
Studies on Thin-shells and Thin-shell Wormholes

Ali Övgün
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ii



ABSTRACT

The study of traversable wormholes is very hot topic for the past 30 years. One of

the best possible way to make traversable wormhole is using the thin-shells to cut

and paste two spacetime which has tunnel from one region of space-time to another,

through which a traveler might freely pass in wormhole throat. These geometries need

an exotic matter which involves a stress-energy tensor that violates the null energy

condition. However, this method can be used to minimize the amount of the exotic

matter. The goal of this thesis study is to study on thin-shell and thin-shell wormholes

in general relativity in 2+1 and 3+1 dimensions. We also investigate the stability of

such objects.

Keywords: Wormhole, Thin-Shells, Junction Conditions, Black Holes.
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ÖZ

Solucan delikleri bilim ve bilim kurgu dünyasının en popüler konularından biridir. 30

sene boyunca popüleritesini daha da artırdı. Olası solucan deliği yapabilmek için en

kullanışlı ve kararlı yöntemlerden biri Einsteinin yerçekimi kuramı içerisinde ince-

kabuklu uzay solucan deliği yapmaktır. Bu kuramlarda önemli olanı geçişi yapacak

olanın, solucan deliğinin boğazından serbestçe geçişine olanak vermesi ve belirli şartları

sağlamasıdır, ve egzotik madde miktarını en düşük seviyeye çekebilmektir. Bu çalışmada

kara deliklerin etrafında oluşabilecek ince-kabuklu zarı, ve bunları kullanarak kararlı

yapıda solucan deliği oluşturmaya çalıştık.

Anahtar Kelimeler: Solucan Delikleri, Kara Delikler,
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”Imagination is more important than knowledge.” - Albert Einstein
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I would like to thank my friends in the Department of Physics and Chemistry, the

Gravity and General Relativity Group for their support and for all the fun we have

had during this great time. I wish to thank also other my friends for their support and

encouragement throughout my study.

Finally, I would like to thank my family.

This Ph.D thesis is based on the following 13 SCI and 1 SCI-expanded papers :

1. Thin-shell wormholes from the regular Hayward black hole, M. Halilsoy, A.

Ovgun and S. H. Mazharimousavi, Eur. Phys. J. C 74, 2796 (2014).

2. Tunnelling of vector particles from Lorentzian wormholes in 3+1 dimensions, I.

Sakalli and A. Ovgun, Eur. Phys. J. Plus 130, no. 6, 110 (2015).

vi



3. On a Particular Thin-shell Wormhole, A. Ovgun and I. Sakalli, arXiv:1507.03949

(accepted for publication in Theoretical and Mathematical Physics).

Other papers by the author:

4. Existence of wormholes in the spherical stellar systems, A. Ovgun and M. Halil-

soy, Astrophys Space Sci 361, 214 (2016).

5. Gravitinos Tunneling From Traversable Lorentzian Wormholes, I. Sakalli and A.

Ovgun, Astrophys. Space Sci. 359, 32 (2015).

6. Gravitational Lensing Effect on the Hawking Radiation of Dyonic Black Holes,

I. Sakalli, A. Ovgun and S. F. Mirekhtiary. Int. J. Geom. Meth. Mod. Phys. 11,

no. 08, 1450074 (2014).

7. Uninformed Hawking Radiation, I. Sakalli and A. Ovgun, Europhys. Lett. 110,

no. 1, 10008 (2015).

8. Hawking Radiation of Spin-1 Particles From Three Dimensional Rotating Hairy

Black Hole, I. Sakalli and A. Ovgun, J. Exp.Theor. Phys. 121, no. 3, 404 (2015).

9. Quantum Tunneling of Massive Spin-1 Particles From Non-stationary Metrics,

I. Sakalli and A. Ovgun., Gen. Rel. Grav. 48, no. 1, 1 (2016).

10. Entangled Particles Tunneling From a Schwarzschild Black Hole immersed in

an Electromagnetic Universe with GUP, A. Ovgun, Int. J. Theor. Phys. 55, 6,

2919 (2016).

vii



11. Hawking Radiation of Mass Generating Particles From Dyonic Reissner Nord-

strom Black Hole, I. Sakalli and A. Ovgun, arXiv:1601.04040 (accepted for

publication in Journal of Astrophysics and Astronomy).

12. Tunneling of Massive Vector Particles From Rotating Charged Black Strings, K.

Jusufi and A. Ovgun, Astrophys Space Sci 361, 207 (2016).

13. Massive Vector Particles Tunneling From Noncommutative Charged Black Holes

and its GUP-corrected Thermodynamics, A. Ovgun and K. Jusufi, Eur. Phys. J.

Plus 131, 177 (2016).

14. Black hole radiation of massive spin-2 particles in (3+1) dimensions, I. Sakalli,

A. Ovgun, Eur. Phys. J. Plus 131, 184 (2016).

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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Chapter 1

INTRODUCTION

1.1 General Relativity

100 years ago, Albert Einstein presented to the world his theory of General Rela-

tivity (GR) which is said that space and time are not absolute, but can be distorted

or warped by matter. Einstein’s genius was in his willingness to confront the con-

tradictions between different branches of physics by questioning assumptions so ba-

sic that nobody else saw them as assumptions. One prediction of the GR is that in

particular, a cataclysmic event such as the collapse of a star could send shock waves

through space, gravitational waves (GWs),discovered and announced in February 2016

by LIGO (Laser Interferometer Gravitational-Wave Observatory) [1, 2]. The GWs the

other proposal that matter can warp space and time leads to many other predictions, no-

tably that light passing a massive body will appear bent to a distant observer, whereas

time will appear stretched. Each of these phenomena has been observed; the bending

of distant starlight by the sun was first observed in 1919, and the synchronization of

clocks in GPS satellites with earthbound clocks has to take account of the fact that

clocks on Earth are in a strong gravitational field. Another prediction of GR is that if

enough matter is concentrated in a small volume, the space in its vicinity will be so

warped that it will curve in on itself to the extent that even light cannot escape [3].

Astronomical observations suggest that each galaxy has a super massive Black Hole
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(BH) at its centre [4]. Mind-blowing concepts wormholes (WHs) can be considered

his last prediction, which is also known as Einstein–Rosen bridge [5]. It is a short-cut

connecting two separate points in spacetime. Moreover, GR is used as a basis of nowa-

days most prominent cosmological models [55]. Einstein’s equations start to break

down in the singularities of BHs. Before going to study deeply BHs and WHs, lets

shortly review the GR.

The GR is the Einstein’s theory of gravity and it is a set of non-linear partial differential

equations (PDEs). The Einstein field equations are [3]

Gµν = 8πGTµν (1.1)

where G is the Newton constant, Gµν is a Einstein tensor and Tµν is a energy momentum

tensor, which includes both energy and momentum densities as well as stress (that is,

pressure and shear), which must satisfy the relation of ∇µTµν = 0. This relation can be

called as the equation of motion for the matter fields. Furthermore, the Einstein tensor

Gµν is also divergence free ∇µGµν = 0. Noted that the Einstein tensor Gµν is

Gµν = Rµν−
1
2

gµνR (1.2)

where Rµν is called the Ricci tensor [3]

Rµν = ∂ρΓ
ρ

νµ−∂νΓ
ρ

ρµ +Γ
ρ

ρλ
Γ

λ
νµ−Γ

ρ

νλ
Γ

λ
ρµ. (1.3)

The Ricci scalar of curvature scalar R is the contraction of the Ricci tensor.

R = gµνRµν (1.4)

where the Christoffel symbols Γ
ρ

νµ are defined by

Γ
ρ

µν =
1
2

gρσ
(
gσµ,ν +gσν,µ−gµν,σ

)
(1.5)
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in which gσµ is the inverse of the metric function and it is the main ingredient of the

Einstein field equations.

GR is based on two important postulates. The first one is the principle of special rela-

tivity. The second one is the equivalence principle. Einstein’s ‘Newton’s apple’ which

in sighted to gravitation was the equivalence principle. As an example, consider two

elevators one is at rest on the Earth and the other is accelerating in space. Inside the

elevator suppose that there is no windows so it is impossible to realize the difference

between gravity and acceleration. Thus, it gives the same results as observed in uni-

form motion unaffected by gravity. In addition, gravity bends light in which a photon

crossing the elevator accelerating into space, the photon appears to fall downward.

1.2 Black Holes

A BH is an object that is so compact that its gravitational force is strong enough to

prevent light or anything else from escaping. It has a singularity where all the matter

in it is squeezed into a region of infinitely small volume. There is an event horizon

which is an imaginary sphere that measures how close to the singularity you can safely

get [60, 61].

By far the most important solution in this case is that discovered by Karl Schwarzschild,

which describes spherically symmetric vacuum spacetimes. The fact that the Schwarzschild

metric is not just a good solution, but is the unique spherically symmetric vacuum so-

lution, is known as Birkhoff’s theorem. It only has a mass, but no electric charge, and

no spin. Karl Schwarzschild discovered this BH geometry at the close of 1915 [6],

within weeks of Einstein presenting his final theory of GR. Real BHs are likely to
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be more complicated than the Schwarzschild geometry: real BHs probably spin, and

the ones that astronomers see are not isolated, but are feasting on material from their

surroundings.

The no-hair theorem states that the geometry outside (but not inside!) the horizon of

an isolated BH is characterized by just three quantities: Mass, Electric charge, Spin.

BHs are thus among the simplest of all nature’s creations. When a BH first forms from

the collapse of the core of a massive star, it is not at all a no-hair BH. Rather, the newly

collapsed BH wobbles about, radiating GWs. The GWs carry away energy, settling the

BH towards a state where it can no longer radiate. This is the no-hair state.

In this thesis, we will use some of the exact solution of the Einstein field equations to

construct WHs and thin-shells. In GR, Birkhoff’s theorem states that any spherically

symmetric solution of the vacuum field equations must be static and asymptotically

flat. This means that the exterior solutions (i.e. the spacetime outside of a spherical,

non-rotating, gravitating body) must be given by the Schwarzschild metric.

ds2 =−
(

1− 2M
r

)
dt2 +

1(
1− 2M

r

)dr2 + r2(dθ
2 + sin2

θdφ
2) (1.6)

Noted that it is singular at rs = 2M.To see that this is a true singularity one must look

at quantities that are independent of the choice of coordinates. One such important

quantity is the Kretschmann scalar, which is given by

RαβγδRαβγδ =
48M2

r6 (1.7)

Note that Schwarzschild solution has those properties: spherically symmetric, static,

coordinates adapted to the time-like Killing vector field Xa, time-symmetric and time

4



translation invariant, a hyper-surface-orthogonal time-like Killing vector field Xa, asymp-

totically flat and geometric mass GM
c2 .

1.3 Wormholes

Wormholes (WHs) is a hypothetical connection between widely separated regions of

spacetime [9, 12]. Although Flamm’s work on the WH physics dates back to 1916, in

connection with the newly found Schwarzschild solution [7], WH solutions were firstly

considered from physics standpoint by Einstein and Rosen (ER) in 1935, which is

known today as ER bridges connecting two identical sheets [5]. Then in 1955 Wheeler

used ”geons” (self-gravitating bundles of electromagnetic fields) by giving the first

diagram of a doubly-connected-space [8]. Wheeler added the term ”wormhole” to

the physics literature, however he defined it at the quantum scale. After that, first

traversable WH was proposed by Morris-Thorne in 1988 [9]. Then Morris, Thorne, and

Yurtsever investigated the requirements of the energy condition for WHs [12]. After

while, Visser constructed a technical way to make thin-shell WHs which thoroughly

surveyed the research landscape as of 1988 [10, 11]. After this, there are many papers

written to support this idea [13–18]. WHs are existed in the theory of GR, which is our

best description of the Universe. But experimentally there is no evidence and no one

has any idea how they would be created.

1.3.1 Traversable Lorentzian Wormholes

A WH is any compact region on the space time without any singularity, however with a

mouth to allow entrance [21,22]. Firstly one considers an interesting exotic spacetime

metric and solves the Einstein field equation, then finds the exotic matter needed as

a source responsible for the respective geometry. It is needed the exotic matter which

5



Figure 1.1: Wormhole

violates the null energy condition,
(
Tµνkµkν ≥ 0

)
, where kµ is a null vector. It also vi-

olates the causality by allowing closed time-like curves. Furthermore, the other inter-

esting outcome is that time travel is possible without excess the speed of light. Those

outcomes are based on theoretical solutions and useful for “gedanken-experiments”.

As it is well known the Casimir effect has similar features that violates this condition

in nature [25]. Now, lets give an example of a traversable WH metric which is given

by

ds2 =−c2dt2 +dl2 +(k2 + l2)(dθ
2 + sin2

θdφ
2) (1.8)

6



The first defined traversable WH is Morris Thorne WH [9]

ds2 =−e2 f (r)dt2 +
1

1− b(r)
r

dr2 + r2(dθ
2 + sin2

θdφ
2) (1.9)

where f (r) is the red-shift function (the lapse function) that change in frequency

of electromagnetic radiation in gravitational field and b(r) is the shape function. At

t = const. and t = π

2 , the 2-curved surface is embedded into 3-dimensional Euclidean

space

ds̃2 =
1

1− b(r)
r

dr2 + r2dφ
2 = dz2 +dr2 + r2dφ

2 (1.10)

To be a solution of a WH, one needs to impose that the geometrical throat flares out

conditions, the minimality of the wormhole throat, which are given by [10]

d2r
dz2 =

b−b′r
2b2 > 0 (1.11)

with new radial coordinate l (proper distance), while r > b

ds2 =−e2 f (r)dt2 +dl2 + r(l)2(dθ
2 + sin2

θdφ
2) (1.12)

Although there is a coordinate singularity where the metric coefficient grr diverges at

the throat, the proper radial distance which runs from −∞ to ∞can be redefined as

dl
dr

=±
(

1− b
r

)− 1
2

. (1.13)

Properties of the metric:

-No event horizons (gtt =−e2 f (r) 6= 0),

- f (r) must be finite everywhere,

- Spherically symmetric and static: Static means that the metric does not change over

time and irrotate, on the other way, stationary spacetime means that the metric does not
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change in time, however it can rotate. Hence, the Kerr metric is a stationary spacetime

and not not static, the Schwarzschild solution is an example of static spacetime.

-Solutions of the Einstein field equations,

-Physically reasonable stress energy tensor,

-Radial coordinate r such that circumference of circle centered around throat given by

2πr,

-r decreases from +∞ to b = b0 (minimum radius) at throat, then increases from b0 to

+∞,

-At throat exists coordinate singularity where r component diverges, -Reasonable tran-

sit times,

-Proper radial distance l(r) runs from −∞ to +∞ and vice versa,

-Throat connecting two asymptotically flat regions of spacetime,

-Bearable tidal gravitational forces,

-Stable against perturbations,

-Physically reasonable construction materials.

The Einstein field equations are [59]

Gt
t =−

b′

r2 , (1.14)
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Gr
r =
−b
r3 +2(1− b

r
)

f ′

r
, (1.15)

Gθ

θ
= Gφ

φ
=

(
1− b

r

)[
f ′′++ f ′2 +

f ′

r
−
(

f ′+
1
r

){
b′r−b

2r(r−b)

}]
, (1.16)

The only non-zero components of T µ
ν are

T t
t =−ρ, (1.17)

T r
r = pr, (1.18)

T θ

θ
= T φ

φ
= pt . (1.19)

ρ =
1

8π

b′

r2 , (1.20)

pr =
1

8π

[
− b

r3 +2
(

1− b
r

)
f ′

r

]
, (1.21)

pt =
1

8π

(
1− b

r

)[
f ′′+ f ′2− b′r−b

2r2(1−b/r)
f ′− b′r−b

2r3(1−b/r)
+

f ′

r

]
. (1.22)

At the throat they reduce to the simplest form

ρ(r0) =
1

8π

b′(r0)

r2
0

, (1.23)

pr(r0) =
1

8πr2
0
, (1.24)

pt(r0) =
1

8π

1−b′(r0)

2r2
0

(1+ r0 f ′(r0)) . (1.25)

Note that the sign of B′(r) and energy density ρ(r) must be same to minimize the

exotic matter, since the condition of B′(r) > 0 must be satisfied. Moreover, the next

condition is the flare outward of the embedding surface ( B′(r) < B(r)/r ) at/near the

throat. Therefore it shows that pr(r)+ ρ(r) < 0 on this regime, in which the radial

pressure is named by pr(r). So, the exotic matter which supports this WH spacetime

violates the null energy condition.
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The four velocity is calculated by Uµ = dxµ/dτ = (U t ,0,0,0) = (e− f (r),0,0,0) and

four acceleration is aµ =Uµ
;νUν, so one obtains

at = 0 , (1.26)

ar = Γ
r
tt

(
dt
dτ

)2

= f (r)′ (1−b/r) , (1.27)

in which the prime ”′” is ” dt
dr ”. Furthermore, the geodesics equation is used for a radial

moving particle to obtain the equation of motion as following

d 2r
dτ2 =−Γ

r
tt

(
dt
dτ

)2

=−ar . (1.28)

In addition, static observers are geodesic for f ′(r) = 0. WH has an attractive feature if

ar > 0 and repulsive feature if ar < 0. The sign of f ′ is important for the behaviour of

the particle geodesics. The shape function is obtained by

b(r) = b(r0)+

ˆ r

r0

8πρ(r′)r′2 dr′ = 2m(r) . (1.29)

This is used to find the effective mass of the interior of the WH that gives

m(r) =
r0

2
+

ˆ r

r0

4πρ(r′)r′2 dr′ , (1.30)

Also at the limit of infinity, we have

lim
r→∞

m(r) =
r0

2
+

ˆ
∞

r0

4πρ(r′)r′2 dr′ = M . (1.31)

1.3.2 Energy Conditions

WHs are supported by exotic matter, and the suitable energy condition is defined as

diagonal [20],

T µ
ν = diag(ρ, p1, p2, p3) , (1.32)
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in which ρ and p j denotes to the mass density and the three principal pressures, re-

spectively. Perfect fluid of the Stress-energy tensor is obtained if p1 = p2 = p3. It is

believed that the normal matters obey these energy conditions, however, it violates the

energy conditions and needs certain quantum fields (Casimir effect) or dark energy.

Null energy condition (NEC) The NEC is

Tµνkµkν ≥ 0 . (1.33)

where kµ is null vector. Using the Eq.(1.32), we obtain

ρ+ pi ≥ 0 . (1.34)

Weak energy condition (WEC) The WEC is

TµνUµUν ≥ 0 . (1.35)

where the timelike vector is given by Uµ. Eq.(1.35) is for the measured en-

ergy density by moving with four-velovity Uµ of any timelike observer. It must

be positive and the geometric defination refer to the Einstein field equations

Eq.(1.2) GµνUµUν ≥ 0. It can be written as

ρ≥ 0 and, ρ+ pi ≥ 0 . (1.36)

The WEC involves the NEC.

Strong energy condition (SEC) The SEC asserts that

(
Tµν−

T
2

gµν

)
UµUν ≥ 0 , (1.37)
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in which T is the trace of the stress energy tensor. Because Tµν− T
2 gµν =

Rµν

8π
,

according to Einstein field equations Eq. (1.2) the SEC is a statement about

the Ricci tensor. Then by using the diagonal stress energy tensor given in Eq.

(1.32), the SEC reads

ρ+ pi ≥ 0. (1.38)

The SEC involves the NEC, but not necessarily the WEC.

Dominant energy condition (DEC) The DEC is

TµνUµUν ≥ 0 and TµνUν : is not spacelike (1.39)

The energy density must be positive. Moreover, the energy flux should be time-

like or null. The DEC involves the WEC, and automatically the NEC, but not

necessarily the SEC. It becomes

ρ≥ 0. (1.40)

It can be verified that WHs violate all the energy conditions. Therefore using the Eq.s

(1.20)-(1.21) with kµ = (1,1,0,0) we obtain

ρ− pr =
1

8π

[
b′r−b

r3 +2
(

1− b
r

)
f ′

r

]
. (1.41)

Thanks to the flaring out condition of the throat from Eq. (1.11) : (b− b′2 > 0, one

shows that b(r0) = r = r0 at the throat and because of the finiteness of f (r), from Eq.

(1.41) we have ρ− pr < 0. Hence all the energy conditions are violated and this matter

is named as the exotic matter.
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1.3.3 Hawking Radiation of the Traversable Wormholes

Since Einstein, Hawking’s significant addition to understanding the universe is called

the most significant [26]. Hawking showed that the BHs are not black but grey which

emit radiation. This was the discovery of Hawking radiation, which allows a BH to leak

energy and gradually fade away to nothing. However, the question of what happens to

the information is remains. All the particles should fall into BH and we do not know

what happened to them. The particles that come out of a BH seem to be completely

random and bear no relation to what fell in. It appears that the information about what

fell in is lost, apart from the total amount of mass and the amount of rotation. If that

information is truly lost that strikes at the heart of our understanding of science.

To understand whether that information is in fact lost, or whether it can be recovered,

Hawking and colleagues, including Andrew Strominger, from Harvard, are currently

working to understand “supertranslations” to explain the mechanism by which infor-

mation is returned from a BH and encoded on the hole’s “event horizon” [27]. In the

literature, there exist several derivations of the Hawking radiation [28, 31–33, 56–58,

62–69].

The transmission probability Γ is defined by

Γ = e−2ImS/}, (1.42)

where S is the action of the classically forbidden trajectory. Hence, we have found the

Hawking temperature from the tunneling rate of the emitted particles.

For studying the HR of traversable WHs, we consider a general spherically symmet-
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ric and dynamic WH with a past outer trapping horizon. The traversable WH metric

can be transformed into the generalized retarded Eddington-Finkelstein coordinates as

following [36]

ds2 =−Cdu2−2dudr+ r2 (dθ
2 +Bdϕ

2) , (1.43)

where C = 1−2M/r and B = sin2
θ. The gravitational energy is M = 1

2r(1−∂ar∂ar)

which is also known as a Misner-Sharp energy. It reduces to M = 1
2r on a trapping

horizon [37]. Furthermore, there is a past marginal surface at the C = 0 (at horizon:

r = r0) for the retarded coordinates [38].

Firstly, we give the equation of motion for the vector particles which is known as the

Proca equation in a curved space-time [34, 35, 63, 66]:

1√
−g

∂µ
(√
−gψ

ν;µ)+ m2

~2 ψ
ν = 0, (1.44)

in which the wave functions are defined as ψν = (ψ0,ψ1,ψ2,ψ3). By the help of the

method of WKB approximation, the following HJ ansätz is substituted into Eq. (1.44)

ψν = (c0,c1,c2,c3)e
i
~S(u,r,θ,φ), (1.45)

with the real constants (c0,c1,c2,c3). Furthermore, we define the action S(u,r,θ,φ) as

following

S(u,r,θ,φ) = S0(u,r,θ,φ)+~S1(u,r,θ,φ)+~2S2(u,r,θ,φ)+ .... (1.46)

Because of the (1.43) is symmetric, the Killing vectors are ∂θ and ∂φ. Then one can

use the separation of variables method to the action S0(u,r,θ,φ):

S0 = Eu−W (r)− jθ− kφ, (1.47)
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It is noted that E and ( j,k) are energy and real angular constants, respectively. After in-

serting Eqs. (1.45), (1.46), and (1.47) into Eq. (1.44), a matrix equation ∆(c0,c1,c2,c3)
T =

0 (to the leading order in ~) is obtained, which has the following non-zero components:

∆11 = 2B [∂rW (r)]2 r2,

∆12 = ∆21 = 2m2r2B+2B∂rW (r)Er2 +2B j2 +2k2,

∆13 = −2∆31

r2 =−2B j∂rW (r),

∆14 =
∆41

Br2 =−2k∂rW (r),

∆22 = −2BCm2r2 +2E2r2B−2 j2BC−2k2C, (1.48)

∆23 =
−2∆32

r2 = 2 jBC∂rW (r)+2E jB,

∆24 =
∆42

Br2 = 2kC∂rW (r)+2kE,

∆33 = m2r2B+2BEr2
∂rW (r)+ r2BC [∂rW (r)]2 + k2,

∆34 =
−∆43

2B
=−k j,

∆44 = −2r2BC [∂rW (r)]2−4BEr2
∂rW (r)−2B(m2r2 + j2).

The determinant of the ∆-matrix (det∆ = 0) is used to get

det∆ = 64Bm2r2
{

1
2

r2BC [∂rW (r)]2 +BEr2
∂rW (r)+

B
2
(
m2r2 + j2)+ k2

2

}3

= 0.

(1.49)

Then the Eq. (1.49) is solved for W (r)

W±(r) =
ˆ (

−E
C
±
√

E2

C2 −
m2

C
− j2

CB2r2 −
k2

Cr2

)
dr. (1.50)

The above integral near the horizon (r→ r0) reduces to

W±(r)'
ˆ (
−E
C
± E

C

)
dr. (1.51)

15



As shown in the Eq. (1.42), the probability rate of the ingoing/outgoing particles only

depend on the imaginary part of the action. Eq. (1.51) has a pole at C = 0 on the

horizon. Using the contour integration in the upper r half-plane, one obtains

W± = iπ
(
−E

2κ|H
± E

2κ|H

)
. (1.52)

From which

ImS = ImW±, (1.53)

that the κ|H = ∂rC/2 is the surface gravity. Note that the κ|H is positive quantity

because the throat is an outer trapping horizon [36,38]. When we define the probability

of incoming particles W+ to 100% such as Γabsorption ≈ e−2ImW ≈ 1. Consequently W−

stands for the outgoing particles. Then we calculate the tunneling rate of the vector

particles as [32, 35]

Γ =
Γemission

Γabsorption
= Γemission ≈ e−2ImW− = e

2πE
κ|H . (1.54)

The Boltzmann factor Γ ≈ e−βE where β is the inverse temperature is compared with

the Eq. (1.54) to obtain the Hawking temperature T |H of the traversable WH as

T |H =−κ|H
2π

, (1.55)

However T |H is negative, as also shown by [36,38]. The main reason of this negative-

ness is the phantom energy [36,66], which is located at the throat of WH. Moreover, as

a result of the phantom energy, the ordinary matter can travel backward in time because

in QFT particles and anti-particles are defined via sign of time.

Surprisingly, we derive the the negative T |H that past outer trapping horizon of the

traversable WH radiate thermal phantom energy (i.e. dark energy). Additionally, the
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radiation of phantom energy has an effect of reduction of the size of the WH’s throat

and its entropy. Nonetheless, this does not create a trouble. The total entropy of

universe always increases, hence it prevents the violation of the second law of ther-

modynamics. Moreover, in our different work, we show that the gravitino also tunnels

through WH and we calculate the tunneling rate of the emitted gravitino particles from

traversable WH.
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Chapter 2

ROTATING THIN-SHELLS IN (2+1)-D

The procedure of dealing with a given surface of discontinuity is well known since the

Newtonian theory of gravity [30]. Firstly, the continuity of the gravitational potential

should be checked and then from the surface mass the discontinuity of the gravita-

tional field might be occured. Those boundary conditions are derived from the field

equation. Notwithstanding, for the case of GR there is different problem because of

the nonlinearity of the field equations as well as the principle of general covariance.

To solve this headache, on a hypersurface splitting spacetimes one must introduce spe-

cific boundary conditions to the induced metric tensor and the extrinsic curvature. This

method is called the Darmois-Israel formalism or the thin-shell formalism [51]. There

are many different using areas of this method such as dynamic thin-layers, connecting

branes, quantum fields in thin-shell spacetimes, WHs, collapsing shells and radiat-

ing spheres [14–24, 29, 40, 41, 49, 52, 53]. It is well known that this method and the

searching for distributional solutions to Einstein’s equations are same. This method

is also used for the stars that are expected to display interfacial layers much smaller

than their characteristic sizes with nontrivial quantities, such as surface tensions and

surface energy densities. Another example is compact stars with interfaces separating

their cores and their crusts, (i.e. strange quark stars and neutron stars) [44]. Note that

the Darmois-Israel formalism gives the nontrivial properties of transitional layers fully
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taking into account GR, but just under the macroscopic point of view. Furthermore, the

thin-shell formalism would be the proper formalism for approaching any gravitational

system that presents discontinuous behaviors in their physical parameters.

On the other hand, this method can be used to screen the BH’s hairs against the outside

observer at infinity [45, 46]. One should show that the thin-shell is a stable under

the perturbations. Our main aim is to apply such a formalism to the general charge

carrying rotating BH solution in 2+1 dimensions. The BH has a thin-shell which has a

radius greater than the event horizon [42,43]. Once this situation is occurred, we check

the stability analysis.

2.1 Construction of the Rotating Thin-Shells

The metric for the general rotating BH solution in 2+1 dimensions is given as [43]

ds2
B =−U(r)dt2 +

1
U(r)

dr2 + r2 [dφ+h(r)dt]2 (2.1)

By using the famous cut-and-paste method introduced by help of Darmois-Israel junc-

tion conditions, the thin-shell WH is constructed. Firstly we take two copies of the

bulk

M± = {xµ|t ≥ t (τ)and r ≥ a(τ)} (2.2)

with the line elements given above. Then we paste them at an identical hypersurface

Σ± = Σ = {xµ|t = t (τ) and r = a(τ)} . (2.3)

For convenience we move to a comoving frame to eliminate cross terms in the induced

metrics by introducing

dφ+h± (a)dt = dψ. (2.4)

19



Then for interior and exterior of WH, it becomes

ds2
± =−U±(r)dt2 +

dr2

U± (r)
+ r2 [dψ+

(
h± (r)−h± (a)

)
dt
]2
. (2.5)

The geodesically complete manifold is satisfied at the hypersurface Σ which we shall

call the throat. We define the throat for the line element by

ds2
Σ =−dτ

2 +a2dψ
2. (2.6)

First of all the throat must satisfy the Israel junction conditions so

−U(a)ṫ2 +
ȧ2

U (a)
=−1 (2.7)

and it is found that

ṫ =
dt
dτ

=
1
U

√
ȧ2 +U (2.8)

and

ẗ =− U̇
U2

√
ȧ2 +U +

2ȧä+U̇

2U
√

ȧ2 +U
(2.9)

in which a dot stands for the derivative with respect to the proper time τ. Second step

is the satisfaction of the Einstein’s equations in the form of Israel junction conditions

on the hypersurface which are

k j
i − kδ

j
i =−8πGS j

i , (2.10)

in which k j
i = K j(+)

i −K j(−)
i , k = tr

(
k j

i

)
and the extrinsic curvature with embedding

coordinate X i :

K(±)
i j =−n(±)γ

(
∂2xγ

∂X i∂X j +Γ
γ

αβ

∂xα

∂X i
∂xβ

∂X j

)
Σ

(2.11)

The parametric equation of the hypersurface Σ is given by

F (r,a(τ)) = r−a(τ) = 0, (2.12)
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Figure 2.1: Thin-Shells

and the normal unit vectors to M± defined by

nγ =

(
± 1√

∆

∂F
∂xγ

)
Σ

, (2.13)

where

∆ =

∣∣∣∣gαβ ∂F
∂xα

∂F
∂xβ

∣∣∣∣ (2.14)

∆ = gtt ∂F
∂t

∂F
∂t

+grr ∂F
∂r

∂F
∂r

(2.15)

∆ =− 1
U
(− ȧ

ṫ
)2 +U (2.16)

so they are found as follows

∆ =
U2

ȧ2 +U
(2.17)

1√
∆
=

√
ȧ2 +U

U
(2.18)
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The normal unit vector must be satisfied nγnγ = 1, non-zero normal unit vectors are

calculated as

nt =±
1√
∆

(
−da

dt

)
Σ

=− 1√
∆

ȧ
ṫ

(2.19)

nr =
1√
∆

(2.20)

nγ =
1√
∆

(
− ȧ

ṫ
,1,0

)
(2.21)

it reduces to

nγ =

√
ȧ2 +U

U

(
− ȧU√

ȧ2 +U
,1,0

)
=

(
−ȧ,

√
ȧ2 +U

U
,0

)
. (2.22)

Before calculating the components of the extrinsic curvature tensor, we redefine the

metric of the bulk in 2+1 dimensions given as

ds2
B =−U(r)dt2 +

dr2

U (r)
+ r2 [dψ+ω(r)dt]2 , (2.23)

where

ω(r) = h(r)−h(a) . (2.24)

It becomes

ds2
B =

[
−U(r)+ r4

ω(r)
]

dt2 +
dr2

U(r)
+ r2dψ

2 +2r2
ω(r)dtdψ. (2.25)

Note that the line element on the throat is

ds2
Σ =−dτ

2 +a2dψ
2. (2.26)

and the corresponding Levi-Civita connections which is defined as

Γ
α
µν =

1
2

gαβ

(
∂gβµ

∂xν
+

∂gβν

∂xµ −
∂gµν

∂xβ

)
(2.27)
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For the metric given in Eq.(2.25) these are calculated as

Γ
t
tr = Γ

t
rt =

U ′− r2ωω′

2U
, (2.28)

Γ
r
tt =

U
2
[
u′−2rω

2−2r2
ωω
′] , (2.29)

Γ
ψ

tr =
ω2ω′r3 +ω′Ur−U ′ωr+2ωU

4 f
, (2.30)

Γ
r
tψ =−Ur(rω′+2ω)

2
, (2.31)

Γ
r
ψψ =−Ur (2.32)

Γ
t
rψ =

−r2ω′

2U
(2.33)

Γ
ψ

rψ =
ωω′r3 +2U

4U
(2.34)

and

Γ
r
rr =−

U ′

2U
. (2.35)

One finds the extrinsic curvature tensor components using the definition given in Eq.(2.11)

Kττ =−nt

(
∂2t
∂τ2 +Γ

t
αβ

∂xα

∂τ

∂xβ

∂τ

)
Σ

−nr

(
∂2r
∂τ2 +Γ

r
αβ

∂xα

∂τ

∂xβ

∂τ

)
Σ

(2.36)

=−nt
(
ẗ +2Γ

t
trṫ ȧ
)

Σ
−nr

(
ä+Γ

r
tt ṫ

2 +Γ
r
rrȧ

2)
Σ

(2.37)

Note that on the hyperplane i.e r = a , ω = 0. The extrinsic curvature for tau tau is

Kττ =−nt

(
ẗ +

U ′

U
ṫȧ
)

Σ

−nr

(
ä+

UU ′

2
ṫ2− U ′

2U
ȧ2
)

Σ

(2.38)

After substituting all the variables it becomes

Kττ =−

(
ä+ U ′

2

)
√

ȧ2 +U
. (2.39)

Also it is found that the psi-psi component of the extrinsic curvature is

Kψψ =−nt

(
∂2t
∂ψ2 +Γ

t
αβ

∂xα

∂ψ

∂xβ

∂ψ

)
Σ

−nr

(
∂2r
∂ψ2 +Γ

r
αβ

∂xα

∂ψ

∂xβ

∂ψ

)
Σ

, (2.40)
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Kψψ =+nrΓ
r
ψψ =+nr aU, (2.41)

Kψψ = a
√

ȧ2 +U . (2.42)

Lastly the tau-psi component of the extrinsic curvature is also found as

Kτψ =−nt

(
∂2t

∂τ∂ψ
+Γ

t
αβ

∂xα

∂τ

∂xβ

∂ψ

)
Σ

−nr

(
∂2r

∂τ∂ψ
+Γ

r
αβ

∂xα

∂τ

∂xβ

∂ψ

)
Σ

, (2.43)

=−nt

(
Γ

t
rψ

∂r
∂τ

∂ψ

∂ψ

)
Σ

−nr

(
Γ

r
rψ

∂r
∂τ

∂ψ

∂ψ

)
Σ

, (2.44)

=−nt

(
Γ

t
rψȧ
)
−nr

(
Γ

r
tψṫ
)
=−nt

(
−a2ω′

2U
ȧ
)
−nr

(
−a2

2
Uω

′ṫ
)
, (2.45)

Kτψ =
a2ω′

2
. (2.46)

We can write them also in the following form

Kτ
τ = gταKτα =

2ä+U ′

2
√

ȧ2 +U
, (2.47)

Kψ

ψ = gψαKψα =

√
ȧ2 +U

a
, (2.48)

Kψ

τ = gψαKτα =
ω′

2
, (2.49)

and

Kτ
ψ = gττKτψ =−a2

2
ω
′. (2.50)

For a thin-shell with different inner and outer spacetime, they become

Kτ±
τ =

2ä+U ′

2
√

ȧ2 +U
, (2.51)

Kψ±
ψ =

√
ȧ2 +U

a
, (2.52)

Kψ±
τ =

ω′

2
, (2.53)

and

Kτ±
ψ =−a2

2
ω
′. (2.54)
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As a result one obtains

Kττ =−
ä+ U ′

2√
ȧ2 +U

(2.55)

Kψψ = a
√

ȧ2 +U (2.56)

Kτψ =
a2ω′

2
(2.57)

2.2 Israel Junction Conditions For Rotating Thin-Shells

In this section, we briefly review the Darmois-Israel junction conditions [23, 51].

The action of gravity is

SGr = SEH +SGH (2.58)

where the first term is Einstein-Hilbert action and second term is Gibbons-Hawking

boundary action term.

SGr =
1

16πG

ˆ
M

√
−gRd4x+

1
8πG

ˆ
Σ

√
−hKd3x. (2.59)

The variation of this action is

δSGr =
1

16πG

ˆ
M

√
−gGabδgabd4x+

1
16πG

ˆ
Σ

√
−hnαJαd3x (2.60)

+
1

8πG

ˆ
Σ

δ
√
−hKd3x+

1
8πG

ˆ
Σ

√
−hδKd3x.

δSGr =
1

2κ

[ˆ
M

√
−gGµνδgµνd4x+

ˆ
Σ

√
−h(Kab−habK)δhabd3x

]
(2.61)

where

tab =
2√
−h

δSMat

δhab (2.62)

Kab−habK =−8πGtab (2.63)
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Datab =− 1
8πG

[DaKab−Da (habK)]

=− 1
8πG

Rcdnchdb =−Tcdnchdb

We have found that

Kτ±
τ =

ä+ U ′±
2√

U±
√

Θ
, (2.64)

Kψ±
ψ =

√
U±
a

√
Θ, (2.65)

where Θ = 1+ ȧ2

U±
,

Kψ±
τ =

ω′

2
, (2.66)

and

Kτ±
ψ =−a2

2
ω
′. (2.67)

K± = Ki±
i =

ä+ U ′±
2√

U±
√

Θ
+

√
U±
a

√
Θ (2.68)

−8πGS j
i = [K j

i ]− [K] (2.69)

in which [A] = A+−A−. Also

S j
i =

 Sτ
τ Sτ

ψ

Sψ

τ Sψ

ψ

 (2.70)

−8πGSτ
τ = Kτ

τ −K = Kτ
τ − Kτ

τ −Kψ

ψ =−Kψ

ψ (2.71)

8πGSτ
τ = Kψ

ψ (2.72)

8πGSτ
τ = Kψ+

ψ −Kψ−
ψ (2.73)

Sτ
τ =

1
8πGa

(√
U++ ȧ2−

√
U−+ ȧ2

)
(2.74)

Then for other components

−8πGSψ

ψ = Kψ

ψ −K = Kψ

ψ + Kτ
τ −Kψ

ψ =+ Kτ
τ (2.75)
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Sψ

ψ =− 1
8πG

(
Kτ+

τ −Kτ−
τ

)
(2.76)

Sψ

ψ =
1

8πG

[
−

ä+ U ′+
2√

ȧ2 +U+

+
ä+ U ′−

2√
ȧ2 +U−

]
(2.77)

and the last component is

Sψ

τ = Sτ
ψ =− 1

8πG

(
Kτ+

ψ −Kτ−
ψ

)
=− a2

8πG

(
−ω
′
++ω

′
−
)

(2.78)

The special condition of ω′+ = ω′−, ω+ = ω− so Sψ

τ = Sτ
ψ = 0.Therefore it implies that

the upper-shell and the lower-shell are corotating. The surface stress-energy tensor is

Sa
b =

 −σ 0

0 p

 (2.79)

where

σ =− 1
8πGa

(√
U++ ȧ2−

√
U−+ ȧ2

)
(2.80)

and

p =
1

8πG

[
−

ä+ U ′+
2√

ȧ2 +U+

+
ä+ U ′−

2√
ȧ2 +U−

]
(2.81)

The case of the static is obtained by assuming ȧ = 0 and ä = 0,

σ =− 1
8πGa0

(√
U+−

√
U−
)

(2.82)

and

p =
1

8πG

[
−

U ′+
2√
U+

+

U ′−
2√
U−

]
. (2.83)

2.3 Energy Conservation

The Darmois-Israel junction condition for connecting a hypersurface M+ with a hy-

persurface M− can be written as [
gi j
]
= 0 (2.84)
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and [
Ki j
]
= 0 (2.85)

The boundary surface Σ is defined when both (2.84) and (2.85) are satisfied. If only

(2.84) is satisfied then we refer to Σ as a thin-shell.

Conditions (2.84) and (2.85) require a common coordinate system on Σ and this is

easily done if one can set ξa
+ = ξa

−. Failing this, establishing (2.84) requires a solution

to the three dimensional metric equivalence problem. After the signs of normal vector

is choosen, there is no ambiguity in (2.85) and (2.84) and (2.85) are used in conjunction

with the Einstein tensor Gαβ to calculate the identities

[
Gαβnαnβ

]
= 0 (2.86)

and [
Gαβ

∂xα

∂ξi nβ

]
= 0. (2.87)

This shows that for timelike Σ the flux through Σ (as measured comoving with Σ) is

continuous.

The Israel formulation of thin shells follows from the Lanczos equation

Si j =
∆

8π
(
[
Ki j
]
−gi j

[
Ki

i]) (2.88)

and we refer to Si j as the surface stress-energy tensor of Σ. The “ADM” constraint

∇ jK
j

i −∇iK = Gαβ

∂xα

∂ξi nβ (2.89)

along with Einstein’s equations then gives the conservation identity

∆∇iSi
j =

[
Tαβ

∂xα

∂ξi nβ

]
. (2.90)

28



The “Hamiltonian” constraint

Gαβnαnβ = (∆(3R)+K2−Ki jKi j)/2 (2.91)

gives the evolution identity

−Si jKi j =
[
Tαβnαnβ

]
. (2.92)

The dynamics of the thin-shell are not understood from the identities (2.90) and (2.92).

The evolution of the thin-shell is obtained by the Lanczos equation(2.88) [49]. The p

and σ are used to satisfy the energy condition

d
dτ

(σa)+ p
d
dτ

(a) = N (2.93)

where

N =
1

8πG

ȧ
[
U ′−
√

U++ ȧ2−U ′+
√

U−+ ȧ2
]

√
U++ ȧ2

√
U−+ ȧ2

(2.94)

Note that ”′” prime stands for the derivative respect to a and the energy on the shell is

not conserved.

2.4 Stability Analyses of Thin-Shells

Another relation between the energy density and pressure which is much helpful is the

energy conservation relation which is given by

∂σ

∂τ
+

ȧ
a
(p+σ) = 0. (2.95)

This relation must be satisfied by σ and p even after the perturbation which gives an

inside to the problem.

The idea is to perturb the shell while it is at the equilibrium point a = a0. By using the

Eq.(2.80), we apply the perturbation and find the equation of motion of the shell (note

29



that 8πG = 1) is

ȧ2 +Ve f f = 0 (2.96)

where

Ve f f =
U2
−+

(
−2a2σ2−U+

)
U− +

(
a2σ2−U+

)2

4σ2a2 . (2.97)

This one dimensional equation describes the nature of the equilibrium point whether

it is a stable equilibrium or an unstable one. To see that we expand Ve f f about a = a0

and keep the first non-zero term which is

Ve f f (a)∼
1
2

V ′′e f f (a0)(a−a0)
2 . (2.98)

One can easily show that V ′e f f (a0) = Ve f f (a0) = 0 and therefore everything depends

on the sign of V ′′e f f (a0) . Let’s introduce x = a− a0 and write the equation of motion

again

ẋ2 +
1
2

V ′′e f f (a0)x2 = 0 (2.99)

which after a derivative with respect to time it reduces to

ẍ+
1
2

V ′′e f f (a0)x = 0. (2.100)

This equation explicitly implies that if 1
2V ′′e f f (a0)> 0 the x will be an oscillating func-

tion about x = 0 with the angular frequency ω0 =
√

1
2V ′′e f f (a0) but otherwise i.e.,

1
2V ′′e f f (a0)< 0 the motion will be exponentially toward the initial perturbation. There-

fore our task is to find V ′′e f f (a0) and show that under what condition it may be positive

for the stability and negative for the instability of the shell. Can naturally formed

absorber thin-shells, in cosmology to hide the reality from our telescopes? This can

be revise the ideas of no-hair black hole theorem. Thin-shell can be used to find ex-

hibiting a remarkable property of QCD-like charge confinement to cover the Dirac and
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Yang-Mills fields. The charged interior spacetime is completely con- fined within the

finite-spacial-size analog of QCD quark confinement. Naturally this takes us away

from classical physics into the realm of gravity coupled QCD.

2.5 Example of BTZ Thin-Shells

Let’s set the lapse function of U for the inner shell which is de Sitter spacetime with

mass M2 and outer shells which is a BTZ BH with mass M1and charge Q1 to be as

follows [45, 48, 50]

U− =−M2 +
a2

`2 (2.101)

and

U+ =−M1 +
a2

`2 −Q2
1 ln
(
a2 + s2) (2.102)

where s and l are constants. After some calculations, we obtain that the energy density

and the pressures can be recast as

σ =−Sτ
τ =

1
8πa

(√
U− (a)+ ȧ2−

√
U+ (a)+ ȧ2

)
(2.103)

and

p = Sθ

θ
=

2ä+U ′+ (a)

16π
√

U+ (a)+ ȧ2
−

2ä+U ′− (a)

16π
√

U− (a)+ ȧ2
. (2.104)

For a static configuration of radius a, we obtain (assuming ȧ = 0 and ä = 0)

σ0 =
1

8πa0

(√
U− (a0)−

√
U+ (a0)

)
(2.105)

and

p0 =
U ′+ (a0)

16π
√

U+ (a0)
−

U ′− (a0)

16π
√

U− (a0)
. (2.106)

To obtain the stability criterion, one starts by rearranging Eq. (2.103) in order to obtain

the equation of motion

ȧ2 +V (a) = 0 (2.107)
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where the V (a) is the potential as

V (a) =
U− (a)+U+ (a)

2
−
(

U− (a)−U+ (a)
16πaσ

)2

− (4πaσ)2 . (2.108)

Now we impose the energy conservation condition which must be satisfied after the

perturbation and try to find out weather the motion of the shell is oscillatory or not.

This openly means a relation between p and σ. Finally in order to have the thin-shell

stable against radial perturbation, V ′′e f f ≥ 0 at the equilibrium point i.e., a = a0 where

Ve f f =V ′e f f = 0.To keep our study as general as possible we assume p to be an arbitrary

function of β and σ i.e.,

p' p0 +βσ (2.109)

where p0 = cons. In Fig.2.2 we plot V ′′ (a0) for the specific value of m = 1.0 and Q =

0.2. As one observes in the region with ω > 0 the thin-shell is stable while otherwise

it occurs for ω < 0.

Figure 2.2: Stability regions of the BTZ thin-shell
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2.6 Generalization of Rotating Thin-Shells

The generalized spacetime metric is given as follows

ds2
b =− f (r)2dt2 +g(r)2 dr2 + r2 [dϕ+h(r)dt]2 . (2.110)

We define the throat for the line element by

ds2
Σ =−dτ

2 +a2dψ
2. (2.111)

The throat must satisfy the Israel junction conditions so

− f (a)2ṫ2 +g(a)2 ȧ2 =−1 (2.112)

and it is found that

ṫ =
1
f

√
1+g2ȧ2 (2.113)

and

ẗ =−− f ′ȧ
f 2

√
1+g2ȧ2 +

(
2g2ȧä+2gg′ȧ3)
2 f
√

1+g2ȧ2
(2.114)

in which a dot stands for the derivative with respect to the proper time τ. For conve-

nience we move to a comoving frame to eliminate cross term in the induced metrics by

introducing

dϕ+h(a)dt = dψ. (2.115)

Then for interior and exterior of WH, it becomes

ds2
b =− f (r)2dt2 +g(r)2 dr2 + r2 [dψ+ω(r)dt]2 , (2.116)

where

ω(r) = h(r)−h(a) . (2.117)
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The parametric equation of the hypersurface Σ is given by

F (r,a(τ)) = r−a(τ) = 0, (2.118)

and the normal unit vectors to M± defined by

nγ =

(
± 1√

∆

∂F
∂xγ

)
Σ

, (2.119)

where

∆ =

∣∣∣∣gαβ ∂F
∂xα

∂F
∂xβ

∣∣∣∣ . (2.120)

∆ = gtt ∂F
∂t

∂F
∂t

+grr ∂F
∂r

∂F
∂r

(2.121)

∆ =− 1
f 2

(
− ȧ f√

Θ

)2

+
1
g2 (2.122)

in which Θ = 1+g2ȧ2,

∆ =
−ȧ2g2 +Θ

Θg2 =
1

g2(1+g2ȧ2)
(2.123)

√
∆ =

1
g
√

Θ
(2.124)

so

g =
1√

∆
√

Θ
(2.125)

The normal unit vector must satisfy nγnγ = 1, so that non-zero normal unit vectors are

calculated as

nt =±
1√
∆

(
−da

dt

)
Σ

=− 1√
∆

ȧ
ṫ
=− 1√

∆

ȧ f√
Θ

=−ȧ f g (2.126)

nr =
1√
∆
= g
√

Θ (2.127)

so corrresponding unit vectors are

nγ = g
(
−ȧ f ,

√
Θ,0

)
. (2.128)
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Now we will calculate the extrinsic curvatures

Kττ =−nt

(
∂2t
∂τ2 +Γ

t
αβ

∂xα

∂τ

∂xβ

∂τ

)
Σ

−nr

(
∂2r
∂τ2 +Γ

r
αβ

∂xα

∂τ

∂xβ

∂τ

)
Σ

(2.129)

Kττ =−nt
(
ẗ +2Γ

t
trṫ ȧ
)

Σ
−nr

(
ä+Γ

r
tt ṫ

2 +Γ
r
rrȧ

2)
Σ

(2.130)

where the Levi-Civita connections calculated (ω = 0) ;

Γ
t
tr|Σ = Γ

t
rt |Σ =

f ′

f
, (2.131)

Γ
r
tt |Σ =

f f
′

g2 , (2.132)

Γ
r
ψψ|Σ =− r

g2 (2.133)

Γ
r
tψ|Σ =−r2ω′

2g2 , (2.134)

Γ
t
rψ|Σ =

−r2ω′

2 f 2 (2.135)

Γ
ψ

rψ|Σ =
1
r

(2.136)

and

Γ
r
rr|Σ =

g′

g
. (2.137)

so

Kττ =−nt

(
ẗ +2

f ′

f
ṫȧ
)

Σ

−nr

(
ä+

f f
′

g2 ṫ2 +
g′

g
ȧ2

)
Σ

(2.138)

Kττ = ȧ f g

(
− f ′ȧ

f 2

√
Θ+

ȧ
(
g2ä+gg′ȧ2)

f
√

Θ
+2

f ′

f 2

√
Θ

)
(2.139)

−g
√

Θ

(
ä+

f
′
Θ

g2 f
+

g′

g
ȧ2

)

Kττ =
ȧ2g√

Θ

(
g′ȧ2 +gä

)
−g
√

Θ

(
ä+

f ′

f g2 +
g′

g
ȧ2
)

(2.140)
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Kττ =
−g√

Θ

[
ä+

f ′

f g2 −
(

f ′

f
+

g′

g

)
ȧ2
]

(2.141)

Also it is found that the phi,phi component of the extrinsic curvature is

Kψψ =−nt

(
∂2t
∂ψ2 +Γ

t
αβ

∂xα

∂ψ

∂xβ

∂ψ

)
Σ

−nr

(
∂2r
∂ψ2 +Γ

r
αβ

∂xα

∂ψ

∂xβ

∂ψ

)
Σ

, (2.142)

Kψψ =−nrΓ
r
ψψ = nr

a
g2 =

a
g

√
Θ (2.143)

and lastly the tau,phi component of the extrinsic curvature is also found as

Kψτ = Kτψ =−nt

(
∂2t

∂τ∂ψ
+Γ

t
αβ

∂xα

∂τ

∂xβ

∂ψ

)
Σ

−nr

(
∂2r

∂τ∂ψ
+Γ

r
αβ

∂xα

∂τ

∂xβ

∂ψ

)
Σ

, (2.144)

=−nt

(
Γ

t
rψȧ
)
−nr

(
Γ

r
rψṫ
)
, (2.145)

=−(ȧ2g)
(

a2

2 f
ω
′
)
+Θ

1
f

a2

2g
ω
′, (2.146)

Kτψ =
a2ω′

2 f g
. (2.147)

Finally

Kττ =
−g√

Θ

[
ä+

f ′

f g2 −
(

f ′

f
+

g′

g

)
ȧ2
]

(2.148)

Kψψ =
a
g

√
Θ (2.149)

Kτψ =
a2ω′

2 f g
(2.150)

in which ω(r)′ = [h(r)−h(a)]′ = h(r)′. They become

Kτ
τ =

g√
Θ

[
ä+

f ′

f g2 −
(

f ′

f
+

g′

g

)
ȧ2
]
, (2.151)

Kψ

ψ =
1
ag

√
Θ, (2.152)

Kψ

τ =
ω′

2 f g
, (2.153)

and

Kτ
ψ =− a2

2 f g
ω
′. (2.154)

If we take g = 1
f with f =

√
U , one finds same as part 1.
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2.7 Israel Junction Conditions For Thin-Shell

Now we define the junction conditions by using the exterior curvatures as follows

Kτ±
τ =

g±√
Θ

[
ä+

f ′±
f±g2
±
−
(

f ′±
f±

+
g′±
g±

)
ȧ2
]
, (2.155)

Kψ±
ψ =

1
ag±

√
Θ, (2.156)

Kψ±
τ =

ω′

2 f±g±
, (2.157)

and

Kτ±
ψ =− a2

2 f±g±
ω
′. (2.158)

K± = Ki±
i =

g±√
Θ

[
ä+

f ′±
f±g2
±
−
(

f ′±
f±

+
g′±
g±

)
ȧ2
]
+

1
ag±

√
Θ (2.159)

−8πGS j
i = [K j

i ]− [K]δ
j
i (2.160)

where [K] is the trace of [K j
i ] and S j

i is the surface stress-energy tensor on σ, and

[A] = A+−A−. Also S j
i =

 Sτ
τ Sτ

ψ

Sψ

τ Sψ

ψ


−8πGSτ

τ = Kτ
τ −K = Kτ

τ − Kτ
τ −Kψ

ψ =−Kψ

ψ (2.161)

8πGSτ
τ = Kψ

ψ (2.162)

8πGSτ
τ = Kψ+

ψ −Kψ−
ψ (2.163)

Sτ
τ =

1
8πGa

(
1

g+

√
1+g2

+ȧ2− 1
g−

√
1+g2

−ȧ2
)

(2.164)

Then for other components

−8πGSψ

ψ = Kψ

ψ −K = Kψ

ψ + Kτ
τ −Kψ

ψ =+ Kτ
τ (2.165)

Sψ

ψ =− 1
8πG

(
Kτ+

τ −Kτ−
τ

)
(2.166)
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Sψ

ψ =
1

8πG
[−
(

ä+
f ′+

f+g2
+

−
(

f ′+
f+

+
g′+
g+

)
ȧ2
)

g+√
1+g2

+ȧ2
(2.167)

+

(
ä+

f ′−
f−g2
−
−
(

f ′−
f−

+
g′−
g−

)
ȧ2
)

g−√
1+g2

−ȧ2
]

and the last component is

Sψ

τ = Sτ
ψ =− 1

8πG

(
Kτ+

ψ −Kτ−
ψ

)
=− a2

8πG

(
− ω′

2 f+g+
+

ω′

2 f−g−

)
(2.168)

=− a2

8πG

(
ω
′
+−ω

′
−
)

(2.169)

The special condition of ω′+ = ω′−, ω+ = ω− so Sψ

τ = Sτ
ψ = 0.Therefore it implies that

the upper-shell and the lower-shell are co-rotating. The surface stress-energy tensor

is Sa
b =

 −σ 0

0 p

 . One calculates the charge density and the surface pressure as

follows

σ =− 1
8πGa

(
1

g+

√
1+g2

+ȧ2− 1
g−

√
1+g2

−ȧ2
)

(2.170)

and

p =
1

8πG
[−
(

ä+
f ′+

f+g2
+

−
(

f ′+
f+

+
g′+
g+

)
ȧ2
)

g+√
1+g2

+ȧ2

+

(
ä+

f ′−
f−g2
−
−
(

f ′−
f−

+
g′−
g−

)
ȧ2
)

g−√
1+g2

−ȧ2
] (2.171)
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Chapter 3

THIN-SHELL WORMHOLES

Thin-shell WHs is constructed with the exotic matter which is located on a hyper-

surface so that it can be minimized. Constructing WHs with non-exotic source is a

difficult issue in GR. On this purpose, firstly , Visser use the thin-shell method to con-

struct WHs for minimizing the exotic matter on the throat of the WHs. We need to

introduce some conditions on the energy-momentum tensor such as [46,52,53] -Weak

Energy Condition

This energy condition states that energy density of any matter distribution must be

non-negative, i.e., 3σ≥ 0 and 3σ+ p≥ 0.

- Null Energy Condition

This condition implies that 3σ+ p≥ 0.

- Dominant Energy Condition

This condition holds if 3σ≥ 0 and 3σ+2p≥ 0.

- Strong Energy Condition

This condition demands 3σ+ p≥ 0 and 3σ+3p≥ 0.
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Figure 3.1: Thin-Shell WH

3.1 Mazharimousavi-Halilsoy Thin-Shell WH in 2+1 D

In this section [70], we introduce a SHBH (SHBH) investigated by Mazharimousavi

and Halilsoy recently [54]. The following action describes the Einstein-Maxwell grav-

ity that is minimally coupled to a scalar field φ

S =

ˆ
d3r
√
−g
(
R−2∂µφ∂

µ
φ−F2−V (φ)

)
, (3.1)
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where R denotes the Ricci scalar, F =FµνFµν is the Maxwell invariant, and V (φ) stands

for the scalar (φ) potential. From the action above, the SHBH solution is obtained as

ds2 =− f (r)dt2 +
4r2dr2

f (r)
+ r2dθ

2, (3.2)

which

f (r) =
r2

l2 −ur. (3.3)

Here u and l are constants, and event horizon of the BH is located at rh = u`2. It is

clear that this BH possesses a non-asymptotically flat geometry. Metric (3.2) can be

written in the form of

ds2 =− r
`2 (r− rh)dt2 +

4r`2dr2

(r− rh)
+ r2dθ

2. (3.4)

It is noted that the singularity located at r = 0, which is also seen from the Ricci and

Kretschmann scalars:

R =−2r+ rh

4r3`2 , (3.5)

K =
4r2−4rhr+3r2

h
16r6`4 . (3.6)

Moreover, One obtains the scalar field and potential respectively as follows

φ =
lnr√

2
, (3.7)

V (φ) =
λ1 +λ2

r2 , (3.8)

in which λ1,2 are constants. The corresponding Hawking temperature is calculated as

TH =
1

4π

∂ f
∂r

∣∣∣∣
r=rh

=
1

8π`2 , (3.9)

which is constant. Having a radiation with constant temperature is the well-known

isothermal process. It is worth noting that Hawking radiation of the linear dilaton BHs

exhibits similar isothermal behavior.
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3.2 Stability of the Thin-Shell WH

In this section, we take two identical copies of the SHBHs with [70] (a≥ r):

M± = (x|r ≥ 0), (3.10)

and the manifolds are bounded by hypersurfaces M+ and M−, to get the single mani-

fold M = M++M−, we glue them together at the surface of the junction

Σ
± = (x|r = a). (3.11)

where the boundaries Σ are given. The spacetime on the shell is

ds2 =−dτ
2 +a(τ)2dθ

2, (3.12)

where τ represents the proper time . Setting coordinates ξi = (τ,θ), the extrinsic cur-

vature formula connecting the two sides of the shell is simply given by

K±i j =−n±γ

(
∂2xγ

∂ξi∂ξ j +Γ
γ

αβ

∂xα

∂ξi
∂xβ

∂ξ j

)
, (3.13)

where the unit normals (nγnγ = 1) are

n±γ =±
∣∣∣∣gαβ ∂H

∂xα

∂H
∂xβ

∣∣∣∣−1/2
∂H
∂xγ

, (3.14)

with H(r) = r−a(τ). The non zero components of n±γ are calculated as

nt =∓2aȧ, (3.15)

nr =±2

√
al2(4ȧ2l2a− l2u+a)

(l2u−a)
, (3.16)

where the dot over a quantity denotes the derivative with respect to τ. Then, the non-

zero extrinsic curvature components yield

K±ττ =∓
√
−al2(8ȧ2l2a+8äl2a2− l2u+2a)

4a2l2
√
−4ȧ2l2a− l2u+a

, (3.17)
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K±
θθ

=± 1

2a
3
2 l

√
4ȧ2l2a− l2u+a. (3.18)

Since Ki j is not continuous around the shell, we use the Lanczos equation:

Si j =−
1

8π

(
[Ki j]− [K]gi j

)
. (3.19)

where K is the trace of Ki j, [Ki j] = K+
i j −K−i j . Firstly, K+ = −K− = [Ki j] while

[Ki j] = 0. For the conservation of the surface stress–energy Si j
j = 0 and Si j is stress

energy-momentum tensor at the junction which is given in general by

Si
j = diag(σ,−p), (3.20)

with the surface pressure p and the surface energy density σ. Due to the circular

symmetry, we have

Ki
j = [Kτ

τ ,0,0,K
θ

θ
]. (3.21)

Thus, from Eq.s (3.20) and (3.19) one obtains the surface pressure and surface energy

density . Using the cut and paste technique, we can demount the interior regions r < a

of the geometry, and links its exterior parts. The energy density and pressure are

σ =− 1

8πa
3
2 l

√
4ȧ2l2a− l2u+a, (3.22)

p =
1

16πa
3
2 l

(
8ȧ2l2a+8äl2a2− l2u+2a

)
√

4ȧ2l2a− l2u+a
. (3.23)

Then for the static case (a = a0), the energy and pressure quantities reduce to

σ0 =−
1

8πa
3
2
0 l

√
−l2u+a0, (3.24)

p0 =
1

16πa
3
2
0 l

(
−l2u+2a0

)√
−l2u+a0

. (3.25)
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Once σ ≥ 0 and σ+ p ≥ 0 hold, then WEC is satisfied. Besides, σ+ p ≥ 0 is the

condition of NEC. Furthermore, SEC is conditional on σ+ p ≥ 0 and σ+ 2p ≥ 0. It

is obvious from Eq. (24) that negative energy density violates the WEC, and conse-

quently we are in need of the exotic matter for constructing thin-shell WH. We note

that the total matter supporting the WH is given by

Ωσ =

ˆ 2π

0
[ρ
√
−g]
∣∣
r=a0

dφ = 2πa0σ(a0) =−
1

4a
1
2
0 |l|

√
−l2u+a0. (3.26)

Stability of the WH is investigated using the linear perturbation so that the EoS is

p = ψ(σ), (3.27)

where ψ(σ) is an arbitrary function of σ. Furthermore, the energy conservation equa-

tion is introduced as follows

Si
j;i =−Tαβ

∂xα

∂ξ j nβ, (3.28)

where Tαβ is the bulk energy-momentum tensor. It can be written in terms of the

pressure and energy density:

d
dτ

(σa)+ψ
da
dτ

=−ȧσ. (3.29)

From above equation, one reads

σ
′ =−1

a
(2σ+ψ), (3.30)

and its second derivative yields

σ
′′ =

2
a2 (ψ̃+3)(σ+

ψ

2
). (3.31)

where prime and tilde symbols denote derivative with respect to a and σ, respectively.

The equation of motion for the shell is in general given by

ȧ2 +V = 0, (3.32)
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where the effective potential V is found from Eq. (3.22 as

V =
1

4l2 −
u

4a
−16a2

σ
2
π

2. (3.33)

In fact, Eq. (3.32) is nothing but the equation of the oscillatory motion in which the

stability around the equilibrium point a = a0 is conditional on V ′′(a0)≥ 0. We finally

obtain

V ′′ = − 1
2a3

[
64π

2a5
((

σσ
′)′+4σ

′σ

a
+

σ2

a2

)
+u
]∣∣∣∣

a=a0

, (3.34)

or equivalently,

V ′′ =
1

2a3{−64π
2a3 [(2ψ

′+3)σ2 +ψ(ψ′+3)σ+ψ
2]−u}

∣∣∣∣
a=a0

. (3.35)

The equation of motion of the throat, for a small perturbation becomes

ȧ2 +
V ′′(a0)

2
(a−a0)

2 = 0. (3.36)

Note that for the condition of V ′′(a0)≥ 0, TSW is stable where the motion of the throat

is oscillatory with angular frequency ω =

√
V ′′(a0)

2 .

3.3 Some Models of EoS Supporting Thin-Shell WH

In this section, we use particular gas models (linear barotropic gas (LBG) , chaplygin

gas (CG) , generalized chaplygin gas (GCG) and logarithmic gas (LogG) ) to explore

the stability of TSW.

3.3.1 Stability analysis of Thin-Shell WH via the LBG

The equation of state of LBG is given by

ψ = ε0σ, (3.37)

and hence

ψ
′(σ0) = ε0, (3.38)
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where ε0 is a constant parameter. By changing the values of l and u in Eq. (35), we

illustrate the stability regions for TSW, in terms of ε0 and a0, as depicted in Fig.3.2.

l=0.7
u=0.2









l=0.3
u=0.05















s
l=0.5
u=0.1






s

l=0.9
u=2

Figure 3.2: Stability Regions via the LBG

3.3.2 Stability analysis of Thin-Shell WH via CG

The equation of state of CG that we considered is given by

ψ = ε0(
1
σ
− 1

σ0
)+ p0, (3.39)

and one naturally finds

ψ
′(σ0) =

−ε0

σ2
0
. (3.40)

After inserting Eq. (39) into Eq. (35), The stability regions for thin-shell WH sup-

ported by CG is plotted in Fig.3.3.

3.3.3 Stability analysis of Thin-Shell WH via GCG

By using the equation of state of GCG

ψ = p0

(
σ0

σ

)ε0
, (3.41)
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Figure 3.3: Stability Regions via the CG

and whence

ψ
′(σ0) =−ε0

p0

σ0
, (3.42)

Substituting Eq. (41) in Eq. (35), one can illustrate the stability regions of thin-shell

WH supported by GCG as seen in Fig.3.4.

3.3.4 Stability analysis of Thin-Shell WH via LogG

In our final example, the equation of state for LogG is selected as follows (ε0, σ0, p0

are constants)

ψ = ε0 ln(
σ

σ0
)+ p0, (3.43)

which leads to

ψ
′(σ0) =

ε0

σ0
. (3.44)

After inserting the above expression into Eq. (35), we show the stability regions of

thin-shell WH supported by LogG in Fig.3.5. In summary, we have constructed thin-
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Figure 3.4: Stability Regions via the GCG

l=0.3
u=1
















s
l=1
u=1

l=1
u=2





















l=1.5
u=2

Figure 3.5: Stability Regions via the LogG

shell WH by gluing two copies of SHBH via the cut and paste procedure. To this

end, we have used the fact that the radius of throat must be greater than the event

48



horizon of the metric given: (a0 > rh). We have used LBG, CG, GCG, and LogG EoS

to the exotic matter. Then, the stability analysis (V ′′(a0) ≥ 0) is plotted. We show

the stability regions in terms a0 andε0. The problem of the angular perturbation is

out of scope for the present paper. That’s why we have only worked on the linear

perturbation. However, angular perturbation is in our agenda for the extension of this

study. This is going to be studied in the near future.

3.4 Hayward Thin-Shell WH in 3+1 D

The metric of the Hayward BH is given by [71]

ds2 =−
(

1− 2mr2

r3 +2ml2

)
dt2 +

(
1− 2mr2

r3 +2ml2

)−1

dr2 + r2dΩ
2. (3.45)

with the metric function

f (r) =
(

1− 2mr2

r3 +2ml2

)
(3.46)

and

dΩ
2 = dθ

2 + sin2
θdφ

2. (3.47)

It is noted that m and l are free parameters. At large r, the metric function behaves

lim
r→∞

f (r)→ 1− 2m
r

+O
(

1
r4

)
, (3.48)

whereas at small r

lim
r→0

f (r)→ 1− r2

l2 +O
(

r5
)
. (3.49)

One observes that for small r the Hayward BH becomes a de Sitter BH and for large

r it is a Schwarzschild spacetime. The event horizon of the Hayward BH is calculated

by using

r3−2mr2 +2ml2 = 0, (3.50)
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and changing r = mρ and l = mλ , it turns to

ρ
3−2ρ

2 +2λ
2 = 0. (3.51)

Note that for λ2 > 16
27 there is no horizon, for λ2 = 16

27 single horizon which is called a

extremal BH and for λ2 < 16
27 double horizons. Hence the ratio l

m is important parame-

ter where the critical ratio is at
( l

m

)
crit. =

4
3
√

3
. Set m = 1 where f (r) = 1− 2r2

r3+2l2 . For

the case of l2 < 16
27 the event horizon is given by

rh =
1
3

(
3√

∆+
4

3
√

∆
+2
)

(3.52)

with ∆ = 8−27l2+3
√

27l2 (3l2−2). The extremal BH case occurs at l2 = 16
27 and the

single horizon occurs at rh =
4
3 . When l2 ≤ 16

27 , the temperature of Hawking is given by

TH =
f ′ (rh)

4π
=

1
4π

(
3
2
− 2

rh

)
(3.53)

which clearly for l2 = 16
27 vanishes and for l2 < 16

27 is positive so note that rh ≥ 4
3 .

Entropy for the BH is obtained by S = A
4 with A = 4πr2

h to find the heat capacity of

the BH

Cl =

(
TH

∂S
∂TH

)
l

(3.54)

and it is obtained as

Cl = 4πr3
h

(
3
2
− 2

rh

)
. (3.55)

It is clearly positive.When the heat capacity of the BH is positive Cl > 0, it shows the

BH is stable according to thermodynamical laws.

To find the source of the Hayward BH, the action is considered as

I =
1

16π

ˆ
d4x
√
−g(R−L (F)) (3.56)
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where R is the Ricci scalar and the nonlinear magnetic field Lagrangian density is

L (F) =− 24m2l2[(
2P2

F

)3/4
+2ml2

]2 =− 6

l2
[

1+
(

β

F

)3/4
]2 (3.57)

with the Maxwell invariant F = FµνFµνwith two constant positive parameters l and β.

The analyses of the stability depends on the fixing the β. Moreover, the magnetic field

is

F = Psin2
θdθ∧dφ (3.58)

where the charge of the magnetic monopole is P . It implies

F =
2P2

r4 . (3.59)

with the line element given in Eq.(3.45). The Einstein-Nonlinear Electrodynamics field

equations are (8πG = c = 1)

Gν
µ = T ν

µ (3.60)

in which

T ν
µ =−1

2

(
Lδ

ν
µ−4FµλFλνLF

)
(3.61)

with LF = ∂L
∂F . After using the nonlinear magnetic field Lagrangian L (F) inside the

Einstein equations, one finds β = 2P2

(2ml2)
4/3 for the Hayward regular BH. The limit of

the weak field of the L (F) is found by expanding it around F = 0,

L (F) =−6F3/2

l2β3/2 +
12F9/4

l2β9/4 +O
(
F3) . (3.62)

Note that at the limit of the weak field, the lagrangian of the NED does not reduce to

the lagrangian of the linear Maxwell

lim
F→0

L (F) 6=−F. (3.63)

Hence, this spacetime has not any Reissner–Nordström limit at weak field.
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3.5 Stability of Hayward Thin-Shell WH

We use the cut and past technique to constructe a thin-shell WH from the Hayward

BHs. We firstly take a thin-shell at r = a where the throat is outside of the horizon

(a > rh). Then we paste two copies of it at the point of r = a. For this reason the

thin-shell metric is taken as

ds2 =−dτ
2 +a(τ)2 (dθ

2 + sin2
θdφ

2) (3.64)

where τ is the proper time on the shell. The Einstein equations on the shell are

[
K j

i

]
− [K]δ

j
i =−S j

i (3.65)

where [X ] = X2−X1,. It is noted that the extrinsic curvature tensor is K j
i . Moreover,

K stands for its trace. The surface stresses, i.e., surface energy density σ and surface

pressures Sθ

θ
= p = Sφ

φ
, are determined by the surface stress-energy tensor S j

i . The

energy and pressure densities are obtained as

σ =−4
a

√
f (a)+ ȧ2 (3.66)

p = 2

(√
f (a)+ ȧ2

a
+

ä+ f ′ (a)/2√
f (a)+ ȧ2

)
. (3.67)

Then they reduce to simple form in a static configuration (a = a0)

σ0 =−
4
a0

√
f (a0) (3.68)

and

p0 = 2

(√
f (a0)

a0
+

f ′ (a0)/2√
f (a0)

)
. (3.69)

Stability of such a WH is investigated by applying a linear perturbation with the fol-

lowing EoS

p = ψ(σ) (3.70)
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Moreover the energy conservation is

Si j
; j = 0 (3.71)

which in closed form it equals to

Si j
, j +Sk j

Γ
iµ
k j +Sik

Γ
j
k j = 0 (3.72)

after the line element in Eq.(3.64) is used, it opens to

∂

∂τ

(
σa2)+ p

∂

∂τ

(
a2)= 0. (3.73)

The 1-D equation of motion is

ȧ2 +V (a) = 0, (3.74)

in which V (a) is the potential,

V (a) = f −
(aσ

4

)4
. (3.75)

The equilibrium point at a = a0 means V ′ (a0) = 0 and V ′′ (a0)≥ 0. Then it is consid-

ered that f1 (a0) = f2 (a0), one finds V0 = V ′0 = 0. To obtain V ′′ (a0) ≥ 0 we use the

given p = ψ(σ) and it is found as follows

σ
′
(
=

dσ

da

)
=−2

a
(σ+ψ) (3.76)

and

σ
′′ =

2
a2 (σ+ψ)

(
3+2ψ

′) , (3.77)

where ψ′ = dψ

dσ
. After we use ψ0 = p0, finally it is found that

V ′′ (a0) = f ′′0 −
1
8

[
(σ0 +2p0)

2 +2σ0 (σ0 + p0)
(
1+2ψ

′ (σ0)
)]

(3.78)
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3.6 Some Models of EoS

In this section, we consider some specific models of matter such as Linear gas (LG),

Chaplygin gas (CG), generalized Chaplygin gas (GCG) , modified generalized Chap-

lygin gas (MGCG) and logarithmic gas (LogG) to analyze the effect of the parameter

of Hayward in the stability of the constructed thin-shell WH.

3.6.1 Linear Gas

Figure 3.6: Stability of Thin-Shell WH supported by LG.
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For a LG, EoS is choosen as

ψ = η0 (σ−σ0)+ p0 (3.79)

in which η0 is a constant and ψ′ (σ0) = η0. Fig.3.6 shows the stability regions in terms

of η0 and a0 with different Hayward’s parameter. It is noted that the S shows the stable

regions.

3.6.2 Chaplygin Gas

Figure 3.7: Stability of Thin-Shell WH supported by CG.
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For CG, we choose the EoS as follows

ψ = η0

(
1
σ
− 1

σ0

)
+ p0 (3.80)

where η0 is a constant and ψ′ (σ0) = −η0
σ2

0
. In Fig.3.7, the stability regions are shown

in terms of η0 and a0 for different values of `. The effect of Hayward’s constant is to

increase the stability of the Thin-Shell WH.

3.6.3 Generalized Chaplygin Gas

Figure 3.8: Stability of Thin-Shell WH supported by GCG.
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The EoS of the GCG is taken as

ψ(σ) = η0

(
1

σν
− 1

σν
0

)
+ p0 (3.81)

where ν and η0 are constants. We check the effect of parameter ν in the stability and

ψ becomes

ψ(σ) = p0

(
σ0

σ

)ν

. (3.82)

We find ψ′ (σ0) = − p0
σ0

ν. In Fig.3.8, the stability regions are shown in terms of ν and

a0 with various values of `.

3.6.4 Modified Generalized Chaplygin Gas

In this case, the MGCG is

ψ(σ) = ξ0 (σ−σ0)−η0

(
1

σν
− 1

σν
0

)
+ p0 (3.83)

in which ξ0, η0 and ν are free parameters. Therefore,

ψ
′ (σ0) = ξ0 +η0

η0ν

σ
ν+1
0

. (3.84)

To go further we set ξ0 = 1 and ν = 1. In Fig.3.9, the stability regions are plotted in

terms of η0 and a0 with various values of `. The effect of Hayward’s constant is to

increase the stability of the Thin-Shell WH.

3.6.5 Logarithmic Gas

Lastly LogG is choosen by follows

ψ(σ) = η0 ln
∣∣∣∣ σ

σ0

∣∣∣∣+ p0 (3.85)

in which η0 is a constant. For LogG, we find that

ψ
′ (σ0) =

η0

σ0
. (3.86)
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Figure 3.9: Stability of Thin-Shell WH supported by MGCG.

In Fig.3.10, the stability regions are plotted to show the effect of Hayward’s parameter

clearly. The effect of Hayward’s constant is to increase the stability of the Thin-Shell

WH.
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Figure 3.10: Stability of Thin-Shell WH supported by LogG.

3.7 Perturbation of Small Velocity

Now we check the stability of the Hayward WH using the small velocity perturbations(

a = a0). The EoS is calculated by f (a) and a

p =−1
2

(
1+

a f ′ (a)
2 f (a)

)
σ. (3.87)
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One finds the 1-D motion

ä− f ′

2 f
ȧ2 = 0. (3.88)

After integrating both sides,

ȧ = ȧ0

√
f√
f0

(3.89)

then it is obtained by taking the second integral

ˆ a

a0

da√
f (a)

=
ȧ0√

f0
(τ− τ0) . (3.90)

It is noted that ȧ0 = 0 is the equilibrium point, however we consider that there is an

initial small velocity after perturbation, which is called ȧ0. We firstly consider the

Schwarzschild BH as an example. For the Schwarzschild spacetime, f (a) = 1− 2m
a

yields

ȧ0√
f0
(τ− τ0) = a

√
f −a0

√
f0 +m ln

(
a−m+a

√
f

a0−m+a0
√

f0

)
. (3.91)

It is non-oscillatory so it means that the throat isn‘t stable. Now we give the another

example of the Hayward thin-shell WH. For this case, using the Hayward metric and

the relation given in Eq.(3.90),expanding to the second order of `, admits

ȧ0√
f0
(τ− τ0)=̃a

√
f −a0

√
f0 +m ln

(
a−m+a

√
f

a0−m+a0
√

f0

)
+

2`2
(

2a2−2am−m2

3ma2√ f
−

2a2
0−2a0m−m2

3ma2
0
√

f0

)
. (3.92)

Here again we find that there is not stability of the throat against the small velocity

perturbation. Therefore this motion is not also oscillatory. The throat’s acceleration is

ä = f ′
2 f ȧ2. Note that for the Schwarzschild and Hayward spacetimes we show that it is

positive. Therefore, the corresponding thin-shell WH is not stable.
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In this section we constructe thin-shell WHs from the Hayward BH. Firstly it is showed

that a magnetic monopole field in the NED is the source of the Hayward BH. On the

thin-shell we use the different type of EoS with the form p = ψ(σ) and plot possible

stable regions. We show the stable and unstable regions on the plots. Stability simply

depends on the condition of V ′′ (a0)> 0. We show that the parameter `, which is known

as Hayward parameter has a important role. Moreover, for higher ` value the stable

regions are increased. It is checked the small velocity perturbations for the throat. It is

found that throat of the thin-shell WH is not stable against such kind of perturbations.

Hence, energy density of the WH is found negative so that we need exotic matter.

3.8 Rotating BTZ Thin-Shell Wormholes

For constructing the thin-shell WH, we study 2 copies of a 2+1-dimensional back-

ground spacetime given. These copies are used at a radius r = a, where the throat of

the WH will be located larger than the event horizon. All steps for thin-shell by using

the Isreal junction conditions are also valid for the constructing of WH, only difference

appears when calculating the energt density and pressure of WH. Then we have the

jump if the extrinsic curvature components at the surface r = a, furthermore, we take

the U(o),U(i) and also ω(i),ω(o) for the WH case, and calculate associated linear energy

density and pressure for WH. Once more we add that all functions are evaluated at

r = a.Therefore it gives

σ =−Sτ
τ =−

1
8πG

(
Kφ

φ(o)+Kφ

φ(i)

)
=− 1

8πGa

(√
U(o)+ ȧ2 +

√
U(i)+ ȧ2

)
, (3.93)

p = Sφ

φ
=

1
8πG

(
Kτ

τ(o)+Kτ

τ(i)

)
=

1
8πG

U(o)

(
ä+U ′(o)/2

)
√

U(o)+ ȧ2
+

U(i)

(
ä+U ′(i)/2

)
√

U(i)+ ȧ2


(3.94)
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Figure 3.11: Rotating Thin-shell WH

and

q = Sφ

τ =−
1

8πG

(
Kφ

τ(o)+Kφ

τ(i)

)
=

a2

8πG

(
ω′(o)
U(o)

(
U(o)+2ȧ2)+ ω′(i)

U(i)

(
U(i)+2ȧ2)) .

(3.95)

To finalize this section we add that at the equilibrium point where a(τ) = a0 one finds

σ0 =−
1

8πGa0

(√
U(o)+

√
U(i)

)
, (3.96)

p0 =
1

16πG

(√
U(o)U

′
(o)+

√
U(i)U

′
(i)

)
(3.97)
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and

q0 =
a2

8πG

(
ω
′
(o)+ω

′
(i)

)
, (3.98)

in which all functions are evaluated at a = a0.

3.9 Linearized Stability of Wormhole

Furthermore, the equation of motion for the thin-shell is

ȧ2 +Ve f f = 0 (3.99)

with the effective potential (8πG = 1)

Ve f f =
1
2
(
U(o)+U(i)

)
+

(
U(o)+U(i)

)2

(2aσ)2 −
(aσ

2

)2
. (3.100)

It is noted that stability of WH solution depends upon the conditions of V ′′e f f (a0) > 0

and V ′e f f (a0) =Ve f f (a0) = 0

Ve f f (a)∼
1
2

V ′′e f f (a0)(a−a0)
2 . (3.101)

Let’s introduce x = a−a0 and write the equation of motion again

ẋ2 +
1
2

V ′′e f f (a0)x2 = 0 (3.102)

which after a derivative with respect to time it reduces to

ẍ+
1
2

V ′′e f f (a0)x = 0. (3.103)

Hence our main aim is to discover the behaviour of V ′′e f f (a0) and point out the condi-

tions of its positive value for the stability by also the help of the Eq.(2.95).

It is now interesting to reduce our general results to some specific examples. such as

rotating AdS-BTZ thinshell WH and rotating BTZ thinshell WH.
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3.10 Rotating BTZ Thin-shell Wormhole

Our last WH example is on very recent work where they introduce a counter rotating

thin shell WHs as follows [53]. In r < a and r > a the spacetimes are given by rotating

BTZ whose line elements are written as with

U =U+ =U− =−M+
r2

`2 +
J2

4r2 (3.104)

which are the rotating BTZ. Here M and J are the integration constants which respec-

tively correspond to the mass and angular momentum, and Q is the charge carried by

the BH. The exterior curvatures are derived as follows

Kτ(±)
τ =± 2R̈+ f ′

2
√

Ṙ2 + f
, (3.105)

Kψ(±)
τ =∓

Nϕ

± (R)
R

(3.106)

and

Kψ(±)
ψ =±

√
Ṙ2 + f

R
. (3.107)

Then it is found that

k j
i =


2R̈+ f ′√

Ṙ2+ f
− [Nϕ

+(R)+Nϕ

−(R)]
R

− [Nϕ

+(R)+Nϕ

−(R)]
R

2
√

Ṙ2+ f
R

 . (3.108)

Note that S j
i is diagonal so that Nϕ

+ (R)+Nϕ

− (R) = 0 which consequently admits J++

J− = 0. It means that between the upper and lower shells there is a counterrotating.

After some calculations, the energy density and the pressures is calculated as

σ =− 1
8πG

− 2
√

ȧ2 +U
a

(3.109)
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and

p =
1

8πG
2ä+U ′√

ȧ2 +U
. (3.110)

The static case where ȧ = 0 and ä = 0)

σ0 =−
2
√

U0

8πGa0
(3.111)

and

P0 =
U ′0

8πG
√

U0
. (3.112)

We have already imposed a generic potential equation in Eq.(3.100). Now, Eq. (3.100)

can be written for the rotating BTZ thinshell WH as

ȧ2 =−Ve f f (3.113)

with Ve f f given by

Ve f f =U− (8πGσ)2 R2

4
(3.114)

Using the more general form of the pressure as a function of a and σ i.e.,

p = ψ(a,σ) , (3.115)

Next, at equilibrium point a = a0 it is obtained that

V ′′e f f (a0) =U ′′0 −
U ′20 a2

0 +2ψ′0U0
(
2U0−U ′0a0

)
2U0a2

0
(3.116)

One can show that Ve f f (a0) =V ′e f f (a0) = 0.

3.10.1 Phantomlike EoS

The EoS of a LG is given by dξ

dσ
= β in which β is a constant parameter. One observes

that for the cases (
2 f0 f ′′0 − f ′20

)
R2

0

2 f0
(
2 f0− f ′0R0

) < β for
2 f0

f ′0
> R0 (3.117)
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and

2 f0R2
0 f ′′0 − f ′20 R2

0

2 f0
(
2 f0− f ′0R0

) > β for
2 f0

f ′0
< R0 (3.118)

V ′′e f f (R0) > 0 and the equilibrium is stable. In Fig. 3.12 we plot the stability region

with respect to β and R0. In the same figure the result for different J are compared. As

one can see, increasing the value of J increases the region of stability

Figure 3.12: Stability of the rotating thin-shell WH

66



Chapter 4

CONCLUSION

In this thesis, we have studied the stability of thin-shells around the BHs and the sta-

bility of the thin-shell WHs. Firstly, we have introduced generally the BHs, WHs and

their properties in the theory of the GR. Furthermore, we have calculated the Hawking

Radiation from the traversable WHs. In Chapter 2, we have studied the rotating thin-

shells methods and gave some examples. Especially, the Bardeen BH with a charged

thin-shell is used to produce thin-shell matching inside and outside. We have created

the thin-shell by using the Israel junction conditions which we derived earlier. Then as

a result of the thin-shell, the effect of the charge is disappeared to outside. Moreover,

we have checked the stability regions of the thin-shell and we have plotted the areas

of the stability. Experimentally, there is a possibility that thin-shells can cancel the

charge’s effects for the outside observers. Our example is in the 2+1 dimensions but it

can be found similar effects for the higher dimensions.

In Chapter 3, we have defined the methods of the constructing thin-shell WHs and we

have studied two example of thin-shell WHs in 2+1 dimensions and 3+1 dimensions by

using same method which is gluing two copies of bulks via the cut and paste procedure.

To this end, we have used the fact that the radius of throat must be greater than the event

horizon of the metric given: (a0 > rh). We have adopted LBG, CG, GCG, and LogG
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gas equation of states to the exotic matter locating at the throat. Then, the stability

analysis has become the study of checking positivity of the second derivative of an

effective potential at the throat radius a0: V ′′(a0) ≥ 0. In all cases, we have managed

to find the stability regions in terms of the throat radius a0 and constant parameter ε0,

which are associated with the EoS employed. Hence, in our studies the exotic matter

is needed to support construction of the throat of the thin-shell.

In last section, we have studied the rotating thin-shell WHs in 2+1-dimensions. This

time we use the counterrotating shells around the throat which has no effect on the

gluing procedure and Lanczos energy conditions. It can be thought that the upper

and lower pressures cancel each others and leaving no cross terms of the pressure

component. Stability of a counterrotating TSW for a gas of linear equation of state

turns out to make the TSW more stable. For very fast rotation the stability region

grows much larger in the parameter space. For a velocity dependent perturbation,

however, it is shown that TSW is no more stable. That is, perturbation of the throat

radius (R0) that depends on initial speed (Ṙ0 6= 0), no matter how small, doesn’t return

to the equilibrium radius R0 again. Although our work is confined to the simple 2+

1−dimensional spacetime it is our belief that similar behaviours are exhibited also by

the higher dimensional TSWs. However, even for the 3+ 1−dimensional spacetime

cases it is not easy task to check the stability because there are more degrees of freedom

in 3+1− dimensional spacetime.
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