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ABSTRACT 

Signal-to-noise ratio (SNR) is a significant factor to quantify noise content, particularly 

in magnetic resonance imaging (MRI). MRI is used to generate high quality medical 

images in biomedicine and other research areas. 

In this thesis, two new approaches of SNR calculation for MRI system is developed and 

implemented for error minimization. The supreme proposed method applies the cubic 

spline interpolation with Savitzky-Golay (CSISG) technique in addition to using 

Gaussian mixture model decomposition (GMMD) algorithm to eliminate the energy of 

noise and increase the accuracy in SNR estimation. This approach is found to 

accomplish stunning results while compared with other existing methods as well as 

cross correlation function (CCF) and cubic spline interpolation with Savitzky-Golay 

(CSISG) approaches. Unlike other, the suggested approach is based on a single MR 

image, which generates consistency and accuracy in SNR estimation. A new noise 

reduction approach, based on cubic spline interpolation with Savitzky-Golay (CSISG) 

and GMMD, is developed. The GMMD-CSISG represented the tremendous outcome for 

SNR evaluation of MR imaging systems. 

Another technique has been designed to estimate the SNR for MR images. This 

technique exposed that cross-correlation of two acquisition of the same image could be 

applied in an extremely efficient approach for the MR system. We conduct several tests 

on various MRI according to the important characteristics of an MR image such as, 

phase relative to the RF transmitter phase, frequency, and magnitude. For approximation 

of perfect noise level shifting a general expression has been originated through a third 

degree polynomial curve fitting according to outcomes of these experimentations. The 
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procedure uses single MR image to attain SNR value. The capability to define the SNR 

from a single MR image allows suggested method to be valid for online and offline 

image evaluation instantaneously.  

 

Keywords: Signal-to-Noise Ratio, Magnetic Resonance Imaging, Gaussian Mixture 

Model Decomposition, Auto-Correlation Function, Cross-Correlation Function. 
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ÖZ 

Sinyal-gürültü oranı (SNR), özellikle bir manyetik rezonans görüntüleme (MRI) 

işleminde, gürültü içeriği ölçmek için önemli bir faktördür. MR biyomedikal ve diğer 

araştırma alanlarında yüksek kaliteli tıbbi görüntüler oluşturmak için kullanılmaktadır. 

Bu tezde, MR sistemi için SNR hesaplama yöntemi olarak iki yeni yaklaşım 

geliştirilmiştir. Hesaplanan SNR değerlerinin hata minimizasyonu için kullanılması 

muhtemeldir. Önerilen yöntem Savitzky-Golay (CSISG) gürültü enerjisini ortadan 

kaldırmak ve SNR tahmininin doğruluğunu artırmak için Gauss karışım modeli ayrışma 

(GMMD) algoritması kullanılmıştır. Buna ek olarak kübik spline aradeğerleme tekniği 

uygulanmıştır. Bu yaklaşım diğer mevcut yöntemlerden Savitzky-Golay (CSISG) ve 

(CCF) kübik spline aradeğerleme yöntemleriyle kıyaslandıgı zaman daha başarılı 

sonuçlar alınmıştır. Önerilen yaklaşım SNR kestiriminde tutarlılık ve doğruluk üreten 

tek MR görüntüsüne dayanmaktadır. Savitzky-Golay (CSISG) ve GMMD ile kübik 

spline aradeğerlendirmeye dayalı yeni bir SNR kestirim yaklaşımı geliştirilmiştir. 

GMMD-CSISG MR görüntüleme sistemleri SNR hasaplama kestirimi için etkileyici 

sonuçlar ortaya çıkarmıştır.  

MR görüntülerinde SNR tahmin etmek için ikinci bir teknik de önerilmiştir. Bu teknik, 

aynı görüntünün iki farklı örneğinin çapraz-bağıntısının MR sisteminde SNR 

hesaplaması için   son derece verimli bir yaklaşım olduğunu ortaya çıkarmıştır.  Bu 

tezde birçok MR performans testlerini MR görüntüsünde faz, frekans ve büyüklük gibi 

önemli özelliklere dayanarak gerçekleştirdik. Mükemmel gürültü seviyasi kaydırılma 

kestirimi için üçüncü dereceden bir polinom eğrisi ile modellenmiş bir eğri kullanılarak 

elde edilmiş olan matematiksel bir ifade kullanılmıştır. Prosedür SNR değerini elde 

etmek için tek MR görüntüsünü kullanmaktadır.  Önerilen yöntem çerçevesinde tek bir 
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MR imgesi kullanarak SNR hesabı yapılabilmesi, gerçek zamanlı ve çevrim dışı görüntü 

değerlendirme için geçerli alabilecek yaklaşımlar önermemizi mümkün kılabilecek 

düzeydedir. 

Anahtar Kelimeler: Sinyal-Gürültü Oranı, Manyetik Rezonans Görüntüleme, Gauss 

Karışım Model Ayrışımı, Otomatik Korelasyon Fonksiyonu, Çapraz Korelasyon 

Fonksiyonu. 
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

Signal-to-noise ratio (SNR) is a significant element to quantify noise content, 

particularly in magnetic resonance imaging (MRI). MRI is used to generate high quality 

medical images in biomedicine and other research areas [1]. Several acquisitions of 

radiological image techniques such as MR images [2,3], single photon emission 

calculated tomography [4,5], and positron emission tomography [6] endures from image 

deterioration by noise. White thermal noise is the primary source for MR images that 

process an actuarial autonomous random source to enter the MR data in the time 

domain. The random field including Gaussian probability density function with constant 

variance and zero mean is depicted by white thermal noise [7,8]. Consequently, the 

signal is not correlated with noise. The reconstructed MRI characterized by Rice 

distribution, because of transformation of Fourier Transform [1]. The Rice distribution 

shape characteristics depend on the SNR; for high SNR, the distribution approaches a 

Gaussian shape; where at low SNR, the distribution leans to a Rayleigh distribution [9]. 

A common approach to evaluate the quantity of noise is to calculate the standard 

deviation of the resultant image [10]. In addition, Murphy et al. [11] developed this 

approach and utilized a parallel rod analysis object for SNR evaluation. A simple 

approach to calculate the SNR is to calculate directly non-signal regions or from the 

noise of a large uniform signal [12]. Both methods approximate the SNR from 

magnitude MRI, while the noise is Rayleigh distributed; these estimations should be 
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accomplished with remarkable caution [13]. Another suggested method indicates, which 

a Cross-correlation method can be applied to evaluate band limited stochastic functions 

SNR quantities [14].  

Afterwards, single image SNR estimation was proposed using image noise cross-

correlation estimation (INCCE) technique [15]. The INCCE approach was also utilized 

for noise variance (NV) estimation in MR images [16].  

Gaussian mixture modeling decomposition is one of the most challenging topics in the 

history of statistic. Gaussian mixture is considered as one of the mixture densities 

classes. Due to brief and simple illustration of demanding mean µ and the varianceσ 2 , 

Gaussian mixture density is known as one of the widespread approaches. The Gaussian 

density is isotropic, unimodal, symmetric and concerns the least prior knowledge in 

order to calculate an unknown probability density via a given mean and variance [17]-

[18]. Gaussian mixture density based on maximum likelihood prediction technique for 

non-Gaussian source Autoregressive (AR) parameters, diminishes the error prediction 

for high SNR [17]. The Expectation-Maximization (EM) is a standard approach to 

estimate maximum likelihood in Gaussian Finite Mixture models [19]. Nevertheless, 

almost all of the above-mentioned methods are not precise or robust sufficient for 

approximating the SNR of MRI. This thesis presents a new developed procedure based 

on Gaussian mixture model decomposition to reduce the error for SNR evaluation. The 

idea is to identify the relation between Gaussian mixture model of MR images and their 

mixing proportions to estimate the ultimate SNR based on our previous work [20]. We 

estimate the SNR using GMMD based on [18]-[19], where every Gaussian mixture 

contains the spectra of comparable properties. The results of GMMD-CSISG approach 
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produce the remarkable SNR estimation for different level of noise 3%, 9%, 15% and 

21%. 

1.2 Problem Definition 

There had been number of work to enhance methods on estimating signal and noise 

variance (NV) from autocorrelation function (ACF) [21]. In this thesis, As indicated in 

Fig. 3.1, r(0)  denoted as power of signal around the zero-offset ACF value of signal 

curvature and r(0)  as power of noise around the zero-offset ACF value of additive 

noise, where µ is the image mean value, hence, r(0)−µ
2  demonstrates the energy of 

image signal and r(0)− r(0)  specifies the energy of noisy image [22]. 

Therefore, the energy of image noise and image signal is developed throughout the 

autocorrelation function curvature as it is presented in Eq. (1.1) [22]:  

SNR = r(0)−µ 2

r(0)− r(0)
      (1.1) 

1.3 Thesis Objectives 

Despite the fact that numbers of technique have been developed for SNR estimation of 

MR imaging systems, nevertheless, though the achievements of these methods are 

significant, they are not precise or robust enough and extremely reliant on the nature of 

images. 

The motivation to initialization of this project is due to the importance of signal-to-noise 

ratio (SNR) measurement in image and signal processing especially when it comes to 

SEM and MR imaging systems and most of approaches are insignificant in accuracy and 

estimation. 
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The main focus of this thesis is to provide a precise technique for single image SNR 

estimation, MR and SEM images are selected for test and outcomes are compared with 

other existing methods. 

1.4 Thesis Contributions 

In this thesis two different techniques for estimation of SNR based Gaussian mixture 

model and Cross-Correlation technique are proposed to provide SNR measurement 

enhancement.  

• The first technique is based on Gaussian Mixture Modeling Decomposition 

(GMMD) and cubic spline interpolation with Savitzky-Golay (CSISG), which is 

developed to estimate signal-to-noise ratio (SNR) of magnetic resonance images 

(MRI), we used both GMMD and CSISG method to generate an robust signal-

to-noise ratio estimation. 

• In the second technique, Cross-Correlation is used to develop an approach in 

order to estimate signal-to-noise ratio of magnetic resonance images (MRI) 

based on mean and standard deviation of single image (SIM).  

1.5 Thesis Outline 

This thesis includes six chapters. A brief outline to SNR and both GMMD and Cross-

correlation are given in Chapter 1. Chapter 2 is a literature review, which discusses the 

essential models of SNR measurement and estimation, basic mechanisms of MR 

imaging, as well as advantages and disadvantages of MR images. In chapter 3, a brief 

explanation on the basic concept of problem formation and reviews existing methods 

with their performances is given to help the reader to comprehend the basis on which 

the project was initiated. Chapter 4 explains the proposed solutions and discusses each 

method in details; the details on enhancement and flow of the project are illuminated 

step by step. In chapter 5, experimental results of SNR estimation of the proposed and 

the other existing methods are discussed. The results are discussed and compared. In 
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chapter 6, the conclusions on the experimental outcomes and the related future work are 

demonstrated. 
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Chapter 2 

2 LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter introduces the basic concept of signal-to-noise ratio in image processing 

and theory involved in magnetic resonance imaging and the scanning electron 

microscope and discusses related works and topics relevant to the research based on the 

various publications and journals as a reference to this thesis. This chapter highlights the 

basic imaging techniques involved in the MR images SNR measurement and estimation. 

This chapter will also discuss the concept of auto-correlation function (ACF), power 

spectrum, cross-correlation function (CCF) and the Gaussian mixture modeling 

decomposition (GMMD), which is mainly involved in the proposed SNR estimation 

method. 

2.2 Noise variance estimation 

Let f be an image obtained as 𝑁×𝑁 square tiling, and let w be considered white noise 

source independent of f. Then noisy image g is obtained by corrupting image f with 

white noise w [23].  

To estimate noise variance, noise and signal are divided at the output of this edge 

detector. Around 80 percent in the edge detector amplitude histogram responses was 

considered as Noise Corporation and used in measurement [24]. But this method is not 

accurate and even surface fitting and edge detection are not accurate procedures any 

longer. 
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Accurate blind noise variance can be obtained while algorithm is implemented on the 

parallel structure of an image pyramid, thus it might be successful when used on a serial 

machine [23]. 

2.3 Signal-to-noise ratio estimation 

There is an ordinary way to calculate the noise of an image by computing the standard 

deviation of the resulting image and calculating difference of two acquisitions of the 

same object [11]. Another way for SNR estimation is to calculate SNR directly from the 

non-signal regions or from noise of large uniform signal [12].  The CCF of two images 

of the similar area is another suggested method in order in order to obtain SNR value 

[25]. Afterwards, another method proposed is to estimate SNR by a single image [26]. 

In 2004, a novel technique was proposed to resolve the problems of SNR and the 

method is according to statistical autoregressive (AR) model to estimate noise free 

image [27]. A modified method of AR based on several images corruption with various 

noise level at different elaboration was proposed and called mixed Lagrange time delay 

estimation autoregressive (MLTDEAR) [28]. 

2.3.1 Amplitude SNR 

In many cases, the SNR is expressed as the ratio of signal amplitude to noise amplitude 

as it is shown in Eq. (2.1): 

SNRamp =
Amplitude(S)
Ampliude(N )

    (2.1) 

Where S is denoted as signal and N is the corrupted noise and SNRamp  is called the 

amplitude SNR. In fact, exact definition of the amplitude SNR depends on the 

specifying what is meant by “signal amplitude” and “noise amplitude”. Thus, it should 

particularly be adapted to the specific case it is used for [6]. 
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2.3.2 Power SNR 

SNR can be expresses as the ratio of signal power to noise power as it is illustrated in 

Eq. (2.2): 

SNRpower =
Power(S)
Power(N )

     (2.2) 

Where SNRpower  is named the power of SNR, identical as the amplitude SNR the exact 

description of the power SNR depends on what is meant by “signal power ” and “noise 

power”. 

2.4 Basic Physics of MR Signals and Imaging 

The nuclear magnetic resonance (NMR or MR) phenomenon in majority matter was 

initially established by Bloch and associates [6] and Purcell and associates [6] in 1946, 

since when MR has been used in different area with applications in physics, chemistry, 

biology, and medicine. MRI is a tomographic imaging method, which generates 

chemical features of an object and images of internal physical from externally estimated 

MR signals [6]. 

Magnetic resonance tomography (MRT) or Nuclear magnetic resonance imaging 

(NMRI) is used as a medical imaging approach in radiology in order to picture the 

specified inside substances. Since it delivers good contrast among soft tissues of body it 

has been generally practical especially in muscles, heart and brain while compared with 

other medical imaging methods such as X-rays or computed tomography (CT). Like any 

other tomographic imaging technique, the output of MRI scanner is a multidimensional 

data array (or image), which represents the spatial distributions of some estimated 

physical quantity. Then MRI may also produce two-dimensional sectional images at any 

orientation, three-dimensional volumetric images, or even four-dimensional images 

demonstrating spatial-temporal or spatial-spectral distributions. As a matter of fact no 
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mechanical modulates to the imaging equipment are required in producing such images. 

Object itself constructed the image directly using MR signals. In this regard, MRI could 

be considered as a form of emission tomography similar to single-photon computed 

tomography (SPECT) and position emission tomography (PET). But unlike the SPECT 

or PET, no insertion of radioactive isotopes into the object is required for generating of 

signal in MRI [3]. MR images are tremendously rich in information content and operate 

in the radio frequency (RF) range. The basic of NMR lies in a property governed by 

certain nuclei, named the spin angular momentum p. The spin angular momentum of the 

nucleus is a result of the spinning motion or rotational of the nucleus along its own axis. 

The spin angular momentum of a nucleus is described by the nuclear spin quantum 

number I, and it is illustrated in Eq. (2.3): 

P = !× Ι(Ι+1)     (2.3) 

Where ! = h / 2π and h is the Planck’s constant. 

Spin angular momentum is accompanied through a magnetic moment µm , while the 

nucleus is a charged particle, as can be seen in Eq. (2.4): 

µm = γ p     (2.4) 

Where γ signified as gyromagnetic ratio. 

2.4.1 Nuclei in a Magnetic Field 

The performance of nuclei located in an outside magnetic filed is the main concern in 

MR experiments. The existence of a magnetic moment measures the nucleus behaves as 

a microscopic bar magnet, then it will connect with a magnetic field. Water includes of 

two hydrogen nuclei or proton, the body contains large amount of water molecules. The 

magnetic filed of the scanner causes that the magnetic moments of these protons along 

with the orientation of the field [29]. 
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In the existence of radio frequency magnetic field the protons adjust their magnetization 

position relative to the field. At the absence of this filed the protons return to the actual 

magnetization position. These fluctuations produce a signal that may be perceived via 

the scanner. There are protons variation in resonance frequency based on the magnetic 

field strength. The image of the body can be visualized by injecting additional magnetic 

field throughout the scanning position of the protons [29]. 

Unwell tissue such as growths can be discovered, as the protons in dissimilar tissues 

return to their stability at diverse rates. Using this effect and changing the scanner’s 

parameters technically produce contrast among different forms of body substance [29]. 

2.5 Auto-Correlation Function 

The correlation function and its PSD, the Fourier transform, are significantly utilized in 

identification and modeling of pattern ad structures in image and signal processing. 

Correlations play a significant role in image processing. The auto-correlation function of 

an image f (i, j) denoted by r11(x, y) , is defined as Eq. (2.5): 

r11(x, y) =
1

(2M +1)
×

1
(2N +1)

f (i, j) f (i+ x, j + y)
j=−N

N

∑
i=−M

M

∑    (2.5) 

The auto-correlation function is r11(x, y)  an amount of the similarity [1]; it can be used to 

obtain the repeating patterns such as periodic signal, which has been buried under noise. 

2.6 Power Spectral Density  

The power spectrum or the power spectral density (PSD) function, of a process presents 

the distribution spectrum of power at different frequencies [1]. It can be signified that 

the Fourier transform of the ACF is the power spectrum of a wide-sense stationary 

(WSS) procedure: 

P( f ) = r11(τ )e
− j2π fτ

r=−∞

∞

∑      (2.6) 
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Whereτ  is the averaging time interval. 

2.7 Cross-Correlation Function   

In image processing cross-correlation is a measure of similarity of two images. The 

cross-correlation is basically similar to the convolution of two functions [1]. It is defined 

in Eq. (2.7): 

 r12 (x, y) =
1

(2M +1)
×

1
(2N +1)

f (i, j)g(i+ x, j + y)
j=−N

N

∑
i=−M

M

∑    (2.7) 

Where f (i, j) and g(i, j) are two images. 

2.8 Noise Model for Magnetic Resonance Imaging  

The image strength in MR magnitude images in presence of noise is controlled by Rice 

distribution with constant noise power at each voxel, which produces real and imaginary 

parts of a corrupted signal with zero-mean uncorrelated Gaussian noise [30]-[31]. This 

type of noise may be encountered in MR images, speckle and many others [30]. MRI 

are transformed to magnitude images by estimating the absolute value pixel by pixel 

from the real and imaginary parts of images [30], as it is displayed in Eq. (2.8): 

m[i , j ] = (s[i , j ]cos(ϕ )+ nRe[i , j ])
2 + (s[i , j ]sin(ϕ )+ nIm[i , j ])

2!
"

#
$   (2.8) 

In Eq. (2.8),m[i, j]  is the magnitude signal in pixel [ , ]i j , [ , ]s i j is a signal, n  is the noise 

andϕ is the phase signal impact to the imaginary (Im) and real (Re) part in the specific 

pixel [ , ]i j . 

2.9 Gaussian Mixture Modeling 

2.9.1 Gaussian Mixture Model Decomposition  

In this section Gaussian Mixture Model Decomposition (GMMD) algorithm has been 

applied in order to estimate the unknown probability densities. Probability density 



12 
 

approximation by classifying a decomposition using GMMD algorithm is successfully 

applied to the several Magnetic Resonance Images (MRI) for different noise variance 

level [18]. 

Gaussian distribution with mean µi and varianceσ i
2  derived as Eq. (2.9) 

f (x;µi,σ i
2 ) = 1

2πσ i
2
exp − 1

2
x −µi

σ i

"

#
$

%

&
'

2(

)
*
*

+

,
-
-
   (2.9) 

Then, for N peaks, the GMMD is obtained by Eq. (2.10): 

F(x;µi,σ i
2,θ ) = π i f (x;µi,σ i

2 )
i=1

N

∑    (2.10) 

Where θ are the unknown component parameter, which compelled by 0 < π i <1  and 

π i =1
i=1

k

∑ . 

2.9.2 Fitting Gaussian Mixture Model To Grouped Data  

A Gaussian mixture grouped data can be obtained using maximum likelihood via the 

EM algorithm [32]. In this section, a k-component finite mixture for the density function 

is estimated through Eq. (2.11) 

 g(x) = π i fi (x)
i=1

k

∑     (2.11) 

Where π i and fi (x)  are the mixing proportion and component density functions, 

respectively. Moreover, the unknown parameters regarding of component density 

functions denoted as θi , which in case the case of three-component Gaussian mixture, 

the parameter vector is θi = (µi,σ i ) , while i =1,2,3.  
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2.10 T1 and T2 Weighted Contrast 

MR images scanning can differentiate among body substances according to their 

physical features. MRI scanning is consequently exceptionally valuable at delivering 

highly detailed images of soft tissues [33]. At MR images scan certain tissues seem to 

be darker or brighter than other tissues. T1 and T2 Relaxation times for protons can 

fluctuate and two times are normally evaluated. Darkness depends on the density of 

protons in that region. White substance is brighter than grey substance in T2-weighted 

MR sample images and darker than grey substance in T1-weighted MR sample images 

[33].  
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   Chapter 3 

3 FORMATION OF PROBLEM 

3.1 Introduction 

This chapter emphasizes the problem in image SNR evaluations that originated the 

development of this project. A solution to this problem is proposed in the next chapter.  

Biomedicine introduces the magnetic resonance imaging as a powerful imaging system, 

which generates high quality medical images. MRI is also a power full electron 

microscope that is extensively utilized in metallurgy, biomedicine and biomedical 

research parts. These images are generally analyzed and processed through advanced 

digital-data-processing tools, and also contain physiological, anatomical and functional 

information. 

3.2 Image Quality and Noise in MRI 

The quality of the MR data highly depends on the available signal-to-noise ratio of the 

system. With the use of the higher field strength magnets and advances in RF receiving 

coil design currently MRI scanners have higher SNR than the prototype machines of the 

late 1970s [6]. However, due to the demand of high spatial resolution and to avoid poor 

image quality the highest possible SNR is still required [6]. SNR is a useful measure of 

image quality. SNR is associated to the measurements of signal and the noise or the 

graininess of a picture. High degree of noise destroys the details of the image. Usually 

the noise comes from the electronics of the system and is thus unalterable.  
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SNR in a significant factor in MRI as it can measure the content of noise in an image 

[6]. MRI, positron emission tomography [6], single photon emission computed 

tomography [26]-[28] and many radiological image techniques suffer from image 

corruption by noise. The initial source of noise for MRI is thermal noise. Thermal noise 

could be considered as white noise and can be illustrated by a Gaussian PDF with 

constant variance and zero mean [10]-[11]. The noise is not correlated with the signal. 

Due to Fourier transform noise transformation in MR images could be considered with 

the Rice distribution. Whereas for low SNR the shape of it leans to a Rayleigh 

distribution, at high SNR it approaches a Gaussian shape [12]. Noise usually reduces the 

quality of the image. 

MRI contains a set of complex values data that are degraded by Johnson noise [6]. 

Gaussian PDF is a well model for this set of complex data. Typically, only the scanner 

delivers the complex data magnitude. In the image the Gaussian noise in complex space 

is nonlinearly transformed and the subsequent noise is Rician-distributed [6]. At the 

high SNR, the Rician-distribution can be estimated through a Gaussian distribution [6]. 

3.3 SNR in MRI 

SNR is a main consideration in MRI for numerous reasons. In fact SNR is a measure of 

image quality; SNR could be utilized to show the implementation of the MR system. 

The quantification of the SNR is a helpful way to analyze the field homogeneity, the RF 

amplifiers consistency, and the identity of the radio frequency pulses. The quantity of 

noise in an image could be estimated thru subtracting two acquisitions of the equivalent 

entity and the standard deviation of the resultant image [1]. Murphy et al. [14] utilized a 

parallel rod test object for SNR evaluations. Robbie proposed the use of a standard 

phantom with relaxation times and a loading annulus of known electrical conductivity 

and geometry for SNR measurements [34]. 
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3.4 Problem Statement 

It is surprising that there is not a generally accepted technique for SNR measurement. 

Parameter estimation is the major problem in the most of MR and SEM image data 

analysis. For instance, in the case of noise filtering the true signal component is 

corrupted by noise and an estimation of it is needed. With respect to the importance of 

SNR in image analysis especially in MR and SEM imaging an accurate method to 

estimate the SNR for MR and SEM Imaging systems is needed.  

3.5 Problem Verification 

There had been number of work to enhance methods on estimating signal and noise 

variance (NV) from autocorrelation function (ACF) [21]. In this paper, As indicated in 

Fig. 1, r(0)  denoted as power of signal around the zero-offset ACF value of signal 

curvature and r(0)  as power of noise around the zero-offset ACF value of additive 

noise, where µ is the image mean value, hence, r(0)−µ
2  demonstrates the energy of 

image signal and r(0)− r(0)  specifies the energy of noisy image [22]. 

Therefore, the energy of image noise and image signal is developed throughout the 

autocorrelation function curvature as it is presented in Eq. (3.1) [22]:  

SNR = r(0)−µ 2

r(0)− r(0)
      (3.1) 

As indicated in the Fig. 3.1, Gaussian noise is used to degrade ACF of signal curvature. 

In this section, r(0)  is estimated for each Gaussian mixture component of noisy images 

by eliminating the noise power through CSISG filtering method. 
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Figure 3.1: ACF of sample image corrupted with white noise [20]. 

SNR of the MRI can be measured through approximating the noise-free peak of the 

auto-correlation function curve, using a single image SNR method. The capability to 

precisely compute the SNR of the MR image depends very much on the correctness of 

the estimation technique.  

In the next chapter, we suggest to use a new approach so that the noise-free peak 

approximation of the ACF curve and the SNR of the image (i.e. MR and SEM images) 

can be better quantified, for the benefits of noise reduction. 

3.6 Review of Existing SNR Estimators 

3.6.1 Cubic spline interpolation with Savitzky-Golay smoothing 

Piecewise cubic splines come with first and second order derivatives. Cubic spline 

interpolation is utilized as an esteemed technique to interpolate between known data 

points. The cubic spline is originated from function values in nodes and derivative 

values on the edges of interpolation interval [35]. 



18 
 

It is expected that there are a group of identified points

(x0, r(x0 )), (x1, r(x1)),..., (x j−1, r(x j−1)), (x j, r(x j )), (x j+1, r(x j+1)),...(xn, r(xn )) . For every 

single data point, third order degree polynomial is utilized to interpolate between all the 

known data points. The equation to the left of point (x j, rj (x j )) is achieved as  with a 

value of rj−1(x j )  at point x j .  Similarly, the equation at the right point of (x j, r(x j )) is 

found as  with a value of rj+1(x j )  at point  [36]. 

In the case of polynomial function with the order of three, the curvature will be as 

rj (x) = a4 + a3x + a2x
2 + a1x

3  while the curvature passes within all the known points and 

rj (x j )of the coefficients of curvature function can be estimated [36]. Thus, they all can 

be accomplished as Eq. (3.2): 

rj (x) = aj
j=1

n+1

∑ xn+1−i      (3.2) 

In the Eq. (3.2), x  is signified as ACF of noisy image. Therefore, Coefficients 

estimation of x  based on third order of polynomial can produce the entire curve. 

However, the Savitzky-Golay smoothing is expended to smooth the constructed 

curvature rj (x)  by eliminating the noise power in the following section. 

3.6.1.1 Savitzky-Golay Smoothing 

Based on least square by appropriate fitting a small set of consecutive data point into a 

polynomial, The SNR of MR or SEM images can be better quantified thru smoothing 

function. The calculated central of the fitted point polynomial curve is measured as a 

new smoothed data set [37]. 

The selected Span level is a percentile of total number of data points, which is less than 

or equal to 1. These digits can be generated as specifically equivalent for fitting the 

1−jr

rj+1 x j
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data to a polynomial in order to diminish the error in SNR approximation. Savitzky-

Golay smoothing demonstrations that the set of digits (W−n,W−(n−1),...,W(n−1),Wn )may be 

described as weighting coefficients but according to the polynomial degree and desired 

Span level to implement the smoothing procedure. [37]. Consequently, the smoothed 

data point is presented in Eq. (5): 

r j (n) =
Wi

i=−n

n

∑ rj+i

Wi
i=−n

n

∑
      (3.3) 

In the Eq. (3.3), r! x  signifies a set of smoothed data points with third order of 

polynomial that is created by cubic spline interpolation, andWi is the weighting factor in 

smoothing the window that is produced by desired Span level to create the best-fit line 

through the line of estimated data (cubic spline interpolation generated data points), it is 

based on diminishing the error among the estimated and actual ACF of images [20]. 

As can be realized in Eq. (3.4), ε  will be produced to diminish the sum of the squares 

of the differences ( r(x) -distances) [38].  

ε = (rj − Rj )∑
2

     (3.4) 

Formulation of the line is stated to construct the best-fit data for x, while q is slope 

and c is the r (x)-intercept [38]. 

Rj = qx j + c       (3.5) 

If we replace Eq. (3.5) into Eq. (3.4), we can obtain a new expression for ε  (Eq. (3.6)). 

ε = (rj − qx j − c)∑
2

     (3.6) 

Rj
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In order to create the best-fit equation,ε  contains of factors (qbest,cbest ) is produced. We 

utilized partial derivatives in order to minimize ε with respect to only one variable 

concurrently (q or c) [38]. 

∂ε
∂q

=
∂f (q,c)
∂q

= 0      (3.7) 

∂ε
∂c

=
∂f (q,c)
∂c

= 0      (3.8) 

We differentiate Eq. (3.7) and (3.8), in order to gain Eq. (3.11), multipliers, which do 

not vary can be factored out of the summation. 

∂ε
∂q

= 2 (rj − qx j − c)∑ (−x j ) = 0    (3.9) 

∂ε
∂q

= x jrj − qx
2
j − cx j∑ = 0     (3.10) 

x jrj − qbest x2j∑ − cbest x j∑∑ = 0    (3.11) 

Subsequently, we differentiate Eq. (3.8). Again, Eq. (3.14) has illustrated the same as 

the earlier step; multiplication by the total number of points is equal to the summation of 

1 [38]. 

∂ε
∂c

= 2 (rj − qx j − c)∑ (−1) = 0     (3.12) 

 
∂ε
∂c

= rj − q x j∑ − c (1)∑∑ = 0    (3.13) 

rj − qbest x j∑ − ncbest∑ = 0     (3.14) 

Eq. (3.11) and (3.14) demonstrate normal equations, the normal equations support to 

obtain qbest  and cbest  [38]. 

We solve Eq. (3.14) for c (Eq. (3.15)) and substitute it into Eq. (3.11) to give Eq. (3.16). 

Solving for q gives Eq. (3.17). 
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c =
q x j∑ − rj∑

n
     (3.15) 

x jrj − q x2j∑ −
q x j∑ − rj∑

n

#

$
%
%

&

'
(
(

x j∑∑ = 0    (3.16) 

q =
n x jrj∑ + x j∑ rj∑
n x2j∑ + ( x j∑ )2"
#

$
%

    (3.17) 

Now, we must to replace q into Eq. (3.15) to determine c. 

c =
n x jrj∑ x j∑ + ( x j∑ )2 rj∑

n2 x2j∑ + ( x j∑ )2"
#

$
%

−
rj∑
n

   (3.18) 

Savitzky-Golay smoothing filter constructs the signal curvature with weighting factor 

stated by unweighted linear least-squares regression and third order of polynomial.   

Thus, the best-fit equationε  contains of factors  and based on least squares, 

regression is utilized to produce the weighting factor .  

3.6.1.2 Estimation of Span Level 

In order to calculate the Span level of Savitzky-Golay smoothing, we conduct 

experimentations on numbers of MR images. This method offers the flexibility to 

carefully obtain the desired Span level through the Savitzky-Golay smoothing filter. 

Desired Span level of the smoothing filter is achieved based on the gradient of peak 

point to the next adjacent point of the ACF of noisy image, whilst for greater gradient 

the desired Span level is at minimum range (near to 0.1) and vice versa.  We use the 

outcomes of these experiments to fit the data and develop a general expression via curve 

fitting to find the desired Span level for different MR images. Smallest Span level 

provides a smoothest fit that works well for high Noise variance (NV). Since the curve 

has characterized by noise, large Span level results in the loss of information data points 

in different ACF of MR images [39]. We utilized a third degree polynomial curve fitting 

(qbest,cbest )

Wi
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to find an expression for Span level evaluation. The expression is displayed in Eq. 

(3.19).  

Linear model polynomial with order of three: 

f (x) = p1x
3 + p2x

2 + p3x + p4 ,    (3.19) 

Fig. 3.2 evidently displays the gradient of the peak point to next adjacent point of the 

autocorrelation function along the x-axis. 

 

 
Figure 3.2: Gradient of the ACF peak point to next adjacent point along the x-axis [20]. 

3.6.2 Cross-Correlation SNR estimator using two images 

In case of MR images the correlation technique is very valuable technique as they can 

obtain in the Fourier domain. It is desirable based on processing time to implement a 

correlation of MR images in the Fourier domain Because of the correlation theorem, 

which makes the method enormously appropriate for execution in a well-organized way 

in several MR image acquisition techniques [17]. Subsequently, when the noise is 

uncorrelated two consequent acquisitions r1(

i )  and r2 (


i ) can be utilized to obtain the 
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SNR [17]. 

r1(

i ) = s(


i )+ n1(


i )

r2 (

i ) = s(


i )+ n2 (


i )

    (3.20) 

The auto-correlation function (ACF) is equivalent to CCF of the two images. Thus, the 

cross-correlation coefficient (CCC) will be used as displayed in Eq. (3.21). 

ρ(
!
i ) =

r1(
!
i )⊗ r2 (

!
i )− r1 r2

σ 1σ 2

     (3.21) 

While σ1 , σ 2 , r1 and r2  are accordingly the standard deviation and mean of MR 

image r1  and r2 . 
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Chapter 4 

4 PROPOSED SOLUTION 

4.1 Introduction 

This chapter deliberates the solution to the problem classified in chapter 3; the 

mathematical proof and the steps to the solution are discussed in details.  

4.2 Solution Statement  

4.2.1 Single Image Cross-Correlation technique  

In order to quantify and improve the SNR using single image, we present a method 

based on mean and standard deviation of a single image only. We assume MR image r  

consist of an original signal s corrupted by noise nwith zero mean value [17]. 

Therefore, the system point spread function can be demonstrated as Eq. 4.1. 

r(

i ) = s(


i )+ n(


i )     (4.1) 

Where 

i signifies the MR image point. The ratio of the signal standard deviation to the 

noise standard deviation is displayed in Eq. 4.2. 

SNR = σ s
2

σ n
2      (4.2) 

Since the noise is uncorrelated two consequent acquisitions r1(

i )  and !r2 (


i ) can be 

utilized to obtain the SNR [17]. 

r1(

i ) = s(


i )+ n1(


i )

!r2 (

i ) = s(


i )+ !n2 (


i )

    (4.3) 
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We generate !r2 according to r1 by shifting the n1  array in a circular manner along one 

dimension as exposed in section 4.2.3.1 in this thesis. However, the cross-correlation 

function (CCF) of two images can be calculated as Eq. (4.8) 

r1⊗ "r2 = s⊗ s+ n1⊗ s+ s⊗ n2" + n1⊗ "n2    (4.4) 

And because the uncorrelated noise, then  

1 2 1 2 0n s s n n nʹ′ ʹ′⊗ = ⊗ = ⊗ =     (4.5)  

r1⊗ "r2 = s⊗ s      (4.6) 

We estimate the SNR from the maximum of CCC, and this maximum arises in the 

center of CCC as displayed in Eq. (4.7), Where r1 , !r2 and r1 !r2  are accordingly the 

mean of MR images r1 , r2  and both images [17]. 

ρm =
r1 !r2 − r1 !r2

r1
2 − r1

2#
$

%
& !r2

2 − !r2
2#

$
%
&

    (4.7)  

4.2.1.1 Noise Level Shifting 

In order to generate !r2  we shift the row or column values of n1  array in a circular 

manner along one dimension to design a new !n2 matric for different MR images. For 

example, we shift the n1 row along vertical dimension by M / 2 places to obtain !n2 , as 

indicated in Eq. (4.8). 

n1(i, j) =

n(1,1) . . n(1,N )
. . . .
. . . .

n(M,1) . . (M ×N )

"

#

$
$
$
$

%

&

'
'
'
'
M×N

⇒ )n2 (i, j) =

n(1+ (M / 2),1) . . n(1+ (M / 2),N )
. . . .
. . . .

n(M − (M / 2),1) . . (M − (M / 2),N )

"

#

$
$
$
$

%

&

'
'
'
'
M×N

 

 (4.8) 

Likewise, In Eq. (4.9) we shift the n1column along horizontal dimension byN / 2 places 

to obtain !n2 . 
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n1(i, j) =

n(1,1) . . n(1,N )
. . . .
. . . .

n(M,1) . . n(M,N )

!

"

#
#
#
#

$

%

&
&
&
&
M×N

⇒ )n2 (i, j) =

n(1,1+ (N / 2)) . . n(1,N − (N / 2))
. . . .
. . . .

n(M,1+ (N / 2)) . . (M,N − (N / 2))

!

"

#
#
#
#

$

%

&
&
&
&
M×N

 (4.9) 

Then noisy image !r2 (

i )  is generated conforming to Eq. (4.10). 

!r2 (

i ) = s(


i )+ !n2 (


i )      (4.10) 

We run experimentations on different type of sample images. We use outcomes of these 

tests to develop a general expression through curve fitting to determine the preferred !n2

array for different images. We obtain noise level shifting based on three important 

aspects of an MR image such as, frequency, phase relative to the RF (Radio Frequency) 

transmitter phase, and magnitude or amplitude as it is shown in Fig. 4.1. We utilized a 

third degree polynomial curve fitting to attain an expression to obtain the perfect !n2

array for different images. Linear model polynomial with order of three is displayed in 

Eq. (4.11). 

f (s) = q1x
3 + q2x

2 + q3x + q4,     (4.11) 

 
Figure 4.1. Planar and circular demonstrations of time-varying curvature. 

In Fig. 4.1 the period (B) is the time needed for accomplishment of one full cycle of the 

curvature. The amplitude (A) is the maximum derivation of the curvature from its mean 
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value. The phase angel of curvature (C) elucidates the shifts in the curvature relative 

original signal. The two plane curvatures demonstrated have the similar period and 

amplitude, but have a different phase. There are numerous MR signals at some different 

frequencies following the RF pulse due to existence of many magnets in the magnetic 

fields. 

Eq. (4.12) evidently shows the effect of amplitude, frequency and phase on curvature 

function. 

f (t) = Asin(Bt +C)     (4.12) 

In Eq. (4.12) t is a variable, and other quantities influence the shape of the function. 

Two of parameters, amplitude A and B remain the same, but phase C changes 

according to desired noise level shifting. Indeed, we change the function Asin(Bt +C)

across the t − axis by setting sin(Bt +C)equal to 0, and then we will have Eq. (4.13). 

(Bt +C) = 0     (4.13) 

And t is given by Eq. (4.14).  

t = −C
B

               (4.14) 

We simply shift the position of curvature position on the t − axis , the shape of the 

curvature does not change. 

The signals are overlaid so that the free induction decay (FID) comprises lots of 

frequencies fluctuating as a function of time [19]. It is simpler to test multicomponent 

signal according to frequency rather than of time [19].  The transformation of the signal 

amplitudes from a function of time to a function of frequency is done by Fourier 

transformation. The RF pulses as a function of time know FID as response of the net 

magnetization [19].  Therefore, based on phase relative to the RF transmitter phase, 
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frequency, and amplitude, we developed a procedure to generate second image using 

first image in order to quantify SNR estimation. Algorithm I, illustrates the sequence of 

calculation for the proposed technique. 

 

4.2.2 Cubic spline autoregressive-based interpolator with Savitzky-Golay 

smoothing 

In the earlier work the SNR of SEM images was improved by using smoothing function, 

which is based on least square by fitting a small set of successive data point into a 

polynomial [35]. The estimated central of the fitted point polynomial curve is 

considered as a new smoothed data set [20]. 

Algorithm I: Sequence of calculation 

1) READ MR image-A 

1) ADD Rice noise onto MR image-A 

2) APPLY the shift array circularly function onto noisy image (MR image-A) to 

achieve desired shift to attain MR image-B 

3) CALCULATE the mean & standard deviation of MR image-A r1  

4) CALCULATE the mean & standard deviation of MR image-B !r2  

5) CALCULATE the mean & standard deviation of both MR images r1 !r2  

6) CALCULATE the mean & standard deviation of squared MR image-A r1
2  

7) CALCULATE the mean & standard deviation of squared MR image-B !r2
2  

8) SET calculated values into ρm =
r1 !r2 − r1 !r2

r1
2 − r1

2#
$

%
& !r2

2 − !r2
2#

$
%
&

 

9) SUBSTITUTE ρm , into SNR = ρm
1− ρm
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It is assumed that there are a group of known points

(x0, r(x0 )), (x1, r(x1)),..., (x j−1, r(x j−1)), (x j, r(x j )), (x j+1, r(x j+1)),...(xn, r(xn )) . For every 

single data point, third order degree polynomial is used to interpolate among all the 

known data points [36]. 

In the case of polynomial function with the order of three, the curve will be as 

rj (x) = a4 + a3x + a2x
2 + a1x

3  while the curve passes within all the known points and 

rj (x j )of the coefficients of curvature function can be calculated [36]. Hence, they all can 

be determined as Eq. (4.15): 

rj (x) = aj
j=1

n+1

∑ xn+1−i     (4.15) 

In Eq. (4.15), rj (x)  is signified as ACF of noisy image. Consequently, coefficients 

approximation of x  according to the third order of polynomial can produce the whole 

curvature. Sim et al. (2014) proposed a filter to remove noise using Savitzky-Golay 

smoothing filter. 

Savitzky-Golay smoothing displays that the set of digits (W−n,W−(n−1),...,W(n−1),Wn )may 

be expressed as weighting coefficients but according to polynomial degree and desired 

Span level to perform the smoothing procedure [20]. These digits can be generated as 

specifically equivalent for fitting the data to a polynomial in order to diminish the error 

in estimation of SNR [37]. Therefore, the smoothed data point is demonstrated in Eq. 

(4.16): 

r j (n) =
Wi

i=−n

n

∑ rj+i

Wi
i=−n

n

∑
     (4.16) 
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In Eq. (4.16), r j (n)  signifies a third order of polynomial of smoothed data points that is 

produced by cubic spline interpolation, andWi is the weighting factor in smoothing the 

window [20]. To calculate the span level of Savitzky-Golay smoothing, we utilized a 

third degree polynomial curve fitting to find an expression for Span level approximation 

[20]. The expression is indicated in Eq. (4.17).  

Linear model polynomial with order of three: 

f (x) = p1x
3 + p2x

2 + p3x + p4 ,    (4.17) 

Savitzky-Golay smoothing filter forms the signal curvature with weighting factor 

specified by third order of polynomial and unweighted linear least-squares regression 

[20]. In this thesis, we developed the proposed approach by merging CSISG method 

with GMMD technique at next section. 

4.2.3 Gaussian Mixture Model Decomposition 

With respect to the importance of SNR measurements in image analysis especially in 

MR imaging and the difficulties faced in its measurements, we propose infinite mixture 

of GMMD for more precise estimation of SNR for different MR images, which depends 

on the nature of selected MR image such as, high curvature points, sharp edges and 

extremities of periodic pattern [22]. We conduct experiments on T1 and T2 weighted 

MRI. This approach provides the flexibility to attain the desired numbers of Gaussian 

mixtures. In the case of three Gaussian mixtures, the highest peak of Gaussian mixture 

is called the global maximum whereas two point of local maxima. The global maximum 

has a major impact on estimation of SNR compare to other two existing sub-optimal set 

of Gaussian mixtures for different noisy MR images. Therefore, we simply estimate the 

SNR using CSISG technique for each fitted Gaussian mixture [20], then multiply each 

estimated SNR by its mixing proportion and sum them up to achieve the final SNR as it 

is illuminated in Eq. (4.18) 
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SNRSum = π iSNRi
i=1

k

∑           (4.18) 

In Eq. (4.18), k depends on the selected number of Gaussian mixture model 

components. Figures 4.2 - 4.5 evidently Display five sets of experimental outcomes for 

four groups of fitted mixture models, which prove the compactness and the accuracy of 

estimation as the number of GMM increases. 

 

Figure 4.2: Comparison among actual density and the generated Gaussian mixture 
distribution with 3 components in 1 dimension for T2-w spine sample image D as shown 
in Fig 5.10 (d). 
 

 

Figure 4.3: Comparison among actual density and the generated Gaussian mixture 
distribution with 5 components in 1 dimension for T2-w spine sample image D as shown 
in Fig 5.10 (d). 
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Figure 4.4: Comparison among actual density and the generated Gaussian mixture 
distribution with 9 components in 1 dimension for T2-w spine sample image D as shown 
in Fig 5.10 (d). 
 

 

Figure 4.5: Comparison among actual density and the generated Gaussian mixture 

distribution with 15 components in 1 dimension for T2-w spine sample image D as 

shown in Fig 5.10 (d). 

One of the great aspects of GMM is its capability to form smooth approximations to 

arbitrary formed densities, due to its ability of indicating large class of model 

distribution. In this thesis, GMMD technique was used to organize the mixed proportion 

into Gaussian mixture modeling. And the method was successfully applied on MR 

sample image decomposition in order to evaluate SNR estimation. Algorithm II, 

illustrates the sequence of calculation for the proposed technique. 
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Algorithm I: Sequence of calculation 

1) READ MR image 

2) ADD Rice noise onto MR image 

3) GENERATE Gaussian mixture model of MR noisy image 

4)  CALCULATE the mean value (µ 2 )of each generated Gaussian mixture  

5) FIND the Noisy ACF peak point r(0)  from Gaussian mixture model 

decomposition (GMMD) of MR image 

6)  APPLY CSISG filtering onto noisy GMMD of MRI to obtain noise-free (NF) 

r (0)  for GMMD 

7) SUBSTITUTE achieved point r (0)  into SNR = r (0)−µ 2( ) r(0)− r (0)( )  
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Chapter 5 

5 RESULTS AND DISCUSSIONS 

5.1 Introduction 

To illustrate the robustness and precision of proposed techniques, we select different 

MR sample images (DICOM). For each sample image, achieved experimental values 

are tabulated as SNR, and SNR graphs are also illustrated in this section.  

5.2 Image cross-correlation using a single MR Image 

In order to express the correctness of proposed method on MR images, we select two 

sets of T1-w MR sample images with 448 448 448 pixels and T2-w MR sample 

images with 512 512 512 pixels MR sample images as demonstrated in Fig. 5.1 – 

5.2, respectively. We demonstrated the Signal, Noise and SNR separately to display the 

effect of attracted noise by T1 and T2 weighted MRI using the proposed approach. 

× ×

× ×
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Figure 5.1: T1-w MR sample images; (a) spine sample image A; (b) spine sample image 
B; (c) spine sample image C; (d) spine sample image D; (e) spine sample image E; (f) 
spine sample image F (g) spine sample image G (h) spine sample image H 
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Figure 5.2: T2-w MR sample images; (a) spine sample image A; (b) spine sample image 
B; (c) spine sample image C; (d) spine sample image D; (e) spine sample image E; (f) 
spine sample image F (g) spine sample image G (h) spine sample image H 
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Table 5.1: The SNR of spine sample images taken at T1-w, as it is shown in Figure 5.1 
T1 mode Images Signal Noise SNR 

Spine image A 0.3902 1.9947e-06 442.3054 

Spine image B 0.3895 2.1870e-06 422.0206 

Spine image C 0.3894 3.0674e-06 356.3297 

Spine image D 0.3916 9.3336e-06 204.8483 

Spine image E 0.3952 6.1267e-06 253.9955 

Spine image F 0.3949 5.5937e-06 265.7279 

Spine image G 0.3930 5.3931e-06 269.9733 

Spine image H 0.3922 6.0978e-06 253.6395 

 

Table 5.1 illustrates the SNR value for T1-Weighted MR images; at lower NV we 

observe the high SNR and higher NV results to the low SNR. 
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Table 5.2: The SNR of spine sample images taken at T2-w, as it is shown in Figure 5.2 
T1 mode Images Signal Noise SNR 

Spine image A 0.4770 1.5794e-05 173.7962 

Spine image B 0.4703 2.3072e-05 142.7767 

Spine image C 0.4694 1.9316e-05 155.8940 

Spine image D 0.4711 2.2623e-05 144.3086 

Spine image E 0.4718 2.8175e-05 129.4113 

Spine image F 0.4695 1.5760e-05 172.5985 

Spine image G 0.4721 3.7643e-05 111.9900 

Spine image H 0.4691 3.7124e-05 112.4204 

 

Tables 5.1 – 5.2 indicate that the SNR values of T1 relaxation time are higher while 

compared with T2 relaxation time in all the cases, since T1 relaxation time sample 

images contain more noise while T2 relaxation time sample images contain lesser noise.  

Fig. 5.1 shows the good quality of image with fewer numbers of noises, which captured 

by T1 relaxation time mode. 

For more illustration purposes, in order to illustrate the robustness and precision of 

proposed technique compare to the existing methods, we select different MR sample 

images with a size of 512× 512 pixels as displayed in Fig. 5.3. For each sample image, 

achieved experimental values are tabulated as SNR, and SNR graphs are also illustrated 

in this section. 
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Figure 5.3: 512× 512 pixels MR sample images; (A) brain sample image A; (B) brain 
sample image B; (C) brain sample image C; (D) brain sample image D; (E) brain sample 
image E; (F) brain sample image F 
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 Figure 5.4: (A) Rayleigh curve noise variance of brain sample image A from 0 to 0.010; 
(B) enlargement of brain image A (left) 
 

Figure 5.5: (A) Rayleigh curve noise variance of brain sample image B from 0 to 0.010; 
(B) enlargement of brain image B (left) 
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Figure 5.6: (A) Rayleigh curve noise variance of brain sample image C from 0 to 0.010; 
(B) enlargement of brain image C (left) 
 

Figure 5.7: (A) Rayleigh curve noise variance of brain sample image D from 0 to 0.010; 
(B) enlargement of brain image D (left) 
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Figure 5.8: (A) Rayleigh curve noise variance of brain sample image E from 0 to 0.010; 
(B) enlargement of brain image E (left) 
 

Figure 5.9: (A) Rayleigh curve noise variance of brain sample image F from 0 to 0.010; 
(B) enlargement of brain image F (left) 
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Table 5.3: SNR for brain sample image A as it is shown in Fig 5.3(A) 
Noise Level or 

NV 
Actual SNR in 

dB 
TIM SNR [30] in 

dB 
SIM SNR in dB 

0.1% 26.2313 25.8610 25.9913 

0.2%    24.8459 23.1169 22.8162 

0.3%    24.1813 23.2878 23.6074 

0.4%    23.2718 22.6840 21.8411 

0.5%    23.0596 22.5830 22.1390 

0.6%    22.6473 22.2600 22.4313 

0.7%    22.4949 22.0610 21.7788 

0.8%    22.1250 22.2946 22.3228 

0.9%    21.9715 22.2613 21.7848 

1.0%    21.7933 21.9679 21.6990 

 

From Table 5.3, it can be seen that SIM technique works well for brain sample image a 

compare to TIM, especially where the NV ranges from 0.003 to 0.010. 
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Table 5.4: SNR for brain sample image B as it is shown in Fig 5.3(B) 
Noise Level or 

NV 
Actual SNR in 

dB 
TIM SNR [30] in 

dB 
SIM SNR in dB 

0.1% 25.9984 23.9334 24.8324 

0.2%    24.6888 23.4541 23.3723 

0.3%    23.9419 22.6721 22.3204 

0.4%    23.4664 22.7269 22.1530 

0.5%    22.9743 22.6226 22.4557 

0.6%    22.6194 23.0719 21.0665 

0.7%    22.3861 23.1361 23.1978 

0.8%    22.2086 22.1519 21.7619 

0.9%    21.9522 21.9853 21.9702 

1.0%    21.6650 22.6229 21.1555 

 

Table 5.4 shows that the SNR values of SIM technique are much nearer to TIM 

technique, and also work truly well where the NV ranges from 0.006 to 0.010 for brain 

sample image B. 

 

 



45 
 

Table 5.5: SNR for brain sample image C as it is shown in Fig 5.3(C) 
Noise Level or 

NV Actual SNR in dB TIM SNR [30]  
in dB SIM SNR in dB 

0.1% 26.0495 25.1577 24.2085 

0.2%    24.5525 22.5377 22.1216 

0.3%    23.9170 22.7718 22.8725 

0.4%    23.4923 21.8522 21.1248 

0.5%    22.9597 22.7611 22.1240 

0.6%    22.6630 20.2716 21.6042 

0.7%    22.3087 21.8906 21.5967 

0.8%    22.1515 21.5113 22.3355 

0.9%    21.9116 23.3879 23.9568 

1.0%    21.6578 22.2764 21.6365 

 

Table 5.5 manifestly shows that SNR values of SIM technique are significantly nearer to 

TIM technique for brain sample image C, especially where NV ranges from 0.001 to 

0.005. This indicates that the SIM technique is more reliable in its performance. 
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Table 5.6: SNR for brain sample image D as it is shown in Fig 5.3(D) 
Noise Level or 

NV 
Actual SNR in 

dB 
TIM SNR [30]  

in dB SIM SNR in dB 

0.1% 26.4605 24.1509 24.6074 

0.2%    24.8537 22.7349 23.1268 

0.3%    24.0864 22.8653 24.2057 

0.4%    23.5572 23.0098 21.7597 

0.5%    23.1188 22.1083 21.5548 

0.6%    22.8232 24.5040 21.5764 

0.7%    22.6399 22.1644 22.4893 

0.8%    22.2900 23.0541 22.6026 

0.9%    22.0713 22.2094 21.2307 

1.0%    21.8553 22.1431 21.1512 

 

Table 5.6 clearly shows that SIM technique attains the finest results as close as TIM 

technique for brain sample image D, especially where NV ranges from 0.07 to 0.010. 
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Table 5.7: SNR for brain sample image E as it is shown in Fig 5.3(E) 
Noise Level or 

NV Actual SNR in dB TIM SNR [30]  
in dB SIM SNR in dB 

0.1% 26.4068 24.7396 24.0868 

0.2%    24.9620 23.1019 24.2046 

0.3%    24.0525 23.5117 23.9141 

0.4%    23.5687 22.9419 21.5793 

0.5%    23.3361 22.7396 22.7223 

0.6%    22.6623 22.3611 23.1815 

0.7%    22.6238 23.0967 22.9954 

0.8%    22.5126 23.1877 20.6974 

0.9%    22.0804 22.7996 21.7449 

1.0%    22.1070 22.2581 22.1160 

 

In the Table 5.7, the SNR values of SIM method are near to TIM technique for brain 

sample image E, where NV ranges from 0.001 to 0.010. 
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Table 5.8: SNR for brain sample image F as it is shown in Fig 5.3(F) 
Noise Level or 

NV Actual SNR in dB TIM SNR [30]  
in dB SIM SNR in dB 

0.1% 26.1435 23.9175 23.3957 

0.2% 24.8833 23.2985 23.5162 

0.3% 24.1317 23.4939 22.0765 

0.4% 23.4827 22.5943 22.4822 

0.5% 23.0183 22.7686 22.5305 

0.6% 22.9904 23.9215 24.3239 

0.7% 22.3827 22.6800 21.2481 

0.8% 22.1677 22.0843 21.9848 

0.9% 21.8293 23.3456 21.8575 

1.0% 21.8713 23.4545 22.2323 

 

In the Table 5.8, it is evident that SNR values of SIM estimator are superior for brain 

sample image F as compared with other exiting method, where especially NV ranges 

from 0.001 to 0.008. 

To test the robustness of SIM technique, we selected the six samples of MR images with 

different exaggerations as displayed in Fig. 5.3, then CCFs and CCCs are respectively 

estimated based on different levels of added NVs onto the single sample MR images. 

The computed SNR values of lower NVs are greater while compared to higher NVs.  
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Therefore, the accuracy of the SIM technique can be realized from the Tables 5.3 - 5.8 

of results as compered to TIM method where NV ranges from 0.001 to 0.010. 

5.3 Gaussian Mixture Modeling Decomposition via CSISG Smoothing 

In order to show the accuracy and robustness of GMMD-CSISG, we conduct 

experiment on T1 and T2 weighted MR images (DICOM). For all images, SNR Table is 

presented in the result section. Plus we produced T-test in order to display the minor 

difference between the GMMD-CSISG and actual SNR values. T-test estimates a 

100× (1−α)%  certainty interval for the actual mean of 

(original SNR)-(GMMD-CSISG SNR) . P-value of the T-test illuminated in the range 

of [0,1], and the minor value of P-value exposed the uncertainty in null hypothesis 

validation [40]. In order to measure the reliability and accuracy of proposed GMMD-

CSISG technique, we conduct the experiment on other existing techniques as well as 

cross correlation function (CCF) and cubic spline interpolation with Savitzky-Golay 

(CSISG) smoothing for the MR images. The outcomes of GMMD-CSISG and the other 

existing estimators are demonstrated in Tables 5.9 -5.12.  
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Figure 5.10: 448 448 448 pixels T1-w MR sample images (a) spine sample image A. 
(b) spine sample image B. 512 512 512 pixels T2-w mode MR sample images (c) 
spine sample image C. (d) spine sample image D 

5.3.1 T1-w MRI Data 

To show accuracy and effectiveness of GMMD-CSISG method, tests were performed 

on MRI data with a size of 448 448 448 T1-w image as displayed in Figures 5.10a - 

5.10b. As can be seen from Table 5.9 and Table 5.10, the SNR values of GMMD-

CSISG technique is very close to the actual SNR, which shows for different level of 

noise 3%, 9%, 15% and 21%. Figures 5.11 - 5.12 evidently demonstrates the 

comparison among results of proposed method and other existing method as well as 

CCF and CSISG techniques. 

 

× ×
× ×

× ×
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Table 5.9: SNR comparison for T1-w spine sample image A as shown in  
Fig 5.10 (a) 

Noise level Actual SNR 
Proposed 

GMMD-CSISG 
SNR 

CCF SNR [30] 
in dB 

CSISG SNR 
[20] in dB 

3% 34.7444 34.1385 31.6986 33.2848 

9% 24.5303 24.3977 23.9112 23.8483 

15% 19.9572 19.6958 19.2715 19.8778 

21% 16.8708 16.5984 19.1837 16.0217 

 

For the sake of clarity, as it is evident in Table 5.9, we have estimated the SNR for T1-w 

MRI. SNR values decline while the level of noise ranges from 3% to 21%. Table 5.1 

shows that GMMD-CSISG approach is extremely close to the actual SNR values, while 

compared to other existing methods. Moreover, T-test rejects the null hypothesis at α = 

0.06 significance level, since p-value is equal to 0.0514. 

 
Figure 5.11: Comparison of results of experiment on T1-w spine sample image A as 
shown in Fig 5.3 (b). 
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Table 5.10: SNR comparison for T1-w spine sample image B as shown in  
Fig 5.10 (b) 

Noise level Actual SNR 
Proposed 

GMMD-CSISG 
SNR in dB 

CCF SNR [30] 
in dB 

CSISG SNR 
[20] in dB 

3% 35.5305 35.3165 31.0802 33.0975 

9% 25.2493 25.1132 23.2830 24.7290 

15% 20.6631 20.2796 19.9577 20.0894 

21% 17.2737 17.0447 19.2718 19.8570 

 

Table 5.10 evidently explains that how SNR values of GMMD-CSISG technique are 

near to the actual values when compared to CSISG SNR. T-test for actual and GMMD-

CSISG SNR values indicates the p-value of 0.0188 that ignores the null hypothesis at 

the default α = 0.05 level. The p-value equal to 0.0188 clarifies that with 95% 

confidence interval on the mean does not include 0. 

 
Figure 5.12: Comparison of results of experiment on T1-w spine sample image B as 
shown in Fig 5.10 (b). 
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5.3.2 T2-w MRI Data 

For illustration purposes, we used MRI data with size of 512 512 512 T2-w image as 

shown in Figures 5.10c - 5.10d.  

 

Table 5.11: SNR comparison for T2-w spine sample image C as shown in  
Fig 5.10 (c) 

Noise level Actual SNR 
Proposed 

GMMD-CSISG 
SNR in dB 

CCF SNR [30] 
in dB 

CSISG SNR 
[20] in dB 

3% 38.4412 38.2824 33.0882 37.4309 

9% 28.5578 28.5578 24.1200 25.6447 

15% 23.6296 23.3135 22.6504 20.9376 

21% 20.7393 20.5964 20.5721 19.7030 

 

Table 5.11 illustrates that GMMD-CSISG SNR values are much closed to the actual 

SNR values while compared to other existing approaches, while noise level ranges from 

3% to 21%. T-test rejects the null hypothesis at α = 0.10 significance level, since p-

value is equal to 0.0968. 

× ×
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Figure 5.13: Comparison of results of experiment on T2-w spine sample image C as 
shown in Fig 5.10 (c). 
 

Table 5.12: SNR comparison for T2-w spine sample image D as shown in  
Fig 5.10 (d) 

Noise level Actual SNR 
Proposed 

GMMD-CSISG 
SNR in dB 

CCF SNR [30] 
in dB 

CSISG SNR 
[20] in dB 

3% 38.3988 38.2444 34.2256 35.2379 

9% 27.7305 27.1289 25.5741 26.1636 

15% 23.7108 23.6922 22.5904 20.0794 

21% 20.3798 20.1751 20.1494 19.4420 

 

In Table 5.12, it is evident that GMMD-CSISG SNR values are significantly closer to 

the actual SNR values while compared to other existing methods, especially at higher 

noise level. T-test rejects the null hypothesis at α = 0.15 significance level, since p-value 

is equal to 0.1456.  
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Figure 5.14: Comparison of results of experiment on T1-w spine sample image D as 
shown in Fig 5.10 (d). 
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Chapter 6 

6 CONCLUSION 

6.1 Conclusions 

In this thesis, two new approaches of SNR calculation for MRI system is developed and 

implemented in order to minimize the error. The proposed method applies the CSISG 

technique in addition to using GMMD algorithm to eliminate the energy of noise and 

increase the accuracy in SNR estimation. This approach is found to accomplish stunning 

results while compared with cross correlation function (CCF) and cubic spline 

interpolation with Savitzky-Golay (CSISG) approaches. Unlike other, the suggested 

approach is based on a single MR image, which generates consistency and accuracy in 

SNR estimation. A new noise reduction approach, based on cubic spline interpolation 

with Savitzky-Golay (CSISG) and GMMD, is developed. The GMMD-CSISG 

represented the tremendous outcome for SNR evaluation of MR imaging systems. 

Another technique has been designed in order to estimate the SNR for MR images. This 

technique exposed that cross-correlation of two acquisition of the same image could be 

applied in an extremely efficient approach for the MR system. Images with edge, high 

curvature and periodic pattern extremities are used in this paper. We conduct several 

experiments on different MR images according to the important characteristics of an 

MR image such as, phase relative to the RF transmitter phase, frequency, and 

magnitude. A general expression for estimation of perfect noise level shifting has been 

derived using a third degree polynomial curve fitting based on results of these 

experiments. The procedure uses single MR image to attain SNR value. The capability 
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to define the SNR from a single MR image allows suggested method to be applicable to 

online and offline image evaluation instantaneously. The SIM method demonstrated a 

good presentation for SNR approximation while compared to other existing procedures. 

6.2 Future Work 

6.2.1 Offline and Online Image Analysis 

The proposed methods are applicable to online and offline image investigation for SNR 

estimation from a single image, where the obligation of image registration with the 

traditional two-image methods is prohibited.  

6.2.2 Real Time Systems 

The proposed methods based on a single SNR estimation for MR imaging systems. This 

feature, in addition to its robustness and accuracy to the power of the accompanied 

noise, give the technique the conceivability to be applied in real-time procedure for SNR 

assessment on MR images.  
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