of the disease, we may categorize it into β thalassemia major, and 

β thalassemia minor [6]. 

3.1.2 Hemoglobin Switching Pathway 

Hemoglobin switching represents the developmental stages of globin gene regulation 

including its two switches. First developmental switch is related to embryonic-to-fetal 

stage, which occurs within the first six weeks of prenatal age. At this stage γ-globin gene 

expression is up regulated at its maximum level while ε-globin gene expression is 

downregulated. Second developmental switch is related to fetal-to-adult stage, which 

occurs within the first six weeks of postnatal age. At this stage β-globin gene expression is 
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upregulated and it replaces the γ-globin gene expression significantly in a healthy adult. 

Hence, six months after birth, β-globin gene expression is at its maximum level while 

γ-globin gene expression is down regulated. Due to these developmental switches, 

dominant hemoglobin molecules at each stage of ontogeny are Hbε in embryonic from the 

moment of conception for almost three months, HbF in fetus from the third month after 

conception to birth, and HbA after birth respectively. These developmental stages are 

illustrated in Figure 7.  

 
Figure 7: (Adopted from [41].) Hemoglobin Switching network: There are two 

developmental stages in β-globin gene family. Embryonic to fetal, which occurs 

within the first three months after conception, and fetal to adult hemoglobin 

switching, which occurs within the first three months after birth.  

In adults, β-globin gene expression remains to be up regulated. 

During fetal-to-adult hemoglobin switching BCL11A binds to NuRD complex and 

silences γ-globin gene expression [5,42]. It was observed that down regulation of 

BCL11A gene expression induces γ-globin gene expression [50]. Myb protein is an 

indirect upstream regulator of BCL11A through KLF1, which positively regulates 

transcription of BCL11A [39]. KLF1, GATA1, and FOG1 are transcription factors of the 
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β-globin gene [26,48]. Fetal-to-adult hemoglobin switching network is illustrated in 

Figure 8. 

3.2 Developing HFPN Model of Hemoglobin Switching Pathway 

We develop HFPN model of fetal-to-adult hemoglobin switching network based on the 

biological context taken from relevant literature [40-42,49,50]. The model consists of one 

generic entity, indicating the presence/absence condition for β-globin gene mutation, 27 

continuous entities used to measure the level of biological components (see Table 1) and 

52 continuous processes (see Table 2). The model uses 50 input connectors, 28 output 

connectors, 3 input inhibitors, and one input association (see Table 3). It is also assumed 

that levels of mRNAs and proteins are kept low by natural degradation (see Table 4). 

In molecular biology research, it is quite common to observe different results for identical 

experiments. Therefore, it is hard task to come up with kinetic parameters such as reaction 

rates based on wet lab results only. In the proposed model, we set the process rates to the 

values specified in similar research [1,24,27], and then in line with the reverse engineering 

approach estimate correct values by validating the model with qPCR data existing for fetal 

to adult developmental stage of hemoglobin switching in case of wild type β-globin gene 

expression. 
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Figure 8: Fetal-to-adult hemoglobin switching network. 

Table 1: HFPN entities and corresponding biological components 

Entity name Entity type Variable Value Type 

C-MYB Continuous m1 1 Double 

KLF1 mRNA Continuous m2 0 Double 

KLF1 Continuous m3 0 Double 

BCL11A mRNA Continuous m4 0 Double 

BCL11A Continuous m5 0 Double 

HDAC1/2 mRNA Continuous m6 0 Double 

HDAC1/2 Continuous m7 0 Double 

MBD2 mRNA Continuous m8 0 Double 

MBD2 Continuous m9 0 Double 

CHD3/4 mRNA Continuous m10 0 Double 

CHD3/4 Continuous m11 0 Double 

NuRD Continuous m12 0 Double 

BCL11A_NuRD Continuous m13 0 Double 

GATA1 mRNA Continuous m14 0 Double 

GATA1 Continuous m15 0 Double 

FOG1 mRNA Continuous m16 0 Double 
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FOG1 Continuous m17 0 Double 

SOX6 mRNA Continuous m18 0 Double 

SOX6 Continuous m19 0 Double 

ETF Continuous m20 0 Double 

BCL11A_NuRD_ETF Continuous m21 0 Double 

γ-globin_BCL11A_NuRD_ETF Continuous m22 0 Double 

γ-globin gene Continuous m23 0 Double 

γ-globin mRNA Continuous m24 0 Double 

HbF Continuous m25 0 Double 

Mutation Generic m26 0/1 Boolean 

β-globin mRNA Continuous m27 0 Double 

HbA Continuous m28 0 Double 

 

Table 2: HFPN processes and corresponding biological phenomenon 

Phenomenon Process Type Rate Delay 

Transcription of KLF1 

mRNA 

T1 Continuous m1*0.1 0 

Translation of KLF1 T2 Continuous m2*0.1 0 

Transcription of BCL11A 

mRNA 

T3 Continuous m3*1 0 

Translation of BCL11A T4 Continuous m4*0.1 0 

Transcription of HDAC1/2 

mRNA 

T5 Continuous 1 0 

Translation of HDAC1/2 T6 Continuous m6*0.1 0 

Transcription of MBD2 

mRNA 

T7 Continuous 1 0 

Translation of MBD2 T8 Continuous m7*0.1 0 

Transcription of CHD3/4 

mRNA 

T9 Continuous 1 0 

Translation of CHD3/4 T10 Continuous m10*0.1 0 

Binding of HDAC1/2, 

MBD2 and CHD3/4 

T11 Continuous m7*m9*m11*0.1 0 

Binding of BCL11A with 

NuRD 

T12 Continuous m5*m12*0.1 0 

Transcription of GATA1 

mRNA 

T13 Continuous 1 0 

Translation of GATA1 T14 Continuous m14*0.1 0 

Transcription of FOG1 

mRNA 

T15 Continuous 1 0 



21 
 

Translation of FOG1 T16 Continuous m16*0.1 0 

Transcription of SOX6 

mRNA 

T17 Continuous 1 0 

Translation of SOX6 T18 Continuous m18*0.1 0 

Binding of GATA1, FOG1 

and SOX6 

T19 Continuous m15*m17*m19*0.1 0 

Binding of ETF with 

BCL11A_NuRD 

T20 Continuous m13*m20*0.1 0 

Binding of 

BCL11A_NuRD_ETF with 

γ-globin gene 

T21 Continuous m21*m23*0.1 0 

Activation of γ-globin gene T22 Continuous 0.01 0 

Transcription of γ-globin 

mRNA 

T23 Continuous m23*0.1 0 

Translation of HbF T24 Continuous m24*0.1 0 

Activation of β-globin 

mRNA by KLF1 

T25 Continuous m3*0.002 35 

Activation of β-globin 

mRNA by GATA1 

T26 Continuous m15*0.002 35 

Activation of β-globin 

mRNA by FOG1 

T27 Continuous m17*0.002 35 

Translation of HbA T28 Continuous m27*0.1 0 

 

Table 3: HFPN connectors and their attributes. 

Connector Firing style Firing script Connector type 

c1-c50 Threshold 0 Input process 

c51-c78 Threshold 0 Output process 

c79-c81 Threshold 0 Input inhibitor 

c82 Threshold 0 Input association 

 

Table 4: Degradations in the HFPN model. 

Phenomenon Process Type Rate 

mRNA degradation d1-d10 Continuous 𝑚𝑖*0.05 

Protein degradation d11-d24 Continuous 𝑚𝑖*0.01 
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3.3 Numerical validation of the model 

In the present research, we use Cell Illustrator software, which is licensed to Eastern 

Mediterranean University, to create HFPN model of human fetal to adult hemoglobin 

switching network, to validate the model and to perform simulations in order to identify 

optimal molecular targets.  

We validate the model through altering calibration parameters such as initial markings 

(concentrations) and process rates to obtain good fit into wet lab results for the gene, 

mRNA and protein concentrations. In the simulation plots, x-axis stands for Petri time (pt) 

and y-axis presents concentration levels of genes, mRNAs, proteins, and their complexes. 

In these plots, each 10 pt stands for three months of gestational age. According to our 

assumptions fetal life starts at 20 pt and a child is born at 50 pt. We measured the γ-globin 

mRNA levels at 70 pt, that is, 6 months after birth.  

In order to minimize our approximation regarding the wild type β-globin mRNA and 

γ-globin mRNA concentration levels, we have validated the model by extrapolating the 

simulation results for those mRNA concentration levels with respect to their relation to 

biological components, which are involved in fetal to adult hemoglobin switching. The 

simulation results regarding the fetal to adult hemoglobin switching developmental stage 

is illustrated in Figure 9. 
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Figure 9: Simulation results for expression of β-globin and γ-globin genes illustrated in 

the same graph to emphasize their relation during hemoglobin switching developmental 

stages. Before birth, γ-globin mRNA level is greater than β-globin mRNA level. 

However, after birth, β-globin mRNA level is greater than γ-globin mRNA level.  

Thus, this is a proper fit to illustrate especially fetal to adult hemoglobin switching. 

3.4 Target-based Drug Prediction for β-hemoglobin Disorders 

3.4.1 Target-based Drug Therapeutic Strategies 

In this thesis we explore comparative efficiency of six target-based drug therapeutic 

strategies. The target-based drug therapeutic strategies include: (1) The combination of 

Simvastatin and tBHQ to target KLF1 mRNA [25]; (2) MS-275 to target KLF1 mRNA 

[8,9,35]. (3) ST-20 to target KLF1 mRNA and HDAC1/2 mRNA [9]; (4-5) ACY-957 to 

target BCL11A mRNA and SOX6 mRNA [43,44]; (6) Identifying a potential hypothetical 

drug to target function of ETF.  

3.4.1.1 HFPN Model and its Validation 

Drug treatment in primary human erythroid cells with Simvastatin, tBHQ, and 

combination of these drugs revealed that Simvastatin decreased KLF1 mRNA by 

approximately 20%, tBHQ by approximately 25%, and the combination of Simvastatin 

and tBHQ by approximately 44% [25]. All three experiments resulted in HbF induction. 

In sickle cell and thalassemia patients, drug treatments with MS-275 in erythroid 

progenitors showed decrease of the KLF-1 mRNA level by 3-fold compared to untreated 

control [9]. Drug treatments of erythroid progenitors in sickle cell and thalassemia 
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patients revealed that ST-20 decreased KLF1 and HDAC1/2 mRNA levels by 2.5-fold 

and 6-fold respectively [9]. Drug treatment with ACY-957 in human CD34-derived 

erythroblasts in culture respectively decreased BCL11A mRNA and SOX6 mRNA levels 

by 1.4-fold and 2.3-fold, and BCL11A mRNA and SOX6 mRNA levels by 2-fold and 

10-fold. Experiments with ACY-957 depended on drug dosage and time. 

In this section, we extend previous HFPN model by integrating biological entities and 

processes related to known potential drug treatments and our proposed strategy. This 

extended HFPN model consists of nine generic and 27 continuous entities (see Table 5) 

with 60 processes, nine Boolean and 27 continuous variables (see Table 6). The generic 

entities in our model represent β-globin gene mutation and drugs such as MS-275. The 

continuous entities are considered to represent entities such as genes, mRNAs, proteins, 

multi-proteins, and their complexes. The processes stand for biological reactions such as 

gene transcription, mRNA translation, binding, mRNA and protein degradation. Boolean 

entities show the presence or absence of a specific drug, while continues entities 

represents the concentration level of biological components. There are 100 connectors in 

our proposed HFPN model consist of 59 input connectors, 28 output connectors, 12 input 

inhibitor, and one input association (see Table 7). Protein and mRNA degradation in this 

HFPN is the same as in Table 4. 

Table 5: Relationship between biological components and HFPN entities. 

Entity name Entity type Variable Value Type 

C-MYB Continuous m1 1 Double 

KLF1 mRNA Continuous m2 0 Double 

KLF1 Continuous m3 0 Double 

BCL11A mRNA Continuous m4 0 Double 

BCL11A Continuous m5 0 Double 

HDAC1/2 mRNA Continuous m6 0 Double 
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HDAC1/2 Continuous m7 0 Double 

MBD2 mRNA Continuous m8 0 Double 

MBD2 Continuous m9 0 Double 

CHD3/4 mRNA Continuous m10 0 Double 

CHD3/4 Continuous m11 0 Double 

NuRD Continuous m12 0 Double 

BCL11A_NuRD Continuous m13 0 Double 

GATA1 mRNA Continuous m14 0 Double 

GATA1 Continuous m15 0 Double 

FOG1 mRNA Continuous m16 0 Double 

FOG1 Continuous m17 0 Double 

SOX6 mRNA Continuous m18 0 Double 

SOX6 Continuous m19 0 Double 

ETF Continuous m20 0 Double 

BCL11A_NuRD_ETF Continuous m21 0 Double 

γ-globin_BCL11A_NuRD_ETF Continuous m22 0 Double 

γ-globin gene Continuous m23 0 Double 

γ-globin mRNA Continuous m24 0 Double 

HbF Continuous m25 0 Double 

Mutation Generic m26 0/1 Boolean 

β-globin mRNA Continuous m27 0 Double 

HbA Continuous m28 0 Double 

Simvastatin+tBHQ as KLF1 mRNA 

suppressor 

Generic m28 1 Boolean 

MS-275 as KLF1 mRNA suppressor Generic m29 1 Boolean 

ST-20 as KLF1 mRNA suppressor Generic m30 1 Boolean 

ST-20 as HDAC1/2 mRNA suppressor Generic m31 1 Boolean 

ACY-957 as BCL11A mRNA 

suppressor (case I) 

Generic m32 1 Boolean 

ACY-957 as SOX6 mRNA suppressor 

(case I) 

Generic m33 1 Boolean 

ACY-957 as BCL11A mRNA 

suppressor (case II) 

Generic m34 1 Boolean 

ACY-957 as SOX6 mRNA suppressor 

(case II) 

Generic m35 1 Boolean 

ETFI (ETF Inhibitor) Generic m36 1 Boolean 

 

 

Table 6: Relationship between biological phenomena and HFPN processes. 

Phenomenon Process Type Rate Delay 

Transcription of KLF1 

mRNA 

T1 Continuous m1*0.1 0 
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Translation of KLF1 T2 Continuous m2*0.1 0 

Transcription of BCL11A 

mRNA 

T3 Continuous m3*1 0 

Translation of BCL11A T4 Continuous m4*0.1 0 

Transcription of HDAC1/2 

mRNA 

T5 Continuous 1 0 

Translation of HDAC1/2 T6 Continuous m6*0.1 0 

Transcription of MBD2 

mRNA 

T7 Continuous 1 0 

Translation of MBD2 T8 Continuous m7*0.1 0 

Transcription of CHD3/4 

mRNA 

T9 Continuous 1 0 

Translation of CHD3/4 T10 Continuous m10*0.1 0 

Binding of HDAC1/2, 

MBD2 and CHD3/4 

T11 Continuous m7*m9*m11*0.1 0 

Binding of BCL11A with  

NuRD 

T12 Continuous m5*m12*0.1 0 

Transcription of GATA1 

mRNA 

T13 Continuous 1 0 

Translation of GATA1 T14 Continuous m14*0.1 0 

Transcription of FOG1 

mRNA 

T15 Continuous 1 0 

Translation of FOG1 T16 Continuous m16*0.1 0 

Transcription of SOX6 

mRNA 

T17 Continuous 1 0 

Translation of SOX6 T18 Continuous m18*0.1 0 

Binding of GATA1, FOG1 

and SOX6 

T19 Continuous m15*m17*m19*0.1 0 

Binding of ETF with 

BCL11A_NuRD 

T20 Continuous m13*m20*0.1 0 

Binding of 

BCL11A_NuRD_ETF with 

γ-globin gene 

T21 Continuous m21*m23*0.1 0 

Activation of γ-globin gene T22 Continuous 0.01 0 

Transcription of γ-globin 

mRNA 

T23 Continuous m23*0.1 0 

Translation of HbF T24 Continuous m24*0.1 0 

Activation of β-globin 

mRNA by KLF1 

T25 Continuous m3*0.002 35 

Activation of β-globin 

mRNA by GATA1 

T26 Continuous m15*0.002 35 



27 
 

Activation of β-globin 

mRNA by FOG1 

T27 Continuous m17*0.002 35 

Translation of HbA T28 Continuous m27*0.1 0 

Binding of 

Simvastatin+tBHQ to KLF1 

mRNA 

T29 Continuous m2*0.18 0 

Binding of MS-275  

to KLF1 mRNA 

T30 Continuous m2*0.4 0 

Binding of ST-20 

to KLF1 mRNA 

T31 Continuous m2*0.37 0 

Binding of ST-20  

to HDAC1/2 mRNA 

T32 Continuous m6*1 0 

Binding of ACY-957 to 

BCL11A mRNA (case I) 

T33 Continuous m4*0.38 0 

Binding of ACY-957  

to SOX6 mRNA (case I) 

T34 Continuous m18*0.21 0 

Binding of ACY-957 to 

BCL11A mRNA (case II) 

T35 Continuous m4*0.62 0 

Binding of ACY-957 to 

SOX6 mRNA (case II) 

T36 Continuous m18*1.9 0 

Binding of ETF with its 

inhibitor 

T37 Continuous m20*0.12 0 

 

Table 7: Connectors in the HFPN to identify drug based discoveries 

Connector Firing style Firing script Connector type 

c1-c59 Threshold 0 Input process 

c60-c87 Threshold 0 Output process 

c88-c99 Threshold 0 Input inhibitor 

c100 Threshold 0 Input association 

 

In our simulation results, we have considered the case when β-globin gene had a mutation, 

which had led to a severe case of β-globin gene disorder. In this case, β chain production is 

not only insufficient, but also it is almost lost. In order to compensate for the lack of β 

chain by reawakening γ-globin gene expression, we have also validated our model in case 

of mutated β-globin gene and known drug-based therapies for the purpose of γ-globin 
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gene induction (combination of Simvastatin and tBHQ, MS275, ST-20 and ACY957). 

Finally, we propose a potential strategy by targeting ETF complex and have shown the 

simulation results. The snapshot of our HFPN model is illustrated in Figure 10. 

 
Figure 10: Snapshot of Cell Illustrator screen with HFPN model on it.  

In vitro experiments carried out in human primary cells showed that a combination of 

Simvastatin and tBHQ decreases KLF1 mRNA level by 44% [25]. Drug treatments with 

MS-275 and ST-20 in erythroid progenitors cultured from patients suffering from SCD 

and β-thalassemia resulted in decreased KLF1 mRNA level by 3- and 2.5-fold, 

respectively [9]. The simulation results for the KLF1 mRNA levels are demonstrated in 

Figure 11. It can be easily seen that KLF1 mRNA level reaches its steady state at 25 pt and 

continuously remains at the same level. KLF1 mRNA level at time 70 pt in untreated cell 

and cells treated by a combination of Simvastatin and tBHQ, MS-275, and ST-20 
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measured to be 1.25, 0.70, 0.41, and 0.50, respectively, which provides a good fit for 

aforesaid wet lab results. 

 
Figure 11: Simulation results for KLF1 mRNA level in (a) an untreated cell; (b) primary 

erythroid human cells treated by Simvastatin and tBHQ; (c) erythroid progenitors cultured 

from SCD and β-thalassemia patients treated by MS-275; 

(d) erythroid progenitors cultured from SCD and β-thalassemia patients treated by ST-20.  

Based on ST-20 drug treatment in erythroid progenitors cultured from SCD and 

β-thalassemia patients, HDAC1/2 mRNA level decreased by 6-fold comparing to the 

untreated cells [9]. Simulation results for HDAC1/2 mRNA levels for both untreated cell 

and ST-20 treatment are illustrated in Figure 12. HDAC1/2 mRNA level is measured at 

time 70 pt. Simulation results reveal that treatment with ST-20 decreased HDAC1/2 

mRNA level from 1.5 to 2.5 which agrees with wet lab results. 

 
Figure 12: Simulation results for HDAC1/2 mRNA level in (a) an untreated cell;  

(b) erythroid progenitors cultured from SCD and β-thalassemia patients treated by ST-20. 
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Figure 13: Simulation results for BCL11A mRNA level in (a) an untreated cell; human 

CD34-derived erythroblast in culture treated by 

 (b) ACY-957 (Case I); (c) ACY-957 (Case II).  

Treatment with ACY-957 having different time duration and dosage on gene chip and 

qPCR time course experiments with CD71(low) GlyA(neg) cells decreased BCL11A 

mRNA and SOX6 mRNA levels by 1.4-fold and 2.3-fold, respectively for ACY-957 case 

I [45]; 2-fold and 10-fold for ACY-957 case II [44]. The simulation results for ACY-957 

case I and ACY-957 case II along with untreated cell simulations are illustrated in Figure 

13 and Figure 14 for BCL11A mRNA levels and SOX6 mRNA levels, respectively. 

 
Figure 14: Simulation results for SOX6 mRNA level in (a) an untreated cell; human 

CD34-derived erythroblast in culture treated by  

(b) ACY-957 (Case I); (c) ACY-957 (Case II).  

3.4.1.2 Drug Target Prediction  

In our strategy, we respectively decrease BCL11A mRNA, SOX6 mRNA and ETF levels 

by 1.4-fold, 2.3-fold and 10-fold. The simulation results related to our strategy are 

illustrated in Figure 15. Use of this strategy in HFPN model results in accumulation of 
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maximum γ-globin mRNA levels compared to other drug strategies considered in the 

present thesis. Treatments with a combination of Simvastatin and tBHQ, MS-275, ST-20, 

ACY-957 (case I), and ACY-957 (case II)  lead to increase of γ-globin mRNA levels by 

3.4-, 4.1-, 3.1-, 4.4-, and 5-fold. Simulation results for our strategy shows 5.4-fold 

increase with respect to untreated case. Simulation results for γ-globin mRNA levels are 

illustrated in Figures 16 and 17. 

 
Figure 15: Simulation results for BCL11A mRNA, SOX6 mRNA, and ETF levels in 

(a) an untreated cell; (b) our proposed strategy.  
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Figure 16: Simulation results for γ-globin mRNAlevels in (a) an untreated cell; (b) 

primary erythroid human cells treated by Simvastatin and tBHQ; (c) erythroid progenitors 

cultured from SCD and β-thalassemia patients treated by MS-275; (d) erythroid 

progenitors cultured from SCD and β-thalassemia patients treated by ST-20; human 

CD34-derived erythroblast in culture treated by (e) ACY-957 (Case I); 

(f) ACY-957 (Case II); (g) our proposed strategy. 

 
Figure 17: Comparison of an untreated cell control with the inhibitor treated samples. 

γ-globin mRNA level increased by 3.4-, 4.1-, 3.1-, 4.4-, 5-, and 5.4-fold in treatment with 

a combination of Simvastatin and tBHQ, MS-275, ST-20, ACY-957 (Case I), 

ACY-957 (Case II), and our strategy, respectively. 
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3.4.2 RNAi-mediated Approach to Treat β-globin Disorders  

RNAi method was discovered in 1998 [16]. The main idea behind of its use in context of 

β-globin disorders is to increase γ-globin gene expression through knocking down 

specified genes in fetal-to-adult hemoglobin switching network.  

In the thesis we explore the comparative efficacy of five RNAi-mediated gene therapeutic 

strategies for inducing γ-globin gene expression: (1) reducing MBD2 mRNA expression 

by siRNA-mediated knockdown of MBD2 [17], (2) shRNA-mediated knockdown of Myb 

followed by silencing of KLF-1 and BCL11A mRNAs [39], (3) shRNA-mediated 

knockdown of BCL11A followed by silencing of KLF-1 and BCL11A mRNAs [39], (4) 

siRNA-mediated knockdown of CHD4 followed by silencing of KLF-1 and BCL11A 

mRNAs [2], and (5) our proposed RNAi-mediated strategy of inhibiting BCL11A, FOG1 

and HDAC1/2 mRNAs. Simulation results show that our strategy is the optimal one 

among five strategies discussed in the present work as it identifies the rational molecular 

targets yielding the greatest induction of γ-globin gene levels. 

3.4.2.1 HFPN Model and its Validation 

Our HFPN model of hemoglobin switching network for RNAi-mediated strategies 

consists of 8 generic and 27 continuous entities (see Table 8), 61 processes (see Table 9), 

and 114 arcs (see Table 10). The generic entities represent presence of siRNA and shRNA 

knock down approaches for some target components. We consider Myb, BCL11A, 

MBD2, CHD4, HDAC1/2 and FOG1 as target components. The continuous entities and 

processes are defined in the same way as it was done in section 3.2. The Boolean variables 

in this model show the presence/absence of siRNA or shRNA components. In case of 

presence the variable is set to 0, otherwise it is set to 1. The other Boolean variable is 
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related to β-globin gene mutations. The value of this variable is set to 0 in case when there 

is not a mutation, otherwise it is set to 1. There are 114 arcs in this extended HFPN model 

consisting of 68 input connectors, 15 output connectors, 15 input inhibitor, and one input 

association (see Table 7). The natural degradation of proteins and mRNAs are illustrated 

in Table 11. The details related to the initial values and the process rates are given in 

section 3.2. The snapshot of corresponding HFPN model taken from Cell Illustrator is 

demonstrated in Figure 18. 

Table 8: Relationship between biological components and extended HFPN entities  

Entity name Entity type Variable Value Type 

MYB Continuous m1 1 Double 

KLF1 mRNA Continuous m2 0 Double 

KLF1 Continuous m3 0 Double 

BCL11A mRNA Continuous m4 0 Double 

BCL11A Continuous m5 0 Double 

HDAC1/2 mRNA Continuous m6 0 Double 

HDAC1/2 Continuous m7 0 Double 

MBD2 mRNA Continuous m8 0 Double 

MBD2 Continuous m9 0 Double 

CHD4 mRNA Continuous m10 0 Double 

CHD4 Continuous m11 0 Double 

NuRD Continuous m12 0 Double 

BCL11A_NuRD Continuous m13 0 Double 

GATA1 mRNA Continuous m14 0 Double 

GATA1 Continuous m15 0 Double 

FOG1 mRNA Continuous m16 0 Double 

FOG1 Continuous m17 0 Double 

SOX6 mRNA Continuous m18 0 Double 

SOX6 Continuous m19 0 Double 

ETF Continuous m20 0 Double 

BCL11A_NuRD_ETF Continuous m21 0 Double 

γ-globin_BCL11A_NuRD_ETF Continuous m22 0 Double 

γ-globin gene Continuous m23 0 Double 

γ-globin mRNA Continuous m24 0 Double 

HbF Continuous m25 0 Double 

Mutation Generic m26 0/1 Boolean 

β-globin mRNA Continuous m27 0 Double 

HbA Continuous m28 0 Double 
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MBD siRNA Generic m’29 1 Boolean 

shMYB501 Generic m’30 1 Boolean 

shBCL11A Generic m’31 1 Boolean 

CHD4 siRNA Generic m’32 1 Boolean 

BCL11A siRNA Generic m’33 1 Boolean 

FOG1 siRNA Generic m’34 1 Boolean 

HDAC1/2 siRNA Generic m’35 1 Boolean 

 

Table 9: Processes in the HFPN to identify RNAi-mediated discoveries 

Phenomenon Process Type Rate Delay 

Transcription of KLF1 

mRNA 
T1 Continuous m1*0.1 0 

Translation of KLF1 T2 Continuous m2*0.1 0 

Transcription of BCL11A 

mRNA 
T3 Continuous m3*1 0 

Translation of  

BCL11A 
T4 Continuous m4*0.1 0 

Transcription of HDAC1/2 

mRNA 
T5 Continuous 1 0 

Translation of  

HDAC1/2 
T6 Continuous m6*0.1 0 

Transcription of MBD2 

mRNA 
T7 Continuous 1 0 

Translation of MBD2 T8 Continuous m7*0.1 0 

Transcription of CHD3/4 

mRNA 
T9 Continuous 1 0 

Translation of CHD3/4 T10 Continuous m10*0.1 0 

Binding of HDAC1/2, MBD2 

and CHD3/4 
T11 Continuous m7*m9*m11*0.1 0 

Binding of BCL11A with 

NuRD 
T12 Continuous m5*m12*0.1 0 

Transcription of GATA1 

mRNA 
T13 Continuous 1 0 

Translation of GATA1 T14 Continuous m14*0.1 0 

Transcription of FOG1 

mRNA 
T15 Continuous 1 0 

Translation of FOG1 T16 Continuous m16*0.1 0 

Transcription of SOX6 

mRNA 
T17 Continuous 1 0 

Translation of SOX6 T18 Continuous m18*0.1 0 

Binding of GATA1, FOG1 

and SOX6 
T19 Continuous m15*m17*m19*0.1 0 

Binding of ETF with 

BCL11A_NuRD 
T20 Continuous m13*m20*0.1 0 
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Binding of 

BCL11A_NuRD_ETF with 

γ-globin gene 
T21 Continuous m21*m23*0.1 0 

Activation of γ-globin gene T22 Continuous 0.01 0 

Transcription of γ-globin 

mRNA 
T23 Continuous m23*0.1 0 

Translation of HbF T24 Continuous m24*0.1 0 

Activation of β-globin mRNA 

by KLF1 
T25 Continuous m3*0.002 35 

Activation of β-globin mRNA 

by GATA1 
T26 Continuous m15*0.002 35 

Activation of β-globin mRNA 

by FOG1 
T27 Continuous m17*0.002 35 

Translation of HbA 

 
T28 Continuous m27*0.1 0 

Binding of MBD2 siRNA to 

MBD2 mRNA 
T29 Continuous m8*0.76 0 

Binding of shMYB501 to 

KLF1 mRNA 
T30 Continuous m2*0.58 0 

Binding of shBCL11A to 

KLF1 mRNA 
T31 Continuous m2*0.02 0 

Binding of shBCL11A to 

BCL11A mRNA 
T32 Continuous m4*1.5 0 

Binding of CHD4 siRNA to 

KLF1 mRNA 
T33 Continuous m2*0.45 0 

Binding of CHD4 to BCL11A 

mRNA 
T34 Continuous m4*0.21 0 

Binding of BCL11A siRNA 

to BCL11A mRNA 
T35 Continuous m4*4 0 

Binding of FOG1 siRNA to 

FOG1 mRNA 
T36 Continuous m16*1 0 

Binding of HDAC1/2 siRNA 

to HDAC1/2 mRNA 
T37 Continuous m6*1 0 

 

Table 10: Connectors in the extended HFPN model 

Connector Firing style Firing script Connector type 

c1-c68 Threshold 0 Input process 

c69-c98 Threshold 0 Output process 

c99-c113 Threshold 0 Input inhibitor 

c114 Threshold 0 Input association 

  

 



37 
 

Table 11: Degradations in the extended HFPN model  

Phenomenon Process Type Rate 

mRNA degradation d1-d10 Continuous 𝑚𝑖*0.1 

Protein degradation d11-d24 Continuous 𝑚𝑖*0.01 

 

It is observed that in chemical inducer dimerization (CID) dependent mouse bone marrow 

cells carrying β-globin yeast artificial chromosome (β-YAC) that MBD2 siRNA treatment 

decreased MBD2 mRNA level by 80% and induced fetal hemoglobin [17]. MBD2 mRNA 

simulation results in our HPFN model are illustrated in Figure 19 for both untreated cells 

and treated cells with siMBD2 approach. By calibrating binding rate of siMBD2 with 

MBD2 mRNA, we reached 5-fold decrease from 5 to 1 concentration level for MBD2 

mRNA, which is a proper fit comparing with wet lab experimental results. 

 
Figure 18: Snapshot of Cell Illustrator screen with extended HFPN model on it.  
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Figure 19: Simulation results for MBD2 mRNA in (a) an untreated CID cell;  

(b) a treated CID cell with siMBD2.  

As it is recognized, Myb is a critical upstream regulator of KLF1 and BCL11A 

transcription factors [39]. It has been observed that shMyb knock down in MEL cells 

decreases KLF1 and BCL11A gene expression. Among two shMyb constructs 

(shMyb500 and shMyb501), which were tested on the mentioned cells, shMyb501 was 

more efficient in reducing KLF1 and BCL11A gene expression. shMyb501 decreases 

KLF1 and BCL11A mRNA concentration level by 75% and 76%, respectively [39]. Our 

HFPN model is validated in accordance with shMyb501 treatment, which shows 4- and 

4.2-fold decrease from 1.25 to 0.31 for KLF1 mRNA and 0.14 to 0.033 for BCL11A 

mRNA concentration level, respectively. Simulation results are illustrated in Figure 20 

and Figure 21.  

In the same study on MEL cells, it is also observed that shBCL11A treatment suppresses 

KLF1 and BCL11A gene expression by 10% and 82%, respectively [39]. Simulation 

results for HFPN model demonstrates that shBCL11A treatment decreases KLF1 mRNA 

and BCL11A mRNA levels by 1.1- and 5.6-fold from 1.25 to 1.13 and from 0.14 to 

0.0252, respectively. These simulation results are in strong agreement with experimental 

data taken from the aforementioned experiment. These results are presented in Figure 20 

and Figure 21. 
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CHD4 also positively regulates KLF1 and BCL11A transcription factors by binding, and 

CHD4 represses gene expression of γ-globin indirectly by binding to and positively 

regulating BCL11A gene expression [2]. It is reported that CHD4 knockdown by siRNA 

approach in CID cells decrease KLF1 and BCL11A gene expression by 70% and 40%, 

respectively [2]. We performed simulations and observed siCHD4 approach suppresses 

KLF1 mRNA and BCL11A mRNA levels from 1.25 to 0.375 by 3.3-fold and from 0.14 to 

0.084 by 1.7-fold, respectively (see Figure 20 and Figure 21). 

 
Figure 20. Simulation results for KLF1 mRNA in (a) Untreated cells; 

 Cells treated with (b) shMyb501; (c) shBCL11A; (d) CHD4 siRNA.  

 
Figure 21: Simulation results for BCL11A mRNA in (a) Untreated cells; Cells treated 

with (b) shMyb501; (c) shBCL11A; (d) CHD4 siRNA; 

 (e) Our proposed strategy.  
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3.4.2.2 Prediction of Molecular Targets for RNAi-mediated Treatment 

In this thesis we are aimed on determining the potential optimal molecular targets with 

RNAi-mediated approach that would lead to more γ-globin gene expression compared to 

existing RNAi-mediated approaches. By performing exhaustive model checking we 

found that BCL11A, FOG1 and HDAC1/2 are the optimal targets as knocking down of 

these regulators results in maximum γ-globin gene expression. As we observed decrease 

of BCL11A mRNA levels from 0.14 to 0.0125 by 11-fold (see Figure 22) and FOG1 and 

HDAC1/2 mRNA levels from 1.5 to 0.04 by 37.5-fold (see Figure 23) by hypothetical 

siRNA approach increases γ-globin gene expression by 6-fold over untreated control. 

 
Figure 22: Simulation results for BCL11A gene expression in (a) an untreated cell; 

 (b) Cells treated with our proposed RNAi-mediated strategy.  

 
Figure 23: Simulation results for FOG1 gene expression in (a) an untreated cells;  

(b) Cells treated with our proposed RNAi-mediated strategy.  
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Figure 24: Simulation results for HDAC1/2 gene expression in (a) an untreated cells;  

(b) cells treated with our proposed RNAi-mediated strategy.  

Role played by the regulators of fetal-to-adult hemoglobin switching network as potential 

targets for reawakening HbF by siRNA- and shRNA-mediated techniques have been 

investigated in numerous studies. As it is illustrated in section 3.4.2, siMBD2, shMyb501, 

shBCL11A, and siCHD4 were amongst the most effective down regulators so far to 

induce γ-globin gene expression. The question is whether there is a target-based approach 

producing more γ chains. To find an answer for this question, we have performed 

computer simulations by targeting major biological components responsible in silencing 

HbF during fetal-to-adult hemoglobin switching developmental stage to increase γ-globin 

mRNA levels. According to simulation results siMBD2, shMyb501, shBCL11A, 

siCHD4, and our RNAi-mediated strategy increase γ-globin mRNA levels by 1.9-, 3.4-, 4, 

and 5, 6-fold over the untreated control from 0.008 to 0.015, 0.027, 0.032, 0.04, and 0.048, 

respectively (see Figure 25). The comparison of these simulation results shows that our 

strategy is the optimal one so far since it leads to more γ-globin mRNA levels (see Figure 

26). It must be noticed that RNAi-mediated strategy originally suggested in the present 

thesis even more effective than the drug-based strategies proposed still in e present thesis. 
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Figure 25: Simulation results for γ-globin mRNA in (a) an untreated cells vs cells treated 

with (b) siMBD2; (c) shMyb501; (d) shBCL11A; (e) siCHD4; 

 and (f) our proposed RNAi-mediated strategy.  

 
Figure 26: Comparison of untreated cells with various siRNA/shRNA treated cells. 
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Chapter 4 

CONCLUSION 

In the present work in line with quantitative modeling approach, we use HFPN and Cell 

Illustrator software to model fetal-to-adult hemoglobin switching and its transcriptional 

activities to shed light on the way it works. In addition, we use the extended HFPN models 

to identify potential strategies to ameliorate severity of β-globin disorders, promoting this 

innovation to the benefit of reverse pharmacology and HFPN-based quantitative 

modeling. The main results obtained in the frame of the present thesis are: 

1. In accordance with the reverse pharmacology approach we pose a hypothesis 

regarding modulation of ETF that induce γ-globin gene expression. Comparison of 

simulation results for the proposed strategy with the ones obtained for already 

existing drug-based strategies shows that our strategy is better as it results in the 

highest level of γ-globin induction. 

2. In line with RNAi-mediated approach we pose a hypothesis regarding modulation 

of BCL11A, FOG1 and HDAC1/2 that increases γ-globin gene expression. 

Simulation results show that our strategy is better among existing RNAi-mediated 

strategies as it leads to the highest level of γ-globin gene expression.  
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In this work, we use a deterministic HFPN with estimated crisp values for initial markings 

of places, and for binding rates of processes to model transcriptional activity of 

hemoglobin switching. However, for the future work, we are going to extend the HFPN 

model to a Fuzzy Stochastic HFPN model to increase its accuracy and to minimize the 

error. 
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