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ABSTRACT

In this thesis, we discuss the approximation of the first and pure second order deriva-
tives for the solution of the Dirichlet problem for Laplace’s equation on a rectangular
domain and in a rectangular parallelepiped. In the case when the domain is a rectangle,
the boundary values on the sides of the rectangle are supposed to have sixth derivatives
satisfying the Holder condition. On the vertices, besides the continuity, the compat-
ibility conditions, which result from the Laplace equation, for the second and fourth
derivatives of the boundary functions, given on the adjacent sides, are also satisfied.
Under these conditions a uniform approximation of order O (h4) (h is the grid size), is
obtained for the solution of the Dirichlet problem on a square grid, its first and pure

second derivatives, by a simple difference schemes.

In the case a rectangular parallelepiped, we propose and justify difference schemes
for the first and pure second derivatives approximation of the solution of the Dirichlet
problem for 3D Laplace’s equtation.The boundary values on the faces of the paral-
lelepiped are assumed to have the sixth derivatives satisfying the Holder condition.
They are continuous on the edges, and their second and fourth order derivatives satisfy
the compatibility conditions which results from the Laplace equation. It is proved that
the solutions of the proposed difference schemes converge uniformly on the cubic grid
with order O(h*), where £ is the grid step. For both cases numerical experiments are

demonstrated to support the analysis made.

Keywords: Finite difference method, approximation of derivatives, uniform error,

Laplace equation.
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Bu tezde, Laplace Denkleminin dikdortgensel bolgede ve dikdortgenler prizmasi iiz-
erinde Dirichlet probleminin ¢6ziimii i¢in birinci mertebeden ve piir ikinci mertebeden
tiirevlerinin yaklagimi tartisilir. Tanim bolgesinin dikdortgen oldugu durumda dikdort-
genin kenarlarinda verilen siir fonksiyonlarinin altinci tiirevlerinin Holder sartimi
sagladiklar1 kabul edildi. Koselerde siireklilik sartinin yaninda Laplace denkleminden
sonuclanan koselerin komsu kenarlarinda verilen sinir deger fonksiyonlarinin ikinci
ve dordiincii tiirevleri icin uyumluluk sartlar1 da saglandi. Bu sartlar altinda Dirich-
let probleminin kare 1zgara iizerinde ¢Oziimii i¢in ve ¢dziimiin birinci ve piir ikinci
tiirevleri icin O(h*) (h adim uzunlugu) diizgiin yaklasin sade bir fark semast ile elde

edildi.

Ikinci durumda tanim bolgesi dikdortgenler prizmasi oldugunda Laplace denkleminin
Dirichlet probleminin ¢6ziimiiniin birinci ve piir ikinci tiirevlerinin yaklagimi icin fark
semalar1 Onerilir ve saglanir. Prizmanin yiizeylerinde verilen sinir degerlerinin altinci
tiirevlerinin Holder kosulunu sagladigi kabul edildi. Koselerde siireklidirler ve onlarin
ikinci ve dordiincii mertebeden tiirevleri Laplace denklemlerinden sonug¢lanan uyum-
luluk kosulunu saglar. Onerilen fark semalarinin ¢6ziimiiniin kiip 1zgaralar iizerinde h
1zgara uzunlugu oldugunda O(h*) mertebesinden diizgiin yakinsadig1 ispatlandi. Her

iki durum i¢in sayisal 6rnekler yapilan analizleri desteklemek i¢in verildi.

Anahtar Kelimeler: Sonlu fark metodu, tiirevlerin yaklasimi, diizgiin hata, Laplace

denklemi.
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Chapter 1

INTRODUCTION

Pierre Simon Marquis de Laplace (1749-1827) identified arguably same of the most
well known partial differential equations. These equations are widely employed in
a number of topics in applied sciences in order to illustrate equilibrium or steady-
state problems. One of the most important elliptic equations is Laplace’s equation
which has been employed to model as many problems as real-life situations. Laplace’s
equation can be employed in the formulation of problems relevant to the theory of
gravitation, electrostatics, dielectrics and problems arising in magneto statics, in the
field of interest to mathematical physics. Further it is applied in engineering, when
dealing with problems related to the torsion of prismatic elastic solids, analysis of
steady heat conduction in solid bodies, the irrotational flow of incompressible fluid,

and so on (see [1]-[33]).

Undoubtedly, the derivative of the solution can be just as important as of finding the
solution itself. For instance, the fundamental problem of fracture mechanics is the
fracture problem of the stress intensity factor, which it comes from the derivative of
the intensity function, and in electrostatics problems the electric field can be obtained

from the first derivative of electrostatics potential function.

Another torsion example of the Dirichlet problem for of Poisson’s equation is the tor-

sion problem for a rectangular prism.



The problem of the torsion of any prismatic frame whose section is the region D,
bounded by the contour L is reduced to the following boundary value problem using

the theory of Saint-Venant. The solution of the Poisson equation
Au= -2, (1.0.1)
that is reduced to zero on the contour L:
u=0onL.

The elements of tangential stress are

P P
T, = Gﬁa—;‘, Ty = —Gﬁa—z,

and the torsional moment is shown by

M= Gﬁ//udxdy.
D

The angle of twist per unit length and the modulus of shear are indicated by ¥ and G,

respectively.

Now, the solution of the torsion problem is given for a rectangle of sides a and b. The
solution of equation (I.0.T)) decreasing to zero on the contour should be found. We
attempt to find the exact solution, 1, of equation (1.0.1]) to decrease the problem to the

solution of the Laplace equation.

Let ug be represented in the form:
ug = Ax> + By2

where A = —1 and B = 0. Furthermore, an arbitrary linear function can be added to

the solution obtained. Hence, ug is obtained as follows



Uy = —x? +ax

Since ug decreases to zero on the sides x = 0 and x = a. If we introduce the unknown
function u; = u —ug which satisfies the equation Au; = 0; then the boundary conditions

for that are (see [34]])

uy = —(ax—xz) fory=4+—

uy = 0 ,x=0,x=a.

As the operation of differentiation is ill-conditioned, to find a highly accurate approx-
imation for the derivatives of the solution of a differential equation becomes problem-
atic, especially when smoothness is restricted. In many studies, finding the nonsmooth
solution of elliptic equations in the classical finite difference scheme are considered
(see [35]]-[48]] and references therein). In [56] (for two dimension), [41] (for n dimen-
sion), for the solution of the finite difference problem on a square grids, the uniform
error O(h?) is acquired. The minimum requirements on the smoothness of the bound-
ary functions are used to solve Dirichlet problem for Laplace’s equation in the bounded
domain Q. From these requirements it follows that the Holder condition is satisfied by
the second order derivatives of the exact solution on &, i.e., u € C>* (2),0<A < 1. In
addition, taking into account results in [37]] and [62] follows that u € czA (ﬁ), thus the
uniform error on the rectangular domain IT is O(hk) ,k=2,4,6, for the finite difference
solution of the mixed boundary value problem (for the proof see [37], when k = 2, and

[62], when k = 4,6).

A highly accurate method is one of the powerful tools to reduce the number of un-
knowns, which is the main problem in the numerical solution of differential equations,

to get reasonable results. This becomes more valuable in 3D problems when we are
3



looking for the derivatives of the unknown solution by the finite difference or finite

element methods for a small discretization parameter 4.

E.A. Volkov proved in [56] that to acquire a second-order approximation, the smooth-
ness requirement on the boundary functions can be lowered to C?* 0 < A <1, when

the domain is rectangular.

However, approximating the boundary value problem of Laplace’s equation when the

2]
o

harmonic functions u(x,y) = ra cos %,v(x, y) = rasin @ are the exact solution, in a
domain with an interior angle of OCTL',% < o <2, is problematic as these functions
do not belong to C*,0 < A < 1. E. A. Volkov demonstrated that in the presence of
angular singularities, for the numerical solution of the Dirichlet problem for Laplace’s
equation with the use of the 5-point scheme in square grids, the order of approximation
of O(hé) is obtained on a bounded domain with an interior angle of Om,% <o <

2,0 # 1. Similarly, O(h%“) is obtained for the mixed boundary-value problem. Hence,

the approximation is significantly worse than O(h?).

In [46], A.A.Dosiyev introduced a highly accurate difference-analytical method. The
uniform error O(h%) is attained for the solution of the mixed boundary value problem
for Laplace’s equation on graduated polygons. Further the error of approximation is
order O(h®/ rf A ) for p-order derivatives in a finite neighborhood of reentrant angles.
The mesh step is denoted by h, the distance between current point and vertex contain-
ing the corner singularity is indicated by rj, A; = a%j, and a = 1 or 2 depending on
the type of the boundary condition. Moreover, the value of the interior angle at the

investigated vertex is represented by o; 7.

4



In [62]], A.A.Dosiyev investigated the mixed boundary value problem for Laplace
equation on a rectangular domain R. If the exact solution u of the problem is in Co* (R),

then the uniform error will be O(h®), where C%*, is wider than C%*.

Smoother (in C89) set of solutions than C®” are obtained by many authors for O(h%)
order of error estimations in the maximum norm. Hackbusch [49] acquired the same
order of estimation for Dirichlet problem if u € C”!(R). Also, Volkov [50] investigated

mixed boundary value problem when u € C3*(R).

In [51]], it was proved that the higher order difference derivatives uniformly converge to
the corresponding derivatives of the solution of the Laplace equation in any strictly in-
terior subdomain, with the same order of h as which the difference solution converges
on the given domain. In [52], by using the difference solution of the Dirichlet problem
for the Laplace equation on a rectangle, the uniform convergence of its first and pure
second divided difference over the whole grid domain to the corresponding derivatives
of the exact solution with the rate O(h?) is proved. In [54], the difference schemes on
a rectangular parallelepiped were constructed, where the approximate solution of the
Dirichlet problem for the Laplace equation and its first and second derivatives were ob-
tained. Under the assumptions that the boundary functions belong to C WM o<a<l,
on the faces, are continuous on the edges, and their second-order derivatives satisfy the
compatibility condition, the solution to their difference schemes converge uniformly
on the grid with a rate of O (hz) In [S3]] for the 3D Laplace equation the convergence
of order O (hz) of the difference derivatives to the corresponding first order derivatives
of the exact solution is proved. It was assumed that the boundary functions have third

derivatives on the faces satisfying the Holder condition. Furthermore, it is assumed that
5



they are continuous on the edges, and their second derivatives satisfy the compatibility

condition that is implied by the Laplace equation.

In this thesis, the use of the square grid has been investigated for the solution of the
first and second pure derivatives of the Laplace equation on a rectangle and also on
a rectangular parallelepiped and high-order accuracy of the approximate solution is
justified. In the two dimensional case (rectangular domain), we consider the classical
9 — point finite difference approximation of the problem to find the approximate solu-
tion of Laplace’s equation and also of the first and second pure derivatives of Laplace
equation. In the three dimensional case (in a rectangular parallelepiped), we used the

27 — point scheme to find a similar solution to the problems two dimensional case.

In Chapter [2| we consider the Dirichlet problem for the Laplace equation on a rectan-
gle, when the boundary values belong to C%* 0 < A < 1, on the sides of the rectangle
and as a whole are continuous on the vertices. Also the 27,7 = 1,2, order deriva-
tives satisfy the compatibility conditions on the vertices which result from the Laplace
equation. Under these conditions, we construct the difference problems, the solutions
of which converge to the first and pure second derivatives of the exact solution with

the order O(h*).

In Chapter [3] we consider the Dirichlet problem for the Laplace equation in a rect-
angular parallelepiped. It is assumed that the boundary functions on the faces have
sixth order derivatives satisfying the Holder condition, and the second and fourth or-
der derivatives satisfy some compatibility conditions on the edges. Three different

schemes are constructed on a cubic grid with mesh size s, whose solutions separately

6



approximate the solution of the Dirichlet problem for Laplace’s equation with the order

O(h®|Inh)), its first and pure second derivatives with the order O(h*).

In Chapter [} the theoretical results in Chapter [2 and [3| are demonstrated by numerical
experiments. We illustrated the higher order accurate approximation of the first and
second pure derivatives of the Laplace equation on a rectangle and also in a rectangular

parallelepiped.

Concluding remarks are given in Chapter 4.4.2.2,



Chapter 2

A FOURTH ORDER ACCURATE APPROXIMATION OF
THE FIRST AND PURE SECOND DERIVATIVES OF
THE LAPLACE EQUATION ON A RECTANGLE

2.1 The Dirichlet Problem on Rectangular Domains

Let IT= {(x,y) :0<x<a,0 <y<b} be arectangle and a/b is a rational number.
The sides are denoted by }/j(}/j), Jj =1,2,3,4, including (excluding), the ends. These
sides are enumerated counterclockwise which 7; is the left side of IT (Y = 11, 5 = 11),
hence, the boundary of II is defined by y = U‘}:lyj. The arclength along 7y is denoted
by s, and s; is the value of s at the beginning of y;. If f has k-th derivatives on D

satisfying a Holder condition, we say that f € C** (D), where exponent A € (0, 1).

We consider the following boundary value problem
Au=0 on II, u=@j(s) ony;, j=1,2,3,4, (2.1.1)
where A = 92 /9x* + 9% /dy?, @; are given functions of 5. Assume that
0; € COM(y), 0< A <1, j=1,2,3,4, (2.1.2)

(pj(24)<sj) _ (—1)‘1(1)](-3?(5;)7 g=0,1,2. (2.1.3)

Lemma 2.1.1 The solution u of problem 1) is from COA(T1),

The proof of Lemma [2.1.T|follows from Theorem 3.1 in [40].



Lemma 2.1.2 The inequality is true

2%u

m < oo, (214)

max sup
0=P=3 (xy)emt

where u is the solution of problem (2.1.1J).

Proof. From Lemma|2.1.1{follows that the functions ax’j and 2 5y are continuous on IT.

We putw = a x4 The function w is harmonic in I, and is the solution of the problem

Aw=0 on II, w=®; ony;, j=1,2,3,4,

where
'
(I)T:a—y“” T:1,3
84
Dy — ax‘ﬁv, V=24

By considering the conditions (2.1.2)) and (2.1.3) follows that
;€ CPH(y), 0<A <1, ®(s)) =Dj 1(s;), j=1,2,3,4.

Hence, on the basis of Theorem 6.1 in [53]], we have

9%w d%u
su % = sup 556 < oo, (2.1.5)
(=, y)el'I (x,y)ell
azw‘ 9%u
sup |=—| = sup (2.1.6)
(x,y)ell ayz (x,y)€ll ax48y
Similarly, it is proved that
2%u %u
il B P oo, 2.1.7
(x,s;;le)l'l{ 9yS || dy*dx? }< @10

when w = ’3;;3‘. The function w is harmonic in I1, and is the solution of the problem
Aw=0 on I, w=®; ony;, j=1,2,3,4,

where



d*o;

q)f: ay4, T:1,3
94
®, — 8;’;”, V=24

by considering the conditions (2.1.2)) and (2.1.3)) follows that

;€ CPH(y), 0< A <1, ®j(s)) =Dj1(s)), j=1,2,3,4.

22w 2%u

il BN S 2.1,
(xas)gle)l'[ Jx? (X?BIG)H ox2dy* = (18)

2w 2%u

— = — =) 2.1.
(x?yl;IEJH 8y2’ (x?yl;FE)H ady® = (219

From (2.1.5)) — (2.1.9), estimation (2.1.4)) follows. =

Lemma 2.1.3 Let p(x,y) be the distance from a current point of the open rectangle T1

to its boundary and let 9 /01 = od /dx+ B3 /dy, a* + B? = 1. Then the next inequality

holds
aS
‘ Yl<ep? 2.1.10)

B

where c is a constant independent of the direction of the derivative d /d1, u is a solution
of problem (2.1.1J).

Proof. According to Lemma[2.1.2) we have
d%u

Ox2P3)y6—2p ¢ <o

max sup
0=P=3 (xy)em

Since any eighth order derivative can be obtained by two times differentiating some of

the derivatives 9°/9x??9y5=2P, 0 < p < 3, on the basis of estimations (29) and (30)

from [56], we obtain
8
o @2.1.11)

oy | = cip(xy) <o

max
v+u=8

From (2.1.11), inequality (2.1.10) follows. m

10



Let 4 > 0, and min{a/h,b/h} > 6 whereas, a/h and b/h be integers. A square net
on IT is assigned by IT", with step &, created by the lines x,y = 0,4, 2h, ... . The set of

nodes on the interior of ¥; is denoted by yj’, and let
Y =ULil v =10y, ¥ = U (uy), T = Uy
The averaging operator B be defined by following
Bu(x,y) = (u(x+hy)+ulx—h,y)+ulx,y+h)+ulx,y—h))/5
+(u(x+h,y+h)+u(x+h,y—h)
+u(x—h,y+h)+u(x—h,y—h)) /20. (2.1.12)

The classical 9-point finite difference approximation of problem (2.1.1)) is considered

as follows:

wp=Buy, onII", uy,=¢@; ony!Uy;, j=1,2,34. (2.1.13)

By the maximum principle, problem (2.1.13)) has a unique solution.

In what follows and for simplicity, we will denote by ¢, cy,c3,... constants which are
independent of 4 and the nearest factor, identical notation will be used for various

constants.

Let IT'" be the set of nodes of the grid IT" that are at a distance & from 7, and let

HZh — Hh\nlh_

Proposition 2.1.4 The equation holds

BP7(XO=)’O) :M(x()vy()) (2114)

where p.(xo,y0) is the seventh order Taylor’s polynomial at (xo.yo) and u is a harmonic

11



function.

Proof. Taking into account that the function « is harmonic, by exhaustive calculations,

we have
BP7(x0,y0) = (P7(x0 +h7y0) +P7(x0—h;)’0) —|—p7(X(),y()+l’l) +p7(x07y0_h))/5+

(P7(x0+h,)’0+h) + P7(X0+h7)’0—h) + P7(x0—h7y0+h) + p7(X0 _hvy()_h))/zo

du (x07YO) azu (XOJO) h2 53”(3507)’0) h3 841/1 (x(),y()) h4
= ((x0,50) + ox h ox2 2! ox3 3! oxt 4 +
9°u(xo,y0) B | 9% (x0,y0) h® | 9u(xo,y0) h’ du (x,Y0)
dx> 5! axb 6! ax’ 7! ox
9%u (x0,y0) *  9*u(xo,y0) i d*u(xo,y0) h*  °u(xo,y0) i’ N
dx? 2! ax3 3! ox* 4! x> 5!
86u(x0,y0)h_6 _ 97M(X0,yo)ﬁ+ ( )+ aM(Xo,yo)h+ azu(x07y0)h_2+
x5 6! oxT 71 H0X0 dy FIAY
u(xo,yo) | d*u(xo,y0) B* | u(xo,y0) 9% (x0,y0) h°
Jy3 3! oyt 4! dy> 5! oy 6!
97 u (xo,v0) h’ du (xo, %u(xo,y0) h*  33u(xg,y0) b
ug;(; yo)? u(x0.y0) — u(;(; Y0), ug;(; yo)g B ug;(; YO)5
9%u (x0,y0) B*  u(xo,y0) I 9% (x0,y0) h®  9"u(x0,y0) h /5t
vt 4 dy> 5! 2y 6! ay’ T
d 0 02 02
(M(XO;yO) +( u(;(;}’()) + u(;(;;y()))]’l—f—( ué.):;’y()) +2 Ma&xg;}yO) +
aZu (Xan()) h_2 8314 (x()ay()) + 3831/!()60,)/0) + 383M()C0,y0)
dy? 2! ox3 dx2dy 0x0y?
9%u(x0,y0) \ B> | (9*u(x0,y0) +434M(X0,y0) +634”(X0,y0)
dy3 3! ox* dx3dy dx20dy?
49414(?60,)’0) n 9*u(xo,y0) \ h*  (9°u(x0,¥0) _|_585”(XOJO)
dxdy? oy 4! x> dx*dy
9°u (x0,y0) 9u(xo,y0) | 9°u(x0,y0) | 9°u(xo,y0)\ I’
10 d0x39y? +10 dx29dy3 3 dxady* * oy’ ) 51
9%u(x0,y0) | 9% (x0,y0) 9°u (x0,y0) 9°u (x0,y0)
( a6 0 avay TP adayr 0 om0y
0%u (x0,50) | 9% (x0,50) | 9% (x0,0)\ h® (3 u(x0,y0)
15 dx2dy* o dxdy’ - dy° ) 6! ( o
9" u (x0,y0) 9" u (x0,y0) 9" u (x0,y0) 9" u (x0,y0)
! 0x00y 21 0x30y? 35 dx*dy3 35 dx3dy*
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97u(xo0,y0) | 0 u(xo,y0) , 97u(xo,0) h’
21 0x20y? 0x0y° ay’ >ﬂ+u(x0,y0)+
Iu(xo,y0) _ du(x0.y0) ), . (9%ulx.y0) _ 9% (x0.50)
dx dy ox? dxdy
9%u (x0,0) h_2+ du(x0,y0)  ,9”u(x0,y0) n 333u(x0,y0) B
dy? 2! ox3 dx2dy 0x0y?
9*u (x0,0) h_3+ 9*u(xo,y0) , 9*u(x0,y0) n 684”(XO>YO) B
dy3 3! ox* dx3dy dx%dy?
43401(360,)70) 9*u (x0,y0) h_4+ du(x0,50) 585u(x0,y0)
dxdy3 ay* 4! ox> dx*dy
loasu(xoayo) N loasu(XO,yo) n 585u(x0,y0) ~ Pu(xo,y)\
dx30y? dx2dy3 dxdy* 0y’ 5!
9% (xo,y0)  9%u(x0,y0) 9%u (xo,y0) 9%u (xo,y0)

( a6 O Taway TP adar 0500,
159 (x0,30) _ (9% (x0,50)  9%u(x0,30)\ h° . (9u(x0.30) _
dx2dy* 0xdy> 2y° 6! dx’

9" u (x0,y0) 9" u (x0,y0) 9" u(x0,y0) 9" u (x0,y0)
oy T awa TP oy T oo
97u(xo0,y0) | 0'u(xo,y0)  97u(xo,0) h’
21 92205 +7 oy > ﬁ+u(x0,yo)—l—
~ du(xo,y0) 4 du (x0,y0) ht 9%u (x0,y0) . 9%u (x0,y0)
dx dy ox? dxdy
9%u (x0,Y0) h_2+ _83u(x0,y0) + 333M(x0,y0) _ 333M(X0,y0)
dy? 2! ax3 0x2dy 0x0y?
83M()C0,y0) h_3+ 84I/£()C0,y0) . 84”()607))0) + 684M()C0,y0) .
0y3 3! ox* dx3dy 0x20y?
9”u (xo,y0) O u(xo,y0)  9u(x0,y0) | 9%u(xo,0)\ I’
10 0x30y? 10 ox20y3 T Jxdy* oy’ ) §+
du(x0,y0) 9% (x0,y0) N 1536M(x0,y0) B 2036M(XOJO)
dx0 dx3dy dx*dy? dx3dy3
1596u(x0,y0)  9%u(xo,y0) | 9%u(x0,¥0) /1_6+ ~ 9"u(x0,y0)
dx2dy* dx0y’ dy° 6! dx’
97u (xo,y0) 97u (xo,y0) 97u (xo,y0) 97u (xo,y0)
! oxdy 21 0x39y? 35 ox*oy’ 3 dx30y*
9'u(xo,y0) 9 u(xo,y0) | 9"u(xo,0)\ 1’
21 9x29yS  0xdy® ay’ )ﬁ-l-u(xo,yo)-l-
_dulxo,y0) _ dulxo.30) ), . 9%u (x0,0) zazu(xo,yo)
ox dy ox? dxdy
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9%u(xo,0)\ H* ([ Pu(xo,y0) 333M(XO7y0) N 383”(x07)’0) N
dy? 2! ox3 dx2dy dx0dy?
%u (x0,y0) h_3 9*u (x0,y0) +484u(x0,y0) +634M(XO,YO)
y3 3! dx* 0x30y 0x20y?
9*u(x0,y0) | 9%u(xo,y0) A* P u(x0,0)  9°u(x0,y0)

4 + m(- _5 _
dx0y3 oy* 4! x> dx*dy
1085u(x0,y0) B 1085u(x0,y0) B 595M(Xo,yo) ~ u(x0,y0) £+

dx30y? dx2dy3 dxdy* dy> 5!
9°u(x0,y0) | 9% (x0,y0) 9°u (x0,y0) 9°u (x0,y0)

( e O o¢ay TP o T gmgs T
1536M(x0,yo) n 686”(an)’0) N 9°u(x0,0)\ h® ([ 9"u(xo,y0)
dx2dy* dxdy’ dy° 6! ox’
Tu(x0,50) 5, 9"u(x0,50) . 9"u(x0,50) 1 9"u(xo,50)

0xdy 0x309y? dx*dy3 dx3dy*
9'u(xo,y0) 9 u(xo,y0)  97u(xo,)\
21 ax2dyS ! oxdyd ay’ ) ?) /20 =

1 (x0,0) + 29%u(xo,y0) B* | 20%u(xo,y0) B* | 2 3% (x0,y0) h®
YT\ 215 o 415 ox6 6l

2 0%u(xo,y0) B* | 29*u(x0,y0) K* | 29% (x0,y0) h° 92u (x0,y0) h*
5 9y 215 oyt 4 38—y65) (TE +
9%u(xo,y0) * d*u(xo,y0) h* | 9%u(xo,y0) B* | 9*u(x0,y0) h*
y2 10 ox* 120 1 9x29y2 20 oyt 120 *
9%u (xo,yo) h® 86u(x0,y0)ﬁ 86u(x0,y0)3_h6 d%u (xo,yo) h® > B
dx6  5.6! dx*dy? 6! dx2dy* 6! 2y  5.6!
i (P | Pl S (Pt
9*u (x0,y0) \ 3h* (9% (x0,y0) = 9% (x0,y0) 3h° = 9*u(x0,y0) h*
oy ) ST ( a6 gy ) 56! T ox2ay? 20
6 6 6 2 /32
(T Tl ) o oo 3o (2520
d%u(xo,y0)\ 1* 9% [d%u(xo,y0) = %u(xo,y0)\ h* 9* [ 3%u(x0,y0)
)2 >E a_y2< o2 T oy )%*aﬁ( o2
9%u(x0,y0)\ 31  9* (9%u(xo,y0) | 9%u(xo,y0)\ 3h°
dy? > 5.6!  dy* ( FIEEE dy? ) 5.6!
4 2 2 6
3x§ayz <8 u;);(;yo) + o ug;%’y())) 52};, = u(x0,y0) = Bp,(x0,y0) = u(xo,y0)
m
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Lemma 2.1.5 The inequality holds

max |Bu—u| < ch®, (2.1.15)
(x,y)e(thUHZh)

where u is a solution of problem (2.1.1J).

Proof. Let (xo,yo) be a point of IT'" and let
Ro={(x,y): |x—xo| <h,|y—yo| <h}, (2.1.16)

be an elementary square, some sides of which lie on the boundary of the rectangle I1.
On the vertices of Ry, and on the mid-points of its sides lie the nodes of which the
function values are used to evaluate Bu(xg,yo). We represent a solution of problem

(2.1.1) in some neighborhood of (xg,yo) € IT* by Taylor’s formula

u(x,y) = p,(x,y) +rs(x,y), (2.1.17)

where p,(x,y) is the seventh order Taylor’s polynomial, rg(x,y) is the remainder term.
By using Proposition (2.1.4))

Bp;, (x0,Y0) = u(x0,Y0) (2.1.18)

Now, we estimate rg at the nodes of the operator B. We take a node (xo + h,yo + h)
which is one of the eight nodes of B, and consider the function

S

ﬁ(s):u<xo+ﬂ,yo+\%), —V2h<s<V2h (2.1.19)

of one variable s. By virtue of Lemma[2.1.3] we have

dBiu(s)
ds8

<c(V2h—s5)"2, 0<s<V2h. (2.1.20)

We represent function (2.1.19) around the point s = 0 by Taylor’s formula

u(s) = p1(s) +73(s),

where p7(s) = p, (xo + %,yo + %) is the seventh order Taylor’s polynomial of the
15



variable s, and

S R)
—, +_
2TA

is the remainder term. On the basis of (2.1.20) and the integral form of the remainder

r3(s) =rg <X0+ ) , 0<|s| <2h, (2.1.21)

term of Taylor’s formula, we have

V2h—¢

~ 1 7 h
rs(\/ih—i-?)‘ <co / <\/§h—s—t> (V2h—1)2dt <cih®, 0< e < NG
S0

(2.1.22)

Taking into account the continuity of the function rg(s) on [— \/Qh, \/Eh} ,from (2.1.21

and (2.1.22)), we obtain

s (X0 +h,yo +h)| < e1h°, (2.1.23)

where ¢ is a constant independent of the taken point (xg,yo) on IT'”. Estimation
(2.1.23)) is obtained analogously for the remaining seven nodes of operator B. Since

the norm of the operator is equal to one in uniform metric, by using (2.1.23)), we have
|Brs (x0,0)| < 2h®. (2.1.24)

Hence, on the basis of (2.1.17)), (2.1.18), (2.1.20) and linearity of the operator B, we

obtain

|Bu(xo,y0) — u(x0,y0)| < ch®,

for any (xo,yo) € IT'*. Now, let (xo,yo) be a point of IT>", and let in the Taylor formula
(2.1.17) corresponding to this point, the remainder term rg(x,y) be represented in the

Lagrange form.

Moreover,

B a8u (x*,y*)

M®) = S 0/01= 0d/dx+Bd/dy, 0’ + B> =1
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hence,

rs(x,y)| = ¢3 ‘M“)‘hg. (2.1.25)

where cj is a constant independent of the point (xo,yo) € I1?".Then

Brg(x0,y0) = (rs(xo+h,y0) + rs(xo—h,yo) + rs(xo0,y0+h) +
rs(x0,y0 —h)) /S + (rs(xo +h,yo +h) + rs(xo +h,y0 — h)
+ rg(xo — h,yo +h) + rs(xo — h,yo — h)) /20, (2.1.26)
contains eighth order derivatives of the solution of problem (2.1.1)) at some points of

the open square Ry defined by (2.1.16), when (xo,yo) € IT?". The square Ry lies at a

distance from the boundary Y of the rectangle II not less than &. Therefore, by using

(2.1.25)) and (2.1.26)), we obtain
|Brg(x0,y0)| = c4 ’M(S)‘hg,

on the basis of Lemma [2.1.3] we obtain

K8 K
|Brs (x0,y0)| < cap 2h® < ¢4 =y

(2h)*

where ¢4 is a constant independent of the point (xo,yo) € IT?". Again, on the basis of

(2.1.27)

(2.1.17), (2.1.18)) and (2.1.27) follows estimation (2.1.15)) at any point (xo,yo) € IT*".

Lemma[2.1.5]is proved. m

We represent two more Lemmas. Consider the following systems

an = Bgy+gn onIl", g, =0 ony", (2.1.28)

4 = Bgy+g, onll", g, >0 ony", (2.1.29)
where g, and g, are given functions, and |g;| < g, on IT".

17



Lemma 2.1.6 The solutions q;, and g, of systems (2.1.28|) and (2.1.29) satisfy the in-
equality
_ —=h
|9 <Gy on I

The proof of Lemma [2.1.6] follows from the comparison theorem (see Chapter 4 in

[590).

Lemma 2.1.7 For the solution of the problem
qh:th+h6 on 1", qgrn=0 on yh, (2.1.30)
the inequality holds
91 < 2pdi onTT"

where d = max{a,b}, p = p(x,y) is the distance from the current point (x,y) € " 10

the boundary of the rectangle I1.

Proof. We consider the functions

_(1 5 2 5
q,g J(x,y) = §h4(ax—x2) >0, qﬁl (x,y) = §h4(by—y2) >0onll,

_ _(
Let g, (x,y) =g, (x,y), then
th (x07y0) = (qh(X()—i—]’l,y()) + qh('xo _h,yO) + qh(x07y0+h) + qh<x07y0 _h))/5+
(@n(x0 +h,y0 +h) + G, (x0 +h,yo — h) + gy, (x0 — h,yo +h) + G, (x0 — h,y0 —h)) /20
5 4 2 5 4 2 5 4 2
= gh (a(xo+h)—(xo+h) )+§h (a(xo—h)— (xo—h) +§h (axo —xp) +
5 5 5
§h4(ax0 —x%)) /5+ (§h4(a (xo+h) — (xo+h)*) + §h4(a (xo+h)— (xo+h)* +

Sh a0~ ) — (s0— b + 2h{a(xo )~ (o —h)z) /20 =

18



h4
3 (ax0+ah—x(2)—2xoh—h2 + axo—ah—x3+2xoh—h2 + axo—x% +axo—x(2)) +
h4

12(axo+ah—x%—2xoh—h2—l—axo—i—ah—x%—Zxoh—hz+ax0—ah—x%+2x0h—

2 2 _2_h_4 _2_2h_4 42 a2

h* + axo — ah — xj + 2xoh h)—3(4ax0 4y — 20°) + 5 (4axo — 4xg — 4h°)
20axy —20x2 — 12h2) 5 _

:h4( 120 ) = §h4(ax0—x%) —h® =gy, (x0,Y0) —n®,

Similarly let g, (x,y) = 6_122) (x,y) then

Bgy, (x0,y0) = (g5 (x0 + 1, y0) + Gu(x0 — h,y0) + G (x0,y0 + k) + Gp,(x0,50 — 1)) /5+
(qn(x0 +h,yo +h) + g, (x0 +h,yo — h) + G, (x0 — h,y0 + h) + gj,(xo — h,yo — h)) /20

_ Gh“(b (0+h) — (xo+ 1)) + 24 (b (v — ) — (xo— h)? + b

3 3 (be —X%) +

gh“(bxo —x5)> /54 (gh“(b (xo+h) — (xo+h)*) + gh“(b (xo+h) — (xo+h)* +

gh“(b (xo—h) — (xo— h)* + gh“(b (xo —h) — (x0 — h)2> /20 =
4

3 (bxo + bh — x§ — 2x0h — h* + bxg — bh — x§ + 2x0h — h* + bxo — x§ + bxo —x) +
4
o (bxo + bh — x5 — 2x0h — h* + bxo + bh — x§ — 2x0h — h* + bxo — bh — x5 + 2xoh —
ht h*
B + bxo — bh — x5+ 2x0h — ?) = = (4bxo — 45— 2%) +

O (4bxo — x5 — 4h*) =
20bxp —20x2 — 12h2) 5 _
h4( 120 ) :§h4(bxo—xz)—h6:CIh(Xo,)’o)—h6,

which are solutions of the equation gj, = Bg;, + /% on IT". By virtue of Lemma

we obtain

. 5 .
qn < mligc_h(f) (x,y) < gpdh“ onTl".
1= 7

Theorem 2.1.8 Assume that the boundary functions @;, j =1,2,3,4 satisfy conditions

(2.1.2) and (2.1.3). Then

ma}lx|uh—u| < cpht, (2.1.31)
I
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where u is the exact solution of problem (2.1.1)), and uy, is the solution of the finite

difference problem (2.1.13]

Proof. Let
€y =up—u onll. (2.1.32)
Then
Bgy, = Buy, — Bu = Buj, = Bg, + Bu
Moreover,
u, =€,+u

By considering problem (2.1.13) it is obvious that

&, = Bey,+ (Bu—u) onIT", & =0 on 7" (2.1.33)

By virtue of estimation (2.1.15)) for (Bu — u), and by applying Lemma to the

problems (2.1.30) and (2.1.33)), on the basis of Lemma[2.1.7| we obtain

max e < cph’. (2.1.34)
ﬁ‘t

From (2.1.32) and (2.1.34) follows the proof of Theorem[2.1.§] m

2.2 Approximation of the First Derivative

We denote by ¥ = % onY¥;, j=1,2,3,4, and consider the boundary value problem:
Av=0 onIl, v=Y¥; ony;, j=1,2,3,4, (2.2.1)

where u is a solution of the boundary value problem (2.1.1).

We put
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Win(up) =

W3p(up) =

lPph(”h)

1
oh (—25¢1(y) +48uy(h,y) — 36u;(2h,y)

+ 16uy,(3h,y) — 3up(4h,y)) on ¥/, (2.2.2)

1

— 16uy(a—3h,y) +3up(a—4h,y)) on 1y, (2.2.3)
d

2% onyt, p=2,4, (2.2.4)
ox p

where uy, is the solution of the finite difference boundary value problem (2.1.13).

Lemma 2.2.1 The inequality is true

(i () — Prn(u)| < esh?, k= 1,3, (2.2.5)

where uy, is the solution of problem (2.1.13)), u is the solution of problem (2.1.1]).

Proof. On the basis of (2.2.2)), (2.2.3)) and Theorem 2.1.8, Then if k =1,

\Win(up) —¥in(u)

1
1= |13 (€

—25¢1(y) + 48uy(h,y) — 36u;(2h,y) + 16u,(3h,y)

— 3uy(4h,y)) — (=25¢1(v) + 48u(h,y) — 36u(2h,y) + 16u(3h,y) — 3u(4h,y))| <

12h

1
7 (48lun(h,y) —u(h,y)| — 36 |up(2h,y) — u(2h,y)| + 16 |up(3h,y) — u(3h,y)|

1
— 3 |up(4h,y) — u(4h,y)|) < —= (48 (ch) h* + 36 (c2h) h* + 16 (c3h) h*

+ 3 (c4h) h*) < csh*

Similarly if k = 3,

— 12h
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1
[¥an (un) = ¥an ()| = | 1 (2501(y) — 48up(a—h,y) + 36up(a—2h,y)
— 16up(a—3h,y) + 3up(a—4h,y)) + (25¢(y) — 48u(a — h,y) + 36u(a — 2h,y)

1
— 6u(a—3h,y) + 3u(4h,y))| < 5 (48 |un(a—h.y) —u(a—h.y)]

— 36|up(a—2h,y) —u(a—2h,y)| + 16|up(a —3h,y) —u(a—3h,y)|

1
= 3[un(a—4h,y) —u(a—4hy)|) < 1 (48 (ch) h* + 36 (c2h) h* 4 16 (c3h) h* +

3 (c4h) h*) < csh?

hence

(Wn (up) —Prn(u)| <

1
o (48 (ch) h* +36 (c2h) h* + 16 (c3h) h* + 3 (c4h) h*) <

esh*, k=1,3.

Lemma 2.2.2 The inequality holds

max | (up) — Wil < ceh®, k=1,3. (2.2.6)
(xy)en

Proof. From Lemma follows that u € C3°(TT). Then, at the end points (0, vk) €
v and (a,Vvh) € ¥} of each line segment {(x,y) : 0 <x <a,0 <y = vh < b} expres-

sions 1b and |b give the fourth order approximation of %, respectively. From

the truncation error formulae (see [61]) follows that

u

max . yyey | ox

(n+1)! kH("f'_xk)

hence,
5
max Vel | oo h4 85
max_ [Pen(u) — | < — 2Ly opy 3y ah) = = max |22 <eqht, k=13,
(xy)ey; 5! 5 (x,y)€ll dx
(2.2.7)
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On the basis of Lemma[2.2.1] and estimation (2.2.7) follows (2.2.6)),

max |Wy(up) — Wil = max Wi (up) — Pin () +Prn(u) — ] <

(xvy)e k (x,y)e k

max |‘th(uh) —‘th(u)| + max \‘th(u) —\Pk’ < C6h4, k=1,3.
(xy)ey, (xY)EY;

We consider the finite difference boundary value problem
vp=Bv, onTI", v; =W, ony}, j=1,2,3,4, (2.2.8)

where ¥, j = 1,2,3,4, are defined by (2.2.2) -(2.2.4)

Theorem 2.2.3 The estimation is true

u
Vp— —

| < ch*, (2.2.9)

max
(xy)ell"

where u is the solution of problem (2.1.1)), vy, is the solution of the finite difference

problem (2.2.8|).

Proof. Let
g, =vy—v onll, (2.2.10)
where v = % From li and (2.2.10), we have

&y = Bey+ (Bv—v) onT1", &, = Wy (up) —von ¥, k=13, §,=0ony:, p=24.

We represent (2.2.11)
& =¢& +¢, (2.2.12)

where
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g = Bg onIl" (2.2.13)
g = Pum(u)—v ony, k=13, =0ony), p=24 (2214

g = Bg+(Bv—v) onIl", g =0 ony/, j=1,2,3,4. (2.2.15)

By Lemma [2.2.2] and by maximum principle, for the solution of system (2.2.13),

(2.2.14), we have

: 4
max |€ | < max max [y () = v| < coli” (2.2.16)
(xy)ell" ] 9=13 (x,y)e¥: s |

The solution 8}% of system (2.2.15]) is the error of the approximate solution obtained by
the finite difference method for problem (2.2.1), when the boundary values satisfy the

conditions

¥, cCt(y), 0<A <1, j=1234, (2.2.17)

‘P_S-ZQ) (sj) = (—1)q‘1‘§~2_q1) (s;), ¢=0,1. (2.2.18)

Since the function v = % is harmonic on IT with the boundary functions ¥;, j =

1,2,3,4, on the basis of (2.2.17), (2.2.18)), and Remark 15 in [62]], we have

max

ei < csh (2.2.19)
(r.y)ell’

If the solution of problem (2.1.1) u € C**(IT), 0 < A < 1, then

max |u—uy| < ch*
(ry)etl’

where uy, is the solution of the finite difference problem (2.1.13)).) By (2.2.12), (2.2.16))

and (2.2.19) inequality (2.2.9) follows. m
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2.3 Approximation of the Pure Second Derivatives

We denote by ® = 3—2‘. The function @ is harmonic on IT, on the basis of Lemma[2.1.1

is continuous on IT, and is a solution of the following Dirichlet problem

A@=0 onll, @ =/, ony, j=1,2,34, (2.3.1)
where
[ a;)gf, T=24, (2.3.2)
Fv = —‘?;y‘gn v=13. (2.33)

From the continuity of the function @ on II, and from (2.1.2), (2.1.3) and (2.3.2),
(2.3.3) it follows that

Fie CY(y),0<A <1, j=1,2,3,4, (2.3.4)

2 2 .
P = (07 (), g=0,1, j=1,2,3,4 (2.3.5)
Let wy, be a solution of the finite difference problem
o, =Bw, onII", w,=F; onylUy;, j=1,2,34, (2.3.6)

where [ j, j = 1,2,3,4, are the functions determined by (2.3.2) and (2.3.3).

Theorem 2.3.1 The estimation holds

max |, — 0| < ch?, (2.3.7)
ﬁh

2 . . . . .
where ® = %, u is the solution of problem (2.1.1)) and wy, is the solution of the finite

difference problem (12.3.6)).

Proof. On the basis of conditions (2.3.4) and (2.3.5)), the exact solution of problem

|| belongs to the class of functions CcH2 (IT) (see [62]). Hnece, inequality 1}

follows from the results in ([62]) (Remark 15), as the case of the Dirichlet problem. m
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Chapter 3

ON A HIGHLY ACCURATE APPROXIMATION OF THE
FIRST AND PURE SECOND DERIVATIVES OF THE
LAPLACE EQUATION IN A RECTANGULAR
PARALLELEPIPED

3.1 The Dirichlet Problem on a Rectangular Parallelepiped

Let R = {(x1,x2,x3) : 0 <x; < a;,i =1,2,3} be an open rectangular parallelepiped;
I';(j=1,2,...,6) be its faces including the edges; I'; for j = 1,2,3 (for j =4,5,6)
belongs to the plane x; = 0 (to the plane x; 3 = a;_3), and let I' = U?ZIFJ- be the
boundary of R; Y,y = I'y NIy be the edges of the parallelepiped R. If f has k-th

derivatives on D satisfying a Holder condition, we say that f € Ck* (D), where expo-

nent A € (0,1).

We consider the following boundary value problem
Au=0on R, u=¢; onl';, j=1,2,...,6, (3.1.1)
where A = 02 /9x% + 9% /dx3 + 9% /9x3, @; are given functions. Assume that
0, eCOMT)), 0<A <1, j=1,2,...,6, (3.1.2)
Pu = Pv On Yuv, (3.1.3)

82(,0;1 &2§0v+82¢u
ot} oy Odtfy

ey d'gu  d*e, ey
ony  dgot},  dry  diford,

=0 on Yy, (3.1.4)

on Yuv. (3.1.5)

where | <u<v<6,v—u+#3, fyv is an element in ¥y, and 7, and ¢y is an element
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of the normal to ¥,y on the face I';, and I'y, respectively.

Lemma 3.1.1 The solution u of the problem (3.1.1)) is from C5*(R),
The proof of Lemma [3.1.T] follows from Theorem 2.1 in [535].

Lemma 3.1.2 The inequality is true

86
max_  max sup 5 u6_2 —-| S <eo, (3.1.6)
0<p<30<g<3-p (X17X27X3)€R ax]pax2q8X3 p—q
where u is the solution of the problem (3.1.1]).
Proof. From Lemma|3.1.1|it follows that the functions 3;;'1, %’1 and %ﬁf are continuous
1 2 3
on R. We put w = %’1. The function w is harmonic in R, and is the solution of the
1
problem
Aw=0 on R, w=¥; onl, j=1,2,...,6,
where
0% o4 o4
p, =L O b, T i1
x5 x5 dx50x5
84
w,=2% 2356
ox]

where W; when 7 = 1,4 is calculated by following,

y OO _ 9 (82¢T> _ ﬁ(_@_@) _ 9% d'er
oxi ox? \ dx? ox? 0x3 0x3 ox}dx3  Jx3dx3
9° %p; J*o; 0° %p:  J*o; *e; | o 2*o;

B B_X% <_ 0x3 a 0x3 > a 0x3 (_ 0x3 a 0x3 ) - 0x5 i x5 * zaxgax%

From conditions (3.1.2))-(3.1.5) it follows that

¥, ¢ CPMIy),0<A<1,j=1,2,..6

Y, = PYy,onyy, 1<u<v<6,v—u#3.
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Hence, on the basis of Theorem 4.1 in [55]], we have

90 02
sup —Z = sup —V; < oo, (3.1.7)
(x1,%2,%3)ER 8)61 (x1,%2,.%3)ER axl
90 02
sup 4—M2 = sup —V; < oo, (3.1.8)
(x1 7)Cz,)Cg,)ER 8')(:18')(:2 (x1 7)62,)63,)613 axz
36 (92
sup 4—u2 = sup —V; < oo, (3.1.9)
(x1,x2,x3)€R axl axS (x1,x2,%3)€R ax3
Similarly, when w = %’j The function w is harmonic in R, and is the solution of the
2
problem
Aw=0 on R, w=¥; onl’;, j=1,2,....6,
where

84(/’17 34([)1; 84(/’1

Y, = 2 , T=2,5
! ax‘l‘ * 8)6‘3t + 8x%8x3
4
w, = 2P 23556
8x2

From conditions (3.1.2))-(3.1.5) it follows that
¥, € CPMIy),0<A<1, j=12,..,6

‘P’u - va,OIl'}{uv,lS‘u,<VS6,v_“%3.

Hence, on the basis of Theorem 4.1 in [55]], we have

9° 92
SUp | 5453 - 5| = sup —V; < oo, (3.1.10)
(x1,%2,%3)€R axzaxl (x1,x2,x3)ER ax]
00 02
sup —Z = sup —VZV < oo, (3.1.11)
(x1,x%2,x3)€R a)Cz (x1,%2,%3)ER axz
9° 92
sup W R - 5| = sup —V; < oo, (3.1.12)
(x1,%2,x3)€ER a)628)63 (x1,%2,%3)ER 8)63
and when w = %’1. The function w is harmonic in R, and is the solution of the problem
2

Aw=0 on R, w=¥; onl, j=1,2,...,6,
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where

84(1)1 34‘Pr 84(Pr

Y, = + +2 , T=23,6
Fooxt ok T Tox2ox
84
w,=2% v 2356
Jx;

From conditions (3.1.2))-(3.1.5) it follows that

¥, e CPMIy),0<A<1,j=1,2,..,6

lI]I.L — Tv,Onyuv,1§“<vg6,v_u#3.

Hence, on the basis of Theorem 4.1 in [55]], we have

9% 92
sup 84—;2 = sup a—v; < oo, (3.1.13)
(x1,x2,x3)ER | OX30X] (x1,x2,03)€R | 9X3
96 92
sup 4—M2 = sup —V; < oo, (3.1.14)
(x1,%2,%3)ER 8)638)62 (x1,%2,%3)ER 8352
9% d°
sup —Lg = sup a_vzv < 0o, (3.1.15)
(x1.%2.13)€R | 0X3 (x1,x2,%3)€R | 943

From (3.1.7)) — (3.1.15]), estimation ((3.1.6)) follows. =

Lemma 3.1.3 Let p(x1,x2,x3) be the distance from the current point of the open par-
allelepiped R to its boundary and let 9 /91 = 19 /dx| + 00 /dxs + @39 /dx3, aF +

0622 + 0632 = 1. Then the next inequality holds

< cp 2 (x1,%2,x3), (x1,%2,x3) ER (3.1.16)

88M(XI,X2,X3)
o3

where c is a constant independent of the direction of differentiation d/dl, u is a solu-

tion of the problem (3.1.1)).

Proof. Since the sixth order derivatives of the solution # of the form
9%/ Qx? 8x§q8x§_2p 24 p+g+s =23 are harmonic and by Lemma are bounded

in R, any eighth order derivative can be obtained by twice differentiating some of these
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derivatives. The Lemma 3 from [57] (Chap. 4, Sec. 3) is illustrated in following,

Let u is a bounded and harmonic function in R, (Ju| < M). Then any derivative DPu of

the oder |B| =k, k=1,2,..., at the point x € R satisfies the following inequality,
A\
|D%4§A4(—) K
p
where p is the distance from the current point to the boundary of R hence, we have

A¥u(xy,x0,x
max  max (x1, é’ 3) <c1p 2(x1,x2,x3), (x1,x2,x3) €R.  (3.1.17)
0<p<80<v=8—u|gx{ dx¥ox; * "

From inequality (3.1.17), inequality (3.1.16) follows. m

Leth>0,and a;/h > 6,i=1,2,3, integers. We assign R", a cubic grid on R, with step
h, obtained by the planes x; = 0,h,2h, ..., i = 1,2,3. Let Dj, be a set of nodes of this

grid, R, = RN Dy, (see Fig. @), th =TI;NDy, and I, =1, Ul U...Ulgp.

X3

Figure 3.1. R, = RN Dy,
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Let the Averaging operator R with twenty seven points be defined as follows (see [58]])

1 6 18 26
Ru(xy,x2,x3) = 3 142(1)”P+3Z(2)”P+ 2(3) ur |, (x1,x2,x3) €R,
p=1 q=17 r=19

where the sum } ;) is taken over the grid nodes that are at a distance of Vkh from
the point (x1,x2,x3),(see Fig. (3.2)), and up, uy, and u, are the values of u at the

corresponding grid points.

p:
W -k

®\/2h
#*+/3h

Figure 3.2. Twenty six points arount center using in operator R.Each point has a
distance of \/kh from the point (x1,x,x3).

We consider the finite difference approximations of problem (3.1.1)):
up = Ruy, onR", up,=@; onTjy, j=1,2,....6. (3.1.18)

By the maximum principle (see, [59], Chap.4), problem (3.1.18) has a unique solution.

In what follows and for simplicity, we will denote by c,cy,c3, ... constants which are
independent of /4 and the nearest factor, the identical notation will be used for various

constants.

Let R*" be the set of nodes of the grid R" whose distance from I is kA. It is obvious
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that 1 <k < N(h), where
N(h) = [min{ay,az,a3} /(2h)]. (3.1.19)

We define for 1 < k < N(h)

1, (x1,x2,%3) € R¥,

0, (x1,Xx2,x3) € R"\RM
Lemma 3.1.4 The solution of the system
W =RvE+ 5 onR", vE=0 onTy,
satisfies the inequality

max vk <6k, 1<k <N(h). (3.1.20)

(X] A2,X3 ) ERh

Proof. Let W]Z is the function defined on R;, UI';, and defined as a conditional funcion

(

0, (x1,x2,x3) €Iy,
Wh =1 6m, (x1,x,x3) ER, 1<m<k, 3.1.21)

6k, (x1,x2,x3) €ER., k<1< N(h).

\

It is clear that
max wfl < 6k.

(X] X2,X3 ) eRh

we have
whk —Rwk > £5 on Ry k=1,2,...,N(h). (3.1.22)

The correctness of inequality in (3.1.22)) is shown for some examples in following:

Example 1: If m = k then f/l( = 1. In consider of Fig. |i Fig. 1b and Fig. li

%w;‘l is:
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k then f}’f = 1. In consider of Fig. (

Example 2: If m

k
h

-

165
Rk =2
YT 64

k
h

165

ot W

k
h

=W

165
64

2 (6k) = 6k —

If m # k and m < k then f¥ = 0 and Rw is:
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Rk — 1—;8[14(2(6(,11— 1)) +4(6m)) +
3(7(6(m— 1)) +4(6m) +6(m+ 1))+ (6(6 (m— 1)) +2(6 (m+1)))] =
6k—£:wﬁ—§:>w’h“—giwlfl:£ >0=fp

If m # k and m > k then f¥ = 0 and Rw is:

Rk = é [14 (6k) 43 (12 (6k)) + 8 (6k)] = 6k = wh = wf —Ruwk =0 = fF

Figure 3.5. The selected plane with 9-point scheme in a square.

Then by the comparison theorem (see Chapter 4 in [59]), and by (3.1.21), we obtain
vl,‘, < w];, <6k on Ry,

this follows the inequality (3.1.20). m

Proposition 3.1.5 The equation holds

Rp, (x0,y0,20) = u(x0,y0,20) (3.1.23)

where p,(x10,%20,%30) is the seventh order Taylor’s polynomial at (x10,X20,%30) and u
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is a harmonic function.

Proof. Here it has a similar proof of proposition in Chapter (2)) and taking into

account that the function u is harmonic, by exhaustive calculations, we have

Rp, (x10,%20,X30) = (14 (p, (x10 + h,x20,x30) + p,(x10 — h,x20,X30) +

128
P7(x10,%20 + 1, x30) + P (x10,%20 — 1, %30) + P;(x10,%20,%30 + /1) +

P, (x10,%20,%30 — h)) 4+ 3 (p, (x10 + h,x20 + b, x30) + P, (X10 + I, X020 — B, x30) +
P, (x10 + h,x20,%30 + 1) + p, (x10 + A, x20,X30 — h) + p,(x10 — Iy X20 + h,x30) +
P, (x10 = h,x00 =, X30) + P (10 — B, %20, %30 +h) + p,(x10 — Ay X20,X30 — h) +
P, (x10,%20 + h,x30 + 1) + p,(xX10,X20 + A, X30 — h) + p,(x10,X%20 — By, X30 + ) +
P, (x10,%20 — h,x30 — 1)) + (P, (x10 + X200 + 1, x30 + 1) +

P, (x10 +h,x20 +h,x30 — h) + p,(x10 + I, x20 — h,x30 + h) +

P, (x10 + h,x20 — h,x30 — h) + p,(x10 — h,x20 + h,x30 + h) +

P, (x10 — h,x20 + h,x30 — h) + p,(x10 — hyX20 — h,x30 + h) +

P, (x10 — h,x20 — h,x30 — h)) = u(x0,¥0,20) +

15 5 0%u(x10,%20,%30) 1o 9%u(x10,%20,%30)
—h h
& Z gy 38 Z o

l 1

_|_

(x10,%20,% 1 9%u (x10,%20,x
h4z Z 105%20 30)Jr h62 (x10,X20 30)Jr

P u = 8x.28xj 1536 ~ Ix?

46 u (x10,%20,%30) . 9%u (x10,%20,X30)
1536 Z Z ( 8xi28xj + 8x?3x§ +

i=1j=i+1

12 ¢ 9% (x10,%20,%30)

1536 8x%8x%8x%

2 (9 (d*u(x0,y0,20) +92M(X0,y0,zo) +32M(x0,yo,zo) N
ox? ox? dy? 072

d [ 9%u(x0,y0,20)  9*u(x0,¥0,20)  9*u(x0,¥0,20)
8_y2< T 1 e >+

u (XO,yO,ZO) +
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%(azu(xoayodo) +32M(X07yo,Zo) n ‘92M(xo,yo,20)))jL

dx? dy? 272
L (9 (QPulxoyo,z) | 9ulxo.y0.%0) | 9%u(x0,30:2) )
1536 \ ox* ox? dy? 27>
d [ 9%u(x0,y0,20)  9%u(x0,¥0,20)  9*u(x0,¥0,20)
oy* ( dx? * dy? + 07> +
9 (d%u(x0,y0,20) = 0%u(x0,¥0,20) = 9°u(x0,¥0,20)
a4 ( 0x? + dy? + 072 ) +
9%u (x0,y0,20) | 9%u(x0,Y0,20) N 9%u(x0,y0,20) N
8x28y2 dx? dy? 27>
9%u XO,yo,zo 9%u (xo,y0,20) | 9%u(x0,y0,20)
8x2&z2 ( - dy? " dz? ) *
9%u( XO,y07Zo 9%u (x0,0,20) n 9%u (x0,y0,20) \ | _ (X0.70.,20)
ayZaZ ayz azz - 07)’07 0

Lemma 3.1.6 Let u be a solution of problem ((3.1.1)). The inequality holds

h6
max (Ru—u| < ez k=12, N(h) (3.1.24)

(X] X2,X3 ) eRkh

Proof. Let (x19,X20,X30) be a point of R', and let
Ro = {(x1,x2,x3) : |xi —xi0| < h,i=1,2,3}, (3.1.25)

be an elementary cube, some faces of which lie on the boundary of the rectangular
parallelepiped R. On the vertices of Ry, and on the center of its faces and edges lie the
nodes of which the function values are used to evaluate Ru(x19,x20,X30). We represent
a solution of problem (3 in some neighborhood of xy = (x10,x20,%30) € R by
Taylor’s formula

u(x1,x2,x3) = p7(x1,X2,%33%0) + r8(X1,X2,%35%0), (3.1.26)

where p,(x1,x2,x3) is the seventh order Taylor’s polynomial, rg(xy,x2,x3) is the re-

mainder term. Taking into account that the function u is harmonic, we have

Rp, (x10,%20,%30;X0) = u(X10,%20,%30) (3.1.27)
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Now, we estimate rg at the nodes of the operator R. We take a node (x19 + &, x20,x30 +
h) which is one of the twenty six nodes of R, and consider the function

s s
a(s) =u | x10+—=,x0,x30+ — |, —V2h<s<+V2h 3.1.28
(s) ( 10+ 7552030 \/§> ( )

of single variable s, which is the arc length along the straight line through the points
(x10 — h,x20,Xx30 — h) and (x10 + h,x20,x30 + h). By virtue of Lemma 3.1.3] we have

dBu(s)
ds®

<c(V2h—s)"2, 0<s<V2h. (3.1.29)

We represent the function (3.1.28)) around the point s = 0 by Taylor’s formula

u(s) = p1(s) +78(s),

where p7(s) = p, <x10 + \‘/Li,xzo,xm + \%) is the seventh order Taylor’s polynomial of

the variable s, and

r3(s) =13 <X10+%,X20,X30+ %;m) . |s| < V2h, (3.1.30)

is the remainder term. On the basis of the continuity of 73(s) on the interval [— V2h, \/ih]

and estimation (3.1.29),we obtain

rg (x10 + 7, X20,X30M5X0) = EIEE()?S(\/E/?_E)
1 V2h—¢ .
< lim |e= / (Van—e—1) (V3h—1) 2
e—+0 | 7!
0
2h
< c1h6,0<8§\/_7 (3.1.31)

where ¢ is a constant independent of the choice of (x19,x20,X30) € RF! . Estimation
(3.1.31)) is obtained analogously for the remaining twenty five nodes on the closed

cube (3.1.25). Since the norm of the operator R in the uniform metric is equal to one,

by virtue of (3.1.31)), we have

|Rrs (x10,%20,x30)| < c2h®. (3.1.32)
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From (3.1.26), (3.1.27)) and (3.1.32)), we obtain

| Rue(x10,%20,%30) — 1 (X10,%20,%30) | < ch®,

for any (Xl(),XQo,X30) e R, Now, let ()Cl(),XQ(),X3()> be a point of Rkh, for2 <k < N(h)

By Lemma for any k, 2 < k < N(h), we obtain
h6

= (3.1.33)

|Rrg (x10,%20,%30)| < €3

where c3 is a constant independent of k, 2 < k < N(h), and the choice of (x;9,x20,X30) €

R¥_On the basis of (3.1.26)), (3.1.27)), and (3.1.33)) estimation (3.1.24)) follows. m

Lemma 3.1.7 Assume that the boundary functions @;, j = 1,2,...,6, satisfy condi-

tions ([3.1.2)-(3.1.5). Then
max [uy —u] < ch®(1+ [Inh)), (3.1.34)
Rl

where uy, is the solution of the finite difference problem (3.1.18), and u is the exact

solution of problem (3.1.1).

Proof. Let
€y=up—u onRk". (3.1.35)
By (3.1.18) and (3.1.35) the error function satisfies the system of equations
& = Rep+ (Ru—u) onR", g,=0 onT". (3.1.36)
We represent a solution of the system (3.1.36) as follows
N(h)
&= &, (3.1.37)

where €, 1 <k < N(h), N(h) defined by (3.1.19), is a solution of the system

ef =ReF+vE onR", ef =0 onT”, (3.1.38)
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when

Ru—u on Rkh

0 on R"\RM.

Then for the solution of (3.1.38) by applying Lemmas[3.1.4and [3.1.6] we have

h6
max 8£‘<c—, 1 <k<N(h).
(x1,x2,x3)ER" k

On the basis of (3.1.35)), (3.1.37), and (3.1.39), we obtain

max  |uy, —u| < ch® (14 |Inhl).
(x1,%2,x3) ER"

Let w be a solution of the problem
Aw=0 on R, = Y OIle, j=12,...,6,
where y;, j = 1,2,...,6 are given functions and

v eCHMI), 0<A <1, j=1,2,...,6,

Yy = Yy on Yy,
yu Py | Py
o1} * org |tk =0 on Yy

Lemma 3.1.8 The estimation holds

max |, — 0| < ch*,
Eh

(3.1.39)

(3.1.40)

(3.1.41)

(3.1.42)

(3.1.43)

(3.1.44)

where @ is the exact solution of problem (3.1.40), y, is the exact solution of the finite

difference problem

oy =Ry, onR", o, =y; onT, j=1,2,....6.

Proof. It follows from Lemma 1.2 in [54] that
39
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4
"o (x1,x2,x3)
IxTPax10xy P

max max sup

< oo,
0<p<q0<g<L2— p(xl X2.x3)ER

where u is the solution of problem (3.1.40). Then, instead of inequality (3.1.17), we
have

B w(x1,x2,x3)

axﬂ5xvax8 H—v SCP_4(X1,)C2,X3), (x1,%2,x3) €ER,  (3.1.46)
1 2

max max
0<u<80<v<8—pu

where p(x1,x2,x3) is the distance from (x1,x7,x3) € R to the boundary I". On the basis
of estimation (3.1.46) and Taylor’s formula, by analogy with the proof of Lemma[3.1.6|

we have
]’l4
max |[Ro—-o|<c5, k=1,2,...,N(h).
(x1,%2,x3) ERKA k
We put
E=0,—® onRhUFh.

Then, as the proof of Lemma[3.1.7, we obtain

N(h) 1
— < —
rr%%x |y — o < cah® E: P

3.2 Approximation of the First Derivative

Letv= a = and let ®; = 59 onl’j, j=1,2,...,6, and consider the boundary value

problem:

Av=0 onR, v=®; onT;, j=1,2,...,6, (3.2.1)

where u is a solution of the boundary value problem (3.1.1).

We define the following operators @, v =1,2,...,6,
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Dip(up) =

Dy (up) =

(Dph(uh)

1
m (—25(;)1 ()Q,Xg,) +48Mh(h,)€2,)€3) — 361/1;,(2/’1,)62,)63)

+ 16uy,(3h,x2,x3) — 3up(4h,x2,x3)) on T, (3.2.2)

1
m (25([)4()62,)63) — 48uh(a1 — h,XQ,X3) + 36uh(a1 — 2h,XQ,X3)

— 16uy(ay —3h,xp,x3) + 3up(a; —4h,x,x3)) on I, (3.2.3)
0

9% onT", p=2.3.5.6, (3.2.4)
8x1 P

where u), is the solution of finite difference problem (3.1.18).

Lemma 3.2.1 The inequality is true

[P (un) — Prn(u)| < e3h°(1+ [Ink]), k= 1,4, (3.2.5)

where uy, is the solution of problem (3.1.18)), u is the solution of problem (3.1.1]).

Proof. It is obvious that ® (1) — P,u(u) =0 for p=2,3,5,6. For k=1, by (3.2.2)

and Lemma (3.1.7] we have

| @1 () — Pra(u)| =

1

o7 ((=25¢1(x2,x3) + 48up(h,x2,x3) — 36u,(2h,x2,x3)

+ 16uy,(3h,x2,x3) — 3up(4h,x2,x3)) — (—25¢1 (x2,x3) + 48u(h,x3,x3)

— 36u(2h,x3,x3) + 16u(3h,x3,x3) — 3u(4dh,x2,x3)))|

1
< —— (48 |up(h,xp,x3) — u(h,x2,x3)| + 36 |up(2h, x2,x3) — u(2h, x2,x3)|

— 12h

+ 16 |uy,(3h,x2,x3) — u(3h,x2,x3)| +3 |up(4h,x2,x3) — u(4h,x2,x3)|)

< csh®(1+[Inh|).

In following shown the same inequality is true when k = 4 also,
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1)~ B1()] = | (~250s(x2,33) + 481ty — 2, )

— 36uy(a; —2h,xp,x3) + 16uy(a; —3h,xp,x3) — 3uy(a; —4h,xp,x3))

— (=254 (x2,x3) + 48u(a; — h,xp,x3) — 36u(a; —2h,xp,x3) + 16u(a; —3h,x,x3)
— Sulay — 4,00, 3)] < 2 (48 un(ar — o) —ular — o, )|

+ 36 |up(ay — 2h,x2,x3)| — u(ay — 2h,x2,x3) + 16 |uy(a; — 3h,x2,x3)

—u(ay —3h,x2,x3) +3 |up(4h,x2,x3) —u(4h,x2,x3)|) < 05h5(1 + [Inhl).
m

Lemma 3.2.2 The inequality holds

max | P, (up) — Pr| < csh?, k=1,4. (3.2.6)

(x1,2,x3) €T

where @y, k = 1,4 are defined by (13.2.2)), (3.2.3), and ®; = g—;‘l only, k=1,4.

Proof. From Lemma it follows that u € C>°(R). Then, at the end points
(0,vh,wh) € T and (aj,vh,oh) € T% of each line segment

{(x1,x2,x3) : 0 <x1 <a;,0<x=Vh<ay,0<x3=wh<as}, expressions (3.2.2)

and (3.2.3) give the fourth order approximation of g—;l, respectively. From the trun-

cation error formulas it (see [61]) follows that

max  |®(u) — D] < csh®, k=1,4. (3.2.7)

(Xl X2,X3 ) 61"2‘

On the basis of Lemma[3.2.1] and estimation (3.2.7), (3.2.6) follows,

max \Cbkh(uh) — q)k‘ = maXx |q)kh(uh) — CIth(u) —{—CIth(u) — q)k‘
(xy)ey, (xy)EY,i’

< max By (up) — Ppp(u)| + max [Py (u) — Py
(xy)En: (xxy)EY,

<cht, k=1,4.

We consider the finite difference boundary value problem
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vp =Ry, onR", vy =@y onT), j=1,2,....6, (3.2.8)
where Wy, j =1,2,...,6, are defined by (3.2.2)-(3.2.4).

Theorem 3.2.3 The estimation is true

_ du

< ch*, (3.2.9)
8x1

max
—
(x1,%2,%3)€ER

v

where u is the solution of problem (3.1.1)), vy, is the solution of the finite difference

problem (3.2.8]).

Proof. Let

g =v,—v onR", (3.2.10)

where v = g—;‘l From (3.2.8)) and (3.2.10)), we have

g = Re+(Rv—v) onR",

& = Pw(up)—v onT}, k=14, =0 onT) p=2356.
We represent

S )
& =€, + &, (3.2.11)

where

1 SKI h

g = NRg, onR", (3.2.12)

g = Du(up)—v onl}, k=14, & =0 onlh p=2356; (3.2.13)
g = Reg+(Rv—v) onR", g =0onT}, j=12,..6. (3.2.14)
By Lemma [3.2.2 and by the maximum principle, for the solution of system (3.2.12),

(3.2.13)), we have

max ey <max  max | ®gu(up) —v| < cah®. (3.2.15)
(x1.12.%3)€R" 9=14 (x) x3,%3) €T}
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The solution 8}% of system (3.2.14) is the error of the approximate solution obtained by
the finite difference method for problem (@), when on the boundary nodes I j;, the
approximate values are defined as the exact values of the functions ®; in (3.2.1). It is

obvious that ®;, j =1,2,...,6, satisfy the conditions

®; cCOMI,),0<A <1, j=1.2,...,6, (3.2.16)

(b” — ¢V on Y‘uv, (3.2.17)

2 2
P Jld N dy®
g oy Iify

=0 on Yuy. (3.2.18)

Since the function v = g—;‘l is harmonic on R with the boundary functions ¥;, j =

1,2,...,6, on the basis of (3.2.16)- (3.2.18), and Lemma [3.1.8 we obtain

max |&;| < ceh®. (3.2.19)
(X] X2 ax3)ekh

By (3.2.T1), (3.2.15)) and (3.2.19) inequality (3.2.9) follows. m

Remark 3.2.4 On the basis of Lemma the sixth order pure derivatives are bounded

in R. Therefore, if we replace the formulae (3.2.2)) and (3.2.3)) by the fifth order for-

ward and backward numerical differentiation formulae (see Chap.2 in [41]), then by

analogy to the proof of estimation (3.2.9)), we obtain

max < ch®(1+ [Inh|).

(X] M2,X3 ) Gkh

_du
Vh ox1

3.3 Approximation of the Pure Second Derivatives

2 . . . .
We denote by ® = % The function @ is harmonic on R, on the basis of Lemma|3.1.1
1

is continuous on R, and is a solution of the following Dirichlet problem
Aw=0 onR, w=y; onl', j=1,2,...,6, (3.3.1)

where
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9%,

X = —>, T=2,3,5,6, (3.3.2)
8x%
02 22
Xy = — (—a;%v +_8;P%v) , v=14. (3.3.3)

Let wy, be the solution of the finite difference problem
o, =Rw, onR", @, =yx; onT", j=1.2,...,6, (3.3.4)

where ¥, j =1,2,...,6 are the functions determined by (3.3.2) and (3.3.3).

Theorem 3.3.1 The estimation holds

max |@y, — | < ch*, (3.3.5)
Kh
where @ = ‘3—;‘, u is the solution of problem (3.1.1)) and wy, is the solution of the finite
1

difference problem (3.3.4)).

Proof. From the continuity of the function @ on R, and from (3.1.2)-(3.1.5) and (3.3.2),

(3.3.3)) it follows that

X €CHHI), 0<A <1, j=1,2,....6, (3.3.6)

Xu = Xv on Yuy, (3.3.7)

‘92%# azlv+‘927€u
g Jry  dthy

The boundary functions x;, j = 1,2,...,6, in (2.3.T) on the basis of (3.3.6)-(3.3.8)

satisfy all conditions of Lemma[3.1.8]in which follows the proof of the error estimation

G33). =

=0 on . (3.3.8)
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Chapter 4

NUMERICAL EXPERIMENTS

In this chapter we present the numerical results obtained in support of the theorical part.
Our aim is to show the high order accurate approximation of the first and pure second
derivatives of the Laplace equation on a rectangle and a rectangular parallelepiped.
Further, we show how these results are obtained and their application for different

boundary functions and different dimensional domains.

All results are obtained by using the Strongly Implicit Procedure.

4.1 The Strongly Implicit Procedure (SIP)

The Strongly Implicit Procedure is a method for finding the approximate solution of
sparse linear system of equations. The linear system of equations can be shown in
matrix form (Au = ¢), for which SIP is used effectively when matix A has many zero
entries and the non-zero entries lie on a finite number of diagonals. In SIP Incomplete
LU decomposition is used, which is the approximation of the exact LU decomposition

solution.

In our studies A is related to eight-point averaging operator when applied on a rectangle
and to twenty-six point difference operator on a rectangular parallelepiped. Vector u
is a vector of unknown variables in the finite difference approximation of the boundary
value problem. On the right hand side of the equation, vector g corresponds to the value

of the boundary function, when the averaging operator is applied for the approximate
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solution of Laplace’s equation on each point of domain grid. In the two dimensional
case if the rectangular mesh is dimensions of M x N, then the matrix A has order
MN x MN. Each row of the matrix A has the coefficients of the unknown variables
of an equation corresponding to each point of grid. In the three dimensional case
if the mesh has M x N x Q points then matrix A has dimensions of MNQ x MNQ.
If the mesh size is & in any direction of domain then by choosing a small value of
h the grid will have many points which results in a large number equations related
to each point. Thus, it is required to solve a large system of linear equations Au =
g, and using the method of LU decomposition takes impractical processing time and
amount of memory. The SIP helps to improve the CPU time as regards to the non-zero
entries it lies only on finite number of digonals. The following figure (Figure (4.1)))
shows the matrix A for the nine point scheme with 9 diagonals. The main diagonal
is called by Ajg) and the adjacent diagonals are {A[_l], A[l]}. There are two diagonal
with a distance of M from main diagonal shown by {A[, M) A[M}} and the adjacent
diagonals of these diagonals {A_y_1, A|_p417}> {Am—1]> Ajpr+1) } are nine different
diagonals (see Figure (4.2))). The label of each diagonal is chosen taking into account
the distance from main diagonal (the number of entries needed to move to the right
to reach the upper side diagonals as a positive value and number of entries needed
move to down to reach the loweside diagonals as a negative value used for subscrpt of
A). In the nine point scheme, each point has eight neighbor points which are used by
averaging operator for the approximate solution of Laplace’s equation and illustrates
the coefficients of the unknown variables in the correct row of matrix A corresponting

to the index grid points (see Figure (4.3))).

47



In the method of LU decomposition matrix A can be factorized as a A = LU where
L and U are lower and upper tiangular matrices respectively. These L and U can be
computed with partial pivoiting. The solution of LUu = g can be found by assuming
Uu =y, then by forward substitution Ly = g calculates y, and u is computed by back-
substitution using the system Uu = y. The new matrix A in SIP is defined instead of
matrix A, with a negligible matrix N (|[N|| << ||A||). Hence the new A can be factorized
by L and U (A = LU) and A has exactly same diagonal of A with some additional new
diagonals, Figure . Further we show how we can find the entries of L and U by
using different averaging operators. Now the iterative procedure can be done by using

the following equation:

(A+N)u=(A+N)u+(q—Au)
The iterative procedure is:
(A+N)u" = (A + Nyl + (g — Au™)

The (n+ 1) the iterative step u"Dof u can be computed by previous iterative infor-
mation u(" (Chapter 5 [71]]). The matrix LU is used instead of the matrix A + N (see
Figure (4.4))) and calculated before starting iterative procedure only once. The differ-

ence of 1) and u( is defined by d"1):
d™ =, 1) _,(n)
and the residual R is defined by:
RW =g —Au™
Then in the iterative procedure the following solutions are applied:
LOd™ =R", 4.1.1)
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followed by:
u ) — gl 4 ()
Equation (#.1.T)) can be solved by using forward and backward substitutions
Ly =R 4.1.2)
and
Td" =y, (4.1.3)

we demonstrate how the entries of L, U and the solution of linear systems (4.1.2) and

(@.1.3) for different averaging operators on different domain can be obtained.

[20 =4 -4 =1
-4 I -4 -1 -4 -1
-4 0 -4 -1 -4 -1
-4 W 4 -1 -4 -
-4 20 —4 -1 -4 -1
— 20 -4 -1 4 -1
-4 ID -1 -4
| -4 -1 0 -4 -4 -1
(-1 -4 -1 -4 20 —4 -1 -4 -1
[ -1 =4 4 20 -4 -1 4 -1
A= e -4 20 —4 -1 -4 -1
-1 = -1 -4 20 -4 -1 -4 -1
-1 -4 - -4 20 —4 -1 -4 -1
-1 4 -4 10 -1 -4
. | 0 -4
-1 4 1 -4 20 -4
1 -4 -1 4 20 -4
-1 -4 - -4 20 -4
-1 —4 -1 ~4 0 4
-1 4 -1 -4 10 -4
| -1 4 —4 20|

Figure 4.1. The coefficients of unknown variables of the equations corresponding to
each point of the grid when nine-point scheme is applied.
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M enfries

r

Figure 4.2. Matrix A for nine point scheme with 9 diagonals.

.
Lo

Figure 4.3. 8 neighboring points around point A, in nine point scheme.
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Figure 44. LU =A+N

4.2 Rectangular

The entries of L and U for nine point difference scheme is calculated by the following

recurrence relations [72]]:

Ly (i) =Arm— ()

Ly () Oy (i =M —1) + Li_y] (i) = A_py ()

Lip () Upy (i = M) + Li_pgyq) (8) = Ay (0)

Ly @) Upgy (i =M = 1) + Ly () Upg—1y (i = M) + Ly (i) = Ay (i)

Li_y—11 (i)

S

1) (F=M = 1) + Li_pg) (i) Upgy (i = M) +

Lippn) ) Upg—q) (i =M+ 1) + L1y () Upy (i = 1) + Ligy (i) = A (i)

~

] () Upngs 1) (i = M) 4 Li_pg0) () Uppg (i = M +1) + Ly (8) Upyy (i) = Apy (i)

Li_yy () Upg (i = 1) + Ligy (1) Upg—1) (i) = Apy—1 (i)

Li_q () Uppgg 1) (i = 1) + Lyoy (8) Uppgy (i) = Apg (7)
where Ly (i) and Upy (i) are related to the value of the i-th row, on diagonals which

have a distance M from the main diagonal in matrix L and U, respectively.

Hence, the entries of L and U can be obtained by:
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Loy (i) = Ay (9)

Li_y] (i) = Ay (8) = Loy () Upy (i =M = 1)

Ly (i) = Apaa () = Lioan (1) Upy (i — M)

Loy (i) = Ap_q) (8) = Limy—1) () Uppg (i = M = 1) = Li_pg) (i) Uppg—1) (i = M)

Lo (i) = Aty () = Liyg1) () Oppgor) (i — M — 1) = Li_yp) (1) Oy (i — M) —
Ly () Oy (i = M +1) = Ly () Oy (i — 1)

Oy (0) = (A (i) = Liag () Upa oy (0= M) = Liopa () Uy (= M +1)) /L (i)
Upg—1) (i) = (Apr—1) () = L=y () Upg (i=1)) /L) (D)

Upng (i) = (A (0) = Lizyy () Oy (1= 1)) [Ligp (D)

U1 (8) = Ay () / Ly (2)

Next step is the iterative procedure. It means the forward and backward substiution to

find the solution of y in and d in (4.1.3) where directly y (i) and d (i)
(v (i) and d*) (i) related to point i) is computed by the following:
Y0y = (R (6) ~ Ly () 5 (=M= 1) = Ly () 5 (i M)

Lo (0™ (1= M+1) = Ly () 3™ (= 1)) / Lgy ()

and

d" (i) = Y (@) = Oy (i).d™ (i+1) = Opgy) (1) .d™ (i+M 1) -
Oppgy (1) .d™ (i+ M) — Oy (0).d™ i+ M+ 1)
4.3 Rectangular Parallelepiped

The entries of L and U for the nine-point difference scheme is calculated by the fol-

lowing recurrence relations:
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Li_yn-m—1)(0) = A_pn—p—1) (i)

Li_yn—m—1) () Upy (i = MN =M = 1) + Li_yn-m] (i) = Ap_pn—n (D)
Li_yn—m) () Upy (i = MN — M) + Li_yy—p41) (0) = Al-pn—m+1 (D)
Li_pyn—p—1) () Upgy (i = MN =M — 1) + Li_ysy_pq) () Upg—1) (i = MN — M) +

ZJ[—MNfl] (i) = Al_MN—1] (@)

Li_yn-—m—1) () Upgyr) (i = MN =M — 1) + L_py—pg) (0) Uppg) (i = MN = M) +

Liyn-ms1) () Upg—1) (i =MN =M+ 1) + Ly (i) Upyy (i = MN — 1) +
Li_yn (i) = Ap_p (0)
Ly (D) Uppgy1) (i = MN = M) + Li_yyy—pg1) () Uppg (i = MN =M + 1) +

Li_yn) () Uy (i = MN) + Li_pyn 1) (0) = A1 (0)

Li_yn—1] @) Upgy (i =MN — 1) + Li_pyn) () Upg—1) (i = MN) + Li_pgysp—1) (i) =
Al v (D)

Li_yn—1) () Upgyq) (i = MN — 1) + Ly (i) Upg (i = MN) +

Li_yn+1] () Upg—1) (i =MN +-1) + Li_ynqpr—1) () Uy (i =MN +M — 1) +

Li—ynem) () = A_ynm (0)

Ly iny (0) Uppgyy) (i = MN) + Ly 07 (0) Opgy (= MN + 1) +

Li_yneam) () Uy (i = MN +M) + Li_yvim11) () = A—pvam+1) (D)
Li_yn-—m—1) () Upgny (i = MN =M = 1) + Li_yy ) (i) Upgy—1) (i = MN = M) +
Li_yn—1) () Upan—pa (i = MN — 1) + Li_yyz) (i) Upgy—pyg—1) (i = MN) +

Ly (@) = App—1 ()

Liyn-—m—1) () Upan 1) (= MN =M — 1) + Ly g (8) Uy (i = MN = M) +

Li_yn—m+1) () Upgy—1) (i = MN =M + 1) + Li_pyy—1) (1)) Uy —pr41) (i = MN — 1) +
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Li_yn) () Upgn—p) (i = MN) 4 Li_pgy1) (D) Uy —pg—1) (i = MN + 1) +

Lipy) () Upy (i =M — 1) + Li_pg (i) = Aj_p (4)
Li_yn—p) ()) U1 (i = MN — M) + Li_yiy—pr11) (0) Upy (i = MN =M + 1) +

Li_yn) (D) Upan—ma41) (i = MN) + Li_pyn1) (0) Uppav—pgy (i = MN + 1) +

Ly () Uy (i = M) + Li_pg41) (0) = Appgs) ()

Li_yn-—m—1) () Upan ) (i—=MN =M — 1) +

Li_yn- (i)

-

wanm—1) (i =MN =M) + Li_pyy 1) (i) Upgny (i = MN = 1) +

Li_yn () Uppg—1) (i = MN) + L gy pr—1) () Upan—p) (i = MN +M — 1) +
L savoan) () Oipayag 1) (= MN+ M) + gy 1y () Oy (i— M — 1) +
Ly () Upg—1) (i=M) + Li_y) (i) =

A () Limpv—m—1) () Upansmggn) (i—=MN =M — 1) +

Li_yn—m) () Uy (i = MN — M) +

Li_yn—m+1) (D) Uppgnppg—1) (i = MN =M +1) +

L san) () Oipgay) (i = MN — 1) + Ly (1) Dipany (i — MN) +

Li_pin1) () Upav—1y (1 = MN +1) + Li_yvemr—1) () Upav—pa 1) (i = MN +M — 1) +

Li_yinam) () Upan—pg) (i — MN +M) +

Li_ynem+1] D) Upgv—pg—1) (i = MN + M +1) +

Li_y—1) (D) Upgga) (i =M = 1) + Li_pg (i) Upgy (i = M) +

Lioprn) ) Upg—1) (=M +1) + Ly () Upy (i = 1) + Lyg) (i) = Apg) (0)
Li_yn—m) () Upan+pg1) (i — MN — M) +

Lipin—ma41) () Uy gy (i = MN =M 4-1) + Li_pyy (8) Uy 1) (( — MN) +

Li_yn+1) () Upany (i = MN + 1) + Li_yiva1) () Uppav—page1) (i = MN + M) +
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Li_ynm1) () Uy (i—= MN +M +-1) +

Ly () Uy (i = M) + Li_pg1) () Upgy (i =M + 1) + Ligy (i) Upy (i) = Apyy ()

Li_yn—1) () Upgnan) (i = MN = 1) + Li_ygn) () Upgn s —1) (i = MN) +

Li_yn+m—1) () Upgny (i = MN +M — 1) + Li_pyinp) () Upyav—1) (i = MN + M) +

Ly () Upgy (i = 1) + Ligy (8) Uppg— 17 (i) = Apg—1) (9)

]

Li_yn—1) () Upangm1) (i=MN = 1) + Li_yw) () Upan ) (i = MN) +

Li_yn1 (0)

-

panm—1) (E=MN+1) + Li_yy iy 1) (1) Upay 1) (i = MN +M — 1) +

Li_ynm) () Uy (i = MN +M) + Li_yyn iy 11) () Upgy—1) (i = MN +M + 1) +

Ly () Upga) (= 1) + Ligy (8) Uppg (8) = Apag (0)

Li_yn) () Upangaas1) (0= MN) + i) (8) Upgnn) (i = MN +1) +

Li_ynm) () U1 (i = MN +M) + Li_yy s pr41) (0) Upgny (i = MN +M + 1) +

Lio) (1) Upg11) (1) = Apggn) (0)

L) () Uy (i =M = 1) + L_pg) () Upg—1) (i = M) +

Li_y) () Upgn—na (i = 1) + Lig) (1) Upan—pa—1) () = Apan—y—1) (0)

Li_y—1) () U1 (i = M = 1) + Li_pg) (i) Uppgy (i = M) +

Li_pr) (D) Uy (i =M + 1) + L) () Upgy—pg1) (i = 1) +

Lio) (1) Upgn—n) (1) = Apan—nn ()

Lip) () U1y (= M) + Li_pgyoq7 (0) Uy (i =M +-1) +

Lio) () Upgn—pm+1) (1) = Apgv—pr1) (0)

Li_y—1) () Upgngng) (i =M = 1) + Li_pg) () Upgv 1) (i = M) +

Li_y) () Upany (i = 1) + Lig) () Uppgn—1) () = Apav—1 (i)

Li_pyr—) () Upansns) (=M = 1) + Li_p (8) Upgyon) (i = M) +
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Li_yrn) (D) Upgnapg—1) (=M +1) + Li_yy () Upangy) (i = 1) +
Lig) (i) Upany (i) = Ay (0)

Li_y () Upanm1) (0= M) + Li_pgsq) () Upgygn (i = M+ 1) +
Lig) (i) Upan11) (8) = A1) (0)

Li_yy (1) Upgn-ean) (0 = 1) + Loy (1) Uppavsa—11 (8) = Apavma—1) (8)

Li_yy () Upgyemsn) (= 1) + Lio) (2) U (1) = Appavean (0)

Lio) () Upan 1) () = Apanaas) (0)

where Ly (i) and Uy (i) are related to the value of i-th row, on diagonals which have

a distance M from the main diagonal in matrices L and U, respectively.

Hence, the entries of L and U can obtain by:

Li_yn—m—1 (1) = A_pv—p—1) (i)

Li_yn-m) (D) = A-yn—an) (D) — Li-pn—m—1) () Uy (i = MN =M — 1)
Li_yn—m+1) (D) = Ayn—m41) (D) — Li—pv—n) () Upyy (i = MN — M)
Li_yn—1) () = A_yn—1] (0) = Li_pay—pr—1] () Upg) (i —MN =M — 1) +
Li_yn—m) (D) Uppg—1) (i = MN = M) Li_pn) (i) = Ay (0) —

Li_yn—m—1) () Uppgi) (i = MN =M — 1) + Li_yyy—pp) (i) Uppgg (i = MN — M) +
Li_yn—m+1) ) Upg—y) (i —=MN =M+ 1) + Li_yy—y (i) Uy (i = MN — 1)
Li_yns1) (D) = A-pn+1) () = Li-pnv—n) () Uppggr) (i = MN — M) +

L sa—aaon) (0 Oy (= MN = M+1) + Ly (1) Oy (i — MN)

Li_ynem—11 () = A _pvim—1) (8) = Li—pv—1) () Upg (i = MN — 1) +

Li_yn) (1) Uppg—yy (i — MN)
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Li_ynm) (D) = Aynea (D) — Liyn—1) () Uppggr) (i = MN — 1) +

Li_yn () Upgy (i = MN) + Li_ygy 17 (§) Upg—1) (i =MN + 1) +

Li_yinym—1) () Uy (i —MN +M — 1)

Li_ynem1) () = Aynam) () = Lizyw (D) Upggq) (i = MN) +
Li_yn41) () Opgy (i = MN +1) + Li_pyyaq) (0) Upyy (i — MN + M)

Li_y—1) () = Amy—1) (8) = Li—pn—m—1) () Uy (i = MN =M — 1) +
Li_yn—n) () Upgn—1) (i = MN = M) + Li_yn—1) (8) Upygn—pa (i = MN — 1) +
Li_yn () Upgn—pa—1) (i = MN)

Li_y (i) = A () — Li-yn—pr—1) () Upgy 1) (= MN — M — 1) +
Li_yin—m) () Upany (i = MN = M) + Li_pgy—pg1 (8) Upgy—1) (i = MN =M +- 1) +
Li_pn—1) () Upan—ma1) (i = MN — 1) + Li_yn1 (8) Uppgy—pgy (i = MN)) +
Li_yn+1) () Upan—yi—1) (i = MN +1) + Li_y_y) ()) Uy (i —M — 1)

Li_pr1) (8) = A1) () — Li—pav—ma (8) U1 (i = MN — M) +
Li_yn—m+1) (D) Uppgny (i = MN =M + 1) + Li_ygn) () Upgn—pa41) (i = MN) +
Li_yin41) () Upan—na) (i = MN +1) + L_pq (i) Upy (i = M)

L)) = A () = Li—pn—pm—1] () Uppgnpan) (i —MN —M — 1) +
Li_yin—m) () Upgnspg—1) (i = MN — M) + Li_pyy—1) (i) Uppgy (i = MN — 1) +
Li_yn) () Uppgn—1) (i = MN) + Li_pym—1) () Upan—p (i = MN +M — 1) +
Li_ynem) () Upan—pi—1) (i = MN +M) + Li_p—y (i) Upgy (i =M — 1) +

Ly () Upg—yy (i = M)

Loy (i) = Afg] (i) — Li_mn-—m-1) () U[MN+M+1} (i—MN—-M—1)+
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L v () Upan1an) (i — MN — M) +

Liyn—ms1] ) U1 (i = MN =M +1) +

Li_yn—1] () Upan41) (i = MN — 1) + Li_yn (i) Upgy (i = MN) +

Li_pin1) () Upan—1) (= MN +1) + Li_yivimr—1) () Upav—sa 1) (i = MN +M — 1) +

Li_yinm) (D) Upan—pg) (i — MN +M) +

Li_ynsm+1) () Upan—pp—1) (i —MN +M +1) +

Li_y—1) (D) Upg) (i =M = 1) + Li_pg (i) Uppgy (i = M) +

Upy (i) = (Apy (0) = Li—yav—n) () Uppavsma+) (i — MN — M) +

~

(=N—m+1) (D) Opangan) (i = MN =M + 1) + Li_yyn) (8) Uppgw 1) (i = MN) +
Li 1) () Oy (i = MN +1) + Li_pivyaa) () Upay—pay 1) (i = MN + M) +

Li_ynms1) () Upan—ag) (i = MN +M +1) + Ly () Upg gy (i = M) +

Ly () Opgy (i =M +1)) / Ligy (i)

U1 (i) = (A[M 1 (8) = Li-pn—1) () Upanpa) (i = MN — 1) +

Li_yin) () U g —1 (i = MIN) + Li_pygvepr—1) (8) Uy (i = MN +M — 1) +

Li_yymn) (D) Uppay—1) (i—MN +M) + Li_y1 (i) Upgy (i — 1)) /Ly (i)
Ui (8) = (Apa) (i) = Lipav—1] () Upan s 1) (i—MN — 1) +

Li_yn) (D) Upan-gaa) (i = MN) 4 Li_pgv1) (D) Upgvppa—1) (= MN 1) +

Li_ynm—1) () U 1) (i = MN +M — 1) + Ly 1 (§) U (i = MN + M) +

Li_yinsm+1] () Opav—1) (i = MN +M +1) + Li_yy () U1y (1= 1)) / Ligy (D)

U[MH} (i) = (A[M+1]() i[ —MN] (i )U[MN+M+1] (i—MN) +

Li_yn+1) () Upangn) (i = MN 4+ 1) + Li_ygyiar) (8) Upan gy (i = MN + M) +
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Li_ynms1) () Opny (i —MN +M +1)) / Ly (i)

Opanv—m—1) (i) = (Apav—mr—1) (1) = Li_pr—1 () Opy (i =M — 1) +
Ly () Opan—1) (i = M) + Ly (i) Upan—pg (i = 1)) / Ly (i)
Unan—mn (1) = (Apanv—nn () — Li_p—17 () Oy (=M — 1) +
Li_p (8) Up (i = M) + Li_pgy1) () Upgy—1 (i = M +1) +

Li_yy () Opan—p1) (i = 1)) / Ly (i)

Umn-—m+1) (0) = (Apanv—pr1) (D) = Li—g) () Uppgvgr) (i = M) +

L ppi1) () Opany (i =M+ 1)) / Ligy (i)

Umn-1) (0) = (Apav—1) (0) = Li—pyg—1) (1) Upayong) (i =M — 1) +

L () Opanmr—1) (i=M) + Ly (i) Uy (i = 1)) / Lygy (i)

Uany (1) = (Apany () — Liopr—1) ) Upavppgsn) (i — M — 1) +

Li_p) (8) Upava) (1= M) + Li_pg 1) () Upavgm—1) (=M + 1) +
Li_y) (i) OUpgngy (= 1)) / Ligy (i)

Umns1) (0) = (Apava) (0) — Oppansngn) (i = M) +

Li_ppi1) () Oy (i =M +1)) / Ligy (i)

Umnsm—1) (1) = (Apanv-em—1) (0) = Loy (0) Upayn (i = 1)) / Loy (i)

Umn+m) (1) = (Apanvea) (0) = Liza) () Upanns1) (i = 1)) / Lygy (i)

Uanm+1) () = Apanem+1) (8) / Loy ()

Next step is the iterative procedure. It means the forward and backward substiution to

find the solution of y in (4.1.2) and d in (4.1.3) which directly y) (i) and 4" (i)

(v (i) and d") (i) related to point i) is computed by following:
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¥ (0) = (R™ () = Lcaay—ya—1) () 5 (= MN =M — 1) -

Liaay—p (1) Y (i = MN = M) — Li_pgy—pr0) () Y™ (i—MN =M + 1) —

Li_yan—1) () Y™ (i= MN = 1) = L_yqw) (i) 3" (i— MN) —

Li_yann) () Y™ (i=MN +1) — Li_yy (i) 3" (i = 1) —

Li_pansa—1) (D) Y (= MN +M = 1) — Li_y ) () Y™ (i — MN + M) —

Li_yv ) () 3 (= MN +M +1) = Ly oy () Y™ (i—=M = 1) —

Lig (i) 3™ (= M) = Li_ggi) () 3™ (1= M+ 1) = Ly (i) 3™ (i = 1)) / Ly (i)
and

d" (i) = y" (i) — Oy (i) .d™ (i+1) = Opgy) (i) d™ (i+M 1) —

g (1) .d™ (i +M) — gy (i) .d" (i + M +1) —

Opan—na—1) (i) .d™ (i MN =M — 1) = Uy pg (i) .d" (i 4+ MN — M) —
Opan-—prs1) (i) d™ (i+ MN =M + 1) = Upgag—y) (i) .d™ (i+M — 1) —
Oppaw) (i) d™ (i+ MN) — Opgy oy (6).d™ i+ MN +1) —

Opanya—1) (i) d™ (i MN +M — 1) — Opgyag (i) d™ (i+ MN + M) —
Opan ey (1) -d™ (i+ MN+M+1)

4.4 Numerical Examples

In the following it support the theorical part by numerical results are obtained in a
rectangle and rectangular parallepiped by using incomplete LU decomposition. The

results in each domain has three part:

* The approximate results for the solution of the Dirichlet problem of Laplace’s

equation
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* The approximate results for the first derivative of the solution

» The approximate results for the pure second derivative of the solution

The grid spacing (difference step size) & is defined by h = 2—1,,, n=34,...7.

4.4.1 Domain in the Shape of a Rectangle

LetIT={(x,y): =1 <x< 1,0 <y < 1}, and let v be the boundary of I1. We consider

the following problem:
Au=0 on II, u=¢(x,y) ony;, j=1,2,3,4, 4.4.1)

where ¢ is the exact solution of this problem.

. . . —h . .
Let U be the exact solution and Uj, be its approximate values on IT" (which contains

the nodes using on the square grids formed on IT) of the Dirichlet problem on the rect-

U—Uym||
angular domain IT. We denote by ||U — Uy | = max [U — Uy[, R} = w
i |00

4.4.1.1 Fourth Order Accurate Forward and Backward Formulae

In the following examples the results are demonstrated in three tables. The first table
is related to the approximate of problem (#.4.1)) , the second and third tables is cor-
responds to the approximate values of v = % , 0= ‘3—1’2‘, respectively. For instance
in the first example,Table (@.I)) it shows the approximateion of problem (4.4.1)) and in
Figure (4.5) the graphs show the approximate and exact solution. Table (4.2)) and Table
(4.3) show the approximate solutions which, converges as O(h*). Also in support of

. 2 . o
the numerical part the shapes of v = % , 0= 2% and their approximations are shown
X dx

in Figure and Figure (4.7), respectively.

These results are obtained for different boundary functions which are given below.
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Example: Let ¢ € C%3% on Yi,Jj=1,2,3,4, where

(2 ) s (1B y
o(x,y) = (x“+y°) @ cos ( 30 arctan (x)) (4.4.2)

Table 4.1. The approximate of solution in problem (4.4.1) when the boundary
function is in C%3%.

h | |ju— | Ry

1.461957062700077588846E —8 | 62.01

oo|—

2.357603150231049011533E — 10 | 63.77

—_
oxl"

3.696956533757236388734E — 12 | 64.63

&l

6L 5.720418870877163786217E — 14 | 65.06

Ny

|H

8.792687176196887058066E — 16

[\
o]

Table 4.2. The approximate results for the first derivative when ¢ € o0,

he | lo—v Ry

00| —

2.299996064764325009657E —2 | 12.14

1.894059104568160525104F — 3 | 14.08

>—

1.344880793701474553783E —4 | 15.01

&l

6—14 8.960663249977644986927E — 6 | 15.46

|

5.796393863873542692774E — 7

—
[\
[ee)
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Table 4.3. The approximate results for the pure second derivative when ¢ € Co0,

| oo Ry

3.149059928597543772878E — 6 | 16.31

ool —

1.931058119052719414451E -7 | 16.36

al—

1.180485369727342048019E —8 | 16.37

&=

4| 7.211217140499053022025E — 10 | 16.37

N
iy

4.404326492162507264392F — 11

=]
DO —
e ¢}

(a) (b)

m 1 1
0.5 -5 0.5
1

1 y axis

. 0 y axis
X axis

X axis

Figure 4.5. The graph of the approximate (a) and exact (b) solutions of u

(a) (b)

50 50
0 0
1
-50 0.5 -50
-1 5 -1
1 0

axis 0 1 0 axis
y ¥ axis y

0.5

X axis

. . . P
Figure 4.6. The graph of the approximate (a) and exact (b) solutions of 5
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() (b)

200 200

1 1

-200 0.5 -200

0.5

U 0 0 0

. Y axis . Y axis
X axis X axis

. . . 92
Figure 4.7. The graph of the approximate (a) and exact (b) solutions of a—x’;

Example: Let ¢ € C&, on 3, j = 1,2,3,4, where

(@42 cos 2 y
O(x,y) = (x“+y°) % cos ( 0 arctan( )> (4.4.3)

X

Table 4.4. The approximate of solution in problem (4.4.1)) when the boundary
function is in C52.

h | ||lu—uy| Ry

2.185311473758449584717E —8 | 62.61

ool —

3.490134937914413339994E — 10 | 64.44

al—

5.416486023702750300684E — 12 | 65.33

-

4| 8.291041327362623966231E — 14 | 65.78

N
iy

|_.

1.260352539981000986734E — 15

[
[\
o]
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Table 4.5. The approximate results for the first derivative when ¢ € Co.

| ol R

2.402824869835325820862E —2 | 12.12

0| —

1.982099495289161415412E —3 | 14.04

al-

1.411335372930372044643E —4 | 14.97

ol

9.430580324855958362278E — 6 | 15.42

2/

|>—

6.117158975702833944766E —7

—
[\
ee]

Table 4.6. The approximate results for the pure second derivative when ¢ € C 635

h | |o— o Ry

4.596116500404351409868E — 6 | 16.50

oo|—

2.785978813561153089114E —7 | 16.55

N

1.683537010854807331651E —8 | 16.56

&l

6l 1.016605719906743104651E —9 | 16.56

N

|

6.137705814540074234758E — 11

[\
o]

Example: Let ¢ € C6711*0, onYy;,j=1,2,3,4, where

O (x,y) = (x* ‘H’Z)% cos (% arctan (}—)>) (4.4.4)

X

65



Table 4.7. The approximate of solution in problem (#.4.1)) when the boundary
function is in C®10,

h | ||lu—uyl Ry

4.292464252224768863872E —8 | 64.440

0| —

6.661235145718468864938E — 10 | 66.282

al-

1.004992234365881791976E — 11 | 64.763

&=
[\®]

6l 1.551766238268286671667E — 13 | 63.789

=

|

2.432674032142793857704E — 15

Ju—
[\®)
o]

Table 4.8. The approximate results for the first derivative when ¢ € o0,

he | o= Ry

2.717918419973411715556E —2 | 12.048

ool—

=

2.255858245291342887505E —3 | 13.931

)}

1.619301471368389174600F —4 | 14.842

sl

& | 1.090993384888831064746E —5 | 15.313

o)}
Ny

|H

7.124763926276328042997E —7

—_
[\
o]

Table 4.9. The approximate results for the pure second derivative when ¢ € Co10,

| oo R

8.394206346622608342096E —6 | 17.080

0| —

4.914572079635912695751E —7 | 17.132

3=

2.868598748836132098446E —8 | 17.144

-

6l 1.673191010129147156200E —9 | 17.147

=

|

9.757685555443629741642F — 11

Ju—
[\®}
o]
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Example: Let ¢ € C6'%, onYy;,j=1,2,3,4, where

X

¢ (x,y) = (x +y2)% cos (? arctan <X>) (4.4.5)

Table 4.10. The approximate of solution in problem (4.4.1)) when the boundary
function is in C6+3.

B |l Ry

0| —

9.468661479258626238070E —8 | 63.652

1.487565986613220279264E —9 | 63.638

3=

2.337510908366444786818E — 11 | 63.989

&l

3.652951369058453846633E — 13 | 63.971

2/~

|_

5.710265031943393904333E — 15

=
[N}
o0

Table 4.11. The approximate results for the first derivative when ¢ € Co.

| ol Ry

3.621510935110442399673E —2 | 11.825

ool—

3.062577827485106235815E —3 | 13.611

al-

2.250115678311334105245E —4 | 14.561

sl

4| 1.545316221020499920682E — 5 | 15.096

N
iy

|’_‘

1.023635642796431885406E — 6

—
[\
[ee]
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Table 4.12. The approximate results for the pure second derivative when ¢ € Co1.

h | |o— o Ry

0| —

1.472854619335870555255E —5 | 18.954

|~

7.770485562360496815862E —7 | 19.010

@)}

4.087476059575820643123E —8 | 19.023

ol

6L4 2.148669006668734519596E —9 | 19.026

|’_‘

1.129313066610226823051E — 10

[\e]
o]

Example: Let ¢ € C67%, onYy;,j=1,2,3,4, where

X

¢ (x,y) = (x +y2)% cos (g arctan (X>) (4.4.6)

Table 4.13. The approximate of solution in problem (#.4.1)) when the boundary
function is in C%2.

h | ||lu—uyl Ry

0| —

1.522838190217221933112E —7 | 64.007

2.379092988870274810270E —9 | 63.769

al-

3.730818877457981288876E — 11 | 63.919

L»Jl_
[\

6i 5.836834819622180677542E — 13 | 63.975

=

|

9.123490824777618815664E — 15

Ju—
N8}
o]
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Table 4.14. The approximate results for the first derivative when ¢ € Coz.

h | ]v—v Ry

4.375709529620738324991E —2 | 11.42

oo|—

3.832407922530399008382E —3 | 13.18

-

2.907557039233321254427E —4 | 14.163

&l

6L4 2.052905929433031564329E —5 | 14.810

|H

1.386204304287175910931E — 6

I\
o]

Table 4.15. The approximate results for the pure second derivative when ¢ € Coz.

h | |o— oy Ry

% 1.180124375763710097723E —5 | 22.539

5.235719858617613154097E —7 | 22.608

al=

2.315890874942363864843E —8 | 22.623

ol

6L 1.023693750596818689333E —9 | 22.627

N

|’_‘

4.524343368750062691117E — 11

[\e)
o]

Example: Let ¢ € C6"%, onYyj,j=1,2,3,4, where

~ 24y Fcos 2 y
o(x,y) = (x“+y°) ¥ cos ( 4 arctan (x>) 4.4.7)
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Table 4.16. The approximate of solution in problem (4.4.1)) when the boundary
function is in C53.

| Ry

1.192006924382961862772E —7 | 63.338

0| —

1.880588658774865604165E —9 | 63.764

3=

2.949260830753796070719E — 11 | 64.001

&l

4.608152507318481885852E — 13 | 63.977

2~

|’_‘

7.202879131397449362347E — 15

|
[N}
o0

Table 4.17. The approximate results for the first derivative when ¢ € Co3.

B ol R

3.702385976219451321486E —2 | 10.073

oo|—

3.675722637351247701079E — 3 | 12.899

al—

2.849607938951355419549E — 4 | 14.354

&l

6L 1.985204554365059833581E —5 | 15.106

N

|H

1.314202991351893505203E — 6

—
[\
o]

Table 4.18. The approximate results for the pure second derivative when ¢ € Co3.

h || — | Ry

0| —

3.485236070256896312909E — 6 | 26.787

1.301105828766636446775E —7 | 26.882

N

4.840220334483200094082E —9 | 26.902

&l

6l 1.799180537959875490803E — 10 | 26.908

N

|’_‘

6.686608750108446679955E — 12

[
[\
oo
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Example: Let ¢ € C6"l%, onYy;,j=1,2,3,4, where

X

_ (24 B cos (£ y
o(x,y) = (x*+y°) cos(loarctan( )) (4.4.8)

Table 4.19. The approximate of solution in problem (4.4.1)) when the boundary
function is in CO10.

| R

5.305772553320321766766E —8 | 63.986

0| —

8.292059050053952313561E — 10 | 63.879

5=

1.298108357990300947143E — 11 | 63.946

&l

6l 2.029993411923961018394E — 13 | 63.967

N

|’_‘

3.173490528879122759159E — 15

|
[N}
o0

Table 4.20. The approximate results for the first derivative when ¢ € o0,

h | |lv—v RY

4.003831300894382179437E —2 | 9.547

oo —

4.193649547657526600890F — 3 | 12.673

al—

3.308965269815573493929E — 4 | 14.218

el

41 2.327302763652494792622E — 5 | 15.026

|

1.548884402678707364254E — 6

[
[\
o]
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Table 4.21. The approximate results for the pure second derivative when ¢ € Co:10,

| oo R

9.668117711892401268900E —7 | 29.846

0| —

3.239307807806365124242E —8 | 29.825

al-

1.086123915091408323509E —9 | 29.850

&l

3.638534025142625161660E — 11 | 29.856

2~

|_

1.218707932851867080331F — 12

Ju—
[N}
o0

4.4.1.2 Sixth Order Accurate Forward and Backward Formulae

In the following examples we used forward and backward formulae for sixth order
accuracy to find a new boundry values on the sides when x = —1 and x = 1 for the first

derivative problem.

Example: Let ¢ € C10, on 3}, j = 1,2,3,4, where

X

— (2 B cos (L y
o(x,y) = (x"+y9) cos(10 arctan( >) (4.4.9)

Table 4.22. The approximate of solution in problem (4.4.1)) when the boundary
function is in C510.

R | flu—u| at

0| —

4.292464252224768863872FE —8 | 64.440

6.661235145718468864938E — 10 | 66.282

3=

1.004992234365881791976E — 11 | 64.763

&l

6L 1.551766238268286671667E — 13 | 63.789

=

|

2.432674032142793857704E — 15

Ju—
[N}
o]
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Table 4.23. The approximate results for the first derivative when ¢ € Co 0.

| o R

4.045551522551900729008E —5 | 58.806

0| —

6.879383591707399054026E —7 | 61.467

al-

1.119197337927792776137E —8 | 62.356

&l

1.794844059528784529350E — 10 | 62.852

2~

|_

2.855678855672375968725E — 12

Ju—
[N}
o0

Table 4.24. The approximate results for the pure second derivative when ¢ € Co 0.

h | |o— oy Ry

% 8.394206346622608342096E — 6 | 17.080

4.914572079635912695751E —7 | 17.132

al=

2.868598748836132098446E —8 | 17.144

ol

6]—4 1.673191010129147156200E —9 | 17.147

9.757685555443629741642E — 11

Ju—
N8}
o]

Example: Let ¢ € C6'%, onYy;,j=1,2,3,4, where

¢ (x,y) = (x2 +y2)% cos (? arctan ()—;>) (4.4.10)

X
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Table 4.25. The approximate of solution in problem (4.4.1)) when the boundary
function is in C63.

| Ry

9.468661479258626238070E —8 | 63.652

0| —

1.487565986613220279264E —9 | 63.638

3=

2.337510908366444786818E — 11 | 63.989

&l

3.652951369058453846633E — 13 | 63.971

2~

|’_‘

5.710265031943393904333E — 15

|
[N}
o0

Table 4.26. The approximate results for the first derivative when ¢ € Co1.

ho | ol R

1.411567519620729992360E —4 | 58.960

0| —

2.394097748587503178103E —6 | 61.272

3=

3.907355315870281912213E —8 | 62.283

ol

6l 6.273533530071398541280E — 10 | 62.856

N

|’_‘

9.980790178843469827535E — 12

—
[N}
o0

Table 4.27. The approximate results for the pure second derivative when ¢ € co1.

h || — | Ry

0| —

1.472854619335870555255E —5 | 18.954

7.770485562360496815862E —7 | 19.010

N

4.087476059575820643123E —8 | 19.023

&l

6L 2.148669006668734519596E —9 | 19.026

N

|’_‘

1.129313066610226823051E — 10

[
[\
oo
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Example: Let ¢ € Cﬁé, onYy;,j=1,2,3,4, where

X

0(x,y) = (*+%) 7 cos (g arctan <X>) 4.4.11)

Table 4.28. The approximate of solution in problem (4.4.1)) when the boundary
function is in C5:2.

B |l Ry

0| —

1.522838190217221933112E —7 | 64.007

2.379092988870274810270E —9 | 63.769

3=

3.730818877457981288876E — 11 | 63.919

&l

5.836834819622180677542E — 13 | 63.975

2/~

|_

9.123490824777618815664E — 15

=
[N}
o0

Table 4.29. The approximate results for the first derivative when ¢ € Co:2.

| -l Ry

4.607803218294378365226E —4 | 58.261

0| —

7.908891876585216676046E — 6 | 60.908

3=

1.298506644137725888031E —7 | 62.223

&l

2.086848023296898704192E —9 | 62.881

2~

|_

3.318748463018105865345E — 11

=]
[N}
o0
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Table 4.30. The approximate results for the pure second derivative when ¢ € oz,

h | |o— o Ry

% 1.180124375763710097723E —5 | 22.539

5.235719858617613154097E —7 | 22.608

—
ox|"

2.315890874942363864843E —8 | 22.623

Bl=

41 1.023693750596818689333E —9 | 22.627

|’_‘

4.524343368750062691117E — 11

[\S]
o]

Example: Let ¢ € C6’%, onYy;,j=1,2,3,4, where

— (23" ¥cos [ 2 Y
O(x,y) = (x“+y°) 8 cos ( 1 arctan (x>) (4.4.12)

Table 4.31. The approximate of solution in problem (#.4.1)) when the boundary
function is in C%3.

h | ||lu—uyl Ry

0| —

1.192006924382961862772E —7 | 63.338

1.880588658774865604165E —9 | 63.764

3=

2.949260830753796070719E — 11 | 64.001

-

L | 4.608152507318481885852F — 13 | 63.977

|

7.202879131397449362347E — 15

Ju—
[\®}
o]
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Table 4.32. The approximate results for the first derivative when ¢ € Co3.

h

[V — vy |

Ry

1.058679345779770778114E —3

56.715

N

1.866662482924066043170E — 5

60.516

o=

3.084583473799071544691E —7

62.149

4.963231261864654923314E —9

62.939

[\e]
o]

|’_‘

7.885792238969874446575E — 11

Table 4.33. The approximate results for the pure second derivative when ¢ € Co3.

h

| — ||

Ry

3.485236070256896312909E — 6

26.787

al=

1.301105828766636446775E —7

26.882

o=

4.840220334483200094082E — 9

26.902

1.799180537959875490803E — 10

26.908

[\e)
o]

|’_‘

6.686608750108446679955E — 12

Example: Let ¢ € C6’l%, onYy;,j=1,2,3,4, where

69
O(x,y) = (x2 +y2)% cos (1—0 arctan (

7

9) (4.4.13)



Table 4.34. The approximate of solution in problem (4.4.1)) when the boundary
function is in C6-10.

h | ||lu—uyl Ry

0| —

5.305772553320321766766E —8 | 63.986

8.292059050053952313561E — 10 | 63.879

al-

1.298108357990300947143E — 11 | 63.946

&=
[\®]

4 12.029993411923961018394E — 13 | 63.967

(@)
=

|

3.173490528879122759159E — 15

Ju—
[\®)
o]

Table 4.35. The approximate results for the first derivative when ¢ € Co 10

he | o — ol Ry

% 1.612293821627237525847E —3 | 55.941

|

2.882146096902001928266E —5 | 60.124

—
@)}

4.793694529594133674179E —7 | 62.088

Bl=

L1 7.720796380805889152056E —9 | 62.998

(@)
=

|H

g | 1.225570781606859363419E — 10

[\e)

Table 4.36. The approximate results for the pure second derivative when ¢ € Co10.

h || — | R

0| —

9.668117711892401268900E —7 | 29.846

|’_‘

3.239307807806365124242E —8 | 29.825

—_
@)}

1.086123915091408323509E —9 | 29.850

ol

6l 3.638534025142625161660E — 11 | 29.856

=

|’_‘

1.218707932851867080331E — 12

—_
[\
o]
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4.4.2 Domain in the Shape of a Rectangular Parallelepiped

Let R={(x1,x2,x3) : 0 <x; < 1,0 <xy < 1,0 <x3<0.5,i=1,2,3}, and let I be the
boundary of R. We consider the following boundary-value problem:
Au=0 on R, u=¢(x,y,z) onIl';, j=1,2,...,6, (4.4.14)

where ¢ is the exact solution of this problem.

Let U denote the exact solution and Uy, be its approximate values on R (contains the
nodes of the cubic grid formed in R) of the Dirichlet problem for laplace’s equation on

the rectangular parallelepiped domain R. We denote by ||U — Uy || = max U —Uy|,
R

gty — U Venllg

‘U—Uz—(mﬂ) ‘ 7
In Table (4.37), the approximate results for the solution of the Dirichlet problem for
the Laplace’s equation are presented. Table (4.38) shows the maximum errors and
convergence order of the first derivative when 4—th order accuracy forward backward
formula is used, and in Table (4.39)), the maximum errors and the convergence order
of the approximations of the pure second derivatives of problem (4.4.14)) for different
step size h are presented.
4.4.2.1 Fourth Order Accurate Forward and Backward Formulae
In the following examples forward and backward formulae is used for fourth order
accuracy to find a new boundary values on faces when x = —1 or x = 1 for the first

derivative problem.

The results show that the approximate solutions converge as 0(h4).
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Example: Let ¢ € CQ%, onl’;,j=1,2,...,6, where

2,2
¢(x,y) = ((z— 5)2 - w) + (o +y2)% cos (% arctan (%)) (4.4.15)

Table 4.37. The approximate of solution in problem (4.4.14) when the boundary
function is in C53%.

| Ry

1.364190306380006E —9 | 54.95

o0|—

2.482778220153542E — 11 | 62.64

al-

3.963714104714007E — 13 | 63.14

-

6i 6.277272419478622E — 15 | 63.77

N

|_

9.843687691215732E — 17

—
[N}
o0

Table 4.38. The approximate results for the first derivative when ¢ € Co .

h | ]v—o Ry

1.499307742596606E —2 | 9.78

oo —

1.532700715023690E —3 | 12.93

al—

1.185409560760095E — 4 | 14.50

&l

8.177080034789001E —6 | 15.25

2l

|

5.360495371756569E — 7

—
[N}
o]

80



Table 4.39. The approximate results for the pure second derivative when ¢ € o0,

| oo Ry

9.824337972038735E —7 | 15.21

o0l —

6.458728915909570E —8 | 16.21

al-

3.985011206044048E —9 | 16.36

-

2.436150564128134E — 10 | 16.37

2~

|_

1.487939094224197F — 11

—
[\®)
e}

4.4.2.2 Fifth Order Accurate Forward and Backward Formulae

In the following examples it used forward and backward formulae are used for sixth
order accuracy to find new boundary values on the faces when x = 0 and x = 1 for the

first derivative problem.
The results shows that the approximate solutions converge as 0(h5).

Example: Let ¢ € C>%,0on T, j=1,2,...,6, where

2,2
o(x,y) = ((z— 5)2 — W) + (x2 +y2)% coS <% arctan (i)) (4.4.16)
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Table 4.40. The approximate of solution in problem (4.4.14) when the boundary
function is in C5:3.

h | ||lu—uy RY

% 1.364190306380006E —9 | 54.95

2.482778220153542E — 11 | 62.64

=

3.963714104714007E — 13 | 63.14

-

L1 6.277272419478622E — 15 | 63.77

9.843687691215732E — 17

Ju—
[\®)
o]

Table 4.41. The approximate results for the first derivative when ¢ € C° 3.

h | o -l R

2.046960510985336F — 3 | 22.08

ool—

9.272500731110548E —5 | 27.35

al-

3.390258952082138E — 6 | 29.78

sl

6i 1.138244315600217E —7 | 30.91

N

|’_‘

3.682339328876473E — 9

—|
[\
o]

Table 4.42. The approximate results for the pure second derivative when ¢ € C3 .,

h | ||lo— oy Ry

= | 9.824337972038735E —7 | 15.21

6.458728915909570F —8 | 16.21

al-

3.985011206044048E —9 | 16.36

-

L1 2.436150564128134E — 10 | 16.37

1.487939094224197E — 11

[\e)
oo
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CONCLUSION

The obtained results can be used to highly approximate the derivatives for the solution
of Laplace’s equation by the finite difference method, in various combined and com-
posite grid methods, as well as some versions of the domain decomposition methods
for obtaining an approximation of the derivative of the solution of the Dirichlet prob-
lem for Laplace’s equation on polygons covered by overlapping rectangles (see [46],

[63], [641], [65]).

Also for rectangular parallelepiped domain a highly accurate difference schemes are
proposed and investigated under the conditions imposed on the given boundary func-
tions to approximate the solution of the 3D Laplace equation, its first and pure second
derivatives on a cubic grid. The uniform convergence for the approximate solution at
the rate of O(h®|Inh|), for the first and pure second derivatives at the rate of O(h?) is
proved. It is shown that the accuracy for the approximate value of the first derivatives
can be improved up to O(%’ |Inh|) for the same boundary functions by using the fifth
order formulae on some faces of the parallelepiped. The obtained results can be used
to justify finding the above mentioned derivatives of the solution of the 3D Laplace’s
boundary value problems on domains described as a union or as an intersection of a
finite number of rectangular parallelepipeds by the difference method, with the use of

Schwarz’s or Schwarz-Neumann iterations (see [[67], [68]], [46], [63], [64]).
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