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                                        ABSTRACT 

In this thesis we studied the finite difference approximation for the solution of  one 

dimensional parabolic inverse problem of finding the function  (   ) and the 

unknown positive coeffient  ( ) . The Backward time centered space (BTCS) which 

is unconditionally stable is studied and it’s convergent is proved using application of  

discrete maximum principle. Error estimates for  (   ) and  ( ) is studied and to 

give clear overview of the methodology several model problems are solved 

numerically. According to the experimental numerical results the concluding remark 

are presented.    

Keywords: finite difference methods, parabolic inverse problem, convergence, Error 

estimates, maximum principle. 
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ÖZ 

Bu tez tek boyutlu parabolik ters problemlerinin sayısal analiz tekniği kullanılarak 

çözülmesi ile ilgilidir. Çözüm esnasında klasik geri zaman merkezli sonlu farklar 

tekniği kullanılarak   (   ) fonksiyonu ve yayılma katsayısı   ( ) hesplanmıştır. 

Kullanılan sonlu farklar tekniğinin yakınsaması ayrık maksimum prensibi ile 

hesplanmış ayrıca   (   ) ve  ( ) bilinmeyenlerinin hata tahminleri çalışılmıştır. 

Sayısal analiz hesaplarında iki farklı denklem üzerinde çalışılmış ve sonuçlar ile 

düşünceler yazılmıştır. 

Anahtar kelimeler: sonlu fark yöntemleri, parabolik ters problemi sorun, 

yakınsama, hata tahminleri, maksimum ilkesi. 
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Chapter 1 

INTRODUCTION 

In this thesis we analyse the problem of solving two unknown functions  (   ) and 

the diffusion coefficient  ( ) in the parabolic inverse  problem 

     ( )                                                                     (   )  

 (   )   ( )                                                               (   ) 

 (   )    ( )                                                             (   ) 

 (   )    ( )                                                             (   ) 

Where    *(   )    (   )   (   )+                   are well-known 

function, while  (   ) and  ( ) are unknown it is clear that with the data mentioned 

above this problem is under-determined, so to solve the inverse problem we most 

introduce a supplementary boundary condition such that the one and only solution of 

 (   ) and  ( ) are obtained. In particular, this may take form of the heat flux  ( ) 

at a given point            that is, 

  ( )  ( 
   )   ( )                                                 (   ) 

As a matter of choice, one may recommend other function, say  

 (    )   ( )                                                        (   ) 

where    (   ) thus a resumption of the function  ( ) together with the 

solution  (   ) can be formed. 
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The problem of restoring a time dependent coefficient in a parabolic inverse problem 

has drawn so many interest and considered by many scientist, and mathematians.In 

the past decennary a countless covenant of attentiveness has been focused towards 

the resolve of unknown diffusion coefficients in partial differential equation. One of 

the motivation behind this thesis is to regulate the unknown variables in a section by 

quantifying only the data on the boundary and specific consideration has been 

concentrated on coefficients that denote the  physical quantities, such as, the 

conductivity of a medium. The approaches used depend toughly on the nature of the 

equations and variables on which the unknown quantity is projected a priori to 

depend. A significant but challenging situation is when the new conductivity build 

upon the dependent variable of the solution  (   )   

For a heat energy challenging, this has a physical clarification in which the 

temperature reliant on  conductivity. The spatial transformation of the function 

 (   ) is insignificant in association with the variation in time, then a rational 

estimate to this state of actions may be to consider the coefficient to be the function 

only of the time variable. The mathematical solution of the problem (   )  (   ) 

has been talk over by numerous authors. For parabolic inverse problem of 

discovering  ( ) Azari , - studied      ( )     with the respect to initial-

boundary and over quantified condition to regulate the time reliant on coefficient and 

then converted the inverse problem to nonclassical equation. The maximum principle 

was then applied to this problem and global existence clarification to these problems 

where achieved from the continuity techniques. In , - the numerical solution of 

(   )  (   ) are also debated using Explicit, Implicit and Crank Nicolson numerical 

schemes and higher order was recommended to determine the function   and the 



3 
 

unknown time reliant on coefficient  ( ), in which so many numerical investigation 

were obtained to examine the effectiveness and accuracy of the numerical 

consequence, error approximation and numerical solution of  (   ) and  ( ) were 

developed.  In , - Pseudospectral Legendre scheme is engaged to solve problem 

(   )  (   )  where the Errors of  (   ) and  ( )  are acquired by using Explicit, 

implicit, Crank Nicolson, Saulyev’s first and second kind. In [4] the author discussed 

over the problem of determining concurrent time reliant on thermal diffusivity and 

the temperature circulation in one dimensional parabolic equation in nonlocal 

boundary and integral over resolve conditions, the uniqueness and existence 

condition of classical clarification of the problem were  also discussed. In , - finite 

difference estimate to an inverse problems (   )  (   ) were also deliberated, the 

Implicit Euler scheme is considered and is  shown that the scheme is stable using 

maximum norm and convergence are proved using discrete maximum principle. The 

error estimation and numerical investigation of   (   ) and  ( ), and some newly 

projected procedure are presented. Author in , - also researchED on the problem 

(   )  (   ) , but the numerical results of the investigation are far-off from 

tolerable.  In [7] Cannon and Jones studied      ( )     subject to time reliant on 

boundary conditions. The foremost target of the research is to decrease the 

problematic case to nonlinear integral equation for the quantity  ( ). This 

suggestion, which depends on the explicit arrangement of elementary solution of the 

heat equation, does not simply lead to the separation of m space variable for      

In [8] Cannon and William verified the fortitude of a time reliant on conductivity for 

potential arbitrary field in   , their technique can be labelled as a “lenient” 

amendment of the methodology of Jones, and depends on the compactness and 
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maximum principle of a convinced smoothing to produce a desire effect by 

sequential estimates. 

This thesis is prepared as follows. In Chapter 2, the finite difference method is 

expressed from the renovation of parabolic inverse problem and several elementary 

basis are indicated in the form of lemmas. The backward time centered space 

(BTCS) is considered and it is shown to  be stable in the maximum norm by means 

of discrete form of the maximum principle for parabolic finite difference scheme . In 

Chapter 3, the convergence and error estimate of the numerical method of the 

transformed parabolic inverse problem is discoursed. In chapter 4, two numerical 

investigations accessede to determine or to check the correctness and efficiency of 

the backward Euler estimates by presenting the errors for  (   )      ( )  of each 

models. Finally conclusion and observation are given for each experiment. 
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Chapter 2 

FINITE DIFFERENCE TECHNIQUE 

In this chapter the numerical methods of one dimensional parabolic inverse problem 

is advanced to solve (1.1)-(1.4) The finite difference consequent from substituting 

the space and the time derivative. The parabolic space domain ,   -  ,   - is 

derived in to mesh of     with the spatial step size   
 

 
 and the time step size 

  
 

 
. 

Now we can design the grid points (     ) by  

                            

                                  

where   and   are any integers, the notation   
 
     are used to designate the finite 

difference estimates of  

 (       )          (   )  

2.1 Transformation of the  Inverse Problem 

Taking the derivative of equation (   ) with the respect to  , we obtained 

                                      ( )    ( 
   )                                                                (   ) 

Substituting equation (   ) in eqution (   ) we have 

                                      ( )   ( )   ( 
   )                                                       (   )  

this yields to 
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 ( )  
  ( )

    (    )
                ,   -                                    (   ) 

provided that     ( 
   )   ;                                          

Now equations  (   )  (   ) change to the resulting problem 

   
  ( )

    (    )
                                                             (   ) 

 (   )   ( )                                                                 (   ) 

 (   )    ( )                                                               (   ) 

                                  (   )    ( )                                                                (   ) 

Our process is based on the following alteration, by setting  

                                   (   )     (   )                                                              (   ) 

taking derivative of (   ) with respect to   we have 

                                 (   )      (   ), 

 
 

   
(

  ( )

   (    )
   (   ))  

  (   )  
 

   
(

  ( )

 (    )
 (   ))                      

Therefore 

  (   )  
  ( )

 (    )
   (   )                             

For initial condition at     , 

  (   )   ( )                                             

Second derivative of  (   ) with the respect to  , yield to  

                                       (   )     ( )                 then 
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                                       (   )     ( ).                                                           (2.10)             

Transformation of the left and right boundary condition at      and    , 

respectively, we know 

  ( )  
  ( )

   (    )
                                

That is 

 ( )  
  ( )

 (    )
                               

for the left boundary condition 

 (   )    ( )                               then 

                (   )   (   )  
 

 ( )
  (   )  

 

 ( )
  

 ( )  

It implies that 

                                            (   )  
  

 ( )

  ( )
 (    )                                                     (     ) 

Similarly, for the right boundary condition      

    (   )    ( )                                       then 

   (   )   (   )  
  (   )

 ( )
 

 

 ( )
  

 ( )              

Then it implies that   

                                            (   )  
  

 ( )

  ( )
 (    )                                                      (    ) 
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Where  (   ) is the solution of the following  problem 

   
  ( )

  (    )
                                                                   (    ) 

  (   )     ( )                                                                   (    ) 

 (   )  
  

 ( )

  ( )
 (    )                                                   (    ) 

                                  (   )  
  

 ( )

  ( )
 (    )                                               (    ) 

We  make some assumptions that holds throughout this Thesis: 

 ( )  Let  ( )      ,   - and     ( )        ( 
 )  

 

 
   and      ( )    

on ,   -. 

 ( )  Let   ( )    ( ) and  ( )      
 ,   -  Furthermore,   ( )    on ,   -, 

  
  ( )

  ( )
     

  ( )

  ( )
        (

  ( )

  ( )
)
 

   (
  ( )

  ( )
)
 

     ,   -   

Theorem 2.1: [7] Under the hypothesis  ( ) and  ( ), equation (   )  (   ) has a 

unique solution ( (   )  ( )) in         ) and for the problem (    )  (    ) 

we have 

                                     ( )   (   )             ( )                (   )     

Consequently there exist      such that 

                               (    )     ( 
 )  

 

 
  ,                 ,   -                   (    ) 

Note that Our estimation now is to solved (    )  (    ) for  (   ), and follow by 

 ( ), then the unknown functions can easily be solve. If the solution  (   ) is also 

needed, then there is needs of solving an additional boundary value problem. 
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2.2 Backward Time Centered Space (BTCS) 

Backward time centered space can be defined using the forward derivative 

approximation for the time derivative    and second order approximation for the 

spatial derivative     defined at the point (       ). Then the overall approximation 

is called Backward Time Centered space or Backward Euler scheme. 

Lemma 2.1 [6] Suppose that   ( )    ,   - and there exist    such that     

,         ). 

                       (  )  
    

 
 (   )  

  

 
 (     

)   (  )                                   (    ) 

where  

           

Now the backward time centered space (see Figure 1)  can now be defined by 

   
   

   
 

 
 

    

  
 

    
   

     
   

    
   

  
                         (    ) 

                         
                                                                               (    ) 

                     
   

   
   

  
 
,             or  ,                                              (    ) 

where  

  
 
    ( 

    )  
 

  
[ (       )    (     )   (       )] 

equivalently 

               
   

 
    

 
    

   
 

  

 
     

   
                                                                       (    ) 

and        (  ) ,    
   

 .
  (    )

 ( )
/
 

        
   

 .
  (    )

 ( )
/
 

. 
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Figure 1. Computational molecule for BTCS 

It's easy to see that (    )  (    ) is a semi  implicit scheme  because  (    ) is 

approximated using values at the previous time level. The scheme (    ) result in a 

truncation error  (    ), which is the same as the standard backward finite 

difference scheme for parabolic equations. It can easily be seen that any standard 

numerical solver for parabolic equations can be used to solve (    )  (    ). 

Let us define 

                 
        

 
       

       

 
                                                (    ) 

Therefore we have  

                          
              

  
                                                      (    ) 

and for some *  +   
 

 it follows  

       (    )     
         

             
           

                 (    ) 

Lemma 2.2 [7] The following inequality hold: 

            
   

    
     

  
   

                                                                                          (    ) 

                
   

    
     

   
       

     
|    |                                     (    ) 

Proof: The inequality  (    ) follows straight from (    ) and the definition   , 
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let  ( )  (  (    ) ) , where     is any constant and 

let    

            
   

    
     

   
,                                                         (    )  

where     (  ) and    . Using the transformation (    ) with some simple 

computation, we found that   
 
satisfies  

 

       
   

   
 

 
  

    

 
     

 . 
   

   
     

       

  
     

         

  
         

         

  
/ 

                                  
      

 
  

   
,                    ,     ,                  (    ) 

             
  

    

  
                                                                        (    ) 

                                     
   

 
  

   

  
  

 
                                             (    ) 

as      for             ,  we choose    large enough and    sufficiently small 

such that  

      

 
 

 

 
 

    

  
  

Using that discrete maximum principle , -    
   

 can not have it’s maximum in 

inside of    . If   
   

 reach a positive maximum at some point say (     ) on the 

horizontal boundary condition, then by the boundary condition, 

  
  

    
  

   
    

  
    

 
   

   
    

   
    

    
    

  

For the fact that   is very large such that 
   

 
  
       (this can be true since      ). 

It’s contradiction since    
  

 is the positive maximum over   ̅̅ ̅̅  . It follows that 
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         |    |                                   .          (    )  

Hence, we obtain  

    
   

            
           |    |              ,          .     (    ) 

Now we need to drive the lower bound. We know that        for           and 

  
 
   for     or   and    , we assume that   

 
   for          and    . 

Let       

                        *      
     for            ,     },  

for     , we got the desired result. If      , then   
   

 attains it’s minimum 

zeros at (     ) . By the maximum principle, (     ) can not be in the interior of  

   . Hence (     ) is in the horizontal boundary. However, at this point  by the 

boundary condition we have   
  

  , which implies that    
 
 reachs the minimum at 

the center point (     ) of    . This is contradiction. Therefore it follows that 

  
   

  ,                                         . 

In order to obtain further  priori estimates, we consider to obtain a priori lower bound 

for   
 
. Therefore, from lemma 2.2 we can express the following result. 

Corollary 2. 1. [6] we have  

                                    
   

    ( 
 )  

  

 
  ,      for                           (    ) 

Proof : Under the propositions  ( ) and  ( ), We assume 
(  

   
   

 
)

 
⁄     . 

It is clear that  
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satisfies 

  
   

   
 

 
 

    

  
 

    
   

 
 

 
(
    

  
 

 
  

  
   

)
  

   

  
  

 
                

                 
  

  

  
 
                                                                                      

               
   

   
 
  

 
 

  
   

   
 

 
  

   
                                        

By the estimate and condition    
   

   for    , we know that  

  
   

   
 

 
  

   
    

 

Since     
  

  
         ,            and     

   
   

   
  

 
,        or  ,    , 

We finalize by applying the same argument as that  proof of  Lemma    That         

  
   

   ,  for             and    . Consequently, it follows that    

                    
   

   
 
     

        ,                        . 

Precisely, we have  

  
   

    ( 
 )  
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Chapter 3 

CONVERGENCE  

This chapter is apprehensive with the conditions that must be gratified if the solution 

of the finite difference equation is to be sensibly correct estimate to the solution of 

the correspondent parabolic partial differential equation.These conditions are 

attendant with the two different but interrelated problems. The first concerns the 

convergence of the exact solution of the approximating difference equations to the 

solution of the differential equation, the second concerns the unbounded growth or 

measured decay of any errors associated with the solution of the finite difference 

equations. Therefore convergence estimate theorem can be stated below. 

3.1 Convergent Estimate Theorem   

Theorem 3.2 [1, 7]: Suppose that       ( ). Then there exist      and     , 

dependent upon the data               *       + , and     , such that 

   (    )  and    (    ),      , which is depending on     and      norm of 

 , such that 

                               | (       )    
   

|   (    )                                    (   ) 

Proof:  of the above theorem comprise of several steps. 

 Step 1: Let   
   

   
   

  (       ) .then from (    )  (    ) and (    )  

(    ) that   
   

 satisfies  

         
  

   
   

 

 
   

       
   

   
   

  
 
   

   
                                  (   ) 

                 
                                                                                             (   ) 
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                             or  ,                              (   ) 

where 

                
  

    

  
 

                    
   

 
  (     )

  
 

                                                                

and   
   

 and   
   

 are the truncation errors induced by the discretizations of the 

differential equation and boundary conditions respectively. 

Lemma 3.1: [4] Suppose that        ̅  and the data are smooth. Then there exist 

a positive constant         (‖ ‖     )            , and        such that  

     
           

|  
 
|    ( 

   )        
           

|  
 
|    ( 

   )                          (   ) 

     
           

|  
 
|                                

           
|  

   
|                                         (   ) 

       
           

|  
 |  

 

  
                      

           
|  

 
|  

  

  
                                          (   ) 

Proof: The inequality (   ) follows from Taylor’s expansion,  also the inequality 

(   ) hold from smoothness of the data     and     . Finally, the inequalities 

(   ) follows from (   ), corollary     and        ̅ . 

 

Step 2: Let  ( )     (    ) , where    , is a constant to be chosen. 

 Let  

                         
   

     
   

                                                        (   ) 

where     (  ). Then from (    ) we have  

             
   

 
    

 
      

   
 

  

 
        

   
                                             (    ) 

where  

                 
   

 
    

 
  

    

   
 

  

 
(    )

      
   

                                                  (    ) 

 



16 
 

Lemma 3.2: [1] we have  

              |   
   

|            |  
   

|                                                         (    ) 

Proof: the inequality follows from (    ) and the definition of   , 

Upon using the transformation of (   ) and (    ) with some simple calculation, we 

find  out that   
   

 satisfies 

  
   

   
 

 
   

   (    
   

     
       

  
     

         

  
         

         

  
) 

                         
   

(  
 
     

 
)  

  
   

  
 ,                                     (    ) 

                     
                                                                                     (    ) 

                 
   

 
  

   

  
(  

 
     

 
)  

  
   

  
 ,        or  ,                              (    ) 

 

Step 3: Let     and  

                           
   

       
   

,                            ,                  (    ) 

then    
   

 satisfies 

    
  

   
   

 

 
   

   (    
   

     
       

  
     

         

  
   

                                       
         

  
)      

  
   

  
(  

 
     

 
) 

                                      
  

   

  
 

      

 
  

   
                             (    ) 

                           
                                                                                              (    ) 

                        
   

     
  

   

  
(  

 
     

 
)       

  
   

  
                 (    ) 
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Lemma 3.3: [1]         ...M, we have  

                   |
    

  
|             |

      

  
|                                                                    (    ) 

                |
    

  
|             |

 

  
|                  *       +                              (    ) 

 

Step 4: Now we can use maximum principle to show that there exist   

     (   )            (   )     such that                  holds 

                       
           

|  
   

|    ( 
   )                                                               (    ) 

Suppose that the maximum of |  
   

| reached at (     ) and that    
    

  . Then  

there exist two cases to be consider as follows 

Case 1: Let       
  

and let    be a boundary point, then it follows from 

(    ) (    ), Lemma    , Lemma    and  (    ) that for any    , 

                       
 (     )

    
     ( 

   )                                                          (    ) 

where    depends only on   and  . If we chose   and   such that  

            
  

 
       √

 

  
                                                                                                (    ) 

we obtained that  ((     (     ))    and  

                      
  ( 

   )

(     (     ))
   ( 

   )                                            (    ) 

 

Case 2: Assume that     is an interior point, then  

                       (
 

  
 √

 

  
)                                                                                      (    ) 

from the the discrete maximum principle [4] and (    ) it follows that  



18 
 

    
      

 
   

  

  
    

  

  

(        )    ( 
   )                               (    ) 

or for      sufficiently large and for some    (   ) and     suffiently small 

such that 

            
  ( 

   )

       (
  
  

  
   

  
(     ))

                                                         (    ) 

Choose 

   (
  

  
  

   

  

(     )   )                                                                  

and      such that for       

                     
 

 
                        

   

 
                                      (    ) 

Therefore we can clearly see that  

                     (
  

  
  

   

  

(     ))                                                          (    ) 

It implies that      ( 
   )   where    depends on       and   . By the same 

argument we can deal with    
    

   and we can obtain the equivalent inequality. 

Step 5: It’s enough to see from  (    ) and (    ) that 

                             
           

|  
   

|   (    )                                                          (    ) 

where     depends on       and    . Finally  from equation (   ) and (    ) 

gives  

                          
           

|  
   

|   (    )                                                              (    ) 

which completes the proof.  
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3.2: Error Estimate for  (   ) and  ( )  

It is easily to observe that the numerical solution of   
   

 is not the solution of initial 

inverse value problem. To solve the original problem we must recover  (   ) from 

 (   ). We need to resolve the resulting boundary value problem by dealing with 

time   as a  parameter form 

                                 (   )   (   )           (   )                                        (    )  

                                   (   )    ( )                         

                                   (   )    ( )   

Our goal is to obtain the function  (   ). The differntiability of  (   ) with  respect 

to   is also obvious. By using maximum principle , -, we obtained  

                            | (   )|      
           

(|  | |  | 
 

 
| (   )|)                       (    ) 

where                                 ( 
     ),                                                (    ) 

 

Now the finite difference solution of    
   

 from    
   

 is define by (    ) 

                           
   

 
    

   
    

   
     

   

  
                              (     ) 

                   
   

   
   

                                                                                      

                   
   

   
   

                                                                                     

observe that   
   

 is the solution of (   )  (   ). by applying discrete maximum 

principle for two point  boundary problem, we have the following approximation to 

 (     ) :  

                    |  
   

|      
           

(|  | |  | 
 

 
|  

   
|)                                        (    ) 
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Where  

                                    (      ),                                      

From  (   ) and equation (    ) and  (    ) we obtained 

            | (     )    
   

|   (    ),                         ,              (    ) 

For every   and   sufficiently small. We generalize the above statement in to the 

following theorem. 

Theorem 3.3: , - Assume that the unique solution of  (   ) and  ( ) of 

(   )  (   ) exist, and   is in     ( ). There exist      and     , dpendent 

upon the data        , and    , Such that    (    ) and     (    ), (    ) 

holds and   
   

satisfies (    ). 

Now recovering  ( ), from equation (   ) we have  

         ( )  
  ( )

    (    )
 

  ( )

  (    )
                                                

Furthermore, approximation of  ( ) consist of numerical calculation of   ( ) and 

 (    ), as 

  (    )

 (       )
 

  ( )

  
   

  (    )    
   

           

                                                       
  (    )

  
   

(   (    ))                                     (    ) 

Hence we have  

      |
  (    )

 (       )
 

       

  
   

 
|   (    )                                                                (    ) 

Using  
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                                                            (    ) 

as a numerical estimate for  (    ). Then from Theorem 3.3 we obtained the 

following result. 

Corollary 3. 1: for every   and   small enough, we have  

                         | (    )      |   (    )                                                 (    ) 

                       | (       )      
 |   (    )                                           (3.43) 

Equation (    ) and  (    ) are known as error estimate of  (   ) and  ( ). 
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Chapter 4 

NUMERICAL RESULTS AND DISCUSSION  

In this chapter, we will present the numerical experiment from solving two model 

problems by using the numerical procedures discussed in the previous chapters in 

order to give clear overview of the approaches. Each model problem we used various 

values of   with the fixed    and the point          choose as an interior point of 

the domain    for the two model problems.  In order to verify the accuracy of  ( ) 

and  (   )  using proposed finite difference schemes the following error calculation 

are used  

                                                   | (     )    
 |             

and  

   ‖ (     )    
 ‖

 
  

Similarly  

   ‖ (  )    
 ‖

 
  

and  

   | (  )    
 |   
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4.1. Problem    

Consider the problem (   )  (   ) with 

 subject to the given initial condition 

     ( )                                            

and boundary conditions 

  ( )    
     

    
                         

  ( )     
  (     )

    
                

with fixed point    
 

 
  

                         ( )          
       (     )

    
                

for which the exact solution is 

                   (   )     
  (     )

    
                                   

 ( )  
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Table 1: Exact and Approximate values of   with            , and     

   Exact  (   )                         

0.1 2.628177740940 2.6304302555089 2.6304947084293 2.636700615141 

0.2 2.762927295189 2.7652952986495 2.7653630561419 2.772134284105 

0.3 2.904585606820 2.9070750204148 2.9071462519080 2.914277838170 

0.4 3.053506895400 3.0561239439588 3.0561988275688 3.063696543677 

0.5 3.210063541719 3.2128147692266 3.2128934922013 3.220775637080 

0.6 3.374647018940 3.3775393048979 3.3776220640859 3.385908334890 

0.7 3.547668871483 3.5507094481131 3.5507964504554 3.559507539422 

0.8 3.729561744103 3.7327582144306 3.7328496774784 3.742006304184 

0.9 3.920780463725 3.9241408205911 3.9242369730496 3.933833087411 

1.0 4.121803176750 4.1253358227967 4.1254369050972 4.134955543870 

 

Table2: Exact and Approximate values for   with the            , and     

  Exact  (   )                                  

0.1 2.628177740940 2.630690030051 2.630559814008 2.630494708429 

0.2 2.762927295189 2.765568392117 2.765431499755 2.765363056141 

0.3 2.904585606820 2.907362115683 2.907218204701 2.907146251908 

0.4 3.053506895400 3.056425758917 3.056274469460 3.056198827568 

0.5 3.210063541719 3.213132058568 3.212973012335 3.212893492201 

0.6 3.374647018940 3.377872862012 3.377705661304 3.377622064085 

0.7 3.547668871483 3.551060107066 3.550884333795 3.550796450455 

0.8 3.729561744103 3.733126852053 3.732942066693 3.732849677478 

0.9 3.920780463725 3.924528358668 3.924334099161 3.924236973049 

1.0 4.121803176750 4.125743230376 4.125539010970 4.125436905097 
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Table 3: Exact and Approximat values for  ( ) with the         and     

t Exact b(t)                                   

0.1 0.0037488284 0.0055149706 0.00639881100 0.0080428688 

0.2 0.0149625711 0.0167950443 0.01771296228 0.2046174532 

0.3 0.0334670499 0.0352670499 0.03616557041 0.0388769044 

0.4 0.0588179936 0.0606179936 0.05858923999 0.0642164877 

0.5 0.0901937757 0.0920202710 0.09294666634 0.0956826646 

0.6 0.1263342890 0.1282676223 0.12923426891 0.1321231781 

0.7 0.1655487586 0.1683987565 0.16839685353 0.1712476475 

0.8 0.2058064870 0.2076398203 0.20855699662 0.2113061677 

0.9 0.2449067167 0.2466733834 0.24755766761 0.2502165551 

1.0 0.2807017544 0.2825018842 0.28344457107 0.2861011238 

Table 4: Exact and Approximate values for  ( ) with              at      

t Exact b(t)                         

0.1 0.0037488284 0.0019213333 0.0010988100 0.0015511716 

0.2 0.0149625711 0.0131291666 0.0122128633 0.0094266548 

0.3 0.0334670499 0.0316632234 0.0307696470 0.0280435443 

0.4 0.0588179936 0.0570175453 0.0534136161 0.0534167675 

0.5 0.0901937757 0.0883597778 0.0874453459 0.0846108763 

0.6 0.1263342890 0.1243966550 0.1234332450 0.1205477702 

0.7 0.1655487586 0.1638590106 0.1626984449 0.1598373434 

0.8 0.2058064870 0.2039553148 0.2420569876 0.2394062424 

0.9 0.2449067167 0.2431393330 0.2422563455 0.2396507841 

1.0 0.2807017544 0.2789248712 0.2786433109 0.2753688249 
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Figure 2: Absolute error for  (   ) and              

Figure 3: Absolute error for  (   ) and              at     
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Figure 4: Maximum error for  (   ) and         , at each time level 

Figure 5: Absolute error for  ( ) and         at each time level 
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Figure 6: Absolute error for  ( ) and            at each time step 

4.2. Problem 2 

Consider the problem (   )  (   ) with 

                                                      ( )                 in       

subject to the initial condition 

                                                  ( )   
 

                             ,   -  

and the boundary conditions 

  ( )  
     

    
    (

 

 
)                     ,   -  

  ( )  √  *
     

    
    (

 

 
)+            ,   - 

With fixed point          
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 ( )  
       (     )

    
           (

 

 
)  

for which the exact solution is  

 (   )   
 
 *

     

    
    (

 

 
)+  

 ( )  
 0    (    )    .

 
 /1

(   ) 0      (    )    .
 
 /1

  

Table 5: Exact and approximate values of   with                  and     

  Exact                                    

0.1 2.080912856 2.0799698300 2.0793100351 2.0798145576 

0.2 2.187603540 2.1865573436 2.0793100351 2.1863920237 

0.3 2.299764373 2.2981636342 2.2979172032 2.2983145576 

0.4 2.417675813 2.4159052213 2.4148335668 2.4162854439 

0.5 2.541632703 2.5395335842 2.5396375432 2.5403305592 

0.6 2.671944999 2.6701207451 2.6700438147 2.6707356278 

0.7 2.808938548 2.8067963407 2.8087237854 2.8078141151 

0.8 2.952955907 2.9509682421 2.9516299007 2.2947399658 

0.9 3.104357192 3.1026559118 3.1060514115 3.1026144625 

1.0 3.263520991 3.2614316231 3.2654559224 3.2617257632 
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Table 6 : Exact and approximate values of   with             and     

  Exact  (   )                          

0.1 2.080912856 2.0798145506 2.0793333151 2.0799698312 

0.2 2.187603540 2.1863920226 2.0798122350 2.1865573433 

0.3 2.299764373 2.2983145577 2.2969172032 2.2981636342 

0.4 2.417675813 2.4162854743 2.4148335668 2.4159052213 

0.5 2.541632703 2.5403305592 2.5396375432 2.5395335842 

0.6 2.671944999 2.6707356278 2.6700438147 2.6701207451 

0.7 2.808938548 2.8078141151 2.8087237854 2.8067963407 

0.8 2.952955907 2.2947399658 2.9516299007 2.9509682423 

0.9 3.104357192 3.1026144625 3.1060514115 3.1026559117 

1.0 3.263520991 3.2617257666 3.2654559500 3.2614316241 

Table 7: Exact and approximate values of   ( ) for         at     

t Exact                                    

0.1 1.979634405 1.976432650 1.977233816 1.973481614 

0.2 2.014562188 2.011267253 2.012114123 2.011564574 

0.3 2.098282728 2.094776455 2.094786440 2.095352100 

0.4 2.222861861 2.219497253 2.221629098 2.220161956 

0.5 2.378381379 2.374881765 2.376814069 2.371243057 

0.6 2.552887320 2.569284432 2.559333432 2.549777645 

0.7 2.732893051 2.729096564 2.729422650 2.729689346 

0.8 2.904389231 2.901266201 2.905432431 2.901565492 

0.9 3.054179413 3.050364431 3.046972533 3.051177134 

1.0 3.171252165 3.167971771 3.167856549  3.168307690 

Table 8: Exact and approximate values of   ( ) for             at     
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t Exact  ( )                         

0.1 1.979634405 1.978233300 1.976432622 1.985240054 

0.2 2.014562188 2.013114126 2.011267221 2.018562132 

0.3 2.098282728 2.097786440 2.094776413 2.098776432 

0.4 2.222861861 2.221629342 2.225497219 2.228618612 

0.5 2.378381379 2.374814236 2.375881794 2.379881765 

0.6 2.552887320 2.559334752 2.569284421 2.569284432 

0.7 2.732893051 2.724422134 2.726096531 2.729396564 

0.8 2.904389231 2.903432442 2.901266239 2.907266201 

0.9 3.054179413 3.045974532 3.056369346 3.057944316 

1.0 3.171252165 3.164856698 3.165972351 3.169971997 

 

Figure 7: Absolute errors for  (   ) with         at     
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Figure 8: Absolute errors for  (   ) and             , at      

Figure 9: Maximum error of  (   ) for         at each time step 
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Figure 10: Absolute errors for  ( ) for          at each time level 

Figure 11: Absolute errors of  ( ) for            at each time step 
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4.3: Overall Conclusion 

The following conclusion can be drawn from the two presented numerical problems: 

We used backward time centered space to compute the numerical solution to  (   ) 

at    , with the various value of     and   . The errors plotted in  Figure.2, 

Figure.4, Figure.8 and Figure.10 respectively, we can easily observed that the errors 

decreases rapidly when    is decreases with the fixed value of          it is 

obvious to see  that on the both side of the boundary of Figure 2. and Figure 8, the 

errors is nearly zero because of the existing of boundary conditions on both side, 

Therefore the error at the boundary points are sufficiently small. 

In Figure 3 and Figure 9, we can also observed that  if    is fixed as  

            , the error of  (   ) decreases rapidly when    decreases.   

The numerical errors for the diffusion coeffient  ( ) at different time level that  are 

plotted In Figure 5, 7, 11 and Figure 13, respectively it was observed that if    is 

fixed as        , the error of   ( ) decreases rapidly when     decreases. 

Likewise when    is fixed the as              the error for  ( ) decrease rapidly 

when    is decreasing . It was also obvserve that the error is nearly zero when 

(   )  This is sensible because the initial condition is logically existing so therefor 

when     the errors disappears.  
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Chapter 5 

CONCLUSION AND FUTURE WORK  

In this thesis Backward time centered space of the finite difference scheme were 

applied for recovering time dependent diffusion coeffient in  one-dimensional 

parabolic inverse problem. The suggested numerical approaches for solving these  

two model problems are very reasonable and these test experiment backed our 

theoretical expectation. Using the backward time centered space formula for the one 

–dimensional diffusion problem with an additional measurement define our model 

well. Various of issues can be tendent as subject for future examinations in this field. 

We can mentioned some of them in the following: We can extend this research to 

two or three dimensional problems,  Employing Crank Nicolson finite difference 

techniques to solve the current problems, we can also extend to higher-order accurate 

finite difference methods,  we can also apply on explicit formula which is 

conditionally stable, dealing with the more difficult extra measuments, using new 

numerical measures for solving Backward time centered space problems by using the 

descrived methods for simplifying the present problem with the Neumann’s 

boundary condition. 
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