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ABSTRACT

In this thesis, we discuss the approximation of the first and pure second order deriva-

tives for the solution of the Dirichlet problem for Laplace’s equation on a rectangular

domain and in a rectangular parallelepiped. In the case when the domain is a rectangle,

the boundary values on the sides of the rectangle are supposed to have sixth derivatives

satisfying the Hölder condition. On the vertices, besides the continuity, the compat-

ibility conditions, which result from the Laplace equation, for the second and fourth

derivatives of the boundary functions, given on the adjacent sides, are also satisfied.

Under these conditions a uniform approximation of order O
(
h4) (h is the grid size), is

obtained for the solution of the Dirichlet problem on a square grid, its first and pure

second derivatives, by a simple difference schemes.

In the case a rectangular parallelepiped, we propose and justify difference schemes

for the first and pure second derivatives approximation of the solution of the Dirichlet

problem for 3D Laplace’s equtation.The boundary values on the faces of the paral-

lelepiped are assumed to have the sixth derivatives satisfying the Hölder condition.

They are continuous on the edges, and their second and fourth order derivatives satisfy

the compatibility conditions which results from the Laplace equation. It is proved that

the solutions of the proposed difference schemes converge uniformly on the cubic grid

with order O(h4), where h is the grid step. For both cases numerical experiments are

demonstrated to support the analysis made.

Keywords: Finite difference method, approximation of derivatives, uniform error,

Laplace equation.
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ÖZ

Bu tezde, Laplace Denkleminin dikdörtgensel bölgede ve dikdörtgenler prizması üz-

erinde Dirichlet probleminin çözümü için birinci mertebeden ve pür ikinci mertebeden

türevlerinin yaklaşımı tartışılır. Tanım bölgesinin dikdörtgen olduğu durumda dikdört-

genin kenarlarında verilen sınır fonksiyonlarının altıncı türevlerinin Hölder şartını

sağladıkları kabul edildi. Köşelerde süreklilik şartının yanında Laplace denkleminden

sonuçlanan köşelerin komşu kenarlarında verilen sınır değer fonksiyonlarının ikinci

ve dördüncü türevleri icin uyumluluk şartları da sağlandı. Bu şartlar altında Dirich-

let probleminin kare ızgara üzerinde çözümü için ve çözümün birinci ve pür ikinci

türevleri için O(h4) (h adım uzunluğu) düzgün yaklaşımı sade bir fark şeması ile elde

edildi.

İkinci durumda tanım bölgesi dikdörtgenler prizması olduğunda Laplace denkleminin

Dirichlet probleminin çözümünün birinci ve pür ikinci türevlerinin yaklaşımı için fark

şemaları önerilir ve sağlanır. Prizmanın yüzeylerinde verilen sınır değerlerinin altıncı

türevlerinin Hölder koşulunu sağladığı kabul edildi. Köşelerde süreklidirler ve onların

ikinci ve dördüncü mertebeden türevleri Laplace denklemlerinden sonuçlanan uyum-

luluk koşulunu sağlar. Önerilen fark şemalarının çözümünün küp ızgaralar üzerinde h

ızgara uzunluğu olduğunda O(h4) mertebesinden düzgün yakınsadığı ispatlandı. Her

iki durum için sayısal örnekler yapılan analizleri desteklemek için verildi.

Anahtar Kelimeler: Sonlu fark metodu, türevlerin yaklasımı, düzgün hata, Laplace

denklemi.
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Chapter 1

INTRODUCTION

Pierre Simon Marquis de Laplace (1749-1827) identified arguably same of the most

well known partial differential equations. These equations are widely employed in

a number of topics in applied sciences in order to illustrate equilibrium or steady-

state problems. One of the most important elliptic equations is Laplace’s equation

which has been employed to model as many problems as real-life situations. Laplace’s

equation can be employed in the formulation of problems relevant to the theory of

gravitation, electrostatics, dielectrics and problems arising in magneto statics, in the

field of interest to mathematical physics. Further it is applied in engineering, when

dealing with problems related to the torsion of prismatic elastic solids, analysis of

steady heat conduction in solid bodies, the irrotational flow of incompressible fluid,

and so on (see [1]-[33]).

Undoubtedly, the derivative of the solution can be just as important as of finding the

solution itself. For instance, the fundamental problem of fracture mechanics is the

fracture problem of the stress intensity factor, which it comes from the derivative of

the intensity function, and in electrostatics problems the electric field can be obtained

from the first derivative of electrostatics potential function.

Another torsion example of the Dirichlet problem for of Poisson’s equation is the tor-

sion problem for a rectangular prism.
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The problem of the torsion of any prismatic frame whose section is the region D,

bounded by the contour L is reduced to the following boundary value problem using

the theory of Saint-Venant. The solution of the Poisson equation

∆u =−2, (1.0.1)

that is reduced to zero on the contour L:

u = 0 on L.

The elements of tangential stress are

τzx = Gϑ
∂u
∂y

, τzy =−Gϑ
∂u
∂x

,

and the torsional moment is shown by

M = Gϑ

∫ ∫
D

udxdy.

The angle of twist per unit length and the modulus of shear are indicated by ϑ and G,

respectively.

Now, the solution of the torsion problem is given for a rectangle of sides a and b. The

solution of equation (1.0.1) decreasing to zero on the contour should be found. We

attempt to find the exact solution, u0, of equation (1.0.1) to decrease the problem to the

solution of the Laplace equation.

Let u0 be represented in the form:

u0 = Ax2 +By2

where A = −1 and B = 0. Furthermore, an arbitrary linear function can be added to

the solution obtained. Hence, u0 is obtained as follows

2



u0 =−x2 +ax

Since u0 decreases to zero on the sides x = 0 and x = a. If we introduce the unknown

function u1 = u−u0 which satisfies the equation ∆u1 = 0; then the boundary conditions

for that are (see [34])

u1 = −
(
ax− x2) for y =±b

2

u1 = 0 , x = 0,x = a.

As the operation of differentiation is ill-conditioned, to find a highly accurate approx-

imation for the derivatives of the solution of a differential equation becomes problem-

atic, especially when smoothness is restricted. In many studies, finding the nonsmooth

solution of elliptic equations in the classical finite difference scheme are considered

(see [35]-[48] and references therein). In [56] (for two dimension), [41] (for n dimen-

sion), for the solution of the finite difference problem on a square grids, the uniform

error O(h2) is acquired. The minimum requirements on the smoothness of the bound-

ary functions are used to solve Dirichlet problem for Laplace’s equation in the bounded

domain Ω. From these requirements it follows that the Hölder condition is satisfied by

the second order derivatives of the exact solution on Ω, i.e., u∈C2,λ (Ω),0 < λ < 1. In

addition, taking into account results in [37] and [62] follows that u ∈C2,λ (Π̄), thus the

uniform error on the rectangular domain Π is O(hk),k = 2,4,6, for the finite difference

solution of the mixed boundary value problem (for the proof see [37], when k = 2, and

[62], when k = 4,6).

A highly accurate method is one of the powerful tools to reduce the number of un-

knowns, which is the main problem in the numerical solution of differential equations,

to get reasonable results. This becomes more valuable in 3D problems when we are

3



looking for the derivatives of the unknown solution by the finite difference or finite

element methods for a small discretization parameter h.

E.A. Volkov proved in [56] that to acquire a second-order approximation, the smooth-

ness requirement on the boundary functions can be lowered to C2,λ ,0 < λ < 1, when

the domain is rectangular.

However, approximating the boundary value problem of Laplace’s equation when the

harmonic functions u(x,y) = r
1
α cos θ

α
,v(x,y) = r

1
α sin θ

α
are the exact solution, in a

domain with an interior angle of απ, 1
2 < α ≤ 2 , is problematic as these functions

do not belong to C2,λ ,0 < λ < 1. E. A. Volkov demonstrated that in the presence of

angular singularities, for the numerical solution of the Dirichlet problem for Laplace’s

equation with the use of the 5-point scheme in square grids, the order of approximation

of O(h
1
α ) is obtained on a bounded domain with an interior angle of απ, 1

2 < α ≤

2,α 6= 1. Similarly, O(h
1
2 α) is obtained for the mixed boundary-value problem. Hence,

the approximation is significantly worse than O(h2).

In [46], A.A.Dosiyev introduced a highly accurate difference-analytical method. The

uniform error O(h6) is attained for the solution of the mixed boundary value problem

for Laplace’s equation on graduated polygons. Further the error of approximation is

order O(h6/rp−λ j
j ) for p-order derivatives in a finite neighborhood of reentrant angles.

The mesh step is denoted by h, the distance between current point and vertex contain-

ing the corner singularity is indicated by r j, λ j =
1

aα j
, and a = 1 or 2 depending on

the type of the boundary condition. Moreover, the value of the interior angle at the

investigated vertex is represented by α jπ .
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In [62], A.A.Dosiyev investigated the mixed boundary value problem for Laplace

equation on a rectangular domain R. If the exact solution u of the problem is in C̃6,λ (R̃),

then the uniform error will be O(h6), where C̃6,λ , is wider than C6,λ .

Smoother (in C8,0) set of solutions than C̃6,λ are obtained by many authors for O(h6)

order of error estimations in the maximum norm. Hackbusch [49] acquired the same

order of estimation for Dirichlet problem if u∈C7,1(R̃). Also, Volkov [50] investigated

mixed boundary value problem when u ∈ C̃8,λ (R̃).

In [51], it was proved that the higher order difference derivatives uniformly converge to

the corresponding derivatives of the solution of the Laplace equation in any strictly in-

terior subdomain, with the same order of h as which the difference solution converges

on the given domain. In [52], by using the difference solution of the Dirichlet problem

for the Laplace equation on a rectangle, the uniform convergence of its first and pure

second divided difference over the whole grid domain to the corresponding derivatives

of the exact solution with the rate O(h2) is proved. In [54], the difference schemes on

a rectangular parallelepiped were constructed, where the approximate solution of the

Dirichlet problem for the Laplace equation and its first and second derivatives were ob-

tained. Under the assumptions that the boundary functions belong to C{4,λ},0< λ < 1,

on the faces, are continuous on the edges, and their second-order derivatives satisfy the

compatibility condition, the solution to their difference schemes converge uniformly

on the grid with a rate of O
(
h2). In [53] for the 3D Laplace equation the convergence

of order O
(
h2) of the difference derivatives to the corresponding first order derivatives

of the exact solution is proved. It was assumed that the boundary functions have third

derivatives on the faces satisfying the Hölder condition. Furthermore, it is assumed that
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they are continuous on the edges, and their second derivatives satisfy the compatibility

condition that is implied by the Laplace equation.

In this thesis, the use of the square grid has been investigated for the solution of the

first and second pure derivatives of the Laplace equation on a rectangle and also on

a rectangular parallelepiped and high-order accuracy of the approximate solution is

justified. In the two dimensional case (rectangular domain), we consider the classical

9− point finite difference approximation of the problem to find the approximate solu-

tion of Laplace’s equation and also of the first and second pure derivatives of Laplace

equation. In the three dimensional case (in a rectangular parallelepiped), we used the

27− point scheme to find a similar solution to the problems two dimensional case.

In Chapter 2, we consider the Dirichlet problem for the Laplace equation on a rectan-

gle, when the boundary values belong to C6,λ ,0 < λ < 1, on the sides of the rectangle

and as a whole are continuous on the vertices. Also the 2τ,τ = 1,2, order deriva-

tives satisfy the compatibility conditions on the vertices which result from the Laplace

equation. Under these conditions, we construct the difference problems, the solutions

of which converge to the first and pure second derivatives of the exact solution with

the order O(h4).

In Chapter 3, we consider the Dirichlet problem for the Laplace equation in a rect-

angular parallelepiped. It is assumed that the boundary functions on the faces have

sixth order derivatives satisfying the Hölder condition, and the second and fourth or-

der derivatives satisfy some compatibility conditions on the edges. Three different

schemes are constructed on a cubic grid with mesh size h, whose solutions separately

6



approximate the solution of the Dirichlet problem for Laplace’s equation with the order

O(h6 |lnh|), its first and pure second derivatives with the order O(h4).

In Chapter 4, the theoretical results in Chapter 2 and 3 are demonstrated by numerical

experiments. We illustrated the higher order accurate approximation of the first and

second pure derivatives of the Laplace equation on a rectangle and also in a rectangular

parallelepiped.

Concluding remarks are given in Chapter 4.4.2.2.
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Chapter 2

A FOURTH ORDER ACCURATE APPROXIMATION OF
THE FIRST AND PURE SECOND DERIVATIVES OF

THE LAPLACE EQUATION ON A RECTANGLE

2.1 The Dirichlet Problem on Rectangular Domains

Let Π = {(x,y) : 0 < x < a,0 < y < b} be a rectangle and a/b is a rational number.

The sides are denoted by γ j(γ
′
j), j = 1,2,3,4, including (excluding), the ends. These

sides are enumerated counterclockwise which γ1 is the left side of Π (γ0 ≡ γ4, γ5 ≡ γ1),

hence, the boundary of Π is defined by γ = ∪4
j=1γ j. The arclength along γ is denoted

by s, and s j is the value of s at the beginning of γ j. If f has k-th derivatives on D

satisfying a Hölder condition, we say that f ∈Ck,λ (D), where exponent λ ∈ (0,1).

We consider the following boundary value problem

∆u = 0 on Π, u = ϕ j(s) on γ j, j = 1,2,3,4, (2.1.1)

where ∆≡ ∂ 2/∂x2 +∂ 2/∂y2, ϕ j are given functions of s. Assume that

ϕ j ∈C6,λ (γ j), 0 < λ < 1, j = 1,2,3,4, (2.1.2)

ϕ
(2q)
j (s j) = (−1)q

ϕ
(2q)
j−1 (s j), q = 0,1,2. (2.1.3)

Lemma 2.1.1 The solution u of problem (2.1.1) is from C5,λ (Π),

The proof of Lemma 2.1.1 follows from Theorem 3.1 in [40].
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Lemma 2.1.2 The inequality is true

max
0≤p≤3

sup
(x,y)∈Π

∣∣∣∣ ∂ 6u
∂x2p∂y6−2p

∣∣∣∣< ∞, (2.1.4)

where u is the solution of problem (2.1.1).

Proof. From Lemma 2.1.1 follows that the functions ∂ 4u
∂x4 and ∂ 4u

∂y4 are continuous on Π.

We put w = ∂ 4u
∂x4 . The function w is harmonic in Π, and is the solution of the problem

∆w = 0 on Π, w = Φ j on γ j, j = 1,2,3,4,

where

Φτ =
∂ 4ϕτ

∂y4 , τ = 1,3

Φν =
∂ 4ϕν

∂x4 , ν = 2,4.

By considering the conditions (2.1.2) and (2.1.3) follows that

Φ j ∈C2,λ (γ j), 0 < λ < 1, Φ j(s j) = Φ j−1(s j), j = 1,2,3,4.

Hence, on the basis of Theorem 6.1 in [55], we have

sup
(x,y)∈Π

∣∣∣∣∂ 2w
∂x2

∣∣∣∣ = sup
(x,y)∈Π

∣∣∣∣∂ 6u
∂x6

∣∣∣∣< ∞, (2.1.5)

sup
(x,y)∈Π

∣∣∣∣∂ 2w
∂y2

∣∣∣∣ = sup
(x,y)∈Π

∣∣∣∣ ∂ 6u
∂x4∂y2

∣∣∣∣< ∞. (2.1.6)

Similarly, it is proved that

sup
(x,y)∈Π

{∣∣∣∣∂ 6u
∂y6

∣∣∣∣ , ∣∣∣∣ ∂ 6u
∂y4∂x2

∣∣∣∣}< ∞. (2.1.7)

when w = ∂ 4u
∂y4 . The function w is harmonic in Π, and is the solution of the problem

∆w = 0 on Π, w = Φ j on γ j, j = 1,2,3,4,

where
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Φτ =
∂ 4ϕτ

∂y4 , τ = 1,3

Φν =
∂ 4ϕν

∂x4 , ν = 2,4.

by considering the conditions (2.1.2) and (2.1.3) follows that

Φ j ∈C2,λ (γ j), 0 < λ < 1, Φ j(s j) = Φ j−1(s j), j = 1,2,3,4.

sup
(x,y)∈Π

∣∣∣∣∂ 2w
∂x2

∣∣∣∣ = sup
(x,y)∈Π

∣∣∣∣ ∂ 6u
∂x2∂y4

∣∣∣∣< ∞, (2.1.8)

sup
(x,y)∈Π

∣∣∣∣∂ 2w
∂y2

∣∣∣∣ = sup
(x,y)∈Π

∣∣∣∣∂ 6u
∂y6

∣∣∣∣< ∞. (2.1.9)

From (2.1.5)− (2.1.9), estimation (2.1.4) follows.

Lemma 2.1.3 Let ρ(x,y) be the distance from a current point of the open rectangle Π

to its boundary and let ∂/∂ l ≡α∂/∂x+β∂/∂y, α2+β 2 = 1. Then the next inequality

holds ∣∣∣∣∂ 8u
∂ l8

∣∣∣∣≤ cρ
−2, (2.1.10)

where c is a constant independent of the direction of the derivative ∂/∂ l, u is a solution

of problem (2.1.1).

Proof. According to Lemma 2.1.2, we have

max
0≤p≤3

sup
(x,y)∈Π

∣∣∣∣ ∂ 6u
∂x2p∂y6−2p

∣∣∣∣≤ c < ∞.

Since any eighth order derivative can be obtained by two times differentiating some of

the derivatives ∂ 6/∂x2p∂y6−2p, 0 ≤ p ≤ 3, on the basis of estimations (29) and (30)

from [56], we obtain

max
ν+µ=8

∣∣∣∣ ∂ 8u
∂xν∂yµ

∣∣∣∣≤ c1ρ
−2(x,y)< ∞. (2.1.11)

From (2.1.11), inequality (2.1.10) follows.

10



Let h > 0, and min{a/h,b/h} ≥ 6 whereas, a/h and b/h be integers. A square net

on Π is assigned by Πh, with step h, created by the lines x,y = 0,h,2h, ... . The set of

nodes on the interior of γ j is denoted by γh
j , and let

γ
h = ∪4

j=1γ
h
j ,
·

γ j = γ j−1∩ γ j, γ
h = ∪4

j=1(γ
h
j ∪

·
γ j), Π

h
= Π

h∪ γ
h.

The averaging operator B be defined by following

Bu(x,y) = (u(x+h,y)+u(x−h,y)+u(x,y+h)+u(x,y−h)) /5

+(u(x+h,y+h)+u(x+h,y−h)

+ u(x−h,y+h)+u(x−h,y−h))/20. (2.1.12)

The classical 9-point finite difference approximation of problem (2.1.1) is considered

as follows:

uh = Buh on Π
h, uh = ϕ j on γ

h
j ∪

·
γ j, j = 1,2,3,4. (2.1.13)

By the maximum principle, problem (2.1.13) has a unique solution.

In what follows and for simplicity, we will denote by c,c1,c2, ... constants which are

independent of h and the nearest factor, identical notation will be used for various

constants.

Let Π1h be the set of nodes of the grid Πh that are at a distance h from γ , and let

Π2h = Πh\Π1h.

Proposition 2.1.4 The equation holds

Bp7(x0,y0) = u(x0,y0) (2.1.14)

where p7(x0,y0) is the seventh order Taylor’s polynomial at (x0,y0) and u is a harmonic

11



function.

Proof. Taking into account that the function u is harmonic, by exhaustive calculations,

we have

Bp7(x0,y0) = (p7(x0 +h,y0) + p7(x0−h,y0) + p7(x0,y0 +h) + p7(x0,y0−h))/5+

(p7(x0 +h,y0 +h) + p7(x0 +h,y0−h) + p7(x0−h,y0 +h) + p7(x0−h,y0−h))/20

= (u(x0,y0) +
∂u(x0,y0)

∂x
h +

∂ 2u(x0,y0)

∂x2
h2

2!
+

∂ 3u(x0,y0)

∂x3
h3

3!
+

∂ 4u(x0,y0)

∂x4
h4

4!
+

∂ 5u(x0,y0)

∂x5
h5

5!
+

∂ 6u(x0,y0)

∂x6
h6

6!
+

∂ 7u(x0,y0)

∂x7
h7

7!
+u(x0,y0)−

∂u(x0,y0)

∂x
h +

∂ 2u(x0,y0)

∂x2
h2

2!
− ∂ 3u(x0,y0)

∂x3
h3

3!
+

∂ 4u(x0,y0)

∂x4
h4

4!
− ∂ 5u(x0,y0)

∂x5
h5

5!
+

∂ 6u(x0,y0)

∂x6
h6

6!
− ∂ 7u(x0,y0)

∂x7
h7

7!
+u(x0,y0)+

∂u(x0,y0)

∂y
h +

∂ 2u(x0,y0)

∂y2
h2

2!
+

∂ 3u(x0,y0)

∂y3
h3

3!
+

∂ 4u(x0,y0)

∂y4
h4

4!
+

∂ 5u(x0,y0)

∂y5
h5

5!
+

∂ 6u(x0,y0)

∂y6
h6

6!
+

∂ 7u(x0,y0)

∂y7
h7

7!
+u(x0,y0)−

∂u(x0,y0)

∂y
h +

∂ 2u(x0,y0)

∂y2
h2

2!
− ∂ 3u(x0,y0)

∂y3
h3

3!
+

∂ 4u(x0,y0)

∂y4
h4

4!
− ∂ 5u(x0,y0)

∂y5
h5

5!
+

∂ 6u(x0,y0)

∂y6
h6

6!
− ∂ 7u(x0,y0)

∂y7
h7

7!

)
/5+

(u(x0,y0) +

(
∂u(x0,y0)

∂x
+

∂u(x0,y0)

∂y

)
h+
(

∂ 2u(x0,y0)

∂x2 + 2
∂ 2u(x0,y0)

∂x∂y
+

∂ 2u(x0,y0)

∂y2

)
h2

2!
+

(
∂ 3u(x0,y0)

∂x3 + 3
∂ 3u(x0,y0)

∂x2∂y
+ 3

∂ 3u(x0,y0)

∂x∂y2 +

∂ 3u(x0,y0)

∂y3

)
h3

3!
+

(
∂ 4u(x0,y0)

∂x4 + 4
∂ 4u(x0,y0)

∂x3∂y
+ 6

∂ 4u(x0,y0)

∂x2∂y2 +

4
∂ 4u(x0,y0)

∂x∂y3 +
∂ 4u(x0,y0)

∂y4

)
h4

4!
+

(
∂ 5u(x0,y0)

∂x5 + 5
∂ 5u(x0,y0)

∂x4∂y
+

10
∂ 5u(x0,y0)

∂x3∂y2 + 10
∂ 5u(x0,y0)

∂x2∂y3 + 5
∂ 5u(x0,y0)

∂x∂y4 +
∂ 5u(x0,y0)

∂y5

)
h5

5!
+(

∂ 6u(x0,y0)

∂x6 + 6
∂ 6u(x0,y0)

∂x5∂y
+ 15

∂ 6u(x0,y0)

∂x4∂y2 + 20
∂ 6u(x0,y0)

∂x3∂y3 +

15
∂ 6u(x0,y0)

∂x2∂y4 + 6
∂ 6u(x0,y0)

∂x∂y5 +
∂ 6u(x0,y0)

∂y6

)
h6

6!
+

(
∂ 7u(x0,y0)

∂x7 +

7
∂ 7u(x0,y0)

∂x6∂y
+ 21

∂ 7u(x0,y0)

∂x5∂y2 + 35
∂ 7u(x0,y0)

∂x4∂y3 + 35
∂ 7u(x0,y0)

∂x3∂y4 +

12



21
∂ 7u(x0,y0)

∂x2∂y5 + 7
∂ 7u(x0,y0)

∂x∂y6 +
∂ 7u(x0,y0)

∂y7

)
h7

7!
+u(x0,y0)+(

∂u(x0,y0)

∂x
− ∂u(x0,y0)

∂y

)
h+
(

∂ 2u(x0,y0)

∂x2 − 2
∂ 2u(x0,y0)

∂x∂y
+

∂ 2u(x0,y0)

∂y2

)
h2

2!
+

(
∂ 3u(x0,y0)

∂x3 − 3
∂ 3u(x0,y0)

∂x2∂y
+ 3

∂ 3u(x0,y0)

∂x∂y2 −

∂ 3u(x0,y0)

∂y3

)
h3

3!
+

(
∂ 4u(x0,y0)

∂x4 − 4
∂ 4u(x0,y0)

∂x3∂y
+ 6

∂ 4u(x0,y0)

∂x2∂y2 −

4
∂ 4u(x0,y0)

∂x∂y3 +
∂ 4u(x0,y0)

∂y4

)
h4

4!
+

(
∂ 5u(x0,y0)

∂x5 − 5
∂ 5u(x0,y0)

∂x4∂y
+

10
∂ 5u(x0,y0)

∂x3∂y2 − 10
∂ 5u(x0,y0)

∂x2∂y3 + 5
∂ 5u(x0,y0)

∂x∂y4 − ∂ 5u(x0,y0)

∂y5

)
h5

5!
+(

∂ 6u(x0,y0)

∂x6 − 6
∂ 6u(x0,y0)

∂x5∂y
+ 15

∂ 6u(x0,y0)

∂x4∂y2 − 20
∂ 6u(x0,y0)

∂x3∂y3 +

15
∂ 6u(x0,y0)

∂x2∂y4 − 6
∂ 6u(x0,y0)

∂x∂y5 +
∂ 6u(x0,y0)

∂y6

)
h6

6!
+

(
∂ 7u(x0,y0)

∂x7 −

7
∂ 7u(x0,y0)

∂x6∂y
+ 21

∂ 7u(x0,y0)

∂x5∂y2 − 35
∂ 7u(x0,y0)

∂x4∂y3 + 35
∂ 7u(x0,y0)

∂x3∂y4 −

21
∂ 7u(x0,y0)

∂x2∂y5 + 7
∂ 7u(x0,y0)

∂x∂y6 − ∂ 7u(x0,y0)

∂y7

)
h7

7!
+u(x0,y0)+(

−∂u(x0,y0)

∂x
+

∂u(x0,y0)

∂y

)
h+
(

∂ 2u(x0,y0)

∂x2 − 2
∂ 2u(x0,y0)

∂x∂y
+

∂ 2u(x0,y0)

∂y2

)
h2

2!
+

(
−∂ 3u(x0,y0)

∂x3 + 3
∂ 3u(x0,y0)

∂x2∂y
− 3

∂ 3u(x0,y0)

∂x∂y2 +

∂ 3u(x0,y0)

∂y3

)
h3

3!
+

(
∂ 4u(x0,y0)

∂x4 − 4
∂ 4u(x0,y0)

∂x3∂y
+ 6

∂ 4u(x0,y0)

∂x2∂y2 −

10
∂ 5u(x0,y0)

∂x3∂y2 + 10
∂ 5u(x0,y0)

∂x2∂y3 − 5
∂ 5u(x0,y0)

∂x∂y4 +
∂ 5u(x0,y0)

∂y5

)
h5

5!
+(

∂ 6u(x0,y0)

∂x6 − 6
∂ 6u(x0,y0)

∂x5∂y
+ 15

∂ 6u(x0,y0)

∂x4∂y2 − 20
∂ 6u(x0,y0)

∂x3∂y3 +

15
∂ 6u(x0,y0)

∂x2∂y4 − 6
∂ 6u(x0,y0)

∂x∂y5 +
∂ 6u(x0,y0)

∂y6

)
h6

6!
+

(
−∂ 7u(x0,y0)

∂x7 +

7
∂ 7u(x0,y0)

∂x6∂y
− 21

∂ 7u(x0,y0)

∂x5∂y2 + 35
∂ 7u(x0,y0)

∂x4∂y3 − 35
∂ 7u(x0,y0)

∂x3∂y4 +

21
∂ 7u(x0,y0)

∂x2∂y5 − 7
∂ 7u(x0,y0)

∂x∂y6 +
∂ 7u(x0,y0)

∂y7

)
h7

7!
+u(x0,y0)+(

−∂u(x0,y0)

∂x
− ∂u(x0,y0)

∂y

)
h+
(

∂ 2u(x0,y0)

∂x2 + 2
∂ 2u(x0,y0)

∂x∂y
+
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∂ 2u(x0,y0)

∂y2

)
h2

2!
+

(
−∂ 3u(x0,y0)

∂x3 − 3
∂ 3u(x0,y0)

∂x2∂y
− 3

∂ 3u(x0,y0)

∂x∂y2 −

∂ 3u(x0,y0)

∂y3

)
h3

3!
+

(
∂ 4u(x0,y0)

∂x4 + 4
∂ 4u(x0,y0)

∂x3∂y
+ 6

∂ 4u(x0,y0)

∂x2∂y2 +

4
∂ 4u(x0,y0)

∂x∂y3 +
∂ 4u(x0,y0)

∂y4

)
h4

4!
+

(
−∂ 5u(x0,y0)

∂x5 − 5
∂ 5u(x0,y0)

∂x4∂y
−

10
∂ 5u(x0,y0)

∂x3∂y2 − 10
∂ 5u(x0,y0)

∂x2∂y3 − 5
∂ 5u(x0,y0)

∂x∂y4 − ∂ 5u(x0,y0)

∂y5

)
h5

5!
+(

∂ 6u(x0,y0)

∂x6 + 6
∂ 6u(x0,y0)

∂x5∂y
+ 15

∂ 6u(x0,y0)

∂x4∂y2 + 20
∂ 6u(x0,y0)

∂x3∂y3 +

15
∂ 6u(x0,y0)

∂x2∂y4 + 6
∂ 6u(x0,y0)

∂x∂y5 +
∂ 6u(x0,y0)

∂y6

)
h6

6!
+

(
−∂ 7u(x0,y0)

∂x7 −

7
∂ 7u(x0,y0)

∂x6∂y
− 21

∂ 7u(x0,y0)

∂x5∂y2 − 35
∂ 7u(x0,y0)

∂x4∂y3 − 35
∂ 7u(x0,y0)

∂x3∂y4 −

21
∂ 7u(x0,y0)

∂x2∂y5 − 7
∂ 7u(x0,y0)

∂x∂y6 − ∂ 7u(x0,y0)

∂y7

)
h7

7!

)
/20 =

u(x0,y0)+

(
2
5

∂ 2u(x0,y0)

∂x2
h2

2!
+

2
5

∂ 4u(x0,y0)

∂x4
h4

4!
+

2
5

∂ 6u(x0,y0)

∂x6
h6

6!
+

2
5

∂ 2u(x0,y0)

∂y2
h2

2!
+

2
5

∂ 4u(x0,y0)

∂y4
h4

4!
+

2
5

∂ 6u(x0,y0)

∂y6
h6

6!

)
+

(
∂ 2u(x0,y0)

∂x2
h2

10
+

∂ 2u(x0,y0)

∂y2
h2

10
+

∂ 4u(x0,y0)

∂x4
h4

120
+

∂ 4u(x0,y0)

∂x2∂y2
h4

20
+

∂ 4u(x0,y0)

∂y4
h4

120
+

∂ 6u(x0,y0)

∂x6
h6

5.6!
+

∂ 6u(x0,y0)

∂x4∂y2
3h6

6!
+

∂ 6u(x0,y0)

∂x2∂y4
3h6

6!
+

∂ 6u(x0,y0)

∂y6
h6

5.6!

)
=

u(x0,y0)+

(
∂ 2u(x0,y0)

∂x2 +
∂ 2u(x0,y0)

∂y2

)
3h2

10
+

(
∂ 4u(x0,y0)

∂x4 +

∂ 4u(x0,y0)

∂y4

)
3h4

5!
+

(
∂ 6u(x0,y0)

∂x6 +
∂ 6u(x0,y0)

∂y6

)
3h6

5.6!
+

∂ 4u(x0,y0)

∂x2∂y2
h4

20
+(

∂ 6u(x0,y0)

∂x4∂y2 +
∂ 6u(x0,y0)

∂x2∂y4

)
3h6

6!
= u(x0,y0)+

∂ 2

∂x2

(
∂ 2u(x0,y0)

∂x2 +

∂ 2u(x0,y0)

∂y2

)
h4

40
+

∂ 2

∂y2

(
∂ 2u(x0,y0)

∂x2 +
∂ 2u(x0,y0)

∂y2

)
h4

40
+

∂ 4

∂x4

(
∂ 2u(x0,y0)

∂x2 +

∂ 2u(x0,y0)

∂y2

)
3h6

5.6!
+

∂ 4

∂y4

(
∂ 2u(x0,y0)

∂x2 +
∂ 2u(x0,y0)

∂y2

)
3h6

5.6!
+

∂ 4

∂x2∂y2

(
∂ 2u(x0,y0)

∂x2 +
∂ 2u(x0,y0)

∂y2

)
2h6

5.5!
= u(x0,y0)⇒ Bp7(x0,y0) = u(x0,y0)
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Lemma 2.1.5 The inequality holds

max
(x,y)∈(Π1h∪Π2h)

|Bu−u| ≤ ch6, (2.1.15)

where u is a solution of problem (2.1.1).

Proof. Let (x0,y0) be a point of Π1h, and let

R0 = {(x,y) : |x− x0|< h, |y− y0|< h} , (2.1.16)

be an elementary square, some sides of which lie on the boundary of the rectangle Π.

On the vertices of R0, and on the mid-points of its sides lie the nodes of which the

function values are used to evaluate Bu(x0,y0). We represent a solution of problem

(2.1.1) in some neighborhood of (x0,y0) ∈Π1h by Taylor’s formula

u(x,y) = p7(x,y)+ r8(x,y), (2.1.17)

where p7(x,y) is the seventh order Taylor’s polynomial, r8(x,y) is the remainder term.

By using Proposition (2.1.4)

Bp7(x0,y0) = u(x0,y0) (2.1.18)

Now, we estimate r8 at the nodes of the operator B. We take a node (x0 + h,y0 + h)

which is one of the eight nodes of B, and consider the function

ũ(s) = u
(

x0 +
s√
2
,y0 +

s√
2

)
, −
√

2h≤ s≤
√

2h (2.1.19)

of one variable s. By virtue of Lemma 2.1.3, we have∣∣∣∣d8ũ(s)
ds8

∣∣∣∣≤ c(
√

2h− s)−2, 0≤ s <
√

2h. (2.1.20)

We represent function (2.1.19) around the point s = 0 by Taylor’s formula

ũ(s) = p̃7(s)+ r̃8(s),

where p̃7(s) ≡ p7

(
x0 +

s√
2
,y0 +

s√
2

)
is the seventh order Taylor’s polynomial of the
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variable s, and

r̃8(s)≡ r8

(
x0 +

s√
2
,y0 +

s√
2

)
, 0≤ |s|<

√
2h, (2.1.21)

is the remainder term. On the basis of (2.1.20) and the integral form of the remainder

term of Taylor’s formula, we have

∣∣∣r̃8(
√

2h− ε)
∣∣∣≤ c

1
7!

√
2h−ε∫
0

(√
2h− ε− t

)7
(
√

2h− t)−2dt ≤ c1h6, 0 < ε ≤ h√
2
.

(2.1.22)

Taking into account the continuity of the function r̃8(s) on
[
−
√

2h,
√

2h
]
, from (2.1.21)

and (2.1.22), we obtain

|r8 (x0 +h,y0 +h)| ≤ c1h6, (2.1.23)

where c1 is a constant independent of the taken point (x0,y0) on Π1h. Estimation

(2.1.23) is obtained analogously for the remaining seven nodes of operator B. Since

the norm of the operator is equal to one in uniform metric, by using (2.1.23), we have

|Br8 (x0,y0)| ≤ c2h6. (2.1.24)

Hence, on the basis of (2.1.17), (2.1.18), (2.1.20) and linearity of the operator B, we

obtain

|Bu(x0,y0)−u(x0,y0)| ≤ ch6,

for any (x0,y0) ∈Π1h. Now, let (x0,y0) be a point of Π2h, and let in the Taylor formula

(2.1.17) corresponding to this point, the remainder term r8(x,y) be represented in the

Lagrange form.

Moreover,

M(8) =
∂ 8u(x∗,y∗)

∂ l8 ,∂/∂ l ≡ α∂/∂x+β∂/∂y,α2 +β
2 = 1
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hence,

|r8(x,y)|= c3

∣∣∣M(8)
∣∣∣h8. (2.1.25)

where c3 is a constant independent of the point (x0,y0) ∈Π2h.Then

Br8(x0,y0) = (r8(x0 +h,y0) + r8(x0−h,y0) + r8(x0,y0 +h) +

r8(x0,y0−h))/5+(r8(x0 +h,y0 +h) + r8(x0 +h,y0−h)

+ r8(x0−h,y0 +h) + r8(x0−h,y0−h))/20, (2.1.26)

contains eighth order derivatives of the solution of problem (2.1.1) at some points of

the open square R0 defined by (2.1.16), when (x0,y0) ∈ Π2h. The square R0 lies at a

distance from the boundary γ of the rectangle Π not less than h. Therefore, by using

(2.1.25) and (2.1.26), we obtain

|Br8(x0,y0)|= c4

∣∣∣M(8)
∣∣∣h8,

on the basis of Lemma 2.1.3, we obtain

|Br8 (x0,y0)| ≤ c4ρ
−2h8 ≤ c4

h8

(2h)2 = c4
h6

4
, (2.1.27)

where c4 is a constant independent of the point (x0,y0) ∈ Π2h. Again, on the basis of

(2.1.17), (2.1.18) and (2.1.27) follows estimation (2.1.15) at any point (x0,y0) ∈ Π2h.

Lemma 2.1.5 is proved.

We represent two more Lemmas. Consider the following systems

qh = Bqh +gh on Π
h, qh = 0 on γ

h, (2.1.28)

qh = Bqh +gh on Π
h, qh ≥ 0 on γ

h, (2.1.29)

where gh and gh are given functions, and |gh| ≤ gh on Πh.
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Lemma 2.1.6 The solutions qh and qhof systems (2.1.28) and (2.1.29) satisfy the in-

equality

|qh| ≤ qh on Π
h
.

The proof of Lemma 2.1.6 follows from the comparison theorem (see Chapter 4 in

[59]).

Lemma 2.1.7 For the solution of the problem

qh = Bqh +h6 on Π
h, qh = 0 on γ

h, (2.1.30)

the inequality holds

qh ≤
5
3

ρdh4 on Π
h
,

where d = max{a,b}, ρ = ρ(x,y) is the distance from the current point (x,y) ∈Π
h to

the boundary of the rectangle Π.

Proof. We consider the functions

q(1)h (x,y) =
5
3

h4(ax− x2)≥ 0, q(2)h (x,y) =
5
3

h4(by− y2)≥ 0 on Π,

Let qh (x,y) = q(1)h (x,y), then

Bqh (x0,y0) = (qh(x0 +h,y0) + qh(x0−h,y0) + qh(x0,y0 +h) + qh(x0,y0−h))/5+

(qh(x0 +h,y0 +h) + qh(x0 +h,y0−h) + qh(x0−h,y0 +h) + qh(x0−h,y0−h))/20

=

(
5
3

h4(a(x0 +h)− (x0 +h)2) +
5
3

h4(a(x0−h)− (x0−h)2 +
5
3

h4(ax0− x2
0) +

5
3

h4(ax0− x2
0)

)
/5+

(
5
3

h4(a(x0 +h)− (x0 +h)2) +
5
3

h4(a(x0 +h)− (x0 +h)2 +

5
3

h4(a(x0−h)− (x0−h)2 +
5
3

h4(a(x0−h)− (x0−h)2
)
/20 =
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h4

3
(
ax0 +ah− x2

0−2x0h−h2 + ax0−ah− x2
0 +2x0h−h2 + ax0− x2

0 + ax0− x2
0
)
+

h4

12
(
ax0 +ah− x2

0−2x0h−h2 + ax0 +ah− x2
0−2x0h−h2 + ax0−ah− x2

0 +2x0h−

h2 + ax0−ah− x2
0 +2x0h−h2)= h4

3
(
4ax0−4x2

0−2h2)+ h4

12
(
4ax0−4x2

0−4h2)
= h4

(
20ax0−20x2

0−12h2)
12

=
5
3

h4(ax0− x2
0)−h6 = qh (x0,y0)−h6,

Similarly let qh (x,y) = q(2)h (x,y) then

Bqh (x0,y0) = (qh(x0 +h,y0) + qh(x0−h,y0) + qh(x0,y0 +h) + qh(x0,y0−h))/5+

(qh(x0 +h,y0 +h) + qh(x0 +h,y0−h) + qh(x0−h,y0 +h) + qh(x0−h,y0−h))/20

=

(
5
3

h4(b(x0 +h)− (x0 +h)2) +
5
3

h4(b(x0−h)− (x0−h)2 +
5
3

h4(bx0− x2
0) +

5
3

h4(bx0− x2
0)

)
/5+

(
5
3

h4(b(x0 +h)− (x0 +h)2) +
5
3

h4(b(x0 +h)− (x0 +h)2 +

5
3

h4(b(x0−h)− (x0−h)2 +
5
3

h4(b(x0−h)− (x0−h)2
)
/20 =

h4

3
(
bx0 +bh− x2

0−2x0h−h2 + bx0−bh− x2
0 +2x0h−h2 + bx0− x2

0 + bx0− x2
0
)
+

h4

12
(
bx0 +bh− x2

0−2x0h−h2 + bx0 +bh− x2
0−2x0h−h2 + bx0−bh− x2

0 +2x0h−

h2 + bx0−bh− x2
0 +2x0h−h2)= h4

3
(
4bx0−4x2

0−2h2)+ h4

12
(
4bx0−4x2

0−4h2)=
h4

(
20bx0−20x2

0−12h2)
12

=
5
3

h4(bx0− x2
0)−h6 = qh (x0,y0)−h6,

which are solutions of the equation qh = Bqh +h6 on Πh. By virtue of Lemma 2.1.6,

we obtain

qh ≤ min
i=1,2

q(i)h (x,y)≤ 5
3

ρdh4 on Π
h
.

Theorem 2.1.8 Assume that the boundary functions ϕ j, j = 1,2,3,4 satisfy conditions

(2.1.2) and (2.1.3). Then

max
Π

h
|uh−u| ≤ cρh4, (2.1.31)
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where u is the exact solution of problem (2.1.1)), and uh is the solution of the finite

difference problem (2.1.13.

Proof. Let

εh = uh−u on Π
h
. (2.1.32)

Then

Bεh = Buh−Bu⇒ Buh = Bεh +Bu

Moreover,

uh = εh +u

By considering problem (2.1.13) it is obvious that

εh = Bεh +(Bu−u) on Π
h, εh = 0 on γ

h. (2.1.33)

By virtue of estimation (2.1.15) for (Bu− u), and by applying Lemma 2.1.6 to the

problems (2.1.30) and (2.1.33), on the basis of Lemma 2.1.7 we obtain

max
Π

h
|εh| ≤ cρh4. (2.1.34)

From (2.1.32) and (2.1.34) follows the proof of Theorem 2.1.8.

2.2 Approximation of the First Derivative

We denote by Ψ j =
∂u
∂x on γ j, j = 1,2,3,4, and consider the boundary value problem:

∆v = 0 on Π, v = Ψ j on γ j, j = 1,2,3,4, (2.2.1)

where u is a solution of the boundary value problem (2.1.1).

We put
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Ψ1h(uh) =
1

12h
(−25ϕ1(y)+48uh(h,y)−36uh(2h,y)

+ 16uh(3h,y)−3uh(4h,y)) on γ
h
1 , (2.2.2)

Ψ3h(uh) =
1

12h
(25ϕ3(y)−48uh(a−h,y)+36uh(a−2h,y)

− 16uh(a−3h,y)+3uh(a−4h,y)) on γ
h
3 , (2.2.3)

Ψph(uh) =
∂ϕp

∂x
on γ

h
p, p = 2,4, (2.2.4)

where uh is the solution of the finite difference boundary value problem (2.1.13).

Lemma 2.2.1 The inequality is true

|Ψkh(uh)−Ψkh(u)| ≤ c5h4, k = 1,3, (2.2.5)

where uh is the solution of problem (2.1.13), u is the solution of problem (2.1.1).

Proof. On the basis of (2.2.2), (2.2.3) and Theorem 2.1.8, Then if k = 1,

|Ψ1h(uh)−Ψ1h(u)|=
∣∣∣∣ 1
12h

((−25ϕ1(y) + 48uh(h,y) − 36uh(2h,y) + 16uh(3h,y)

− 3uh(4h,y))− (−25ϕ1(y) + 48u(h,y) − 36u(2h,y) + 16u(3h,y) − 3u(4h,y)) | ≤

1
12h

(48 |uh(h,y)−u(h,y)| − 36 |uh(2h,y)−u(2h,y)| + 16 |uh(3h,y)−u(3h,y)|

− 3 |uh(4h,y)−u(4h,y)|)≤ 1
12h

(
48(ch)h4 + 36(c2h)h4 + 16(c3h)h4

+ 3(c4h)h4)≤ c5h4

Similarly if k = 3,

21



|Ψ3h(uh)−Ψ3h(u)|=
∣∣∣∣ 1
12h

((25ϕ1(y) − 48uh(a−h,y) + 36uh(a−2h,y)

− 16uh(a−3h,y) + 3uh(a−4h,y))+(25ϕ1(y) − 48u(a−h,y) + 36u(a−2h,y)

− 16u(a−3h,y) + 3u(4h,y)) | ≤ 1
12h

(48 |uh(a−h,y)−u(a−h,y)|

− 36 |uh(a−2h,y)−u(a−2h,y)| + 16 |uh(a−3h,y)−u(a−3h,y)|

− 3 |uh(a−4h,y)−u(a−4h,y)|)≤ 1
12h

(
48(ch)h4 + 36(c2h)h4 + 16(c3h)h4 +

3(c4h)h4)≤ c5h4

hence

|Ψkh(uh)−Ψkh(u)| ≤

1
12h

(
48(ch)h4 +36(c2h)h4 + 16(c3h)h4 +3(c4h)h4)≤

c5h4, k = 1,3.

Lemma 2.2.2 The inequality holds

max
(x,y)∈γh

k

|Ψkh(uh)−Ψk| ≤ c6h4, k = 1,3. (2.2.6)

Proof. From Lemma 2.1.1 follows that u ∈C5,0(Π). Then, at the end points (0,νh) ∈

γh
1 and (a,νh) ∈ γh

3 of each line segment {(x,y) : 0≤ x≤ a,0 < y = νh < b} expres-

sions (2.2.2) and (2.2.3) give the fourth order approximation of ∂u
∂x , respectively. From

the truncation error formulae (see [61]) follows that

max(x,y)∈γh
k

∣∣∣∂ 5u
∂x5

∣∣∣
(n+1)!

n

∏
k=0
k 6= j

(
x j− xk

)
hence,

max
(x,y)∈γh

k

|Ψkh(u)−Ψk| ≤
max(x,y)∈Π

∣∣∣∂ 5u
∂x5

∣∣∣
5!

h(2h)(3h)(4h)=
h4

5
max

(x,y)∈Π

∣∣∣∣∂ 5u
∂x5

∣∣∣∣≤ c7h4, k= 1,3.

(2.2.7)
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On the basis of Lemma 2.2.1 and estimation (2.2.7) follows (2.2.6),

max
(x,y)∈γh

k

|Ψkh(uh)−Ψk|= max
(x,y)∈γh

k

|Ψkh(uh)−Ψkh(u)+Ψkh(u)−Ψk| ≤

max
(x,y)∈γh

k

|Ψkh(uh)−Ψkh(u)|+ max
(x,y)∈γh

k

|Ψkh(u)−Ψk| ≤ c6h4, k = 1,3.

We consider the finite difference boundary value problem

vh = Bvh on Π
h, vh = Ψ jh on γ

h
j , j = 1,2,3,4, (2.2.8)

where Ψ jh, j = 1,2,3,4, are defined by (2.2.2) -(2.2.4)

Theorem 2.2.3 The estimation is true

max
(x,y)∈Π

h

∣∣∣∣vh−
∂u
∂x

∣∣∣∣≤ ch4, (2.2.9)

where u is the solution of problem (2.1.1), vh is the solution of the finite difference

problem (2.2.8).

Proof. Let

εh = vh− v on Π
h
, (2.2.10)

where v = ∂u
∂x . From (2.2.8) and (2.2.10), we have

εh = Bεh +(Bv− v) on Π
h, εh = Ψkh(uh)− v on γ

h
k , k = 1,3, εh = 0 on γ

h
p, p = 2,4.

(2.2.11)We represent

εh = ε
1
h + ε

2
h , (2.2.12)

where
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ε
1
h = Bε

1
h on Π

h, (2.2.13)

ε
1
h = Ψkh(uh)− v on γ

h
k , k = 1,3, ε

1
h = 0 on γ

h
p, p = 2,4; (2.2.14)

ε
2
h = Bε

2
h +(Bv− v) on Π

h, ε
2
h = 0 on γ

h
j , j = 1,2,3,4. (2.2.15)

By Lemma 2.2.2 and by maximum principle, for the solution of system (2.2.13),

(2.2.14), we have

max
(x,y)∈Π

h

∣∣ε1
h
∣∣≤ max

q=1,3
max

(x,y)∈γh
q

∣∣Ψqh(uh)− v
∣∣≤ c6h4. (2.2.16)

The solution ε2
h of system (2.2.15) is the error of the approximate solution obtained by

the finite difference method for problem (2.2.1), when the boundary values satisfy the

conditions

Ψ j ∈C4,λ (γ j), 0 < λ < 1, j = 1,2,3,4, (2.2.17)

Ψ
(2q)
j (s j) = (−1)q

Ψ
(2q)
j−1(s j), q = 0,1. (2.2.18)

Since the function v = ∂u
∂x is harmonic on Π with the boundary functions Ψ j, j =

1,2,3,4, on the basis of (2.2.17), (2.2.18), and Remark 15 in [62], we have

max
(x,y)∈Π

h

∣∣ε2
h
∣∣≤ c8h4. (2.2.19)

If the solution of problem (2.1.1) u ∈ C̃4,λ (Π), 0 < λ < 1, then

max
(x,y)∈Π

h
|u−uh| ≤ ch4

where uh is the solution of the finite difference problem (2.1.13).) By (2.2.12), (2.2.16)

and (2.2.19) inequality (2.2.9) follows.
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2.3 Approximation of the Pure Second Derivatives

We denote by ω = ∂ 2u
∂x2 . The function ω is harmonic on Π, on the basis of Lemma 2.1.1

is continuous on Π, and is a solution of the following Dirichlet problem

∆ω = 0 on Π, ω =z j on γ j, j = 1,2,3,4, (2.3.1)

where

zτ =
∂ 2ϕτ

∂x2 , τ = 2,4, (2.3.2)

zν = −∂ 2ϕν

∂y2 , ν = 1,3. (2.3.3)

From the continuity of the function ω on Π, and from (2.1.2), (2.1.3) and (2.3.2),

(2.3.3) it follows that

z j ∈ C4,λ (γ j), 0 < λ < 1, j = 1,2,3,4, (2.3.4)

z(2q)
j (s j) = (−1)qz(2q)

j−1(s j), q = 0,1, j = 1,2,3,4. (2.3.5)

Let ωh be a solution of the finite difference problem

ωh = Bωh on Π
h, ωh =z j on γ

h
j ∪

·
γ j, j = 1,2,3,4, (2.3.6)

where z j, j = 1,2,3,4, are the functions determined by (2.3.2) and (2.3.3).

Theorem 2.3.1 The estimation holds

max
Π

h
|ωh−ω| ≤ ch4, (2.3.7)

where ω = ∂ 2u
∂x2 , u is the solution of problem (2.1.1) and ωh is the solution of the finite

difference problem (2.3.6).

Proof. On the basis of conditions (2.3.4) and (2.3.5), the exact solution of problem

(2.3.1) belongs to the class of functions C̃4,λ (Π) (see [62]). Hnece, inequality (2.3.7)

follows from the results in ([62]) (Remark 15), as the case of the Dirichlet problem.
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Chapter 3

ON A HIGHLY ACCURATE APPROXIMATION OF THE
FIRST AND PURE SECOND DERIVATIVES OF THE

LAPLACE EQUATION IN A RECTANGULAR
PARALLELEPIPED

3.1 The Dirichlet Problem on a Rectangular Parallelepiped

Let R = {(x1,x2,x3) : 0 < xi < ai, i = 1,2,3} be an open rectangular parallelepiped;

Γ j( j = 1,2, . . . ,6) be its faces including the edges; Γ j for j = 1,2,3 (for j = 4,5,6)

belongs to the plane x j = 0 (to the plane x j−3 = a j−3), and let Γ = ∪6
j=1Γ j be the

boundary of R; γµν = Γµ ∩ Γν be the edges of the parallelepiped R. If f has k-th

derivatives on D satisfying a Hölder condition, we say that f ∈Ck,λ (D), where expo-

nent λ ∈ (0,1).

We consider the following boundary value problem

∆u = 0 on R, u = ϕ j on Γ j, j = 1,2, . . . ,6, (3.1.1)

where ∆≡ ∂ 2/∂x2
1 +∂ 2/∂x2

2 +∂ 2/∂x2
3, ϕ j are given functions. Assume that

ϕ j ∈C6,λ (Γ j), 0 < λ < 1, j = 1,2, . . . ,6, (3.1.2)

ϕµ = ϕν on γµν , (3.1.3)

∂ 2ϕµ

∂ t2
µ

+
∂ 2ϕν

∂ t2
ν

+
∂ 2ϕµ

∂ t2
µν

= 0 on γµν , (3.1.4)

∂ 4ϕµ

∂ t4
µ

+
∂ 4ϕµ

∂ t2
µ∂ t2

µν

=
∂ 4ϕν

∂ t4
ν

+
∂ 4ϕν

∂ t2
ν∂ t2

νµ

on γµν . (3.1.5)

where 1≤ µ < ν ≤ 6, ν−µ 6= 3, tµν is an element in γµν , and tµ and tν is an element
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of the normal to γµν on the face Γµ and Γν , respectively.

Lemma 3.1.1 The solution u of the problem (3.1.1) is from C5,λ (R),

The proof of Lemma 3.1.1 follows from Theorem 2.1 in [55].

Lemma 3.1.2 The inequality is true

max
0≤p≤3

max
0≤q≤3−p

sup
(x1,x2,x3)∈R

∣∣∣∣∣ ∂ 6u

∂x2p
1 ∂x2q

2 ∂x6−2p−2q
3

∣∣∣∣∣≤ c < ∞, (3.1.6)

where u is the solution of the problem (3.1.1).

Proof. From Lemma 3.1.1 it follows that the functions ∂ 4u
∂x4

1
, ∂ 4u

∂x4
2

and ∂ 4u
∂x4

3
are continuous

on R. We put w = ∂ 4u
∂x4

1
. The function w is harmonic in R, and is the solution of the

problem

∆w = 0 on R, w = Ψ j on Γ j, j = 1,2, . . . ,6,

where

Ψτ =
∂ 4ϕτ

∂x4
2
+

∂ 4ϕτ

∂x4
3
+2

∂ 4ϕτ

∂x2
2∂x2

3
, τ = 1,4

Ψν =
∂ 4ϕν

∂x4
1
, ν = 2,3,5,6.

where Ψτ when τ = 1,4 is calculated by following,

Ψτ =
∂ 4ϕν

∂x4
1

=
∂ 2

∂x2
1

(
∂ 2ϕτ

∂x2
1

)
=

∂ 2

∂x2
1

(
−∂ 2ϕτ

∂x2
2
− ∂ 2ϕτ

∂x2
3

)
=− ∂ 4ϕτ

∂x2
1∂x2

2
− ∂ 4ϕτ

∂x2
1∂x2

3
=

− ∂ 2

∂x2
2

(
−∂ 2ϕτ

∂x2
2
− ∂ 2ϕτ

∂x2
3

)
− ∂ 2

∂x2
3

(
−∂ 2ϕτ

∂x2
2
− ∂ 2ϕτ

∂x2
3

)
=

∂ 4ϕτ

∂x4
2

+
∂ 4ϕτ

∂x4
3

+ 2
∂ 4ϕτ

∂x2
2∂x2

3

From conditions (3.1.2)-(3.1.5) it follows that

Ψ j ∈ C2,λ (Γ j), 0 < λ < 1, j = 1,2, ...,6

Ψµ = Ψν , on γµν , 1≤ µ < ν ≤ 6, ν−µ 6= 3.
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Hence, on the basis of Theorem 4.1 in [55], we have

sup
(x1,x2,x3)∈R

∣∣∣∣∂ 6u
∂x6

1

∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

1

∣∣∣∣< ∞, (3.1.7)

sup
(x1,x2,x3)∈R

∣∣∣∣ ∂ 6u
∂x4

1∂x2
2

∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

2

∣∣∣∣< ∞, (3.1.8)

sup
(x1,x2,x3)∈R

∣∣∣∣ ∂ 6u
∂x4

1∂x2
3

∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

3

∣∣∣∣< ∞, (3.1.9)

Similarly, when w = ∂ 4u
∂x4

2
. The function w is harmonic in R, and is the solution of the

problem

∆w = 0 on R, w = Ψ j on Γ j, j = 1,2, . . . ,6,

where

Ψτ =
∂ 4ϕτ

∂x4
1
+

∂ 4ϕτ

∂x4
3
+2

∂ 4ϕτ

∂x2
1∂x2

3
, τ = 2,5

Ψν =
∂ 4ϕν

∂x4
2
, ν = 2,3,5,6.

From conditions (3.1.2)-(3.1.5) it follows that

Ψ j ∈ C2,λ (Γ j), 0 < λ < 1, j = 1,2, ...,6

Ψµ = Ψν , on γµν , 1≤ µ < ν ≤ 6, ν−µ 6= 3.

Hence, on the basis of Theorem 4.1 in [55], we have

sup
(x1,x2,x3)∈R

∣∣∣∣ ∂ 6u
∂x4

2∂x2
1

∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

1

∣∣∣∣< ∞, (3.1.10)

sup
(x1,x2,x3)∈R

∣∣∣∣∂ 6u
∂x6

2

∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

2

∣∣∣∣< ∞, (3.1.11)

sup
(x1,x2,x3)∈R

∣∣∣∣ ∂ 6u
∂x4

2∂x2
3

∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

3

∣∣∣∣< ∞, (3.1.12)

and when w = ∂ 4u
∂x4

2
. The function w is harmonic in R, and is the solution of the problem

∆w = 0 on R, w = Ψ j on Γ j, j = 1,2, . . . ,6,
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where

Ψτ =
∂ 4ϕτ

∂x4
1
+

∂ 4ϕτ

∂x4
2
+2

∂ 4ϕτ

∂x2
1∂x2

2
, τ = 3,6

Ψν =
∂ 4ϕν

∂x4
3
, ν = 2,3,5,6.

From conditions (3.1.2)-(3.1.5) it follows that

Ψ j ∈ C2,λ (Γ j), 0 < λ < 1, j = 1,2, ...,6

Ψµ = Ψν , on γµν , 1≤ µ < ν ≤ 6, ν−µ 6= 3.

Hence, on the basis of Theorem 4.1 in [55], we have

sup
(x1,x2,x3)∈R

∣∣∣∣ ∂ 6u
∂x4

3∂x2
1

∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

3

∣∣∣∣< ∞, (3.1.13)

sup
(x1,x2,x3)∈R

∣∣∣∣ ∂ 6u
∂x4

3∂x2
2

∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

2

∣∣∣∣< ∞, (3.1.14)

sup
(x1,x2,x3)∈R

∣∣∣∣∣∂ 6u
∂x6

3

∣∣∣∣∣= sup
(x1,x2,x3)∈R

∣∣∣∣∂ 2w
∂x2

3

∣∣∣∣< ∞, (3.1.15)

From (3.1.7)− (3.1.15), estimation (3.1.6) follows.

Lemma 3.1.3 Let ρ(x1,x2,x3) be the distance from the current point of the open par-

allelepiped R to its boundary and let ∂/∂ l ≡ α1∂/∂x1 +α2∂/∂x2 +α3∂/∂x3, α2
1 +

α2
2 +α2

3 = 1. Then the next inequality holds∣∣∣∣∂ 8u(x1,x2,x3)

∂ l8

∣∣∣∣≤ cρ
−2(x1,x2,x3), (x1,x2,x3) ∈ R (3.1.16)

where c is a constant independent of the direction of differentiation ∂/∂ l, u is a solu-

tion of the problem (3.1.1).

Proof. Since the sixth order derivatives of the solution u of the form

∂ 6/∂x2p
1 ∂x2q

2 ∂x6−2p−2q
3 , p+q+ s = 3 are harmonic and by Lemma 3.1.2 are bounded

in R, any eighth order derivative can be obtained by twice differentiating some of these
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derivatives. The Lemma 3 from [57] (Chap. 4, Sec. 3) is illustrated in following,

Let u is a bounded and harmonic function in R, (|u| ≤M). Then any derivative Dβ u of

the oder |β |= k, k = 1,2, . . ., at the point x ∈ R satisfies the following inequality,

|Dαu| ≤M
(

n
ρ

)k

kk

where ρ is the distance from the current point to the boundary of R,hence, we have

max
0≤µ≤8

max
0≤ν≤8−µ

∣∣∣∣∣ ∂ 8u(x1,x2,x3)

∂xµ

1 ∂xυ
2 ∂x8−µ−υ

3

∣∣∣∣∣≤ c1ρ
−2(x1,x2,x3), (x1,x2,x3) ∈ R. (3.1.17)

From inequality (3.1.17), inequality (3.1.16) follows.

Let h > 0, and ai/h≥ 6, i = 1,2,3, integers. We assign Rh, a cubic grid on R, with step

h, obtained by the planes xi = 0,h,2h, ..., i = 1,2,3. Let Dh be a set of nodes of this

grid, Rh = R∩Dh (see Fig. (3.1)); Γ jh = Γ j∩Dh, and Γh = Γ1h∪Γ2h∪ . . .∪Γ6h.

Figure 3.1. Rh = R∩Dh
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Let the Averaging operator ℜ with twenty seven points be defined as follows (see [58])

ℜu(x1,x2,x3) =
1

128

14
6

∑(1)
p=1

up +3
18

∑(2)
q=7

up +
26

∑(3)
r=19

ur

 , (x1,x2,x3) ∈ R,

where the sum ∑(k) is taken over the grid nodes that are at a distance of
√

kh from

the point (x1,x2,x3),(see Fig. (3.2)), and up, uq, and ur are the values of u at the

corresponding grid points.

Figure 3.2. Twenty six points arount center using in operator ℜ.Each point has a
distance of

√
kh from the point (x1,x2,x3).

We consider the finite difference approximations of problem (3.1.1):

uh = ℜuh on Rh, uh = ϕ j on Γ jh, j = 1,2, . . . ,6. (3.1.18)

By the maximum principle (see, [59], Chap.4), problem (3.1.18) has a unique solution.

In what follows and for simplicity, we will denote by c,c1,c2, ... constants which are

independent of h and the nearest factor, the identical notation will be used for various

constants.

Let Rkh be the set of nodes of the grid Rh whose distance from Γ is kh. It is obvious
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that 1≤ k ≤ N(h), where

N(h) = [min{a1,a2,a3}/(2h)] . (3.1.19)

We define for 1≤ k ≤ N(h)

f k
h =


1, (x1,x2,x3) ∈ Rkh,

0, (x1,x2,x3) ∈ Rh\Rkh

Lemma 3.1.4 The solution of the system

vk
h = ℜvk

h + f k
h on Rh, vk

h = 0 on Γh,

satisfies the inequality

max
(x1,x2,x3)∈Rh

vk
h ≤ 6k, 1≤ k ≤ N(h). (3.1.20)

Proof. Let wk
h is the function defined on Rh∪Γh and defined as a conditional funcion

wk
h =


0, (x1,x2,x3) ∈ Γh,

6m, (x1,x2,x3) ∈ Rm
h , 1≤ m < k,

6k, (x1,x2,x3) ∈ Rl
h, k ≤ l < N(h).

(3.1.21)

It is clear that

max
(x1,x2,x3)∈Rh

wk
h ≤ 6k.

we have

wk
h−ℜwk

h ≥ f k
h on Rh, k = 1,2, . . . ,N (h) . (3.1.22)

The correctness of inequality in (3.1.22) is shown for some examples in following:

Example 1: If m = k then f k
h = 1. In consider of Fig. (3.3), Fig. (3.4) and Fig. (3.2)

ℜwk
h is:
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ℜwk
h =

1
128

[14(6(k−1)+5(6k))+3(4(6(k−1))+8(6k))+(4(6(k−1))+4(6k))]

= 6k− 45
32

= wk
h−

45
32
⇒ wk

h−ℜwk
h =

45
32

> 1 = f k
h

Figure 3.3. The selected plane from Rh used in
Fig. (3.2).

Figure 3.4. The selected plane with
9-point scheme in a square.

ℜwk
h =

1
128

[14(6(m−1)+4(6m)+6(m+1)) +

3(4(6(m−1))+4(6m)+4(6(m+1)))+(4(6(m−1))+4(6(m+1)))] =

6m = wk
h⇒ wk

h−ℜwk
h = 0 = f k

h

If m 6= k and m > k then f k
h = 0 and ℜwk

h is:

ℜwk
h =

1
128

[14(6k)+3(12(6k))+8(6k)] = 6k = wk
h⇒ wk

h−ℜwk
h = 0 = f k

h

Example 2: If m = k then f k
h = 1. In consider of Fig. (3.5) ℜwk

h is:

ℜwk
h =

1
128

[14(2(k−1)+4(6k))+3(7(6(k−1))+5(6k))+(6(6(k−1))+

2(6k) = 6k− 165
64

= wk
h−

165
64
⇒ wk

h−ℜwk
h =

165
64

> 1 = f k
h

If m 6= k and m < k then f k
h = 0 and ℜwk

h is:
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ℜwk
h =

1
128

[14(2(6(m−1))+4(6m)) +

3(7(6(m−1))+4(6m)+6(m+1))+(6(6(m−1))+2(6(m+1)))] =

6k− 75
64

= wk
h−

75
64
⇒ wk

h−ℜwk
h =

75
64

> 0 = f k
h

If m 6= k and m > k then f k
h = 0 and ℜwk

h is:

ℜwk
h =

1
128

[14(6k)+3(12(6k))+8(6k)] = 6k = wk
h⇒ wk

h−ℜwk
h = 0 = f k

h

Figure 3.5. The selected plane with 9-point scheme in a square.

Then by the comparison theorem (see Chapter 4 in [59]), and by (3.1.21), we obtain

vk
h ≤ wk

h ≤ 6k on Rh,

this follows the inequality (3.1.20).

Proposition 3.1.5 The equation holds

ℜp7(x0,y0,z0) = u(x0,y0,z0) (3.1.23)

where p7(x10,x20,x30) is the seventh order Taylor’s polynomial at (x10,x20,x30) and u
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is a harmonic function.

Proof. Here it has a similar proof of proposition (2.1.4) in Chapter (2) and taking into

account that the function u is harmonic, by exhaustive calculations, we have

ℜp7(x10,x20,x30) =
1

128
(14(p7(x10 +h,x20,x30) + p7(x10−h,x20,x30) +

p7(x10,x20 +h,x30) + p7(x10,x20−h,x30) + p7(x10,x20,x30 +h) +

p7(x10,x20,x30−h))+3(p7(x10 +h,x20 +h,x30) + p7(x10 +h,x20−h,x30) +

p7(x10 +h,x20,x30 +h) + p7(x10 +h,x20,x30−h) + p7(x10−h,x20 +h,x30) +

p7(x10−h,x20−h,x30) + p7(x10−h,x20,x30 +h) + p7(x10−h,x20,x30−h) +

p7(x10,x20 +h,x30 +h) + p7(x10,x20 +h,x30−h) + p7(x10,x20−h,x30 +h) +

p7(x10,x20−h,x30−h))+(p7(x10 +h,x20 +h,x30 +h) +

p7(x10 +h,x20 +h,x30−h) + p7(x10 +h,x20−h,x30 +h) +

p7(x10 +h,x20−h,x30−h) + p7(x10−h,x20 +h,x30 +h) +

p7(x10−h,x20 +h,x30−h) + p7(x10−h,x20−h,x30 +h) +

p7(x10−h,x20−h,x30−h)) = u(x0,y0,z0) +

15
64

h2
3

∑
i=1

∂ 2u(x10,x20,x30)

∂x2
i

+
1

128
h4

3

∑
i=1

∂ 4u(x10,x20,x30)

∂x4
i

+

1
64

h4
2

∑
i=1

3

∑
j=i+1

∂ 4u(x10,x20,x30)

∂x2
i ∂x2

j
+

1
1536

h6
3

∑
i=1

∂ 6u(x10,x20,x30)

∂x6
i

+

5
1536

h6
2

∑
i=1

3

∑
j=i+1

(
∂ 6u(x10,x20,x30)

∂x2
i ∂x4

j
+

∂ 6u(x10,x20,x30)

∂x4
i ∂x2

j

)
+

12
1536

h6 ∂ 6u(x10,x20,x30)

∂x2
1∂x2

2∂x2
3

= u(x0,y0,z0) +

2
256

(
∂

∂x2

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

)
+

∂

∂y2

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

)
+
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∂

∂ z2

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

))
+

1
1536

(
∂

∂x4

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

)
+

∂

∂y4

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

)
+

∂

∂ z4

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

)
+

4
∂

∂x2∂y2

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

)
+

4
∂

∂x2∂ z2

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

)
+

4
∂

∂y2∂ z2

(
∂ 2u(x0,y0,z0)

∂x2 +
∂ 2u(x0,y0,z0)

∂y2 +
∂ 2u(x0,y0,z0)

∂ z2

))
= u(x0,y0,z0)

Lemma 3.1.6 Let u be a solution of problem (3.1.1). The inequality holds

max
(x1,x2,x3)∈Rkh

|ℜu−u| ≤ c
h6

k2 , k = 1,2, ...,N(h) (3.1.24)

Proof. Let (x10,x20,x30) be a point of R1h, and let

R0 = {(x1,x2,x3) : |xi− xi0|< h, i = 1,2,3} , (3.1.25)

be an elementary cube, some faces of which lie on the boundary of the rectangular

parallelepiped R. On the vertices of R0, and on the center of its faces and edges lie the

nodes of which the function values are used to evaluate ℜu(x10,x20,x30). We represent

a solution of problem (3.1.1) in some neighborhood of x0 = (x10,x20,x30) ∈ R1h by

Taylor’s formula

u(x1,x2,x3) = p7(x1,x2,x3;x0)+ r8(x1,x2,x3;x0), (3.1.26)

where p7(x1,x2,x3) is the seventh order Taylor’s polynomial, r8(x1,x2,x3) is the re-

mainder term. Taking into account that the function u is harmonic, we have

ℜp7(x10,x20,x30;x0) = u(x10,x20,x30) (3.1.27)
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Now, we estimate r8 at the nodes of the operator ℜ. We take a node (x10+h,x20,x30+

h) which is one of the twenty six nodes of ℜ, and consider the function

ũ(s) = u
(

x10 +
s√
2
,x20,x30 +

s√
2

)
, −
√

2h≤ s≤
√

2h (3.1.28)

of single variable s, which is the arc length along the straight line through the points

(x10−h,x20,x30−h) and (x10 +h,x20,x30 +h). By virtue of Lemma 3.1.3, we have∣∣∣∣d8ũ(s)
ds8

∣∣∣∣≤ c(
√

2h− s)−2, 0≤ s <
√

2h. (3.1.29)

We represent the function (3.1.28) around the point s = 0 by Taylor’s formula

ũ(s) = p̃7(s)+ r̃8(s),

where p̃7(s)≡ p7

(
x10 +

s√
2
,x20,x30 +

s√
2

)
is the seventh order Taylor’s polynomial of

the variable s, and

r̃8(s)≡ r8

(
x10 +

s√
2
,x20,x30 +

s√
2

;x0

)
, |s|<

√
2h, (3.1.30)

is the remainder term. On the basis of the continuity of r̃8(s) on the interval
[
−
√

2h,
√

2h
]

and estimation (3.1.29),we obtain

r8 (x10 +h,x20,x30h;x0) = lim
ε→+0

r̃8(
√

2h− ε)

≤ lim
ε→+0

c
1
7!

√
2h−ε∫
0

(√
2h− ε− t

)7
(
√

3h− t)−2dt


≤ c1h6, 0 < ε ≤

√
2h
2

(3.1.31)

where c1 is a constant independent of the choice of (x10,x20,x30) ∈ Rkh. Estimation

(3.1.31) is obtained analogously for the remaining twenty five nodes on the closed

cube (3.1.25). Since the norm of the operator ℜ in the uniform metric is equal to one,

by virtue of (3.1.31), we have

|ℜr8 (x10,x20,x30)| ≤ c2h6. (3.1.32)
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From (3.1.26), (3.1.27) and (3.1.32), we obtain

|ℜu(x10,x20,x30)−u(x10,x20,x30)| ≤ ch6,

for any (x10,x20,x30)∈ R1h. Now, let (x10,x20,x30) be a point of Rkh, for 2≤ k≤N(h).

By Lemma 3.1.3 for any k, 2≤ k ≤ N(h), we obtain

|ℜr8 (x10,x20,x30)| ≤ c3
h6

k2 , (3.1.33)

where c3 is a constant independent of k, 2≤ k≤N(h), and the choice of (x10,x20,x30)∈

Rkh. On the basis of (3.1.26), (3.1.27), and (3.1.33) estimation (3.1.24) follows.

Lemma 3.1.7 Assume that the boundary functions ϕ j, j = 1,2, . . . ,6, satisfy condi-

tions (3.1.2)-(3.1.5). Then

max
Rh
|uh−u| ≤ ch6(1+ |lnh|), (3.1.34)

where uh is the solution of the finite difference problem (3.1.18), and u is the exact

solution of problem (3.1.1).

Proof. Let

εh = uh−u on Rh
. (3.1.35)

By (3.1.18) and (3.1.35) the error function satisfies the system of equations

εh = ℜεh +(ℜu−u) on Rh, εh = 0 on Γ
h. (3.1.36)

We represent a solution of the system (3.1.36) as follows

εh =
N(h)

∑
k=1

ε
k
h , (3.1.37)

where εk
h , 1≤ k ≤ N(h), N(h) defined by (3.1.19), is a solution of the system

ε
k
h = ℜε

k
h +ν

k on Rh, ε
k
h = 0 on Γ

h, (3.1.38)
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when

ν
k =


ℜu−u on Rkh

0 on Rh\Rkh.

.

Then for the solution of (3.1.38) by applying Lemmas 3.1.4 and 3.1.6, we have

max
(x1,x2,x3)∈Rh

∣∣∣εk
h

∣∣∣≤ c
h6

k
, 1≤ k ≤ N(h). (3.1.39)

On the basis of (3.1.35), (3.1.37), and (3.1.39), we obtain

max
(x1,x2,x3)∈Rh

|uh−u| ≤ ch6 (1+ |lnh|) .

Let ω be a solution of the problem

∆ω = 0 on R, ω = ψ j on Γ j, j = 1,2, . . . ,6, (3.1.40)

where ψ j, j = 1,2, ...,6 are given functions and

ψ j ∈C4,λ (Γ j), 0 < λ < 1, j = 1,2, . . . ,6, (3.1.41)

ψµ = ψν on γµν , (3.1.42)

∂ 2ψµ

∂ t2
µ

+
∂ 2ψν

∂ t2
ν

+
∂ 2ψµ

∂ t2
µν

= 0 on γµν . (3.1.43)

Lemma 3.1.8 The estimation holds

max
Rh
|ωh−ω| ≤ ch4, (3.1.44)

where ω is the exact solution of problem (3.1.40), ωh is the exact solution of the finite

difference problem

ωh = ℜωh on Rh, ωh = ψ j on Γ jh, j = 1,2, . . . ,6. (3.1.45)

Proof. It follows from Lemma 1.2 in [54] that
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max
0≤p≤q

max
0≤q≤2−p

sup
(x1,x2,x3)∈R

∣∣∣∣∣ ∂ 4ω(x1,x2,x3)

∂x2p
1 ∂x2q

2 ∂x4−2p−2q
3

∣∣∣∣∣< ∞,

where u is the solution of problem (3.1.40). Then, instead of inequality (3.1.17), we

have

max
0≤µ≤8

max
0≤ν≤8−µ

∣∣∣∣∣ ∂ 8ω(x1,x2,x3)

∂xµ

1 ∂xν
2 ∂x8−µ−ν

3

∣∣∣∣∣≤ cρ
−4(x1,x2,x3), (x1,x2,x3) ∈ R, (3.1.46)

where ρ(x1,x2,x3) is the distance from (x1,x2,x3) ∈ R to the boundary Γ. On the basis

of estimation (3.1.46) and Taylor’s formula, by analogy with the proof of Lemma 3.1.6

we have

max
(x1,x2,x3)∈Rkh

|ℜω−ω| ≤ c
h4

k4 , k = 1,2, ...,N(h).

We put

εh = ωh−ω on Rh∪Γh.

Then, as the proof of Lemma 3.1.7, we obtain

max
Rh
|ωh−ω| ≤ c4h4

N(h)

∑
k=1

1
k3 ≤ ch4.

3.2 Approximation of the First Derivative

Let v = ∂u
∂x1

and let Φ j =
∂u
∂x1

on Γ j, j = 1,2, . . . ,6, and consider the boundary value

problem:

∆v = 0 on R, v = Φ j on Γ j, j = 1,2, . . . ,6, (3.2.1)

where u is a solution of the boundary value problem (3.1.1).

We define the following operators Φνh, ν = 1,2, . . . ,6,
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Φ1h(uh) =
1

12h
(−25ϕ1(x2,x3)+48uh(h,x2,x3)−36uh(2h,x2,x3)

+ 16uh(3h,x2,x3)−3uh(4h,x2,x3)) on Γ
h
1, (3.2.2)

Φ4h(uh) =
1

12h
(25ϕ4(x2,x3)−48uh(a1−h,x2,x3)+36uh(a1−2h,x2,x3)

− 16uh(a1−3h,x2,x3)+3uh(a1−4h,x2,x3)) on Γ
h
4, (3.2.3)

Φph(uh) =
∂ϕp

∂x1
on Γ

h
p, p = 2,3,5,6, (3.2.4)

where uh is the solution of finite difference problem (3.1.18).

Lemma 3.2.1 The inequality is true

|Φkh(uh)−Φkh(u)| ≤ c3h5(1+ |lnh|), k = 1,4, (3.2.5)

where uh is the solution of problem (3.1.18), u is the solution of problem (3.1.1).

Proof. It is obvious that Φph(uh)−Φph(u) = 0 for p = 2,3,5,6. For k = 1, by (3.2.2)

and Lemma 3.1.7, we have

|Φ1h(uh)−Φ1h(u)|=
∣∣∣∣ 1
12h

((−25ϕ1(x2,x3) + 48uh(h,x2,x3) − 36uh(2h,x2,x3)

+ 16uh(3h,x2,x3) − 3uh(4h,x2,x3))− (−25ϕ1(x2,x3) + 48u(h,x2,x3)

− 36u(2h,x2,x3) + 16u(3h,x2,x3) − 3u(4h,x2,x3)))|

≤ 1
12h

(48 |uh(h,x2,x3)−u(h,x2,x3)| + 36 |uh(2h,x2,x3)−u(2h,x2,x3)|

+ 16 |uh(3h,x2,x3)−u(3h,x2,x3)| +3 |uh(4h,x2,x3)−u(4h,x2,x3)|)

≤ c5h5(1+ |lnh|).

In following shown the same inequality is true when k = 4 also,
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|Φ1h(uh)−Φ1h(u)|=
∣∣∣∣ 1
12h

((−25ϕ4(x2,x3) + 48uh(a1−h,x2,x3)

− 36uh(a1−2h,x2,x3) + 16uh(a1−3h,x2,x3) − 3uh(a1−4h,x2,x3))

− (−25ϕ4(x2,x3) + 48u(a1−h,x2,x3) − 36u(a1−2h,x2,x3) + 16u(a1−3h,x2,x3)

− 3u(a1−4h,x2,x3)))| ≤
1

12h
(48 |uh(a1−h,x2,x3)−u(a1−h,x2,x3)|

+ 36 |uh(a1−2h,x2,x3)| − u(a1−2h,x2,x3) +16 |uh(a1−3h,x2,x3)

−u(a1−3h,x2,x3) +3 |uh(4h,x2,x3)−u(4h,x2,x3)|)≤ c5h5(1+ |lnh|).

Lemma 3.2.2 The inequality holds

max
(x1,x2,x3)∈Γh

k

|Φkh(uh)−Φk| ≤ c4h4, k = 1,4. (3.2.6)

where Φkh, k = 1,4 are defined by (3.2.2), (3.2.3), and Φk =
∂u
∂x1

on Γk, k = 1,4.

Proof. From Lemma 3.1.1 it follows that u ∈ C5,0(R). Then, at the end points

(0,νh,ωh) ∈ Γh
1 and (a1,νh,ωh) ∈ Γh

4 of each line segment

{(x1,x2,x3) : 0≤ x1 ≤ a1,0 < x2 = νh < a2,0 < x3 = ωh < a3}, expressions (3.2.2)

and (3.2.3) give the fourth order approximation of ∂u
∂x1

, respectively. From the trun-

cation error formulas it (see [61]) follows that

max
(x1,x2,x3)∈Γh

k

|Φ(u)−Φk| ≤ c5h4, k = 1,4. (3.2.7)

On the basis of Lemma 3.2.1 and estimation (3.2.7), (3.2.6) follows,

max
(x,y)∈γh

k

|Φkh(uh)−Φk|= max
(x,y)∈γh

k

|Φkh(uh)−Φkh(u)+Φkh(u)−Φk|

≤ max
(x,y)∈γh

k

|Φkh(uh)−Φkh(u)|+ max
(x,y)∈γh

k

|Φkh(u)−Φk|

≤ c4h4, k = 1,4.

We consider the finite difference boundary value problem
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vh = ℜvh on Rh, vh = Φ jh on Γ
h
j , j = 1,2, . . . ,6, (3.2.8)

where Ψ jh, j = 1,2, . . . ,6, are defined by (3.2.2)-(3.2.4).

Theorem 3.2.3 The estimation is true

max
(x1,x2,x3)∈Rh

∣∣∣∣vh−
∂u
∂x1

∣∣∣∣≤ ch4, (3.2.9)

where u is the solution of problem (3.1.1), vh is the solution of the finite difference

problem (3.2.8).

Proof. Let

εh = vh− v on Rh
, (3.2.10)

where v = ∂u
∂x1

. From (3.2.8) and (3.2.10), we have

εh = ℜεh +(ℜv− v) on Rh,

εh = Φkh(uh)− v on Γ
h
k , k = 1,4, εh = 0 on Γ

h
p, p = 2,3,5,6.

We represent

εh = ε
1
h + ε

2
h , (3.2.11)

where

ε
1
h = ℜε

1
h on Rh, (3.2.12)

ε
1
h = Φkh(uh)− v on Γ

h
k , k = 1,4, ε

1
h = 0 on Γ

h
p, p = 2,3,5,6; (3.2.13)

ε
2
h = ℜε

2
h +(ℜv− v) on Rh, ε

2
h = 0 on Γ

h
j , j = 1,2, . . . ,6. (3.2.14)

By Lemma 3.2.2 and by the maximum principle, for the solution of system (3.2.12),

(3.2.13), we have

max
(x1,x2,x3)∈Rh

∣∣ε1
h
∣∣≤ max

q=1,4
max

(x1,x2,x3)∈Γh
q

∣∣Φqh(uh)− v
∣∣≤ c4h4. (3.2.15)
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The solution ε2
h of system (3.2.14) is the error of the approximate solution obtained by

the finite difference method for problem (3.2.1), when on the boundary nodes Γ jh, the

approximate values are defined as the exact values of the functions Φ j in (3.2.1). It is

obvious that Φ j, j = 1,2, . . . ,6, satisfy the conditions

Φ j ∈C5,λ (Γ j), 0 < λ < 1, j = 1,2, . . . ,6, (3.2.16)

Φµ = Φν on γµν , (3.2.17)

∂ 2
µΦ

∂ t2
µ

+
∂ 2

ν Φ

∂ t2
ν

+
∂ 2

µΦ

∂ t2
µν

= 0 on γµν . (3.2.18)

Since the function v = ∂u
∂x1

is harmonic on R with the boundary functions Ψ j, j =

1,2, . . . ,6, on the basis of (3.2.16)- (3.2.18), and Lemma 3.1.8 we obtain

max
(x1,x2,x3)∈Rh

∣∣ε2
h
∣∣≤ c6h4. (3.2.19)

By (3.2.11), (3.2.15) and (3.2.19) inequality (3.2.9) follows.

Remark 3.2.4 On the basis of Lemma 3.1.2 the sixth order pure derivatives are bounded

in R. Therefore, if we replace the formulae (3.2.2) and (3.2.3) by the fifth order for-

ward and backward numerical differentiation formulae (see Chap.2 in [41]), then by

analogy to the proof of estimation (3.2.9), we obtain

max
(x1,x2,x3)∈Rh

∣∣∣∣vh−
∂u
∂x1

∣∣∣∣≤ ch5(1+ |lnh|).

3.3 Approximation of the Pure Second Derivatives

We denote by ω = ∂ 2u
∂x2

1
. The function ω is harmonic on R, on the basis of Lemma 3.1.1

is continuous on R, and is a solution of the following Dirichlet problem

∆ω = 0 on R, ω = χ j on Γ j, j = 1,2, . . . ,6, (3.3.1)

where
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χτ =
∂ 2ϕτ

∂x2
1
, τ = 2,3,5,6, (3.3.2)

χν = −
(

∂ 2ϕν

∂x2
2
+

∂ 2ϕν

∂x2
3

)
, ν = 1,4. (3.3.3)

Let ωh be the solution of the finite difference problem

ωh = ℜωh on Rh, ωh = χ j on Γ
h
j , j = 1,2, . . . ,6, (3.3.4)

where χ j, j = 1,2, . . . ,6 are the functions determined by (3.3.2) and (3.3.3).

Theorem 3.3.1 The estimation holds

max
Rh
|ωh−ω| ≤ ch4, (3.3.5)

where ω = ∂ 2u
∂x2

1
, u is the solution of problem (3.1.1) and ωh is the solution of the finite

difference problem (3.3.4).

Proof. From the continuity of the function ω on R, and from (3.1.2)-(3.1.5) and (3.3.2),

(3.3.3) it follows that

χ j ∈C4,λ (Γ j), 0 < λ < 1, j = 1,2, . . . ,6, (3.3.6)

χµ = χν on γµν , (3.3.7)

∂ 2χµ

∂ t2
µ

+
∂ 2χν

∂ t2
ν

+
∂ 2χµ

∂ t2
µν

= 0 on γµν . (3.3.8)

The boundary functions χ j, j = 1,2, . . . ,6, in (2.3.1) on the basis of (3.3.6)-(3.3.8)

satisfy all conditions of Lemma 3.1.8 in which follows the proof of the error estimation

(3.3.5).
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Chapter 4

NUMERICAL EXPERIMENTS

In this chapter we present the numerical results obtained in support of the theorical part.

Our aim is to show the high order accurate approximation of the first and pure second

derivatives of the Laplace equation on a rectangle and a rectangular parallelepiped.

Further, we show how these results are obtained and their application for different

boundary functions and different dimensional domains.

All results are obtained by using the Strongly Implicit Procedure.

4.1 The Strongly Implicit Procedure (SIP)

The Strongly Implicit Procedure is a method for finding the approximate solution of

sparse linear system of equations. The linear system of equations can be shown in

matrix form (Au = q), for which SIP is used effectively when matix A has many zero

entries and the non-zero entries lie on a finite number of diagonals. In SIP Incomplete

LU decomposition is used, which is the approximation of the exact LU decomposition

solution.

In our studies A is related to eight-point averaging operator when applied on a rectangle

and to twenty-six point difference operator on a rectangular parallelepiped. Vector u

is a vector of unknown variables in the finite difference approximation of the boundary

value problem. On the right hand side of the equation, vector q corresponds to the value

of the boundary function, when the averaging operator is applied for the approximate
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solution of Laplace’s equation on each point of domain grid. In the two dimensional

case if the rectangular mesh is dimensions of M×N, then the matrix A has order

MN×MN. Each row of the matrix A has the coefficients of the unknown variables

of an equation corresponding to each point of grid. In the three dimensional case

if the mesh has M×N×Q points then matrix A has dimensions of MNQ×MNQ.

If the mesh size is h in any direction of domain then by choosing a small value of

h the grid will have many points which results in a large number equations related

to each point. Thus, it is required to solve a large system of linear equations Au =

q, and using the method of LU decomposition takes impractical processing time and

amount of memory. The SIP helps to improve the CPU time as regards to the non-zero

entries it lies only on finite number of digonals. The following figure (Figure (4.1))

shows the matrix A for the nine point scheme with 9 diagonals. The main diagonal

is called by A[0] and the adjacent diagonals are {A[−1], A[1]}. There are two diagonal

with a distance of M from main diagonal shown by {A[−M], A[M]} and the adjacent

diagonals of these diagonals {A[−M−1], A[−M+1]}, {A[M−1], A[M+1]} are nine different

diagonals (see Figure (4.2)). The label of each diagonal is chosen taking into account

the distance from main diagonal (the number of entries needed to move to the right

to reach the upper side diagonals as a positive value and number of entries needed

move to down to reach the loweside diagonals as a negative value used for subscrpt of

A). In the nine point scheme, each point has eight neighbor points which are used by

averaging operator for the approximate solution of Laplace’s equation and illustrates

the coefficients of the unknown variables in the correct row of matrix A corresponting

to the index grid points (see Figure (4.3)).
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In the method of LU decomposition matrix A can be factorized as a A = LU where

L and U are lower and upper tiangular matrices respectively. These L and U can be

computed with partial pivoiting. The solution of LUu = q can be found by assuming

Uu = y, then by forward substitution Ly = q calculates y, and u is computed by back-

substitution using the system Uu = y. The new matrix Ā in SIP is defined instead of

matrix A, with a negligible matrix N (‖N‖<< ‖A‖). Hence the new Ā can be factorized

by L̄ and Ū (Ā = L̄Ū) and Ā has exactly same diagonal of A with some additional new

diagonals, Figure (4.4). Further we show how we can find the entries of L̄ and Ū by

using different averaging operators. Now the iterative procedure can be done by using

the following equation:

(A+N)u = (A+N)u+(q−Au)

The iterative procedure is:

(A+N)u(n+1) = (A+N)u(n)+(q−Au(n))

The (n+ 1) the iterative step u(n+1)of u can be computed by previous iterative infor-

mation u(n) (Chapter 5 [71]). The matrix L̄Ū is used instead of the matrix A+N (see

Figure (4.4)) and calculated before starting iterative procedure only once. The differ-

ence of u(n+1) and u(n) is defined by d(n+1):

d(n) = u(n+1)−u(n)

and the residual R(n) is defined by:

R(n) = q−Au(n)

Then in the iterative procedure the following solutions are applied:

L̄Ūd(n) = R(n), (4.1.1)
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followed by:

u(n+1) = d(n)+u(n)

Equation (4.1.1) can be solved by using forward and backward substitutions

L̄y(n) = R(n) (4.1.2)

and

Ūd(n) = y(n). (4.1.3)

we demonstrate how the entries of L̄, Ū and the solution of linear systems (4.1.2) and

(4.1.3) for different averaging operators on different domain can be obtained.

Figure 4.1. The coefficients of unknown variables of the equations corresponding to
each point of the grid when nine-point scheme is applied.
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Figure 4.2. Matrix A for nine point scheme with 9 diagonals.

Figure 4.3. 8 neighboring points around point Ap in nine point scheme.

50



Figure 4.4. L̄Ū = A+N

4.2 Rectangular

The entries of L̄ and Ū for nine point difference scheme is calculated by the following

recurrence relations [72]:

L̄[−M−1] (i) = A[−M−1] (i)

L̄[−M−1] (i)Ū[1] (i−M−1) + L̄[−M] (i) = A[−M] (i)

L̄[−M] (i)Ū[1] (i−M) + L̄[−M+1] (i) = A[−M+1] (i)

L̄[−M−1] (i)Ū[M] (i−M−1) + L̄[−M] (i)Ū[M−1] (i−M) + L̄[−1] (i) = A[−1] (i)

L̄[−M−1] (i)Ū[M+1] (i−M−1) + L̄[−M] (i)Ū[M] (i−M) +

L̄[−M+1] (i)Ū[M−1] (i−M+1) + L̄[−1] (i)Ū[1] (i−1) + L̄[0] (i) = A[0] (i)

L̄[−M] (i)Ū[M+1] (i−M) + L̄[−M+1] (i)Ū[M] (i−M+1) + L̄[0] (i)Ū[1] (i) = A[1] (i)

L̄[−1] (i)Ū[M] (i−1) + L̄[0] (i)Ū[M−1] (i) = A[M−1] (i)

L̄[−1] (i)Ū[M+1] (i−1) + L̄[0] (i)Ū[M] (i) = A[M] (i)

where L̄[M] (i) and Ū[M] (i) are related to the value of the i-th row, on diagonals which

have a distance M from the main diagonal in matrix L̄ and Ū , respectively.

Hence, the entries of L̄ and Ū can be obtained by:

m

51



L̄[−M−1] (i) = A[−M−1] (i)

L̄[−M] (i) = A[−M] (i) − L̄[−M−1] (i)Ū[1] (i−M−1)

L̄[−M+1] (i) = A[−M+1] (i) − L̄[−M] (i)Ū[1] (i−M)

L̄[−1] (i) = A[−1] (i) − L̄[−M−1] (i)Ū[M] (i−M−1) − L̄[−M] (i)Ū[M−1] (i−M)

L̄[0] (i) = A[0] (i) − L̄[−M−1] (i)Ū[M+1] (i−M−1) − L̄[−M] (i)Ū[M] (i−M)−

L̄[−M+1] (i)Ū[M−1] (i−M+1) − L̄[−1] (i)Ū[1] (i−1)

Ū[1] (i) =
(
A[1] (i) − L̄[−M] (i)Ū[M+1] (i−M) − L̄[−M+1] (i)Ū[M] (i−M+1)

)
/L̄[0] (i)

Ū[M−1] (i) =
(
A[M−1] (i) − L̄[−1] (i)Ū[M] (i−1)

)
/L̄[0] (i)

Ū[M] (i) =
(
A[M] (i) − L̄[−1] (i)Ū[M+1] (i−1)

)
/L̄[0] (i)

Ū[M+1] (i) = A[M+1] (i) / L̄[0] (i)

Next step is the iterative procedure. It means the forward and backward substiution to

find the solution of y(n) in (4.1.2) and d(n) in (4.1.3) where directly y(n) (i) and d(n) (i)

(y(n) (i) and d(n) (i) related to point i) is computed by the following:

y(n) (i) =
(

R(n) (i) − L[−M−1] (i) .y
(n) (i−M−1) − L[−M] (i) .y

(n) (i−M) −

L[−M+1] (i) .y
(n) (i−M+1) − L[−1] (i) .y

(n) (i−1)
)
/ L[0] (i)

and

d(n) (i) = y(n) (i) − Ū[1] (i) .d
(n) (i+1) − Ū[M−1] (i) .d

(n) (i+M−1) −

Ū[M] (i) .d
(n) (i+M) − Ū[M+1] (i) .d

(n) (i+M+1)

4.3 Rectangular Parallelepiped

The entries of L̄ and Ū for the nine-point difference scheme is calculated by the fol-

lowing recurrence relations:
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L̄[−MN−M−1] (i) = A[−MN−M−1] (i)

L̄[−MN−M−1] (i)Ū[1] (i−MN−M−1) + L̄[−MN−M] (i) = A[−MN−M] (i)

L̄[−MN−M] (i)Ū[1] (i−MN−M) + L̄[−MN−M+1] (i) = A[−MN−M+1] (i)

L̄[−MN−M−1] (i)Ū[M] (i−MN−M−1) + L̄[−MN−M] (i)Ū[M−1] (i−MN−M) +

L̄[−MN−1] (i) = A[−MN−1] (i)

L̄[−MN−M−1] (i)Ū[M+1] (i−MN−M−1) + L̄[−MN−M] (i)Ū[M] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[M−1] (i−MN−M+1) + L̄[−MN−1] (i)Ū[1] (i−MN−1) +

L̄[−MN] (i) = A[−MN] (i)

L̄[−MN−M] (i)Ū[M+1] (i−MN−M) + L̄[−MN−M+1] (i)Ū[M] (i−MN−M+1) +

L̄[−MN] (i)Ū[1] (i−MN) + L̄[−MN+1] (i) = A[−MN+1] (i)

L̄[−MN−1] (i)Ū[M] (i−MN−1) + L̄[−MN] (i)Ū[M−1] (i−MN) + L̄[−MN+M−1] (i) =

A[−MN+M−1] (i)

L̄[−MN−1] (i)Ū[M+1] (i−MN−1) + L̄[−MN] (i)Ū[M] (i−MN) +

L̄[−MN+1] (i)Ū[M−1] (i−MN +1) + L̄[−MN+M−1] (i)Ū[1] (i−MN +M−1) +

L̄[−MN+M] (i) = A[−MN+M] (i)

L̄[−MN] (i)Ū[M+1] (i−MN) + L̄[−MN+1] (i)Ū[M] (i−MN +1) +

L̄[−MN+M] (i)Ū[1] (i−MN +M) + L̄[−MN+M+1] (i) = A[−MN+M+1] (i)

L̄[−MN−M−1] (i)Ū[MN] (i−MN−M−1) + L̄[−MN−N] (i)Ū[MN−1] (i−MN−M) +

L̄[−MN−1] (i)Ū[MN−M] (i−MN−1) + L̄[−MN] (i)Ū[MN−M−1] (i−MN) +

L̄[−M−1] (i) = A[−M−1] (i)

L̄[−MN−M−1] (i)Ū[MN+1] (i−MN−M−1) + L̄[−MN−M] (i)Ū[MN] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[MN−1] (i−MN−M+1) + L̄[−MN−1] (i)Ū[MN−M+1] (i−MN−1) +
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L̄[−MN] (i)Ū[MN−M] (i−MN) + L̄[−MN+1] (i)Ū[MN−M−1] (i−MN +1) +

L̄[−M−1] (i)Ū[1] (i−M−1) + L̄[−M] (i) = A[−M] (i)

L̄[−MN−M] (i)Ū[MN+1] (i−MN−M) + L̄[−MN−M+1] (i)Ū[MN] (i−MN−M+1) +

L̄[−MN] (i)Ū[MN−M+1] (i−MN) + L̄[−MN+1] (i)Ū[MN−M] (i−MN +1) +

L̄[−M] (i)Ū[1] (i−M) + L̄[−M+1] (i) = A[−M+1] (i)

L̄[−MN−M−1] (i)Ū[MN+M] (i−MN−M−1) +

L̄[−MN−M] (i)Ū[MN+M−1] (i−MN−M) + L̄[−MN−1] (i)Ū[MN] (i−MN−1) +

L̄[−MN] (i)Ū[MN−1] (i−MN) + L̄[−MN+M−1] (i)Ū[MN−M] (i−MN +M−1) +

L̄[−MN+M] (i)Ū[MN−M−1] (i−MN +M) + L̄[−M−1] (i)Ū[M] (i−M−1) +

L̄[−M] (i)Ū[M−1] (i−M) + L̄[−1] (i) =

A[−1] (i) L̄[−MN−M−1] (i)Ū[MN+M+1] (i−MN−M−1) +

L̄[−MN−M] (i)Ū[MN+M] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[MN+M−1] (i−MN−M+1) +

L̄[−MN−1] (i)Ū[MN+1] (i−MN−1) + L̄[−MN] (i)Ū[MN] (i−MN) +

L̄[−MN+1] (i)Ū[MN−1] (i−MN +1) + L̄[−MN+M−1] (i)Ū[MN−M+1] (i−MN +M−1) +

L̄[−MN+M] (i)Ū[MN−M] (i−MN +M) +

L̄[−MN+M+1] (i)Ū[MN−M−1] (i−MN +M+1) +

L̄[−M−1] (i)Ū[M+1] (i−M−1) + L̄[−M] (i)Ū[M] (i−M) +

L̄[−M+1] (i)Ū[M−1] (i−M+1) + L̄[−1] (i)Ū[1] (i−1) + L̄[0] (i) = A[0] (i)

L̄[−MN−M] (i)Ū[MN+M+1] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[MN+M] (i−MN−M+1) + L̄[−MN] (i)Ū[MN+1] (i−MN) +

L̄[−MN+1] (i)Ū[MN] (i−MN +1) + L̄[−MN+M] (i)Ū[MN−M+1] (i−MN +M) +
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L̄[−MN+M+1] (i)Ū[MN−M] (i−MN +M+1) +

L̄[−M] (i)Ū[M+1] (i−M) + L̄[−M+1] (i)Ū[M] (i−M+1) + L̄[0] (i)Ū[1] (i) = A[1] (i)

L̄[−MN−1] (i)Ū[MN+M] (i−MN−1) + L̄[−MN] (i)Ū[MN+M−1] (i−MN) +

L̄[−MN+M−1] (i)Ū[MN] (i−MN +M−1) + L̄[−MN+M] (i)Ū[MN−1] (i−MN +M) +

L̄[−1] (i)Ū[M] (i−1) + L̄[0] (i)Ū[M−1] (i) = A[M−1] (i)

L̄[−MN−1] (i)Ū[MN+M+1] (i−MN−1) + L̄[−MN] (i)Ū[MN+M] (i−MN) +

L̄[−MN+1] (i)Ū[MN+M−1] (i−MN +1) + L̄[−MN+M−1] (i)Ū[MN+1] (i−MN +M−1) +

L̄[−MN+M] (i)Ū[MN] (i−MN +M) + L̄[−MN+M+1] (i)Ū[MN−1] (i−MN +M+1) +

L̄[−1] (i)Ū[M+1] (i−1) + L̄[0] (i)Ū[M] (i) = A[M] (i)

L̄[−MN] (i)Ū[MN+M+1] (i−MN) + L̄[−MN+1] (i)Ū[MN+M] (i−MN +1) +

L̄[−MN+M] (i)Ū[MN+1] (i−MN +M) + L̄[−MN+M+1] (i)Ū[MN] (i−MN +M+1) +

L̄[0] (i)Ū[M+1] (i) = A[M+1] (i)

L̄[−M−1] (i)Ū[MN] (i−M−1) + L̄[−M] (i)Ū[MN−1] (i−M) +

L̄[−1] (i)Ū[MN−M] (i−1) + L̄[0] (i)Ū[MN−M−1] (i) = A[MN−M−1] (i)

L̄[−M−1] (i)Ū[MN+1] (i−M−1) + L̄[−M] (i)Ū[MN] (i−M) +

L̄[−M+1] (i)Ū[MN−1] (i−M+1) + L̄[−1] (i)Ū[MN−M+1] (i−1) +

L̄[0] (i)Ū[MN−M] (i) = A[MN−M] (i)

L̄[−M] (i)Ū[MN+1] (i−M) + L̄[−M+1] (i)Ū[MN] (i−M+1) +

L̄[0] (i)Ū[MN−M+1] (i) = A[MN−M+1] (i)

L̄[−M−1] (i)Ū[MN+M] (i−M−1) + L̄[−M] (i)Ū[MN+M−1] (i−M) +

L̄[−1] (i)Ū[MN] (i−1) + L̄[0] (i)Ū[MN−1] (i) = A[MN−1] (i)

L̄[−M−1] (i)Ū[MN+M+1] (i−M−1) + L̄[−M] (i)Ū[MN+M] (i−M) +
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L̄[−M+1] (i)Ū[MN+M−1] (i−M+1) + L̄[−1] (i)Ū[MN+1] (i−1) +

L̄[0] (i)Ū[MN] (i) = A[MN] (i)

L̄[−M] (i)Ū[MN+M+1] (i−M) + L̄[−M+1] (i)Ū[MN+M] (i−M+1) +

L̄[0] (i)Ū[MN+1] (i) = A[MN+1] (i)

L̄[−1] (i)Ū[MN+M] (i−1) + L̄[0] (i)Ū[MN+M−1] (i) = A[MN+M−1] (i)

L̄[−1] (i)Ū[MN+M+1] (i−1) + L̄[0] (i)Ū[MN+M] (i) = A[MN+M] (i)

L̄[0] (i)Ū[MN+M+1] (i) = A[MN+M+1] (i)

where L̄[M] (i) and Ū[M] (i) are related to the value of i-th row, on diagonals which have

a distance M from the main diagonal in matrices L̄ and Ū , respectively.

Hence, the entries of L̄ and Ū can obtain by:

L̄[−MN−M−1] (i) = A[−MN−M−1] (i)

L̄[−MN−M] (i) = A[−MN−M] (i) − L̄[−MN−M−1] (i)Ū[1] (i−MN−M−1)

L̄[−MN−M+1] (i) = A[−MN−M+1] (i) − L̄[−MN−M] (i)Ū[1] (i−MN−M)

L̄[−MN−1] (i) = A[−MN−1] (i) − L̄[−MN−M−1] (i)Ū[M] (i−MN−M−1) +

L̄[−MN−M] (i)Ū[M−1] (i−MN−M) L̄[−MN] (i) = A[−MN] (i)−

L̄[−MN−M−1] (i)Ū[M+1] (i−MN−M−1) + L̄[−MN−M] (i)Ū[M] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[M−1] (i−MN−M+1) + L̄[−MN−1] (i)Ū[1] (i−MN−1)

L̄[−MN+1] (i) = A[−MN+1] (i) − L̄[−MN−M] (i)Ū[M+1] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[M] (i−MN−M+1) + L̄[−MN] (i)Ū[1] (i−MN)

L̄[−MN+M−1] (i) = A[−MN+M−1] (i) − L̄[−MN−1] (i)Ū[M] (i−MN−1) +

L̄[−MN] (i)Ū[M−1] (i−MN)
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L̄[−MN+M] (i) = A[−MN+M] (i) − L̄[−MN−1] (i)Ū[M+1] (i−MN−1) +

L̄[−MN] (i)Ū[M] (i−MN) + L̄[−MN+1] (i)Ū[M−1] (i−MN +1) +

L̄[−MN+M−1] (i)Ū[1] (i−MN +M−1)

L̄[−MN+M+1] (i) = A[−MN+M+1] (i) − L̄[−MN] (i)Ū[M+1] (i−MN) +

L̄[−MN+1] (i)Ū[M] (i−MN +1) + L̄[−MN+M] (i)Ū[1] (i−MN +M)

L̄[−M−1] (i) = A[−M−1] (i) − L̄[−MN−M−1] (i)Ū[MN] (i−MN−M−1) +

L̄[−MN−N] (i)Ū[MN−1] (i−MN−M) + L̄[−MN−1] (i)Ū[MN−M] (i−MN−1) +

L̄[−MN] (i)Ū[MN−M−1] (i−MN)

L̄[−M] (i) = A[−M] (i) − L̄[−MN−M−1] (i)Ū[MN+1] (i−MN−M−1) +

L̄[−MN−M] (i)Ū[MN] (i−MN−M) + L̄[−MN−M+1] (i)Ū[MN−1] (i−MN−M+1) +

L̄[−MN−1] (i)Ū[MN−M+1] (i−MN−1) + L̄[−MN] (i)Ū[MN−M] (i−MN) +

L̄[−MN+1] (i)Ū[MN−M−1] (i−MN +1) + L̄[−M−1] (i)Ū[1] (i−M−1)

L̄[−M+1] (i) = A[−M+1] (i) − L̄[−MN−M] (i)Ū[MN+1] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[MN] (i−MN−M+1) + L̄[−MN] (i)Ū[MN−M+1] (i−MN) +

L̄[−MN+1] (i)Ū[MN−M] (i−MN +1) + L̄[−M] (i)Ū[1] (i−M)

L̄[−1] (i) = A[−1] (i) − L̄[−MN−M−1] (i)Ū[MN+M] (i−MN−M−1) +

L̄[−MN−M] (i)Ū[MN+M−1] (i−MN−M) + L̄[−MN−1] (i)Ū[MN] (i−MN−1) +

L̄[−MN] (i)Ū[MN−1] (i−MN) + L̄[−MN+M−1] (i)Ū[MN−M] (i−MN +M−1) +

L̄[−MN+M] (i)Ū[MN−M−1] (i−MN +M) + L̄[−M−1] (i)Ū[M] (i−M−1) +

L̄[−M] (i)Ū[M−1] (i−M)

L̄[0] (i) = A[0] (i) − L̄[−MN−M−1] (i)Ū[MN+M+1] (i−MN−M−1) +
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L̄[−MN−M] (i)Ū[MN+M] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[MN+M−1] (i−MN−M+1) +

L̄[−MN−1] (i)Ū[MN+1] (i−MN−1) + L̄[−MN] (i)Ū[MN] (i−MN) +

L̄[−MN+1] (i)Ū[MN−1] (i−MN +1) + L̄[−MN+M−1] (i)Ū[MN−M+1] (i−MN +M−1) +

L̄[−MN+M] (i)Ū[MN−M] (i−MN +M) +

L̄[−MN+M+1] (i)Ū[MN−M−1] (i−MN +M+1) +

L̄[−M−1] (i)Ū[M+1] (i−M−1) + L̄[−M] (i)Ū[M] (i−M) +

L̄[−M+1] (i)Ū[M−1] (i−M+1)+ L̄[−1] (i)Ū[1] (i−1)

Ū[1] (i) =
(
A[1] (i) − L̄[−MN−M] (i)Ū[MN+M+1] (i−MN−M) +

L̄[−MN−M+1] (i)Ū[MN+M] (i−MN−M+1) + L̄[−MN] (i)Ū[MN+1] (i−MN) +

L̄[−MN+1] (i)Ū[MN] (i−MN +1) + L̄[−MN+M] (i)Ū[MN−M+1] (i−MN +M) +

L̄[−MN+M+1] (i)Ū[MN−M] (i−MN +M+1) + L̄[−M] (i)Ū[M+1] (i−M) +

L̄[−M+1] (i)Ū[M] (i−M+1)
)
/ L̄[0] (i)

Ū[M−1] (i) =
(
A[M−1] (i) − L̄[−MN−1] (i)Ū[MN+M] (i−MN−1) +

L̄[−MN] (i)Ū[MN+M−1] (i−MN) + L̄[−MN+M−1] (i)Ū[MN] (i−MN +M−1) +

L̄[−MN+M] (i)Ū[MN−1] (i−MN +M) + L̄[−1] (i)Ū[M] (i−1)
)
/L̄[0] (i)

Ū[M] (i) =
(
A[M] (i) − L̄[−MN−1] (i)Ū[MN+M+1] (i−MN−1) +

L̄[−MN] (i)Ū[MN+M] (i−MN) + L̄[−MN+1] (i)Ū[MN+M−1] (i−MN +1) +

L̄[−MN+M−1] (i)Ū[MN+1] (i−MN +M−1) + L̄[−MN+M] (i)Ū[MN] (i−MN +M) +

L̄[−MN+M+1] (i)Ū[MN−1] (i−MN +M+1) + L̄[−1] (i)Ū[M+1] (i−1)
)
/ L̄[0] (i)

Ū[M+1] (i) =
(
A[M+1] (i) − L̄[−MN] (i)Ū[MN+M+1] (i−MN) +

L̄[−MN+1] (i)Ū[MN+M] (i−MN +1) + L̄[−MN+M] (i)Ū[MN+1] (i−MN +M) +

58



L̄[−MN+M+1] (i)Ū[MN] (i−MN +M+1)
)
/ L̄[0] (i)

Ū[MN−M−1] (i) =
(
A[MN−M−1] (i) − L̄[−M−1] (i)Ū[MN] (i−M−1) +

L̄[−M] (i)Ū[MN−1] (i−M) + L̄[−1] (i)Ū[MN−M] (i−1)
)
/ L̄[0] (i)

Ū[MN−M] (i) =
(
A[MN−M] (i) − L̄[−M−1] (i)Ū[MN+1] (i−M−1) +

L̄[−M] (i)Ū[MN] (i−M) + L̄[−M+1] (i)Ū[MN−1] (i−M+1) +

L̄[−1] (i)Ū[MN−M+1] (i−1)
)
/ L̄[0] (i)

Ū[MN−M+1] (i) =
(
A[MN−M+1] (i) − L̄[−M] (i)Ū[MN+1] (i−M) +

L̄[−M+1] (i)Ū[MN] (i−M+1)
)
/ L̄[0] (i)

Ū[MN−1] (i) =
(
A[MN−1] (i) − L̄[−M−1] (i)Ū[MN+M] (i−M−1) +

L̄[−M] (i)Ū[MN+M−1] (i−M) + L̄[−1] (i)Ū[MN] (i−1)
)
/ L̄[0] (i)

Ū[MN] (i) =
(
A[MN] (i) − L̄[−M−1] (i)Ū[MN+M+1] (i−M−1) +

L̄[−M] (i)Ū[MN+M] (i−M) + L̄[−M+1] (i)Ū[MN+M−1] (i−M+1) +

L̄[−1] (i)Ū[MN+1] (i−1)
)
/ L̄[0] (i)

Ū[MN+1] (i) =
(
A[MN+1] (i) − Ū[MN+M+1] (i−M) +

L̄[−M+1] (i)Ū[MN+M] (i−M+1)
)
/ L̄[0] (i)

Ū[MN+M−1] (i) =
(
A[MN+M−1] (i) − L̄[−1] (i)Ū[MN+M] (i−1)

)
/ L̄[0] (i)

Ū[MN+M] (i) =
(
A[MN+M] (i) − L̄[−1] (i)Ū[MN+M+1] (i−1)

)
/ L̄[0] (i)

Ū[MN+M+1] (i) = A[MN+M+1] (i) / L̄[0] (i)

Next step is the iterative procedure. It means the forward and backward substiution to

find the solution of y(n) in (4.1.2) and d(n) in (4.1.3) which directly y(n) (i) and d(n) (i)

(y(n) (i) and d(n) (i) related to point i) is computed by following:

59



y(n) (i) =
(

R(n) (i) − L[−MN−M−1] (i) .y
(n) (i−MN−M−1)−

L[−MN−M] (i) .y
(n) (i−MN−M) − L[−MN−M+1] (i) .y

(n) (i−MN−M+1)−

L[−MN−1] (i) .y
(n) (i−MN−1) − L[−MN] (i) .y

(n) (i−MN)−

L[−MN+1] (i) .y
(n) (i−MN +1) − L[−1] (i) .y

(n) (i−1)−

L[−MN+M−1] (i) .y
(n) (i−MN +M−1) − L[−MN+M] (i) .y

(n) (i−MN +M)−

L[−MN+M+1] (i) .y
(n) (i−MN +M+1) − L[−M−1] (i) .y

(n) (i−M−1)−

L[−M] (i) .y
(n) (i−M) − L[−M+1] (i) .y

(n) (i−M+1) − L[−1] (i) .y
(n) (i−1)

)
/ L[0] (i)

and

d(n) (i) = y(n) (i) − Ū[1] (i) .d
(n) (i+1) − Ū[M−1] (i) .d

(n) (i+M−1)−

Ū[M] (i) .d
(n) (i+M)−Ū[M+1] (i) .d

(n) (i+M+1)−

Ū[MN−M−1] (i) .d
(n) (i+MN−M−1) − Ū[MN−M] (i) .d

(n) (i+MN−M)−

Ū[MN−M+1] (i) .d
(n) (i+MN−M+1) − Ū[MM−1] (i) .d

(n) (i+M−1)−

Ū[MN] (i) .d
(n) (i+MN) − Ū[MN+1] (i) .d

(n) (i+MN +1)−

Ū[MN+M−1] (i) .d
(n) (i+MN +M−1) − Ū[MN+M] (i) .d

(n) (i+MN +M)−

Ū[MN+M+1] (i) .d
(n) (i+MN +M+1)

4.4 Numerical Examples

In the following it support the theorical part by numerical results are obtained in a

rectangle and rectangular parallepiped by using incomplete LU decomposition. The

results in each domain has three part:

• The approximate results for the solution of the Dirichlet problem of Laplace’s

equation
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• The approximate results for the first derivative of the solution

• The approximate results for the pure second derivative of the solution

The grid spacing (difference step size) h is defined by h = 1
2n , n = 3,4, . . . ,7.

4.4.1 Domain in the Shape of a Rectangle

Let Π = {(x,y) :−1 < x < 1,0 < y < 1}, and let γ be the boundary of Π. We consider

the following problem:

∆u = 0 on Π, u = φ(x,y) on γ j, j = 1,2,3,4, (4.4.1)

where φ is the exact solution of this problem.

Let U be the exact solution and Uh be its approximate values on Π
h (which contains

the nodes using on the square grids formed on Π) of the Dirichlet problem on the rect-

angular domain Π. We denote by ‖U−Uh‖
Π

h = max
Π

h
|U−Uh|, ℜm

U =
‖U−U2−m‖

Π
h∥∥∥U−U

2−(m+1)

∥∥∥
Π

h

.

4.4.1.1 Fourth Order Accurate Forward and Backward Formulae

In the following examples the results are demonstrated in three tables. The first table

is related to the approximate of problem (4.4.1) , the second and third tables is cor-

responds to the approximate values of υ = ∂u
∂x , ω = ∂ 2u

∂x2 , respectively. For instance

in the first example,Table (4.1) it shows the approximateion of problem (4.4.1) and in

Figure (4.5) the graphs show the approximate and exact solution. Table (4.2) and Table

(4.3) show the approximate solutions which, converges as O(h4). Also in support of

the numerical part the shapes of υ = ∂u
∂x , ω = ∂ 2u

∂x2 and their approximations are shown

in Figure (4.6) and Figure (4.7), respectively.

These results are obtained for different boundary functions which are given below.
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Example: Let φ ∈C6, 1
30 on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
181
60 cos

(
181
30

arctan
(y

x

))
(4.4.2)

Table 4.1. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 1

30 .

h ‖u−uh‖ ℜm
U

1
8 1.461957062700077588846E−8 62.01

1
16 2.357603150231049011533E−10 63.77

1
32 3.696956533757236388734E−12 64.63

1
64 5.720418870877163786217E−14 65.06

1
128 8.792687176196887058066E−16

Table 4.2. The approximate results for the first derivative when φ ∈C6, 1
30 .

h ‖υ−υh‖ ℜm
U

1
8 2.299996064764325009657E−2 12.14

1
16 1.894059104568160525104E−3 14.08

1
32 1.344880793701474553783E−4 15.01

1
64 8.960663249977644986927E−6 15.46

1
128 5.796393863873542692774E−7
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Table 4.3. The approximate results for the pure second derivative when φ ∈C6, 1
30 .

h ‖ω−ωh‖ ℜm
U

1
8 3.149059928597543772878E−6 16.31

1
16 1.931058119052719414451E−7 16.36

1
32 1.180485369727342048019E−8 16.37

1
64 7.211217140499053022025E−10 16.37

1
128 4.404326492162507264392E−11

Figure 4.5. The graph of the approximate (a) and exact (b) solutions of u

Figure 4.6. The graph of the approximate (a) and exact (b) solutions of ∂u
∂x
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Figure 4.7. The graph of the approximate (a) and exact (b) solutions of ∂ 2u
∂x2

Example: Let φ ∈C6, 1
20 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
121
40 cos

(
121
20

arctan
(y

x

))
(4.4.3)

Table 4.4. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 1

20 .

h ‖u−uh‖ ℜm
U

1
8 2.185311473758449584717E−8 62.61

1
16 3.490134937914413339994E−10 64.44

1
32 5.416486023702750300684E−12 65.33

1
64 8.291041327362623966231E−14 65.78

1
128 1.260352539981000986734E−15
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Table 4.5. The approximate results for the first derivative when φ ∈C6, 1
20 .

h ‖υ−υh‖ ℜm
U

1
8 2.402824869835325820862E−2 12.12

1
16 1.982099495289161415412E−3 14.04

1
32 1.411335372930372044643E−4 14.97

1
64 9.430580324855958362278E−6 15.42

1
128 6.117158975702833944766E−7

Table 4.6. The approximate results for the pure second derivative when φ ∈C6, 1
20 .

h ‖ω−ωh‖ ℜm
U

1
8 4.596116500404351409868E−6 16.50

1
16 2.785978813561153089114E−7 16.55

1
32 1.683537010854807331651E−8 16.56

1
64 1.016605719906743104651E−9 16.56

1
128 6.137705814540074234758E−11

Example: Let φ ∈C6, 1
10 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
61
20 cos

(
61
10

arctan
(y

x

))
(4.4.4)
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Table 4.7. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 1

10 .

h ‖u−uh‖ ℜm
U

1
8 4.292464252224768863872E−8 64.440

1
16 6.661235145718468864938E−10 66.282

1
32 1.004992234365881791976E−11 64.763

1
64 1.551766238268286671667E−13 63.789

1
128 2.432674032142793857704E−15

Table 4.8. The approximate results for the first derivative when φ ∈C6, 1
10 .

h ‖υ−υh‖ ℜm
U

1
8 2.717918419973411715556E−2 12.048

1
16 2.255858245291342887505E−3 13.931

1
32 1.619301471368389174600E−4 14.842

1
64 1.090993384888831064746E−5 15.313

1
128 7.124763926276328042997E−7

Table 4.9. The approximate results for the pure second derivative when φ ∈C6, 1
10 .

h ‖ω−ωh‖ ℜm
U

1
8 8.394206346622608342096E−6 17.080

1
16 4.914572079635912695751E−7 17.132

1
32 2.868598748836132098446E−8 17.144

1
64 1.673191010129147156200E−9 17.147

1
128 9.757685555443629741642E−11
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Example: Let φ ∈C6, 1
4 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
25
8 cos

(
25
4

arctan
(y

x

))
(4.4.5)

Table 4.10. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 1

4 .

h ‖u−uh‖ ℜm
U

1
8 9.468661479258626238070E−8 63.652

1
16 1.487565986613220279264E−9 63.638

1
32 2.337510908366444786818E−11 63.989

1
64 3.652951369058453846633E−13 63.971

1
128 5.710265031943393904333E−15

Table 4.11. The approximate results for the first derivative when φ ∈C6, 1
4 .

h ‖υ−υh‖ ℜm
U

1
8 3.621510935110442399673E−2 11.825

1
16 3.062577827485106235815E−3 13.611

1
32 2.250115678311334105245E−4 14.561

1
64 1.545316221020499920682E−5 15.096

1
128 1.023635642796431885406E−6
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Table 4.12. The approximate results for the pure second derivative when φ ∈C6, 1
4 .

h ‖ω−ωh‖ ℜm
U

1
8 1.472854619335870555255E−5 18.954

1
16 7.770485562360496815862E−7 19.010

1
32 4.087476059575820643123E−8 19.023

1
64 2.148669006668734519596E−9 19.026

1
128 1.129313066610226823051E−10

Example: Let φ ∈C6, 1
2 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
13
4 cos

(
13
2

arctan
(y

x

))
(4.4.6)

Table 4.13. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 1

2 .

h ‖u−uh‖ ℜm
U

1
8 1.522838190217221933112E−7 64.007

1
16 2.379092988870274810270E−9 63.769

1
32 3.730818877457981288876E−11 63.919

1
64 5.836834819622180677542E−13 63.975

1
128 9.123490824777618815664E−15
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Table 4.14. The approximate results for the first derivative when φ ∈C6, 1
2 .

h ‖υ−υh‖ ℜm
U

1
8 4.375709529620738324991E−2 11.42

1
16 3.832407922530399008382E−3 13.18

1
32 2.907557039233321254427E−4 14.163

1
64 2.052905929433031564329E−5 14.810

1
128 1.386204304287175910931E−6

Table 4.15. The approximate results for the pure second derivative when φ ∈C6, 1
2 .

h ‖ω−ωh‖ ℜm
U

1
8 1.180124375763710097723E−5 22.539

1
16 5.235719858617613154097E−7 22.608

1
32 2.315890874942363864843E−8 22.623

1
64 1.023693750596818689333E−9 22.627

1
128 4.524343368750062691117E−11

Example: Let φ ∈C6, 3
4 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
27
8 cos

(
27
4

arctan
(y

x

))
(4.4.7)
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Table 4.16. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 3

4 .

h ‖u−uh‖ ℜm
U

1
8 1.192006924382961862772E−7 63.338

1
16 1.880588658774865604165E−9 63.764

1
32 2.949260830753796070719E−11 64.001

1
64 4.608152507318481885852E−13 63.977

1
128 7.202879131397449362347E−15

Table 4.17. The approximate results for the first derivative when φ ∈C6, 3
4 .

h ‖υ−υh‖ ℜm
U

1
8 3.702385976219451321486E−2 10.073

1
16 3.675722637351247701079E−3 12.899

1
32 2.849607938951355419549E−4 14.354

1
64 1.985204554365059833581E−5 15.106

1
128 1.314202991351893505203E−6

Table 4.18. The approximate results for the pure second derivative when φ ∈C6, 3
4 .

h ‖ω−ωh‖ ℜm
U

1
8 3.485236070256896312909E−6 26.787

1
16 1.301105828766636446775E−7 26.882

1
32 4.840220334483200094082E−9 26.902

1
64 1.799180537959875490803E−10 26.908

1
128 6.686608750108446679955E−12
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Example: Let φ ∈C6, 9
10 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
69
20 cos

(
69
10

arctan
(y

x

))
(4.4.8)

Table 4.19. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 9

10 .

h ‖u−uh‖ ℜm
U

1
8 5.305772553320321766766E−8 63.986

1
16 8.292059050053952313561E−10 63.879

1
32 1.298108357990300947143E−11 63.946

1
64 2.029993411923961018394E−13 63.967

1
128 3.173490528879122759159E−15

Table 4.20. The approximate results for the first derivative when φ ∈C6, 9
10 .

h ‖υ−υh‖ ℜm
U

1
8 4.003831300894382179437E−2 9.547

1
16 4.193649547657526600890E−3 12.673

1
32 3.308965269815573493929E−4 14.218

1
64 2.327302763652494792622E−5 15.026

1
128 1.548884402678707364254E−6
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Table 4.21. The approximate results for the pure second derivative when φ ∈C6, 9
10 .

h ‖ω−ωh‖ ℜm
U

1
8 9.668117711892401268900E−7 29.846

1
16 3.239307807806365124242E−8 29.825

1
32 1.086123915091408323509E−9 29.850

1
64 3.638534025142625161660E−11 29.856

1
128 1.218707932851867080331E−12

4.4.1.2 Sixth Order Accurate Forward and Backward Formulae

In the following examples we used forward and backward formulae for sixth order

accuracy to find a new boundry values on the sides when x =−1 and x = 1 for the first

derivative problem.

Example: Let φ ∈C6, 1
10 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
61
20 cos

(
61
10

arctan
(y

x

))
(4.4.9)

Table 4.22. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 1

10 .

h ‖u−uh‖ ε i

ε i+1

1
8 4.292464252224768863872E−8 64.440

1
16 6.661235145718468864938E−10 66.282

1
32 1.004992234365881791976E−11 64.763

1
64 1.551766238268286671667E−13 63.789

1
128 2.432674032142793857704E−15
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Table 4.23. The approximate results for the first derivative when φ ∈C6, 1
10 .

h ‖υ−υh‖ ℜm
U

1
8 4.045551522551900729008E−5 58.806

1
16 6.879383591707399054026E−7 61.467

1
32 1.119197337927792776137E−8 62.356

1
64 1.794844059528784529350E−10 62.852

1
128 2.855678855672375968725E−12

Table 4.24. The approximate results for the pure second derivative when φ ∈C6, 1
10 .

h ‖ω−ωh‖ ℜm
U

1
8 8.394206346622608342096E−6 17.080

1
16 4.914572079635912695751E−7 17.132

1
32 2.868598748836132098446E−8 17.144

1
64 1.673191010129147156200E−9 17.147

1
128 9.757685555443629741642E−11

Example: Let φ ∈C6, 1
4 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
25
8 cos

(
25
4

arctan
(y

x

))
(4.4.10)
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Table 4.25. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 1

4 .

h ‖u−uh‖ ℜm
U

1
8 9.468661479258626238070E−8 63.652

1
16 1.487565986613220279264E−9 63.638

1
32 2.337510908366444786818E−11 63.989

1
64 3.652951369058453846633E−13 63.971

1
128 5.710265031943393904333E−15

Table 4.26. The approximate results for the first derivative when φ ∈C6, 1
4 .

h ‖υ−υh‖ ℜm
U

1
8 1.411567519620729992360E−4 58.960

1
16 2.394097748587503178103E−6 61.272

1
32 3.907355315870281912213E−8 62.283

1
64 6.273533530071398541280E−10 62.856

1
128 9.980790178843469827535E−12

Table 4.27. The approximate results for the pure second derivative when φ ∈C6, 1
4 .

h ‖ω−ωh‖ ℜm
U

1
8 1.472854619335870555255E−5 18.954

1
16 7.770485562360496815862E−7 19.010

1
32 4.087476059575820643123E−8 19.023

1
64 2.148669006668734519596E−9 19.026

1
128 1.129313066610226823051E−10
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Example: Let φ ∈C6, 1
2 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
13
4 cos

(
13
2

arctan
(y

x

))
(4.4.11)

Table 4.28. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 1

2 .

h ‖u−uh‖ ℜm
U

1
8 1.522838190217221933112E−7 64.007

1
16 2.379092988870274810270E−9 63.769

1
32 3.730818877457981288876E−11 63.919

1
64 5.836834819622180677542E−13 63.975

1
128 9.123490824777618815664E−15

Table 4.29. The approximate results for the first derivative when φ ∈C6, 1
2 .

h ‖υ−υh‖ ℜm
U

1
8 4.607803218294378365226E−4 58.261

1
16 7.908891876585216676046E−6 60.908

1
32 1.298506644137725888031E−7 62.223

1
64 2.086848023296898704192E−9 62.881

1
128 3.318748463018105865345E−11
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Table 4.30. The approximate results for the pure second derivative when φ ∈C6, 1
2 .

h ‖ω−ωh‖ ℜm
U

1
8 1.180124375763710097723E−5 22.539

1
16 5.235719858617613154097E−7 22.608

1
32 2.315890874942363864843E−8 22.623

1
64 1.023693750596818689333E−9 22.627

1
128 4.524343368750062691117E−11

.

Example: Let φ ∈C6, 3
4 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
27
8 cos

(
27
4

arctan
(y

x

))
(4.4.12)

Table 4.31. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 3

4 .

h ‖u−uh‖ ℜm
U

1
8 1.192006924382961862772E−7 63.338

1
16 1.880588658774865604165E−9 63.764

1
32 2.949260830753796070719E−11 64.001

1
64 4.608152507318481885852E−13 63.977

1
128 7.202879131397449362347E−15
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Table 4.32. The approximate results for the first derivative when φ ∈C6, 3
4 .

h ‖υ−υh‖ ℜm
U

1
8 1.058679345779770778114E−3 56.715

1
16 1.866662482924066043170E−5 60.516

1
32 3.084583473799071544691E−7 62.149

1
64 4.963231261864654923314E−9 62.939

1
128 7.885792238969874446575E−11

Table 4.33. The approximate results for the pure second derivative when φ ∈C6, 3
4 .

h ‖ω−ωh‖ ℜm
U

1
8 3.485236070256896312909E−6 26.787

1
16 1.301105828766636446775E−7 26.882

1
32 4.840220334483200094082E−9 26.902

1
64 1.799180537959875490803E−10 26.908

1
128 6.686608750108446679955E−12

Example: Let φ ∈C6, 9
10 , on γ j, j = 1,2,3,4, where

φ(x,y) = (x2 + y2)
69
20 cos

(
69
10

arctan
(y

x

))
(4.4.13)
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Table 4.34. The approximate of solution in problem (4.4.1) when the boundary
function is in C6, 9

10 .

h ‖u−uh‖ ℜm
U

1
8 5.305772553320321766766E−8 63.986

1
16 8.292059050053952313561E−10 63.879

1
32 1.298108357990300947143E−11 63.946

1
64 2.029993411923961018394E−13 63.967

1
128 3.173490528879122759159E−15

Table 4.35. The approximate results for the first derivative when φ ∈C6, 9
10

.

h ‖υ−υh‖ ℜm
U

1
8 1.612293821627237525847E−3 55.941

1
16 2.882146096902001928266E−5 60.124

1
32 4.793694529594133674179E−7 62.088

1
64 7.720796380805889152056E−9 62.998

1
128 1.225570781606859363419E−10

Table 4.36. The approximate results for the pure second derivative when φ ∈C6, 9
10 .

h ‖ω−ωh‖ ℜm
U

1
8 9.668117711892401268900E−7 29.846

1
16 3.239307807806365124242E−8 29.825

1
32 1.086123915091408323509E−9 29.850

1
64 3.638534025142625161660E−11 29.856

1
128 1.218707932851867080331E−12
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4.4.2 Domain in the Shape of a Rectangular Parallelepiped

Let R = {(x1,x2,x3) : 0 < x1 < 1,0 < x2 < 1,0 < x3 < 0.5, i = 1,2,3}, and let Γ be the

boundary of R. We consider the following boundary-value problem:

∆u = 0 on R, u = ϕ (x,y,z) on Γ j, j = 1,2, . . . ,6, (4.4.14)

where ϕ is the exact solution of this problem.

Let U denote the exact solution and Uh be its approximate values on Rh (contains the

nodes of the cubic grid formed in R) of the Dirichlet problem for laplace’s equation on

the rectangular parallelepiped domain R. We denote by ‖U−Uh‖Rh = max
Rh
|U−Uh|,

ℜm
U =

‖U−U2−m‖Rh∥∥∥U−U
2−(m+1)

∥∥∥
Rh

.

In Table (4.37), the approximate results for the solution of the Dirichlet problem for

the Laplace’s equation are presented. Table (4.38) shows the maximum errors and

convergence order of the first derivative when 4−th order accuracy forward backward

formula is used, and in Table (4.39), the maximum errors and the convergence order

of the approximations of the pure second derivatives of problem (4.4.14) for different

step size h are presented.

4.4.2.1 Fourth Order Accurate Forward and Backward Formulae

In the following examples forward and backward formulae is used for fourth order

accuracy to find a new boundary values on faces when x = −1 or x = 1 for the first

derivative problem.

The results show that the approximate solutions converge as O(h4).
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Example: Let φ ∈C6, 1
30 , on Γ j, j = 1,2, . . . ,6, where

φ(x,y) = ((z− 1
2
)2− (x2 + y2)

2
)+(x2 + y2)

181
60 cos

(
181
30

arctan
(y

x

))
(4.4.15)

Table 4.37. The approximate of solution in problem (4.4.14) when the boundary
function is in C6, 1

30 .

h ‖u−uh‖ ℜm
U

1
8 1.364190306380006E−9 54.95

1
16 2.482778220153542E−11 62.64

1
32 3.963714104714007E−13 63.14

1
64 6.277272419478622E−15 63.77

1
128 9.843687691215732E−17

Table 4.38. The approximate results for the first derivative when φ ∈C6, 1
30 .

h ‖υ−υh‖ ℜm
U

1
8 1.499307742596606E−2 9.78

1
16 1.532700715023690E−3 12.93

1
32 1.185409560760095E−4 14.50

1
64 8.177080034789001E−6 15.25

1
128 5.360495371756569E−7
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Table 4.39. The approximate results for the pure second derivative when φ ∈C6, 1
30 .

h ‖ω−ωh‖ ℜm
U

1
8 9.824337972038735E−7 15.21

1
16 6.458728915909570E−8 16.21

1
32 3.985011206044048E−9 16.36

1
64 2.436150564128134E−10 16.37

1
128 1.487939094224197E−11

4.4.2.2 Fifth Order Accurate Forward and Backward Formulae

In the following examples it used forward and backward formulae are used for sixth

order accuracy to find new boundary values on the faces when x = 0 and x = 1 for the

first derivative problem.

The results shows that the approximate solutions converge as O(h5).

Example: Let φ ∈C5, 1
30 , on Γ j, j = 1,2, . . . ,6, where

φ(x,y) = ((z− 1
2
)2− (x2 + y2)

2
)+(x2 + y2)

151
60 cos

(
151
30

arctan
(y

x

))
(4.4.16)
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Table 4.40. The approximate of solution in problem (4.4.14) when the boundary
function is in C5, 1

30 .

h ‖u−uh‖ ℜm
U

1
8 1.364190306380006E−9 54.95

1
16 2.482778220153542E−11 62.64

1
32 3.963714104714007E−13 63.14

1
64 6.277272419478622E−15 63.77

1
128 9.843687691215732E−17

Table 4.41. The approximate results for the first derivative when φ ∈C5, 1
30 .

h ‖υ−υh‖ ℜm
U

1
8 2.046960510985336E−3 22.08

1
16 9.272500731110548E−5 27.35

1
32 3.390258952082138E−6 29.78

1
64 1.138244315600217E−7 30.91

1
128 3.682339328876473E−9

Table 4.42. The approximate results for the pure second derivative when φ ∈C5, 1
30 .

h ‖ω−ωh‖ ℜm
U

1
8 9.824337972038735E−7 15.21

1
16 6.458728915909570E−8 16.21

1
32 3.985011206044048E−9 16.36

1
64 2.436150564128134E−10 16.37

1
128 1.487939094224197E−11
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CONCLUSION

The obtained results can be used to highly approximate the derivatives for the solution

of Laplace’s equation by the finite difference method, in various combined and com-

posite grid methods, as well as some versions of the domain decomposition methods

for obtaining an approximation of the derivative of the solution of the Dirichlet prob-

lem for Laplace’s equation on polygons covered by overlapping rectangles (see [46],

[63], [64], [65]).

Also for rectangular parallelepiped domain a highly accurate difference schemes are

proposed and investigated under the conditions imposed on the given boundary func-

tions to approximate the solution of the 3D Laplace equation, its first and pure second

derivatives on a cubic grid. The uniform convergence for the approximate solution at

the rate of O(h6 |lnh|), for the first and pure second derivatives at the rate of O(h4) is

proved. It is shown that the accuracy for the approximate value of the first derivatives

can be improved up to O(h5 |lnh|) for the same boundary functions by using the fifth

order formulae on some faces of the parallelepiped. The obtained results can be used

to justify finding the above mentioned derivatives of the solution of the 3D Laplace’s

boundary value problems on domains described as a union or as an intersection of a

finite number of rectangular parallelepipeds by the difference method, with the use of

Schwarz’s or Schwarz-Neumann iterations (see [67], [68], [46], [63], [64]).
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