
i

U-shaped assembly line balancing with Grouping

Evolution Strategy (GES)

Pouria Pourmomen Davani

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

February 2015

Gazimağusa, North Cyprus

ii

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftçioğlu

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işik Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Gürcü Öz

 Supervisor

 Examining Committee

1. Asst. Prof. Dr. Sahand Daneshvar ---------------------------------------

2. Asst. Prof. Dr. Gürcü Öz

3. Asst. Prof. Dr. Ahmet Ünveren --

-

iii

ABSTRACT

In this research, we have applied Grouping Evolution Strategies (GES) as an

alternative solution to U-shaped assembly line balancing problem (UALBP). By

introduction of just-in-time (JIT) production principle, it can be proven that U-shaped

assembly line system has better performance than its predecessor traditional straight

line system. The parameters to compare are the number of workstations (the line

efficiency) and the smoothness index of workload. Our evaluation shows by applying

GES, at least same line efficiency of workstation integration can be achieved.

Moreover, the variation and smoothness index of workload have been improved.

Moreover, to measure the performance validation of the proposed algorithm, a number

of standard UALBPs in the literature were used to compare the proposed algorithm

results with other related work results.

Simulation results show that the proposed model produced as good or even better line

efficiency of workstation integration and improved the variation and smoothness index

of workload.

Keywords: U-shaped assembly line balancing, Grouping Evolution Strategies,

Workstation, Smoothness Index

iv

ÖZ

Bu araştırmada U-sekilli montaj hattı dengeleme problemine (U-shaped assembly line

balancing problem - UALBP) alternatif bir çözüm olarak evrim stratejilerini gruplama

sistemini (Grouping Evolution Strategies -GES) uyguladık. Zamanında üretim

prensibi kuramına göre (just-in-time JIT) U-şekilli montaj hattı sisteminin performansı

geleneksel düz çizgi sisteminden daha iyi olduğ ispatlanmıştır. Performans ölçümünde

karşılaştırılan parameteler ise, iş istasyonlarının sayısı ve iş yükü pürüzsüzlük indeksi

(hat verimliliği)’dir. Değerlendirmelerimiz göstermiştir ki, belirtilen probleme GES

uygulanarak istenilen iş iştasyonu entegrasyon hat verimliliği elde edilmiştir. Buna ek

olarak iş yükü pürüzsüzlük indeksi de geliştirilmiştir.

Ayrıca önerilen algoritmanın performans doğrulamasını ölçmek için, literatürde

bulunan bir dizi standart UALBP’ler kullanılarak önerilen algoritma sonuçları diğer

ilgili çalışmalarla karşılaştırılmıştır.

Simulasyon sonuçları göstermiştir ki, önerilen model, iş iştasyonu entegrasyon hat

verimliliğin ölçümünde daha iyi sonuç vermiş ve iş yükü değişimi ve pürüzsüzlük

indeksini de iyileştirmiştir.

Anahtar Kelimeler: U-sekilli montaj hattı dengeleme (UALB), gruplama evrim

stratejileri (GES), iş istasyonu (workstation), pürüzsüzlük indeksi (smoothness index)

v

DEDICATION

This thesis is dedicated to the memory of my father. I miss him every day, but I am

glad he saw this process through to its completion, offering the support to make it

possible, as well as plenty of friendly encouragement. I dedicate this thesis to my

mother, brothers and beloved wife who are always with me in difficult situations and

I cannot describe how thankful I am for all the support that I got from them.

vi

ACKNOWLEDGMENT

First and above all, I praise God, the almighty for providing me this opportunity and

granting me the capability to proceed successfully. This thesis appears in its current

form due to the assistance and guidance of several people. I would therefore like to

offer my sincere thanks to all of them.

Asst. Prof. Dr. Gürcü Öz, my esteemed promoter, my cordial thanks for accepting me

as a Master student, your warm encouragement, thoughtful guidance, critical

comments, and correction of the thesis.

My parents deserve special mention for their inseparable support and prayers. My

mother Sorour Tehrani, in the first place is the person who put the fundament my

learning character, showing me the joy of intellectual pursuit ever since I was a child

and my dear brothers who always support me to continue my way and goals.

Words fail me to express my appreciation to my wife Mahnaz whose dedication, love

and persistent confidence in me, has taken the load off my shoulder. I owe her for

being unselfishly let her intelligence, passions, and ambitions collide with mine.

Therefore, I would also thank Sabetghadam’s family for letting me take her hand in

marriage, and accepting me as a member of the family, warmly. I would like to thank

everybody who was important to the successful realization of thesis, as well as

expressing my apology that I could not mention personally one by one.

vii

I will forever be thankful to my dear friend Mazyar, who assist me in this thesis. He

support me and encourage me to achieve this goal.

My special thanks to my relatives Fazel family in Cyprus, who communicate with

them, provided emotional atmosphere for me. Hereby, I would like to thanks them for

everything.

I am grateful to Farbod for helping me in this process. I really appreciate to his support.

To all my friends, Hossein, Shahin, Kave and AmirHamzeh thank you for your

understanding and encouragement in my many, many moments of crisis. Your

friendship makes my life a wonderful experience.

viii

1 TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGMENT ... vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xii

1 INTRODUCTION ... 1

2 LITERATURE REVIEW ... 4

Grouping Evolution Strategy (GES) ... 4

U-type Assembly Line Balancing ... 5

Proposed Method .. 6

3 RESEARCH METHOD AND PROPOSED ALGORITHM 7

Problem Statement .. 7

Generating an Initial Solution ... 7

Algorithm of the RPW to Solve UALB Problem 9

Revised Ranked Positional Weight Method .. 13

 Initial Solution Improvement until Achieving Final Solution 18

Evolution Strategies ... 19

Representation of Grouping Evolution Strategy (GES) 21

The GES Mutation Operator .. 22

Improving the Initial Solution .. 28

Using a Heuristic Method to Assigning Tasks after Mutation 29

ix

Revised-COMSOAL Method .. 30

Using a Method to Select the Best Solution in Every Step 32

4 COMPUTATIONAL RESULT .. 35

Simulation Setup and Performance Metrics.. 35

Description of Improving the Initial Solution by Proposed Method 37

Comparing With an Available Method ... 40

5 CONCLUSION ... 43

REFERENCES .. 45

APPENDICES ... 51

Appendix A: GES Pseudocode ... 52

Appendix B: Source Code... 53

x

LIST OF TABLES

Table 3.1: Weight Computation in Forward and Backwards Direction 12

Table 3.2: Assigning Process for U-Shape Line Using RPW 13

Table 3.3: Assigning Process for U-Shape Line Using R-RPW 16

Table 3.4: Comparing Quality of RPW and R-RPW’s Solutions 17

Table 4.1: Number of Workstations ... 37

Table 4.2: Results of Line Efficiency, Smoothness Index and Variation 39

Table 4.3: Results of comparing the proposed method with Hwang et al. study [8] . 41

file:///C:/Users/Mahnaz/Desktop/Last%20Corrections/New%20folder/PD%20thesis%20AFTER%20JURY%20CHEKING%20BY%20mahnaz%20&%20Farbod%203.docx%23_Toc412922342

xi

LIST OF FIGURES

Figure 1.1: Straight assembly line ... 2

Figure 1.2: U-Shaped assembly line .. 2

Figure 3.1: Priority chart of assembly line ... 12

Figure 3.2: Flowchart of Revised-RPW ... 15

Figure 3.3: A grouping sample and its relevant group encoding 21

Figure 3.4: Samples of Beta PDF for different estimations of the parameters [10] .. 25

Figure 3.5: Samples of Beta PDF for different estimates of α at level of β=6 [10] ... 26

Figure 3.6: Shape of the Beta distribution as a function of α and β [10] 27

Figure 3.7: Flowchart of Mutation Operator .. 29

Figure 3.8: Flowchart of Revised-COMSOAL .. 32

Figure 3.9: Flowchart of the proposed algorithm .. 34

xii

LIST OF ABBREVIATIONS

ALB Assembly Line Balancing

ALBP Assembly Line Balancing Problem

GA Genetic Algorithms

GES Grouping Evolution Strategies

JIT Just In Time

LE Line Efficiency

RPW Ranked Positional Weight

SA Simulated Annealing

SI Smoothness Index

UALBP U-shaped Assembly Line Balancing Problem

V Variation

WS Workstation

1

Chapter 1

1 INTRODUCTION

2 Assemble line is defined as an arrangement of some workstations where parts of a

specific product get assembled. The task of changing the arrangement of workstations

in a way that optimum performance/throughput (upon some specific criteria) is gained

called: Assembly line balancing (ALB) [1]. Usually one of the objectives is to reduce

the number of workstations as much as possible for a given cycle time.

3 In some cases, traditional straight assembly lines (which are serial arrangement of

workstation in a line) have shown some inefficiency in line inflexibility, job monotony

and large inventories. By invention of Just-in-Time (JIT), U-shaped assembly lines

have become popular.

4 The layouts of straight assembly line and it corresponding U-shaped line shown in

Figure 1.1 and Figure 1.2 with eight tasks numbered from one to eight and three

workstation (operating personnel). In U-shaped line, the operating personnel stand as

workstation in the U. The entry and exiting points are set to the end of U. This layout

will let the operating personnel to work on both front sides for a cycle [2].

5 The workstation that can work on two parts, one on each side of the line in a cycle

called a crossover station, as you see the station at the left end of Figure 1.2 that can

works on tasks one and eight in a cycle is a crossover station. With increase in number

2

of crossover stations, you will have more flexible task-workstation combination. As it

seen in Figure 1.2, task eight assigned to the left-end workstation, which is not possible

in serial lines. In consequence, we can have a better balance while using less number

of workstation and operating personnel. Other advantages are having better sight of

production line and increasing in personnel dialog. In [3] it shown this leads the ability

of rebalancing in fast changing demand/operating environment. Productivity

improvement, reduction in work-in-process inventory, space requirement and lead-

time are the other benefits of U-shaped Assembly Line [4, 5, 6, 7]

6
Figure 1.1: Straight assembly line

7
Figure 1.2: U-Shaped assembly line

Traditional straight lines are being replaced by U-shaped assembly lines to adoption

of Just-in-Time philosophies in industry. In the U-shaped assembly line balancing

problem (UALBP), a task can be assigned to a station after all of its predecessors or

successors have been assigned to stations.

3

8 By doing adjusting modification in Grouping Evolution Strategies (GES), we used

GES as an alternative solution for UALBP. Our modified strategy is applicable in

single model, deterministic UALBP. The target here is to model the system with the

smallest set of workstations. Genetic Algorithm (GA) [8] and Simulated Annealing

(SA) [9] can be other alternatives solution. We will show our approach based on GES

(which is the most recent meta-heuristic algorithm) which proposed by Kashan [10]

can provide at least similar results to other solutions in a comparison.

9 Our aim is to improve the manufacturing throughput and reducing the required number

of human resources by optimizing task assignment and resource allocation in U-shaped

assembly line by using meta-heuristic method (GES).

10 In Chapter 2, we review the related works. Chapter 3 contains the main part of our

contribution i.e. our proposal for solving UALBP. Chapter 4, we discuss the outputs

and finally Chapter 5 we conclude our work and propose future topics.

11

12

13

14

15

4

Chapter 2

2 LITERATURE REVIEW

This section includes two parts: (1) the basic studies on grouping evolution strategies

(GES) and (2) the relevant studies on the U-line balancing problem.

 Grouping Evolution Strategy (GES)

By definition, grouping problems are generally concerned with partitioning a set of V

of n objects into a collection of mutually disjoint subsets (groups) Vi, such that: 𝑉 =

⋃ 𝑉𝑖 𝑎𝑛𝑑 𝑉𝑖 ∩ 𝑉𝑗 = ∅, 𝑖 ≠ 𝑗𝐷
𝑖=1 on the other hand, the aim in these problems is to

partition the members of set V into D (1 ≤ 𝐷 ≤ 𝑛) different groups where each object

is exactly in one group [11]. Normally, in grouping problems implicit that the ordering

of groups is not relevant.

Some well-known grouping problems are graph coloring problem, bin packing

problem, various packing/partitioning problems, timetabling problem, identical/non-

identical parallel-machines scheduling problem, cell formation problem, pickup and

delivery problem are some other famous grouping problems.

Grouping problems usually contain a constraint set that must be held under possible

object-assignments. Hence, not all assignments are acceptable. Grouping problems are

featured by an objective function upon different combination of groups. Moreover, by

using evolutionary algorithms a group or a group segment is the fundamental block

5

that must be kept in course of search. Based on this fact scientists have used

evolutionary algorithms to improve the grouping problems [11, 12, 13].

Grouping evolution strategy (GES) [10] is a kind of evolutionary algorithm that

recently proposed for crisp grouping problems. It is totally compatible with the

Evolution Strategy (ES) introduced by Rechenberg [14] with this distinction that ES

uses Gaussian mutation during optimization whereas GES a novel comparable

mutation. Further details are available in [15, 10].

 U-type Assembly Line Balancing

U-line is a relatively new and promising topic in the assembly line balancing literature.

The first study is due to Miltenburg and Wijngaard (1994) [16] who proposed a

dynamic programming formulation to solve 21 relatively small problems (with up to

11 tasks). The authors also develop a heuristic procedure based on the maximum

ranked positional weight (RPW) for large size problems. Later, Miltenburg and

Sparling (1995) [17] developed three exact algorithms for the UALBP: a reaching

dynamic programming algorithm, breadth- and depth-first branch-and-bound

algorithms.

To handle larger problems, Scholl and Klein (1999) [18] propose ULINO (U-line

optimizer); a new branch-and-bound procedure that performs a depth-first search by

considering bounds and some dominance rules to solve different versions (Type-I,

Type-II and Type-E) of the ULB problem. Erel et al. (2001) [9] developed an SA-

based algorithm for UALBP. The proposed algorithm employs an intelligent

mechanism to search the large solution space effectively. Gokcen et al. [19] proposed

a shortest route formulation of ULB. Gokcen and Agpak [20], and Toklu and Ozcan

6

[21] developed Goal Programming formulations of ULB. Jayaswal and Agarwal [22]

used Resource Dependent Task Times to solve ULB.

 Proposed Method

In this thesis, regards to study of Hwang et al. [8] and Erel Et al. [9] which they used

meta-heuristic methods to solve U-Shaped assembly line balancing problem we try to

use grouping evolution strategy(GES) which is proposed by Kashan [10] to solve

UALBP. Furthermore, GES used in the fuzzy clustering by Kashan et al. [23].

To find out enhanced result, we should use a proper technique to create our initial

solution, to reach this point we used revised-RPW. To prove that the outcome of

revised-RPW is more efficient than RPW, we use assumption of M. Fathi’s study [24]

such as their precedence diagram, and given cycle time and modified version of cycle

time that they used to describe their method.

7

Chapter 3

3 RESEARCH METHOD AND PROPOSED ALGORITHM

In order to achieve the goals of this study, the hybrid algorithm including an exact

algorithm to find an initial solution and a grouping meta-heuristic algorithm to improve

the solution has developed. Then the proposed algorithm has coded with software

MATLAB 2013a and then with use of the standard problems considered in Hwang et

al. study [8] the quality of the proposed method has measured. In continue we intend

to provide details of the proposed method for solving UALBP type-1.

 Problem Statement

The simple case of a UALBP is one of the most discussed issues in combinational

optimization. In this problem precedence graph of activities are given that activity j

has 𝑇𝑗 processing time unit. The objective is assigning the activities to stations

considering prerequisite activities with fixed cycle time. In such a route, the point was

that number of Workstations to be minimized. The proposed algorithm in this research

is a two-state algorithm as follows:

1) Creating an initial solution

2) Improving initial solution to achieve to final solution (by using GES algorithm)

 Generating an Initial Solution

There are several methods for determining the initial solution of the UALBP that each

of them have their strengths and weaknesses. These methods are included of all

accurate and heuristic methods that any of them can be considered as the initial

8

solution algorithm. By search in journals and literature, we found that COMSOAL

method [25] is one of the well-known methods in this field.

In this method, for assigning the tasks, we start from the first node (activity) of the

precedence graph and assigns the activities to the workstations randomly by

considering the given cycle time.

As it is evident at the first glance, one of the strength points of this method besides the

performance simplicity, it has the ability to produce different results due to the use of

random selection process for the allocation of the activities in each step. Because of

having much flexibility and high performance power, this method gives desired result

in every run but it needs to be considered this method gives different results in every

run. Hence, it is necessary to check the results of several runs to reach the best outcome

to calculate the line efficiency and smoothness index.

In contrast, exist a measure to evaluate and compare a new meta-heuristic algorithm

that it is one of the most important things to find the performance power of an

algorithm. Hence, generating the same initial solutions for a problem with a constant

parameters such as cycle time, processing times and precedence graph, seems

necessary. Therefore, COMSOAL method has been used only in second state for

improving the initial solution.

Leaving aside the COMSOAL method in order to find a way to create an initial

solution that every time gives a constant solution for the same problem, Ranked

9

Positional Weight (RPW) method [26] is considered. After some necessary changes to

improve result, the Revised-RPW method proposed.

 Algorithm of the RPW to Solve UALB Problem

In our proposal we focus only on U-shape assembly line balancing problem, whereas

RPW is a general solution for different forms of assembly lines. The weight discussed

above must be considered in both forward direction and backward direction. [24]

The parameters used in this method are:

𝑇(𝑆𝑖) Total time of each station

𝑇(𝑥) Time of each task

CT Given cycle time

N Number of tasks

M Number of workstations

S Minimum feasible number of workstation

MCT Minimum feasible cycle time

CT* Modified cycle time

To apply a priority for the tasks, we have used a precedence network calculating task’s

weights which we can explained as the total of activity time and times of the various

succeed or progress, correspondingly. There are two criterion for assigning tasks to

workstations: Firstly, succession and precedence priorities must be kept, and secondly,

the workstation must have free space to handle the assigning task. In case of multiple

available tasks, the one with the highest weight is assigned. Whenever all tasks have

been bounded we say the assignment is complete.

10

In this solution, CT is replaced by a new symbol CT* which is computed as below

[24]:

𝑆 = ∑ 𝑇(𝑥)𝑛
𝑖=1 / 𝐶𝑇 (3.1)

If S became non-integer value it should be rounded up.

𝑀𝐶𝑇 = ∑ 𝑇(𝑥)/𝑆𝑛
𝑖=1 (3.2)

𝐶𝑇∗ = [(𝑀𝐶𝑇 + 𝑆)/2] (3.3)

It should be kept in mind that MCT < CT* <CT. As it can be concluded CT can be

chosen freely in the domain (MCT, CT). However, choosing CT* as CT yields more

appropriate outputs. To maintain the preferred circumstances, following relations must

be satisfied [24]:

𝑇(𝑆𝑖) = ∑ 𝑇(𝑥) ≤ 𝐶𝑇 𝑖 = 1, … , 𝑀𝑥∈𝑆𝑖
 (3.4)

 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑃, 𝑥 ∈ 𝑆𝑖 𝑎𝑛𝑑 𝑦 ∈ 𝑆𝑗 𝑡ℎ𝑒𝑛 𝑖 ≤ 𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. (3.5)

 𝑖𝑓 (𝑦, 𝑧) ∈ 𝑃, 𝑦 ∈ 𝑆𝑗 𝑎𝑛𝑑 𝑧 ∈ 𝑆𝑘 𝑡ℎ𝑒𝑛 𝑘 ≤ 𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧. (3.6)

Statement (3.4) implies that total times of tasks that there are in a station could not be

more than CT. Statement (3.5) means that whenever task x comes before y and it is

carried out at station number i while y is carried out at station number j, then i is less

or equal j, i.e. y is done at in the station where x is done or after that. Statement (3.6)

is very similar to (3.5) to guarantee the priority imperatives are fulfilled in the

regressively bearing [24].

Below we describe generally the RPW rule algorithm by considering the noted

explanations:

11

(1) Computing the least quantity of workstations S and the least possible cycle time

MCT and CT*= [(MCT+CT)/2] which is the adjusted value.

(2) Adopting a new workstation and computing every work element's weight in 2 ways,

once in forward and once in backward direction. After that, the activities which are

appropriate for assigning are identified and a candidate list is generated.

(3) Arrange the weight of work elements as descending order.

(4) Assign the first activity with highest weight to first station

(5) Calculate the idle time (IT) for station r that has k task with below formula:

𝐼𝑇 = 𝐶𝑇∗ − ∑ 𝑡ᵢᵣ𝑘
𝑖=1 (3.7)

(6) comparing time of first none assigned activity that has highest positional weight

with idle time of last work station (here is first station too), then assign the activity if

it has equal or less time than last work station’s idle time.

(7) Assign activity to a new workstation if it’s duration is bigger than the existent

workstation’s idle time and again implement step 5.

A sample with 12 activities and process duration (CT) of 12 seconds is demonstrated

for delineation. The priority system of the exhibited sample is graphically indicated in

Figure 3.1 [24].

12

Figure 3.1: Priority chart of assembly line

We assume that CT equals to twelve seconds. S, MTC and CT* [24] can be computed

by the given equations. Initializing task’s weights is done based on the Table 3.1.

Here with implementation of this method, the solution will be as below:

Table 3.1: Weight Computation in Forward and Backwards Direction

Task

number
1 2 3 4 5 6 7 8 9 10 11 12

Backward

weight
34 27 24 29 26 20 15 13 8 15 11 7

Forward

weight
5 8 12 8 14 19 21 27 20 23 27 34

The summary of results of the assigning process using the RPW method is given in

Table 3.2.

13

Table 3.2: Assigning Process for U-Shape Line Using RPW

CT = 12 , CT* = 11

Iteration Candidate List Assigned Task Station No.
Station’s Idle

Time

1 1,12 1 1 6

2 12, 2,4 12 2 4

3 2,4,8,9,11 4 2 1

4 2,8,9,11,5 2 3 8

5 8,9,11,5,3 8 3 2

6 9,11,5,3,7 11 4 7

7 9,5,3,7,10 5 4 1

8 9,3,7,10 3 5 7

9 9,7,10,6 10 5 3

10 9,7,6 7 5 1

11 9,6 6 6 6

12 9 9 6 5

As it shown in Table 3.2 in first iteration, we assigned task Number 1 to first

workstation by considering positional weight. Then in next iteration between available

tasks in candidate list, we must select task Number 12 according to its positional

weight but because time of this task is more than idle time of current workstation we

must assigned it to the new workstation. By following these steps, all tasks should

assigned.

 Revised Ranked Positional Weight Method

As previously mentioned each of the activities can be allocated to last station that

contains all their predecessor (or successor) activities of that task or to the next stations

according to this point, new algorithm solution is suggested and described as well.

In this method, from first step to the fourth one is quite similar to classified position

weighting method. The fifth step in this method is revised as below:

14

The nomination of last station that contain predecessors (or successor) of first none

assigned activity which has highest positional weighting and calculate idle time of

workstation j according to the formula (step fifth). Steps six and seven are exactly

similar to last method.

The steps of Revised-RPW can summarized as flowchart in Figure 3.2, (See Appendix

B in order to find out source codes). Our input data are precedence diagram and given

cycle time that they are provided in Fathi’s study [24].

15

Figure 3.2: Flowchart of Revised-RPW

16

In this step, we implement revised method and compare it with last solution’s quality.

Table 3.3: Assigning Process for U-Shape Line Using R-RPW

CT = 12 , CT* = 11

Iteration Candidate List Assigned Task Station No.
Station’s Idle

Time

1 1,12 1 1 6

2 12,2,4 4 1 3

3 12,2,5 2 1 0

4 12,5,3 12 2 4

5 5,3,8,9,11 11 2 0

6 5,3,8,9,10 8 3 5

7 5,3,9,10,7 3 3 1

8 5,9,10,7 9 3 0

9 5,10,7 5 4 5

10 10,7,6 10 4 1

11 7,6 7 5 9

12 6 6 5 4

In Table 3.3, notice that same as Table 3.2 at first we assigned task number 1 to first

workstation, by considering it is not possible to assign task number 12 to this

workstation according to the idle time, the other tasks in the candidate list will be

considered. By this explanation that which has more weight must be selected and then

again we will compare idle time of current workstation to time of selected task, if it is

possible to assign we will do it otherwise we will check the other tasks which are

available in candidate list. If none of them could assign then we must create new

workstation.

For comparing two mentioned methods, we have four parameters as below:

1- Number of work stations

2- Line efficiency index: The line efficiency is an indicator for measuring the usage of

line [24]

17

𝐿𝐸 = (
∑ 𝑇(𝑆𝑖)𝑚

𝑖=1

𝑀∗𝐶𝑇
) ∗ 100 (3.8)

Where 𝑇(𝑆𝑖) is total time of tasks that there are in the station, therefore

 𝑇(𝑆𝑖) = ∑ 𝑇𝑗𝑗∈𝑆𝑖
 (3.9)

3- Smoothness index: This index is for measuring the standard deviation of work

distribution between the workstations. [24]

𝑆𝐼 = √∑ (𝑇(𝑆𝑚𝑎𝑥)−𝑇(𝑆𝑖))
2𝑚

𝑖=1

𝑚
 (3.10)

Where 𝑇𝑆𝑚𝑎𝑥 is maximum of 𝑇𝑆𝑖 .

4- Variation: This index is for determining the standard deviation of utilization of

stations. [8]

 𝑉 = √
∑ (𝑈𝑖− 𝑎𝑣𝑒𝑟)2𝑚

𝑖=1

𝑚
 (3.11)

Where 𝑎𝑣𝑒𝑟 = ∑ 𝑈𝑖 𝑚⁄𝑚
𝑖=1 is an average utilization for all workstations and the

utilization of workstation Si calculated with below formula [8]

 𝑈𝑖 = 𝑇(𝑆𝑖)/𝑇(𝑆𝑚𝑎𝑥) (3.12)

In below table we have figures each parameters.

Table 3.4: Comparing Quality of RPW and R-RPW’s Solutions

Solution

algorithm
Station’s

number
Line efficiency

index
Smoothness

index
Variation

RPW 6 83.33% 6.4807 0.2055

R-RPW 5 90.91% 4.1231 0.1408

18

As you see in Table 3.4, according to the objective function of ALB’s problems,

minimum number of station is desired and the workstations in position weighting

method are one unit more than the revised position weighting. With considering

importance of line’s capacity usage and efficiency, the results shown that efficiency

index in revised position weighting is 17 percent more than this index in position

weighting method.

On the other hand, according to the objective function of minimizing smoothness index

and variation, it is shown that the amount of these values in revised position weighting

are better than these contents in position weighing method. It is clear that the solution

of revised positional weighting method will never be worse than positional weighing

method. Therefore, for nomination initial solution in final algorithm, revised position

weighing is used.

 Initial Solution Improvement until Achieving Final Solution

In implementation of revised position weighting method, it present optimum number

of workstation in some cases. However, this method does not present optimum answer.

Therefore to reach this point, some optimization algorithm is used which has three

sections as follows.

1- Using meta-heuristic algorithm for optimize the first solution.

2- Using a heuristic method for assign the activities again after mutation.

3- Using a method for select better solution in each step.

19

In this section, first we introduce grouping evolution strategy algorithm then we

describe steps of improving initial solution until reaching the final answer.

 Evolution Strategies

Darwin's theories emphasize on the principle of variation and selection which is the

basis of Darwinian evolution. Rechenberg introduced evolution strategies [14] which

are basically a mathematical translation of Darwinian biological evolution and applied

them as general optimization technique.

(μ / ρ + λ) – ES presents a group of evolution strategies. All members operate with a

population П𝑡 which contains μ individuals (time proceeds in discrete steps

(generation) and is indicated by superscript t). In each generation t, a set Ԛ
𝑡
of λ

offspring solutions are produced from П𝑡 via recombination and mutation operators.

The symbol ρ indicates the number of parental solutions involved in the creation of

every single offspring solution. When ρ =1, it will be omitted. The new population

П𝑡+1 is created by means of the selection schemes based on individual appropriateness

[10].

Selection in ES which is shown by “ ” is goal-directed upon individuals'

appropriateness ranks. “ ”, denotes two mutually exclusive selection types. According

to the selection type, selection can be either from П𝑡⋃ Ԛ
𝑡
or from Ԛ

𝑡
.Using “+”

selection, the μ best of μ + λ candidates in П𝑡⋃ Ԛ
𝑡
 are selected from П𝑡+1. Using

selection, it is the μ best of λ candidates in Ԛ
𝑡
 that from П𝑡+1.

New off springs are chosen by a two-step process: recombination and mutation. For

recombination, ρ numbers of parents are taken randomly and their centroid point is

20

calculated. A point symmetric perturbation is added to the recombination output to

generate minor deviations. The latter is the mutation step. The perturbation is chosen

from an isotropic normal distribution. Population П𝑡 = {𝑋1
𝑡 , 𝑋2

𝑡 , … , 𝑋𝜇
𝑡} with 𝑋𝑘

𝑡 =

(𝑥𝑘1
𝑡 , 𝑥𝑘2

𝑡 , … , 𝑥𝑘𝐷
𝑡)∀ k=1, …, 𝜇 is a D dimensional candidate solution in the real-valued

examine space, the set of offspring candidate solutions (Ԛ
𝑡
) consists of vectors such

as 𝑌𝑖
𝑡 = (𝑦𝑖1

𝑡 , 𝑦𝑖2
𝑡 , … , 𝑦𝑖𝐷

𝑡)∀ i=1, …, 𝜆, where:

𝑌𝑖𝑑
𝑡 =

1

𝜌
∑ 𝑋𝑖𝑘𝑑

𝑡𝜌
𝑘=1 + 𝑍𝑑 ∀𝑑 = 1, … , D, ∀𝑖 = 1, … , λ (3.13)

In the above formula 𝑧𝑑
𝑡 = 𝜎𝑡𝑁𝑑(0,1), and 𝑁𝑑(0,1) is a normally distributed random

number related to d (i.e. the variation source). 𝜎𝑡 is known as strategy parameter or

mutation strength. It is computed in the time of evolution and shows how much

deviation is expected between the parents' centroids and their offspring. Sometimes it

is better to have a vector containing multiple strategy parameters 𝜎𝑡 = (𝜎1
𝑡, 𝜎2

𝑡, … , 𝜎𝐷
𝑡).

The index is chosen in an independent manner with replacement and same probability

from {1, …,𝜇}.

Mutation strength 𝜎𝑡 must be tuned. In case of being less than a threshold, it reduces

the search speed and in case of being more than a threshold, deviations can happen.

Hence, in evolving solutions this tuning plays an essential role called mutation strength

adaption. Rechenberg introduced 1/5-success rule in 1973 as the first method of

adapting mutation strength in (1+1)-ES [14]. He proved that by setting the mutation

strength at a level with success rate of 1/5, an approximate optimum performance could

be achieved. The only thing to do is monitoring the portion of time an offspring

candidate solution is superior to its parent over a number of time steps (i.e., estimate

the success probability), if success probability comes over 1/5, 𝜎𝑡 is set to a higher

21

value and vice versa. Further discussion on ES methods is out of scope of this thesis

however readers are encouraged to see Beyer and Schwefel (2002) [15], and Arnold

and Beyer (2003) [27] for more detail.

 Representation of Grouping Evolution Strategy (GES)

One of the key issues when designing an evolutionary algorithm is the solution

representation that used in GES as grouping representation (Falkenauer, 1994). When

optimizing a continuous function by ES, generally each solution is characterised with

a vector of length D of real numbers (D is the problem dimension (i.e., the number of

variables)). Similarly, for grouping problems, one can imply a solution i with Di

groups as a structure which length is equal to the number of groups in this context,

groups are considered as variables (look at the left part of Figure 3.3).

Figure 3.3: A grouping sample and its relevant group encoding

It should be kept in mind that possible solutions of grouping problems are not

necessarily identical in terms of length. i.e. GES must support solutions of inconstant

length. It is similar to bin packing or graph colouring problems wherein the quantity

of bins/colours is inconstant. In parallel-machines scheduling problems which

machines are loaded with grouped tasks, the quantity of groups is kept constant.

Through Kashan study [10], they the number of groups of a possible solution X is

shown by DX.

22

 The GES Mutation Operator

Given the grouping representation, the reconstruction of equation 3.13 is the aim of

this section, so that the new equation has the ability to work with groups rather than to

work with real numbers. To reconstruct the update equation, the basic idea is using

appropriate operators instead of Arithmetic’s operator. Specifically, the purpose is

using an appropriate operator instead of the operator -. Same as operator - which makes

the vastness of difference between two real numbers small, the dissimilarity groups

criteria can also make the distance / difference between the two groups low.

Suppose that the size of the two groups 𝐺, 𝐺′ is shown as |𝐺|, |𝐺′|. By the

quantification of the degree of similarity between the two groups, it can be seen that

how the two groups are similar and how far they are from each other. Much similarity

degree with multi-purpose applications are presented, some of which goes back to a

century ago. Among these similarity criteria Jaccard, Simpson and Kulczynski

similarity coefficient can be mentioned. One of the most widely used indicator for

determining the similarity coefficient between 𝐺, 𝐺′ is Jaccard similarity coefficient

which can be defined as follows

Jaccard’s Similarity (𝐺, 𝐺′) =
|𝐺 ⋂ 𝐺′|

|𝐺 ⋃ 𝐺′ |
 (3.14)

Index value above is equal to 1 if 𝐺 = 𝐺′ and it will be equal to zero if 𝐺 ⋂ 𝐺′ = ∅ .

Based on an available similarity coefficient, the dissimilarity/ distance coefficient can

be easily defined in order to calculate the distance between the two groups from each

other. For example, with regard to Jaccard similarity coefficient, Jaccard distance

coefficient between the two mentioned groups can be defined as follows:

23

Jaccard’s Distance (𝐺, 𝐺′) = 1 −
|𝐺 ⋂ 𝐺′|

|𝐺 ⋃ 𝐺′ |
 (3.15)

It is clear that 0 ≤ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑’𝑠 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐺, 𝐺′) ≤ 1.

Based on the concepts introduced in the previous section, the aim of this section is

developing a grouping version of evolutionary strategies. Using the demonstrating

scheme based on group, the main aim of this part is changing the classic ES mutation

and its development based on grouping problems structure.

 In order to generate Gaussian mutation it should be supposed that 𝜌 = 1. This is

because, it is known to work with groups that are major constituents of answer, and

directly, the mean operator for the groups (sets) is not defined. Therefore, we assume

that each child of a single parent is produced. Changing the classic ES mutation in the

form of 𝑦𝑖𝑑
𝑡 − 𝑥𝑖𝑘𝑑

𝑡 = 𝑧𝑑 and substitution of and alternative operator distance /

difference (the coefficient of Jaccard distance) operator instead of -, the equation of

Gaussian mutation in grouping evolutionary strategy is introduced as follows:

d

t

di

t

id zxy Distance
k

),((3-16)

Where, 𝑧𝑑 = 𝜎𝑡𝑁𝑑(0,1) and 𝑑 = 1, … , 𝐷𝑥𝑖𝑘
𝑡 , 𝑖 = 1, … , 𝜆. Indices ik is the chosen index

among {1,…,μ}. Again, it should be noted that 𝑥𝑖𝑘𝑑
𝑡 , 𝑦𝑖𝑑

𝑡 in equation 3-16, each denote

a group of objects and not real numbers. Since 0 ≤ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑦𝑖𝑑
𝑡 , 𝑥𝑖𝑘𝑑

𝑡) ≤ 1 it is

located on the right side of equation 3-16 if 𝑧𝑑 > 1. 𝑧𝑑 = 1 and if 𝑧𝑑 < 0 then 𝑧𝑑 = 0

[10].

In equation 3-16, 𝑧𝑑 can be used to make the fluctuation around zero and the vastness

of this deviation will be determined based on the value of strategy parameter. If there

24

was an increase in 𝜎𝑡, there will be more chance of large deviations and vice versa.

While 𝑧𝑑 it may be somewhat arbitrary and free of marks, the range operator distance

is limited to the range [0-1]. This evidence suggests that, 𝑧𝑑 may not be a good

presenter as a source of variation production in evolutionary strategy group. Therefore,

we should looking for a source for creating a diversion. As a starting point, it is

desirable that the candidate source for creating distortion will be amplitude probability

density function which is only in the range [0-1]. Additionally, Similar to the standard

normal distribution the chance to produce a certain amount with changing the amount

of 𝜎𝑡 changes. It is desirable that the candidate probability density function can be

considered different opportunities to produce a certain amount in the range [0-1] by

using different values for the control parameters. Now some probability density

function that satisfies their requirements are available, including beta distribution,

triangular distribution, distribution Kumaraswamy (Kumaraswamy, 1980)

The amplitude for probability density functions that have been mentioned only in the

range [0-1] are defined and all of them are flexible enough. However, in grouping

evolutionary strategy development, it is preferable to use the beta distribution. The

reason for this choice is that, in comparison with triangular density function, beta

density function has less control parameter and it models skewness in a very favorable

manner. Kumaraswamy distribution is also very flexible and it has a two shape

parameters. But beta distribution is much better known, and many programming

software such as MATLAB are equipped with module for generating beta random

numbers [10].

25

In statistics and probability, Beta distribution can be shown by 𝐵(𝛼, 𝛽) with positive

parameters α and β that are shape parameters. Various forms of the beta probability

density function have been illustrated in Figure 3.4. As it can be clearly seen, the

distribution is very flexible. So far, it can be concluded that equation 3.16 can be

changed as follows:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑦𝑖𝑑
𝑡 , 𝑥𝑖𝑘𝑑

𝑡) ≈ 𝐵𝑒𝑡𝑎𝑑(αt, βt), ∀𝑑 = 1, … , 𝐷𝑥𝑖𝑘

𝑡 , ∀𝑖 = 1, … , 𝜆 , 𝑖𝑘 ∈ {1 … μ} (3.17)

In the above equation 𝐵𝑒𝑡𝑎𝑑(. , .) introduces the beta random number which is

producing per each d group.

Figure 3.4: Samples of Beta PDF for different estimations of the parameters [10]

If the standard normal distribution is used, only strategy parameter 𝜎𝑡 needs to be

available. However, by using the beta distribution, the two strategy parameters 𝜎𝑡 and

𝛽𝑡 must evolve. Referring to Figure 3.4 It should be noted that there should be only

form of beta distribution with a single peak and the J-shaped or bell-shaped. U-shaped

distributions, distributions that are symmetric and the peak density on either side

values that are zero or one. Therefore, it is expected that by U-shaped probability

26

density functions the chance for generating random numbers close to zero or one is the

same.

This means that the chances of similarity or dissimilarity of new group of 𝑦𝑖𝑑
𝑡 to the

present group of 𝑥𝑖𝑘𝑑
𝑡 is available, which it does not seem logical. Figure 3.5 indicates

that the assumption of a constant shape parameter, for example 𝛽𝑡, at an appropriate

level could be useful in modeling skewness of the probability density functions of a

single peak beta.

Figure 3.5: Samples of Beta PDF for different estimates of α at level of β=6 [10]

In Figure 3.6, the relationship between different values of the shape parameters of the

beta distribution and the shape of the beta probability density function has been shown.

As can be recognized, for 𝛼 ≥ 1 or 𝛽 ≥ 1, the beta distribution forms all desired types.

By assuming a constant value for 𝛽𝑡 in 𝛽 ≥ 1 , the parameter 𝛼𝑡 can only be developed

27

during the search process. The final equation of mutations in a group evolutionary

strategy takes the following form:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑦𝑖𝑑
𝑡 , 𝑥𝑖𝑘𝑑

𝑡) ≈ 𝐵𝑒𝑡𝑎𝑑(𝛼𝑡, 𝛽), ∀𝑑 = 1, … , 𝐷𝑥𝑖𝑘

𝑡 , ∀𝑖 = 1, … , 𝜆 , 𝑖𝑘 ∈ {1 … 𝜇} (3.18)

Figure 3.6: Shape of the Beta distribution as a function of α and β [10]

In grouping evolutionary strategy algorithm there is no difference for using scheme

representation group based on object name or object attributes. In this algorithm the

number of shared object between 𝑥𝑖𝑘𝑑
𝑡 and 𝑦𝑖𝑑

𝑡 can be calculated as follows:

 𝑛𝑖𝑑
𝑡 = ⌊(1 − 𝐵𝑒𝑡𝑎𝑑(𝛼𝑡, 𝛽))|𝑥𝑖𝑘𝑑

𝑡 |⌋ (3.19)

Selection process of evolutionary strategy algorithm is a deterministic and its similar

to evolutionary strategy algorithm. Similar to those used in evolutionary strategy

algorithm, (𝜇+, 𝜆) − 𝐺𝐸𝑆 can be used to introduce a variety of strategies to select a

group evolutionary strategy. Also similar to the Law of Success1
5⁄ , with the initial

value 𝛼0, if the estimated probability of success is greater than the threshold 𝑃𝑠 after

G iteration, then there will be increase in α𝑡 and otherwise, its value decreases. In this

thesis, the algorithm of (1 + 𝜆) − 𝐺𝐸𝑆 is used for performance comparisons.

28

 Improving the Initial Solution

For solving ALB problems with high number of activities considering it is a hard

problem, each of the meta-heuristic algorithm like genetic algorithm, tabu search

algorithm, ant colony algorithm or evolution strategy can be used.

Revised-RPW rarely provides perfect solutions under some specific circumstances.

Note that ALBPs are in the NP-hard kind of problems, GES algorithm is used to

enhance the solution which provided by Revised-RPW.

GES algorithms to avoid static solutions apply mutation operator. First, a number of

tasks of the initial solution are removed, by using a heuristic technique, the missing

tasks are assigned and the solution is completed. By Figure 3.7, we describe all steps

briefly.

29

Figure 3.7: Flowchart of Mutation Operator

 Using a Heuristic Method to Assigning Tasks after Mutation

Operator mutation is one of the most used operators in meta-heuristic algorithm,

especially in grouping evolution strategy to find a better solution without any static

result in research. After removing some assigned activities from related workstations

according to a special pattern and allocating them again to stations by a heuristic

method, we have a better solution in each step.

30

It should be mentioned that in this step we could not use revised-RPW because with

adoption of this method we only have one solution. Considering simplicity and

flexibility of COMSOAL method (Arcus, 1963) [25], we purposed this technique for

solving this issue. This flexibility is because of generating different solutions by an

accidental choosing process among activities that are ready to assign in each step. With

doing a necessary revision, we presented Revised-COMSOAL method to create a

better solution in the following.

 Revised-COMSOAL Method

Revised-COMSOAL method in compare with classic COMSOAL by Arcus (1963)

[25] has an important change according to the condition of solution algorithm.

The classical COMSOAL method for creating solution, always starts from the first

node (activity) and continues with the nodes that do not have any predecessor. Then it

assigns activities to workstations considering idle time of stations. However, in our

case, after performing the mutation operator of GES, most of the time, a task in the

middle of the precedence diagram must be assigned. Therefore, at first, the algorithm

must distinguish which activities have no predecessor or successor and after that, it

must ignore the assigning of those activities that have assigned before. To create these

changes in the revised algorithm, there is a constraint about predecessor and successor

activities, which their algorithm are as below:

Step1: Choose the activities without predecessor or successor that are ready to assign.

Step2: Finding the possible workstations which activity can be assigned.

31

Step3: Find the highest workstations between stations that contains predecessor

activities (MPWS) and successor activities (MSWS) of chosen task. Then compare

them and choose the minimum one.

Step4: Control the assumption that the chosen activity’s station number must be equal

or bigger than workstation number that we described in step3.

Step5: remove the assignment of chosen activity if the assumption of step4 violated.

In Figure 3.8, we will describe these steps briefly as a Flowchart (See Appendix B in

order to find out source codes). In this Flowchart, we considered APWS as an

appropriate workstation for assigning activities that are ready to assign.

32

Figure 3.8: Flowchart of Revised-COMSOAL

 Using a Method to Select the Best Solution in Every Step

After changing the solution method in proposed algorithm and improving it in every

step, additional to the chosen result of the previous step, two new solutions are

produced. To find the best result for producing the next solution, it is necessary to

33

compare all three solutions in every step. In this regard, a method where considered as

selection operator, which is based on smoothness index. Its formula was presented in

equation 3.10.

This none-linear objective function, speeds up the transmission of activities from low

to high-pressure workstation then the chance of getting an empty workstation in the

next solutions, will be increased. This lead to this idea that SI index was used for

selecting a better solution not as an objective function.

Figure 3.9 describes how we improved the initial solution, where it was came from the

input data’s such as precedency diagram and given cycle time (See Appendices in

order to find out pseudocodes and source codes).

34

Figure 3.9: Flowchart of the proposed algorithm

35

Chapter 4

4 COMPUTATIONAL RESULT

 Simulation Setup and Performance Metrics

In this chapter, the results of proposed methods compared with some well-known

problems and the solutions for the elected problems are compared with the best

solutions that are already obtained by Hwang et al [8]. The needed data to examine the

mentioned methods and to compare the results have been acquired from their study.

All procedures implemented in MATLAB 2013a software and executed on an Intel(R)

Pentium(R) Dual CPU computer with 2.00GHz of CPU speed and 4.00 GB of RAM.

For the performance measurement of the proposed algorithm, the results of using the

selection operator method is compared by solving well-known problems. The

proposed algorithm has several parts and it is possible that the initial solution is the

optimal solution.

Rest of this chapter it reveals that by using proposed method the Initial solution will

be improved, then comparing this method with an existing one that was used Genetic

algorithm for balancing the U-shaped assembly line [8].

Perfect balance of assembly line is attained by combination of work elements in a way

that the total busy time of workstations will be same as cycle time. Since a perfect

balance can rarely happens, some other metrics are used in UALBP type-1 to compare

36

different combinations. These metrics can evaluate the performance and efficiency of

the balance. Below, we describe each:

Number of Work Station (NWS): Having less NWS means more proper task

dispatch that leads to a line, which is more effective. It is clear that less number of

workstations can save the budgets and working area [28, 29].

Line Efficiency (LE): LE is yield by summing up all station’s time to the CT over the

station number. It reflects the percentage of line's usage. Obviously, higher values of

LE is more desirable with the ideal value hundred. To maximize LE the station number

must be minimized. LE is calculated as equation 3.9 that is described before.[28, 30]

Smoothness Index (SI): An important performance variable in a production line. SI

indicates the total time when a station is idle (not working). It usually happens when

an improper assignment had been done. The ideal value for SI is zero i.e. the best

balancing. The minimum value of SI can be reached when the workload difference

among workstations is decreased as much as possible. SI can be computed as equation

3.10. [29]

Variation (V): Another important performance variable on a production line by

considering utilization of each station is variation. Same as SI, The minimum amount

of V can be accomplished by decreasing the workload difference among workstations.

V can be processed as mathematical statement which was described in equation 3.11.

37

 Description of Improving the Initial Solution by Proposed Method

In Table 4.1, the number of workstations in proposed method in most tests had been

reached to the optimum number of workstations that they are considered by Hwang et

al. [8].

Table 4.1: Number of Workstations

In Table 4.2, six different problems with three or four different cycle times are

considered. For each RPW, Revised-RPW and GES methods, three indexes such as

line efficiency, variation and smoothness index are compared.

38

As our aim is improving the initial solution, with Table 4.2 we will find out Line

efficiency, Smoothness index and variation of workload toward the Initial solution are

improved.

As mentioned before, it is possible that in some cases, Initial solution is the optimal

solution; in this case, we engage improving the Smoothness index in the following

steps of proposed method.

39

T
ab

le
 4

.2
:

R
es

u
lt

s
o
f

L
in

e
E

ff
ic

ie
n

c
y
,
S

m
o
o
th

n
es

s
In

d
ex

 a
n
d
 V

ar
ia

ti
o
n

40

 Comparing With an Available Method

After understanding that the proposed method cause improvement of Initial solution,

we will be compared this technique toward method of the Hwang et al. [8].

Considering in the given study they did not mention Smoothness index (SI), we

compared the number of Workstations, the Line efficiency and Variation in Table 4.3.

41

T
ab

le
 4

.3
:

R
es

u
lt

s
o
f

co
m

p
ar

in
g
 t

h
e

p
ro

p
o
se

d
 m

et
h
o
d
 w

it
h
 H

w
an

g
 e

t
al

.
st

u
d

y
 [

8
]

42

According to the above table, we find out in 13 out of 20 cases we reached to the same

or better result in Variation in comparison with the method that Hwang et al.

introduced in their study [8]. Therefore, the higher degree of confident that can be

achieved by applying this method. In addition, an enhanced assembly line is gained by

having more possibilities of workload.

43

Chapter 5

5 CONCLUSION

In this research, the assembly line balancing problem according to the reducing

number of workstation is considered. Primarily, a mathematical model and then two

new state methods including an exact algorithm and hybrid grouping meta-heuristic

algorithm were proposed. Former one was to find an initial solution and later one was

to improve the initial solution and achieve the best solution, by using a method for

selection operator to solve UALBP.

The proposed algorithm is rested on the Grouping Evolution Strategies method while

the most useful meta-heuristic algorithm that already exist, are based on Genetic

Algorithm. Moreover, to increase the performance of the proposed procedure, the

COMSOAL method (Arcus, 1963) [25] is compounded. To put it in the nutshell the

obtained outcomes demonstrate that the proposed algorithm in this thesis is more

efficient and qualified than the meta-heuristic method that is used in Hwang et al. study

[8] for solving UALBPs.

Finally, the possible future work topics based on our discussion in this thesis are: All

the processes can be done in more than one station, which means that some parts of

one activity can be done in one workstation and the rest in the others.

44

Minimization of cycle time of workstations can be considered as the simultaneous

objective functions, this is the other objective of assembly balancing problem to

decrease work hours. Using goal programming to optimize such a problem or using

other meth-heuristic methods like Particle Swarm Optimization (PSO), neural network

and etc. To compare them with our proposed method in this research, maybe we can

reach to better solution in UALB problems.

45

REFERENCES

[1] Becker, C. & Scholl, A. (2006). "A survey on problems and methods in

generalized assembly line balancing," European Journal of Operational

Research, vol. 168(3), pp. 694-715.

[2] Monden, Y. (1998) "Toyota production system - An integrated approach to just-

in-time," Kluwer, Dordrecht.

[3] Scholl, A. (1999) "Balancing and sequencing assembly lines, Heidelberg:

Physica.

[4] Miltenburg, J. (2000) "The effect of breakdowns on U-shaped production lines,"

International Journal of Production Research, vol. 38(2), pp. 353-364.

[5] Miltenburg, J. (2001) "U-shaped production lines: A review of theory and

practice," International Journal of Production Economics, vol. 70(3), pp. 201-

214.

[6] Cheng, C., Miltenburg, J. & Motwani, J. (2000). "The effect of straight- and U-

shaped lines on quality," IEEE Transactions on Engineering Management , vol.

47(3), pp. 321-334.

46

[7] Aase, G. R., Olson, J. R. & Schniederjans, M. J. (2004). "U-shaped assembly

line layouts and their impact on labor productivity: An experimental study,"

European Journal of Operational Research , vol. 156(3), pp. 698-711.

[8] Hwang, R. K., Katayama, H. & Mitsuo, G. (2008). "U-shaped assembly line

balancing problem with genetic algorithm," International Journal of Production

Research, vol. 46, pp. 4637-4649.

[9] Erel, E., Sabuncuoglu, I. & Aksu, B.A. (2001). "Balancing of U-type assembly

systems using simulated annealing," International Journal of Production

Research , vol. 39, pp. 3003-3015.

[10] Kashan, A. H., Jenabi, M. & Kashan, M. H. (2009). "A new solution approach

for grouping problems based on evolution strategies," in IEEE International

Conference of Soft Computing and Pattern Recognition, SoCPaR.

[11] Falkenauer, E. (1994). "A new representation and operators for genetic

algorithms applied to grouping problems," Evolutionary Computation, vol. 2, pp.

123-144.

[12] Kashan, A. H. & Kashan, M. H. (2013). "GPSO: a novel particle swarm

optimizer for grouping problems," Information Sciences, vol. 252, pp. 81-95.

47

[13] Kashan, A. H. (2011). "An efficient algorithm for constrained global

optimization and application to mechanical engineering design: league

championship algorithm (LCA)," Computer-Aided Design, vol. 43, pp. 1769-

1792.

[14] Rechenberg, I. (1973). "Evolutionsstrategie: Optimierung technischer Systeme

nach den Prinzipien der biologischen Evolution".

[15] Beyer, H.G. & Schwefel, H.P. (2002). "Evolution strategies: a comprehensive

introduction," Natural Computing, vol. 1, pp. 3-52.

[16] Wijngaard, J. (1994) "The U-line line balancing problem," Management Science,

vol. 40, pp. 1378-1388.

[17] Miltenburg, J. & Sparling, D. (1995). Optimal solution algorithms for the U-line

balancing problem, Hamilton: McMaster University.

[18] Scholl, A. & Klein, R. (1999). "ULINO: optimally balancing U-shaped JIT

assembly lines," International Journal of Production Research, vol. 37(4), pp.

721-736.

48

[19] Gokcen, H., Agpak, K., Gencer, C. & Kizilkaya, E. (2005). "A shortest route

formulation of simple U-type assembly line balancing problem," Applied

Mathematical Modelling , vol. 29, no. 4, pp. 373-380.

[20] Gokcen, H. & Agpak, K. (2006). "A goal programming approach to simple U-

line balancing problem," European Journal of Operational Research , vol. 171,

no. 2, pp. 577-585.

[21] Toklu, B. & Ozcan, U. (2008). "A fuzzy goal programming model for the simple

U-line balancing problem with multiple objectives," Engineering Optimization ,

vol. 40, no. 3, pp. 191-204.

[22] Jayaswal, S. & Agarwal, P. (2014). "Balancing U-shaped assembly lines with

resource dependent task times: A Simulated Annealing approach," Journal of

Manufacturing Systems, vol. 33, no. 4, pp. 522-534.

[23] Kashan, A. H., Rezaee, B. & Karimiyan, S. (2013) "An efficient approach for

unsupervised fuzzy clustering based on grouping evolution strategies," Pattern

Recognition, vol. 46, pp. 1240-1254.

[24] Fathi, M., Alvarez, M. J. & Rodríguez, V. (2011). "A New Heuristic Approach

to Solving U-shape Assembly Line Balancing Problems Type-1," World

Academy of Science, vol. 5, pp. 269-277.

49

[25] Arcus, A. L. (1966). "COMSOAL : a computer method of sequencing operations

for assembly lines ; The problem in simple form," Readings in production and

operations management, pp. 336-349.

[26] Helgeson, W. P. & Birnie, D. P. (1961). "Assembly Line Balancing Using the

Ranked Positional Weight Technique," Journal of Industrial Engineering, vol.

6, pp. 394-398.

[27] Arnold, D. V. & Beyer, H. G. (2003). "A comparison of evolution strategies with

other direct search," Computational Optimization and Applications, vol. 24, pp.

135-159.

[28] Ponnambalam, S. G., Aravindan, P. & Mogileeswar, G. (2000). "Multiobjective

genetic algorithm for solving assembly line balancing problem," Int J Adv Manuf

Technol., vol. 16, pp. 341-352.

[29] Baykasoglu, A. (2006). "Multi-rule multi-objective simulated annealing

algorithm for straight and U type assembly line balancing problems," Intell

Manuf, vol. 17, pp. 217-232.

[30] Ozcan, U. & Toklu, B. (2009). "A new hybrid improvement heuristic approach

to simple straight and U-type assembly line balancing problems," Intell Manuf,

vol. 20, pp. 123-136.

50

[31] Chiang, W. (1998). "The application of tabu search metaheuristic to the assembly

line balancing problem, Annals of operation research," European Journal of

Operational Research, vol. 77, pp. 209-227.

51

APPENDICES

52

Appendix A: GES Pseudocode

Algorithm (1+λ)-GES

Initial: 𝛽, 𝜆, 0 < 𝑎 ≤ 1, 𝛼0 > 0, 𝛼𝑚𝑖𝑛 > 0, 𝐺 ≥ 1, 𝑃𝑠;

Begin

𝑡 ← 0; 𝐺𝑠 ← 0; 𝛼 ← 𝛼0;

Generate an initial feasible solution 𝑋𝑡𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑖𝑡;

While stopping criteria are not true

 For 𝑖 = 1 𝑡𝑜 𝜆

 Given the parent solution 𝑋𝑡 , apply New Solution Generator algorithm to obtain

the offspring solution 𝑌𝑖
𝑡;

 End for

 Apply the comparison criteria between 𝑋𝑡 and the 𝜆 generated offspring to select

the best

 Individual, which is known as 𝑋𝑡+1 (ties are broken randomly);

if 𝑓(𝑋𝑡+1) < 𝑓(𝑋𝑡)

 𝐺𝑠 ← 𝐺𝑠 + 1 ;

End if

If (𝑡 𝑚𝑜𝑑 𝐺) = 0

 𝛼 ← {
𝛼/𝑎 𝑖𝑓 𝐺𝑠/𝐺 ≥ 𝑃𝑠

max (𝛼𝑚𝑖𝑛, 𝑎 × 𝛼 𝑖𝑓𝐺𝑠/𝐺 < 𝑃𝑠

𝐺𝑠 ← 0;

End if

𝑡 ← 𝑡 + 1;

𝛼𝑡 ← 𝛼;

End While

End

53

Appendix B: Source Code

GES Code:

clc

clear

[CycleTime,TaskTime,Pi,lowerbound] = Solutions;

CycleTime

N = size(TaskTime,2);

maxnumofjob = 0;

time = cputime;

Max_iteration = 1000;

LAMBDA = 2; %%%if theselection strategy is (miu,lambda)

then miu<lambda

beta_shape_parameter = 6;

alpha_shape_parameter = 8; %%% should be equal to

beta_shape_parameter

min_alpha = 0.1; %%%critical!

G_factor = 5; %%%number of iteration to update alpha

a_factor = 0.98; %%%amount of vhange in alpha

prob_factor = 1/5; %%% the probability for dicrease or

increase

random_item_probability = 0.3; %%% critiacal!

selection_strategy = 3; % 1 is (miu,lambda), 2 is

(miu+lambda)

%--

new_offspring = zeros(1,N);

iteration = 0 ;

%%% get initial

solution

new_offspring = Revised_RPW(CycleTime, new_offspring);

smttemp = Smoothness_Index(CycleTime, new_offspring)

letemp = Line_Efficiency(CycleTime, new_offspring)

 new_offspringRPW = Revised_RPW(CycleTime,

new_offspring);

OBJECTIVE_VALUE = max(new_offspring);

OBJ_RPW = OBJECTIVE_VALUE;

ObjectiveValue_Of_GlobalBest = OBJECTIVE_VALUE;

Xi = [new_offspring OBJECTIVE_VALUE];

global_best = Xi;

if global_best(end) > lowerbound

 alpha_plot = [alpha_shape_parameter

 0];

 average_variation_plot = [];

54

 iteration = 0;

 Gs = 0;

 last_improvement = iteration;

 while iteration < Max_iteration

 offsprings = [];

 average_variation_in_population = 0;

 for ii = 1:LAMBDA % create children

 X_id_t_1 = zeros(1,N);

 assigning_station_number = 0;

 average_variation_in_solution = 0;

 %%%%%%%%%%%%%%%%%%%%%%%% to produce new

offspring by mutation

 max(Xi(:,1:N));

 for key = 1:max(Xi(:,1:N))

 X_id_t = find(Xi(:,1:N) == key);

 cardinality_X_id_t = size(X_id_t,2);

 beta_random_num =

betarnd(alpha_shape_parameter,beta_shape_parameter); %

tolid yek adade random ba Beta_dist.

 X = floor((1-

beta_random_num)*cardinality_X_id_t);

 average_variation_in_solution =

average_variation_in_solution+beta_random_num;

 %%%%%%%%%%%%%%%%%%%%%%%% choosing items

 if rand(1) <= random_item_probability

 RAND_SEL =

randperm(cardinality_X_id_t);

 X_id_t_1(X_id_t(1,RAND_SEL(1:X))) =

key;

 else

 sel = [X_id_t

 TaskTime(X_id_t)];

 sort_sel = sortrows(sel',2)'; %sort of

row no2 increasingly

 X_id_t_1(sort_sel(1,end-X+1:end)) =

key;

 end

 %----------------------- choosing items

 end

 %----------------------- to produce new

offspring by mutation

 if size(find(X_id_t_1 == 0),2) > 0

 maxnumofjob =

max(maxnumofjob,size(find(X_id_t_1 == 0),2));

 new_offspring = X_id_t_1;

 new_offspring = COMSOAL(CycleTime,

new_offspring);

55

 %%%%%%%%%%%%%% to arrange the batch number.

[1 2 2 5 7] changes to [1 2 2 3 4]

 randomsequence = [];

 jey = zeros(1,N);

 eff = 1;

 child = new_offspring;

 for g = 1:max(child)

 if child == realmax

 break

 else

 child(find(child == min(child)))

= eff;

 jey(find(child == min(child))) =

eff;

 child(:,find(child == eff)) =

realmax;

 eff = eff + 1;

 end

 end

 new_offspring = jey;

 for i=2:(size(Pi)-1)

 end

 end

 OBJECTIVE_VALUE = max(new_offspring);

 else

 new_offspring = X_id_t_1;

 OBJECTIVE_VALUE = max(new_offspring);

 end

 offsprings = [offsprings

 new_offspring OBJECTIVE_VALUE];

 average_variation_in_population =

average_variation_in_population+average_variation_in_solu

tion/key;

 end

sorted = sortrows([Xi

 offsprings],N+1);

 ran = find(sorted(:,end) == sorted(1,end));

 SmoothnessIndexMatrix = [];

 for k = 1:size(ran,1)

 new_offspring = sorted(k,1:N);

 SmoothnessIndex =

Smoothness_Index(CycleTime, new_offspring);

 SmoothnessIndexMatrix =

[SmoothnessIndexMatrix

 SmoothnessIndex];

%%%%%%%%%%%%%%%%%%%%% Success rule %%%%%%%%%%%%%%%%%%%%

 if min(offsprings(:,N+1)) < Xi(:,N+1)

56

 Gs = Gs + 1;

 end

 if mod(iteration,G_factor) == 0 && iteration>0

 if Gs/G_factor >= prob_factor

 alpha_shape_parameter =

alpha_shape_parameter/a_factor;

 else

 Gs/G_factor < prob_factor;

 alpha_shape_parameter =

max(min_alpha,alpha_shape_parameter*a_factor);

 end

 Gs = 0;

 end

%%

 iteration = iteration + 1

 alpha_plot = [alpha_plot [alpha_shape_parameter

 iteration]];

 average_variation_plot = [average_variation_plot

[average_variation_in_population/LAMBDA

 iteration]];

 end

end

iteration

global_best;

new_offspringRPW;

for i=1:size(new_offspring,2)

 new_offspring(i) = global_best(i);

end

OBJ_RPW

ObjectiveValue_Of_GlobalBest

LineEfficiency = Line_Efficiency(CycleTime,

new_offspring)

SmoothnessIndex = Smoothness_Index(CycleTime,

new_offspring)

Comsoal Code:

while (~isempty(find(new_offspring == 0)))

 new_offspring;

 %% get zero

columns

 n = 0;

 WithoutPredecessors = [];

 for i = 1:size(TempPi,2)

 if isempty(find(TempPi(:,i), 1))

57

 if new_offspring(i) == 0

 n = n + 1;

 WithoutPredecessors(n) = i;

 else

 TempPi(i,:) = 0;

 TempPi(:,i) = 0;

 end

 end

 end

 for i = (size(TempPi,2)):-1:1

 if isempty(find(TempPi(i,:), 1))

 if new_offspring(i) == 0

 n = n + 1;

 WithoutPredecessors(n) = i;

 else

 TempPi(i,:) = 0;

 TempPi(:,i) = 0;

 end

 end

 end

if RandomActivity == 0

 RandomAct = unidrnd(size(WithoutPredecessors,2));

 RandomActivity = WithoutPredecessors(RandomAct);

 end

TempPi;

 RandomActivity;

 if ~isempty(find(Pi(:,RandomActivity)))% Just for

first column

 if ~isempty(find(Pi(RandomActivity,:)))% Just

for last row

 Predecessors = find(Pi(:,RandomActivity));

 PredecessorsStations =

new_offspring(Predecessors);

 Successors = find(Pi(RandomActivity,:));

 SuccessorsStations =

new_offspring(Successors);

 %%

get Idle Time

 MSuccessorsStations =

max(SuccessorsStations);

 MPredecessorsStations =

max(PredecessorsStations);

 minSS = min(SuccessorsStations);

 minPS = max(PredecessorsStations);

58

 if MSuccessorsStations == 0

 Station = MPredecessorsStations;

 elseif minSS ==0

 Station = MPredecessorsStations;

 elseif MPredecessorsStations == 0

 Station = MSuccessorsStations;

 elseif minPS ==0

 Station = MSuccessorsStations;

 else

 Station =

min(MPredecessorsStations,MSuccessorsStations);

 end

hile new_offspring(RandomActivity) == 0

 StationActs = find(new_offspring ==

Station);

 StationTime = 0;

 for i=1:size(StationActs,2)

 StationTime = StationTime +

TaskTime(StationActs(i));

 end

 IdleTime = CycleTime - StationTime;

 if IdleTime - TaskTime(RandomActivity) >=

0

 new_offspring(RandomActivity) =

Station;

 else

 Station = Station + 1;

 end

 end

 else

 Station = 1;

 while new_offspring(RandomActivity) == 0

 StationActs = find(new_offspring ==

Station);

 StationTime = 0;

 for i=1:size(StationActs,2)

 StationTime = StationTime +

TaskTime(StationActs(i));

 end

 IdleTime = CycleTime - StationTime;

 if IdleTime - TaskTime(RandomActivity) >=

0

 new_offspring(RandomActivity) =

Station;

59

 else

 Station = Station + 1;

 end

 end

 end

 else

 Station = 1;

 while new_offspring(RandomActivity) == 0

 StationActs = find(new_offspring == Station);

 StationTime = 0;

 for i=1:size(StationActs,2)

 StationTime = StationTime +

TaskTime(StationActs(i));

 end

 IdleTime = CycleTime - StationTime;

 if IdleTime - TaskTime(RandomActivity) >= 0

 new_offspring(RandomActivity) = Station;

 else

 Station = Station + 1;

 end

 end

 end

 Station;

 new_offspring;

 TempPi(RandomActivity,:) = 0;

 TempPi(:,RandomActivity) = 0;

 TempPi;

Revised RPW:

if max(W) < W_Max

Predecessors = find(Pi(:,Selected_Item));

 PredecessorsStations =

new_offspring(Predecessors);

 Successors = find(Pi(Selected_Item,:));

 SuccessorsStations = new_offspring(Successors);

 MSuccessorsStations = max(SuccessorsStations);

 MPredecessorsStations =

max(PredecessorsStations);

 minSS = min(SuccessorsStations);

 minPS = max(PredecessorsStations);

 if MSuccessorsStations == 0

 Station = MPredecessorsStations;

 elseif minSS ==0

60

 Station = MPredecessorsStations;

 elseif MPredecessorsStations == 0

 Station = MSuccessorsStations;

 elseif minPS ==0

 Station = MSuccessorsStations;

 else

 Station =

min(MPredecessorsStations,MSuccessorsStations);

 end

 Station;

 new_offspring;

 while new_offspring(Selected_Item) == 0

 StationActs = find(new_offspring == Station);

 Station_Time = 0;

 for j=1:size(StationActs,2)

 Station_Time = Station_Time +

TaskTime(StationActs(j));

 end

 Idle_Time = CycleTime - Station_Time;

 if Idle_Time - TaskTime(Selected_Item) >= 0

 new_offspring(Selected_Item) = Station;

 TW(Station)= TW(Station) -

TaskTime(Selected_Item);

 else

 Station = Station + 1;

 end

 end

 else

 if TW(1)- TaskTime(Selected_Item)>= 0

 new_offspring(Selected_Item) = 1;

 TW(1) = TW(1) - TaskTime(Selected_Item);

 else

 new_offspring(Selected_Item) = 2;

 TW(2) = TW(2) - TaskTime(Selected_Item);

 end

 end

 W(Selected_Item) = 0;

 new_offspring;

 TW;

 End

Selection Operator (Smoothness index):

global TaskTime;

61

StationTimeMatrix = [];

MaxStationTimeMatrix = 0;

IdleTimesSquare = 0;

IdleTimesSquare2 = 0;

Ui = [] ;

Ut = 0 ;

aver = 0 ;

W = [];

VAR = 0 ;

for i = 1:max(new_offspring)

 StationActs = find(new_offspring == i);

 StationTime = 0;

 for j = 1:size(StationActs,2)

 StationTime = StationTime +

TaskTime(StationActs(j));

 end

 StationTimeMatrix = [StationTimeMatrix StationTime];

 MaxStationTimeMatrix = max(StationTimeMatrix);

end

Ui = StationTimeMatrix;

for k = 1:size(StationTimeMatrix,2)

IdleTimesSquare = IdleTimesSquare + (MaxStationTimeMatrix

- StationTimeMatrix(k))^2;

end

for k = 1:size(StationTimeMatrix,2)

 Ui(k)= Ui(k) / MaxStationTimeMatrix;

 end

Ut = sum(Ui);

aver = Ut/max(new_offspring);

for k = 1:size(StationTimeMatrix,2)

 W(k) = (Ui(k) - aver)^2;

end

SmoothnessIndex = (IdleTimesSquare)^0.5;

 VAR = (sum(W)/max(new_offspring))^0.5

