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ABSTRACT 

 We analyze the shift-variance of the Dual-Tree Complex Wavelet Transform (DT-

CWT) in this thesis. In our study, the DT-CWT is treated as a generalized sampling 

process. The analysis of shift-variance is performed in terms of two quantities: the 

shift-variance level (SVL) and the shift-variance measure (SVM). The SVL 

describes the amount of distance between the system and the set of systems which 

are so-called  -shift-invariant (specifying how the system has to respond to the 

shifted input signal). The SVM is equal to the SVL divided by two times of the 

system norm. 

We obtain the SVL and the SVM for the DT-CWT and the scaling function for 

Kingsbury’s Q-shift filters of length 8, 12, 18, and 22. We observe that the shift-

variance varies as the Q-shift filter length changes. When the length of the filter 

increases, the SVM becomes closer to the zero. This means that DT-CWT is almost 

shift-invariance. For better illustrating the shift-invariance property, we consider an 

input signal and its shifted version to compare the outputs corresponding to the DT-

CWT and the scaling function. 

Keywords: Dual-tree complex wavelet transforms, scaling function, shift-variance 

level, shift-variance measure, Q-shift filters.  
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ÖZ 

Bu tez çalışmasında Çift Ağaç Karmaşık Dalgacık Dönüşümü’nün (ÇA-KDD) 

değişen  dağılımı incelenmektedir. Tez çalışmamızda ÇA-KDD genelleştirilmiş 

örneklendirme süreci olarak işlem görmüştür. Değişen dağılım analizi, değişen 

dağılım düzeyi (DDD) ve değişen dağılım ölçütü (DDÖ) olmak üzere iki değer 

aracılığıyla yapılmıştır. DDD, sistem ve  -değişimden bağımsız (sistemin değişime 

uğramış giriş sinyaline göre nasıl tepki göstermesini belirleyen) olarak adlandırılan 

bir dizi sistemler arasındaki uzaklık miktarını tanımlamaktadır.   DDÖ ise iki kez 

sistem modeline bölünmüş olan DDD’ye eşittir.  

ÇA-KDD için DDD ve DDÖ ve aynı zamanda Kingsbury’nin  8, 12, 18 ve 22 

uzunluğunda olan Q-değişkenli filtrelerinin ölçeklendirme fonksiyonları elde edilmiş 

ve karşılaştırılmıştır. Karşılaştırma sonucunda Q-değişkenli filtrelerin uzunluk 

değişimlerine paralel olarak değişen dağılımının çeşitlilik gösterdiği 

gözlemlenmiştir. Filtrenin uzunluğunun artırılmasına paralel olarak, DDÖ değerinin 

sıfıra yakın bir değer aldığı ve ÇA-KDD’nın hemen hemen değişimden bağımsız 

olduğu ortaya çıkmıştır. Değişimden bağımsız olma özelliğini daha iyi 

örneklendirmek amacıyla giriş sinyali ve aynı sinyalin değişime uğramış 

versiyonunun ÇA-KDD ve ölçekleme işlemi ile ilgili çıktılarının karşılaştırılması 

dikkate alınmıştır. 

Anahtar Kelimeler: Çift Ağaç Karmaşık Dalgacık Dönüşümleri, ölçekleme işlevi, 

değişen dağılım düzeyi, değişen dağılım ölçütü, Q-değişkenli filtreler  



 
 

v 
 

DEDICATION 

 

 

 

 

 
To  

my lovely parents, Mohamad Hassan and Fatemeh; 

my sweetie sister, Mahboobeh; 

 my beloved husband Seyedvahid Amirinezhad 

 

 

 

 

 

 

 

 

 

 

 



 
 

vi 
 

ACKNOWLEDGMENTS 

I wish to express my sincere gratitude to my supervisor Prof. Dr. Runyi Yu for his 

interest and continuous support in the preparation of this thesis.  

I would like to thank Prof. Nick Kingsbury for providing the MATLAB codes which 

generate the Q-shift filters. 

Finally, it is my pleasure to acknowledge a number of my friends who have 

supported me morally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vii 
 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................... iii 

ÖZ ............................................................................................................................... iv 

DEDICATION ............................................................................................................. v 

ACKNOWLEDGMENTS .......................................................................................... vi 

LIST OF TABLES ...................................................................................................... ix 

LIST OF FIGURES ..................................................................................................... x 

LIST OF SYMBOLS/ABBREVIATIONS ................................................................ xii 

1 INTRODUCTION .................................................................................................... 1 

1.1 Introduction ........................................................................................................ 1 

1.2 Organization ....................................................................................................... 3 

2 DUAL-TREE COMPLEX WAVELET TRANSFORMS ........................................ 4 

2.1 Wavelet Transforms ........................................................................................... 4 

2.1.1 Fourier Transform of wavelet and scaling function..................................... 8 

2.2 Complex Wavelet Transform ............................................................................. 9 

2.3 Dual-Tree Complex Wavelet Transform .......................................................... 10 

2.3.1 The Q-shift filters....................................................................................... 11 

2.3.2 Dual-Tree Complex Wavelet Transform in Fourier Domain .................... 14 

3 SHIFT-VARIANCE ANALYSIS ........................................................................... 16 

3.1 Introduction ...................................................................................................... 16 

3.2 The Sampling Process ...................................................................................... 16 

3.2.1 The Mathematical Description................................................................... 16 

3.2.2 System-Norm ............................................................................................. 18 

3.3 The - Shift-Invariance System ....................................................................... 18 

3.4 Shift-Variance Analysis ................................................................................... 20 



 
 

viii 
 

3.4.1 Shift-Variance Level and Shift-Variance Measure .................................... 20 

3.4.2 Analytical Formula for SVL and SVM...................................................... 20 

3.5 Shift-Variance Analysis of Wavelet transform ................................................ 22 

4 ANALYSIS RESULTS ........................................................................................... 24 

4.1 Introduction ...................................................................................................... 24 

4.2 Analysis Results ............................................................................................... 24 

5 CONCLUSION ....................................................................................................... 35 

5.1 Conclusion ........................................................................................................ 35 

5.2 Future work ...................................................................................................... 36 

REFERENCES ........................................................................................................... 37 

 

 

 

 

 

 



 
 

ix 
 

  LIST OF TABLES 

Table 2.1: Coefficients of Q-shift filter 0 ( )G z for length 8, 12, 18 and 22 ................ 15 

Table 4.1: shift-variance analysis of DT-CWT with Q-shift filters of different 

…………….lengths. .................................................................................................. 29 

Table 4.2: shift-variance analysis of the scaling function with Q-shift filters of 

……………different lengths ..................................................................................... 30 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

x 
 

LIST OF FIGURES 

Figure 2.1: The DWT in two-channel FB .................................................................... 7 

Figure 2.2: Analysis Filter Bank for the DT-CWT [3]. ............................................. 10 

Figure 3.1: The generalized sampling process ( ( ) ( ))S h t t   ................................ 18 

Figure 4.1: Magnitude spectra Ψ ( )c   (solid line) and ( )c Ψ   (dashed line) of the 

…………..complex wavelets using Q-shift filters: (a) length 8, (b) length 12, (c) 

…………..length 18, and (d) length 22. .................................................................... 25 

Figure 4.2: Magnitude spectra ( )c   (solid line) and ( )c Φ   (dashed line) of the 

…………...complex scaling functions using Q-shift filters: (a) length 8, (b) length 

…………..12, (c) length 18, and (d) length 22. ......................................................... 26 

Figure 4.3: The shift-variance level of the Dual-tree complex wavelets using Q-shift 

…………..filters: (a) length 8, (b) length 12, (c) length 18, and (d) length 22. ........ 27 

Figure 4.4: The shift-variance level of the complex scaling functions using Q-shift 

…………...filters: (a) length 8, (b) length 12, (c) length 18, and (d) length 22. ....... 28 

Figure 4.5: (a) The input signal ( )x t  and (b) the shifted version of input signal

( 10)x t   .................................................................................................. 31 

Figure 4.6: The real part of the output of DT-CWT using Q-shift of length 8 in terms 

…………………of the input (a) and the shifted version of input (b). ................................. 31 

Figure 4.7: The real part of the output of the complex scaling function using Q-shift 

…………..of length 8 in terms of the input (a) and the shifted version of input (b). 32 

Figure 4.8: Real part of the output of DT-CWT using Q-shift of length 22 in terms of 

…………..the input (a) and the shifted version of input (b). ..................................... 32 

file:///C:/Users/123456/Desktop/final.docx%23_Toc187042062
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042062
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042062
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042063
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042063
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042063
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042064
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042064
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042065
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042065
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042066
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042067
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042067
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042068
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042068
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042069
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042069


 
 

xi 
 

Figure 4.9: The output of the complex scaling function using Q-shift of length 22 in 

…………...terms of the input (a) and the shifted version of input (b). (real (blue), 

……………imaginary (black)) .................................................................................. 33 

Figure 4.10: The shift-variance measure of the dual-tree complex wavelets and the 

……………single-tree wavelet in Q-shift filters of length 8, 12, 18 and 22. ............ 34 

Figure 4.11: The shift-variance measure of the complex scaling function and real 

……………scaling function in Q-shift filters of length 8, 12, 18 and 22. ................ 34 

 

 

 

 

 

 

 

file:///C:/Users/123456/Desktop/final.docx%23_Toc187042070
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042070
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042070
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042071
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042071
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042072
file:///C:/Users/123456/Desktop/final.docx%23_Toc187042072


 
 

xii 
 

LIST OF SYMBOLS/ABBREVIATIONS 

 Defining band 

kc  Scaling function coefficient 

,j kd  Wavelet coefficient 

  Continuous-time shift operator 

  Discrete-time shift operator 

0g  Low-pass filter in upper FB 

1g
 High-pass filter in upper FB 

0h  Low-pass filter 

1h  High-pass filter 

 
Hilbert transform 

0H
 Low-pass filter in Fourier domain 

0H
 

Vector of 0H  

1H
 High-pass filter in Fourier Domain 

 Set of real numbers 

 
System 

 Set of integer numbers 

,  Commutator of system 

( )  Shift-variance level 

( )v  Shift-variance measure 

  Delay  

  Scaling function in time domain 



 
 

xiii 
 

  
Scaling function in Fourier domain 

  Wavelet Transform in time domain 

( )c t  Complex wavelet 

( )t g  Real part of DT-CWT 

( )h t
 

Imaginary part of DT-CWT 

( )i t
 Imaginary part of wavelet  

( )r t  Real part of wavelet 

  Wavelet Transform in Fourier domain 

WT  Complex Wavelet Transform 

DT-CWT Dual-Tree Complex wavelet transform 

DWT Discrete Wavelet Transform 

FIR Finite Impulse Response 

PR Perfect reconstruction 

sup Supremum 

SVL Shift-variance level 

SVM Shift-variance measure 

 

 

 

 

 

 



1 
 

Chapter 1 

INTRODUCTION 

1.1 Introduction 

The discrete wavelet transform may be used as a signal-processing tool for 

visualization and analysis of nonstationary, time-sampled waveforms. The highly 

desirable property of shift invariance can be obtained at the cost of a moderate 

increase in computational complexity, and accepting a least-squares inverse 

(pseudoinverse) in place of a true inverse. The shift-invariance is so prominence in 

many signal processing applications. Owning to this, a wide range of attempts has 

been dedicated to seeking discrete-time transforms that can have good shift-

invariance. In this regard, several different discrete-time transforms have been 

recommended such as the wavelet packet decomposition [1], the dual-tree complex 

wavelet transform [2], [3], the pre-processing complex wavelet transforms [4], the 

post Hilbert transform of the discrete wavelet transform (DWT) [5], and the shiftable 

DWT [6]. 

Although a number of transforms have been proposed for satisfying shift-invariance 

property, there were not any criteria to quantify the shift-variance for them. In other 

words, the existence of some quantities was essential to judge shift-invariance 

property between these transforms. Kingsbury [2] proposed quantification of shift 

dependence as the ratio of two energy: the energy of transfer functions with aliasing 

component and the energy of transform which is non-aliasing. To quantifying shift-
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variance Aach and Führ [7] analyzed the effects of the linear periodically shift 

variant system on deterministic and statistical signals within a unified framework by 

quantifying shift variance of operators. Furthermore Yu [8] he proposed two 

parameters (i.e. SVL and SVM) to analyze shift-variance. Indeed, the shift-variance 

is presented absolutely by SVL and relatively by SVM. Moreover he applied these 

two quantities to some complex transforms such as DWT and short-time Fourier 

transform (STFT). He also proposed SVM for multirate systems [9]. 

In this study, we consider the dual-tree complex wavelet transform (DT-CWT) [2, 3] 

as a discrete-time transform. The DT-CWT, proposed by Kingsbury [2] enhances the 

DWT by adding significant properties such as approximate shift-invariance and 

directionally selectivity in two and higher dimensions. 

It must be mentioned that the structure of dual-tree put additional demands on the 

filters that are used in the wavelet transform, in order to accomplish optimal shift-

invariance. An effective approach was proposed by Kingsbury [10] for developing 

the optimality of the Q-shift filters of the DT-CWT. In particular, these designs are 

useful in image processing since the resulting complex wavelets and the scaling 

functions satisfy the linear-phase property. 

This thesis concentrates on analyzing shift-variance on DT-CWT and the scaling 

function with the Q-shift filters by quantifying their shift-variance. For this aim, the 

different lengths of Q-shift filters such as 8, 12, 18, and 22 are considered. It can be 

observed that the DT-CWT with the Q-shift filters has indeed good shift-invariance, 

and the shift-invariance improved as the length of the filters. For example, the SVM 

is very small (8.6%) for the DT- CWT with the Q-shift filters of length 22 in the 
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defining band. To illustrate the shift-invariance we consider an input signal and its 

shifted version to compare the outputs corresponding to the DT-CWT and the scaling 

function with the Q-shift filter. 

1.2 Organization 

This thesis is organized in five chapters: 

Chapter 1 includes a brief review of previous literature works on shift-invariance. 

The common problems of discrete-time transforms are mentioned. In Chapter 2, the 

Discrete Wavelet Transform, the Complex Wavelet Transform ( WT ), and the DT-

CWT are briefly introduced. The structure and filters designing of DT-CWT are 

described. The design of Kingsbury’s Q-shift filters is also explained in this chapter. 

Chapter 3 starts with mathematical description of the generalized sampling process. 

Then, we describe the idea of the  -shift-invariance. Moreover, we present the SVL 

and SVM, and the formulas of these parameters are analytically expressed in more 

detail. By computing the SVL and SVM, the analysis of shift-variance for the DT-

CWT and the scaling function will be done. The Q-shift filters are used in analyzing 

the shift-invariance properties of the DT-CWT. We then present the analysis of the 

shift-variance for the DT-CWT and the scaling function with the Q-shift filters of 

different length. Finally, Chapter 5 concludes the thesis.   
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Chapter 2 

DUAL-TREE COMPLEX WAVELET TRANSFORMS 

In this chapter, wavelet transform, Discrete Wavelet Transform (DWT), and 

Complex Wavelet Transform ( WT ) will be introduced in brief. Then Dual-Tree 

Complex Wavelet Transform (DT-CWT) and its features will be stated. Furthermore 

the design of Kingsbury’s Q-shift filters will be explained. 

2.1 Wavelet Transforms 

Wavelet can be considered as a small wave and it has oscillating function. The 

energy of wavelet focuses on time in order to provide the ability of analysis of 

transient, nonstationary, or time-varying phenomena. Furthermore, the ability of 

simultaneous time and frequency analysis through flexible mathematical foundation 

are allowed by wavelet. Also Wavelet has utilized an impressive reputation as a tool 

for signal, image, and video processing. 

If we expand and shift a real-valued band pass and fundamental wavelet ( )t (i.e. 

generating wavelet or mother wavelet), the different forms of wavelets can be 

developed as follows: 

 
2

, ( ) 2 (2 ), ,j j

j k t t k j k      (2.1) 

where  is the set of all integers and the amount of norm independent of scale j is 

held by the factor 22 j . For developing the wavelet expansion (2.1), it is crucial to 

use the idea of an expansion set or basis set. Therefore, the idea of scale should be 

stated for this aim. 
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Scaling is a kind of mathematical operations such that a signal can be either 

expanded or compressed. In the wavelet analysis, the scale parameter is identical to 

the scale employed in maps. High scales are associated with a non-detailed global 

view and low scales are related to a detailed view. Particularly, in frequency domain, 

it can be possible to say that low frequencies are related to global information of a 

signal though high frequencies are associated with detailed information. In fact, the 

localization of the signal in time is made by shifting the wavelet in time and 

changing the scale causes the localization of the signal in frequency (scale). 

Suppose the vector space of signal, , then if any ( )f t   can be defined as

( ) ( )k kk
f t a t , the set of function ( )k t  can be called an expansion set for the 

space . Consequently, the set of the scaling function ( )k t  is integer translate of 

the basic real-valued low-pass scaling function ( )t . The scaling function can be 

expressed in terms of a weighted sum of shifted (2 )t  which is defined as follows 

[11]: 

 
0( ) 2 ( ) (2 )g

n

t h n t n     (2.2) 

By using (2.2), wavelet can be expressed by a weighted sum of shifted scaling 

function (2 )t : 

 
1( ) 2 ( ) (2 )

n

t h n t n     (2.3) 

(2.3) gives the prototype or mother wavelet ( )t  for the classes of expansion 

function in (2.1). 

In (2.2) 0 ( )h n
 
is low-pass filter and down-sampling operation. Also, in (2.3), 1( )h n  is 

high-pass filter and down-sampling operation. By applying these filters, a useful 
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parameterization for designing scaling functions and wavelets are provided with 

desirable properties, such as compact time support and fast frequency decay and 

orthogonality to low-order polynomials (vanishing moments). 

In fact, wavelet ( )t  and the scaling ( )t  functions, which are closely associated 

with each other, are so essential for the multi-resolution formulation as basic 

functions. The multi-resolution conditions (e.g. good time resolution at high 

frequencies and good frequency resolution at low frequencies) are satisfied by the 

majority of useful wavelet systems. In addition, it is important to mention that 

scaling functions and wavelet functions are two set of functions which are exploited 

by DWT. These set of basic functions are related to low pass and high pass filters 

respectively. 

Any signal can be generated in terms of wavelet and scaling function [11]: 

 ,

0

( ) ( ) (2 )j

k j k

k k j

x t c t k d t k 
  

  

       (2.4) 

where kc  is the scaling coefficient and ,j kd  is the wavelet coefficient. They can be 

calculated by means of the inner products: 

 ( ) ( )kc x t t k dt



    (2.5) 

 2

, 2 ( ) (2 )j j

j kd x t t k dt



    (2.6) 

A time-frequency analysis of the signal is provided by means of (2.5) and (2.6). That 

is, we can measure frequency content of the signal at different times where the scale 

factor j and time shift n control frequency and time component respectively. 

Furthermore, we can efficiently compute the coefficients ,j kd  and kc  from a 

representation of the signal with desired scale and vice versa based on two octave-
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bands, discrete-time Filter Banks (FB) that recursively utilize a discrete-time low-

pass filter 0 ( )h n  and high-pass filter 1( )h n . 

A signal can be easily decomposed into alternative frequency bands by applying 

high-pass and low-pass filtering to the time domain signal sequentially. First, the 

input (original) signal ( )x n  goes through a half band high pass filters 1( )h n  and a 

low pass filter 0 ( )h n . Then, half of the samples of the filtered signal can be omitted 

because instead of π, the signal, now, has a highest frequency of π/2 radians. At each 

level of decomposition, half the number of samples and half the frequency band 

spanned is produced by filtering and sub-sampling. This procedure is illustrated in 

Figure 2.1. Finally, by starting to combine all coefficients from the last level of 

decomposition, the DWT of the original signal is acquired. 

↓2

↓2

↓2

↓2

↓2

↓2

0

1

1

1

0

0
Level 1

Level 2

Level 3

 
Figure 2.1: The DWT in two-channel FB 

Although DWT, which is based on real-valued wavelets, has good properties, there 

are some fundamental shortcomings: oscillation [11], shift-variance [13, 14], aliasing 

and lack of directionality. For example, lack of shift invariance, which means that 

small shifts in the input signal can cause major variations in the distribution of 

energy between DWT coefficients at different scales. In other words, this results 

from the down sampling operation at each level. When the input signal is shifted 
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slightly, the amplitude of the wavelet coefficients varies so much. Shift variance also 

complicates wavelet-domain processing; algorithms must be made capable of coping 

with the wide range of possible wavelet coefficient patterns caused by shifted 

singularities. 

2.1.1 Fourier Transform of wavelet and scaling function 

Fourier transform of ( )t  will be required in Chapter 3 and it is defined: 

 ( ) ( ) j tt e dt 





     (2.7) 

Moreover, the Discrete-Time Fourier Transform (DTFT) of 0 ( )h n  is expressed: 

 0 0( ) ( ) j n

n

H h n e 






    (2.8) 

where 1i    and n is an integer ( n ). If 0 ( )h n  is a digital filter such as the Q-

shift filter [10], which will be discussed more in detail in Chapter 4, then DTFT of 

0 ( )h n  is the frequency response of the filter. 

Substituting (2.8) into (2.7) and according to (2.2) results in: 

 0

1
( ) ( 2) ( 2)

2
H       (2.9) 

And after iteration of the scaling, it becomes: 

 0

1

1
( ) ( ) (0)

22
k

k

H







 
   

 
   (2.10) 

Fourier transform of ( )t  is similar to above equations which were applied to 

scaling function according to (2.3) and after iteration: 

 1 0

2

1
( ) ( ) (2 ) (0)

2 2

k

k

H H


 






 
   

 
   (2.11) 
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2.2 Complex Wavelet Transform 

We know that Fourier representation is a complex transform with periodic sinusoids 

in which the imaginary and real parts are constituted by sine and cosine components. 

These components generate which generate a pair of Hilbert transform. So wavelet 

and scaling function in WT  are expressed as follows: 

 ( ) ( ) ( )c r it t j t      (2.12) 

 ( ) ( ) ( )c r it t j t      (2.13) 

By considering the Fourier representation, ( )r t  is real part and ( )i t  is imaginary 

part of the analytic signal ( )c t . If these two parts create a pair of Hilbert transform, 

then the half of the frequency band supports the analytic signal ( )c t . Similar to the 

Fourier transform, we can also state and analyze any real signal or complex signal by 

using complex wavelets. The theory of discrete CWTs can be widely classified into 

two categories. The first one looks for a ( )c t  that generates an orthonormal or bi-

orthogonal basis [15, 16, 17]. The second one searches for a redundant 

representation, with both ( )r t  and ( )i t separately creating orthonormal or bi-

orthogonal bases [18].  

All in all, both shift-invariance and good directional selectivity, with only modest 

increases in signal redundancy and computation load, can be provided by complex 

wavelet. However, developing a WT  with perfect reconstruction (PR) and ideal 

filter characteristics has been complicated until recently. 
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2.3 Dual-Tree Complex Wavelet Transform 

The DT-CWT is first proposed by Kingsbury [19]. This is the most successful and 

useful approach in implementing an analytic wavelet transform. The DT-CWT 

utilizes two real DWTs such that the real part of the transform is given by the first 

DWT while the imaginary part is presented by the second DWT. Two different sets 

of filters are employed by two real wavelet transforms which are used in DT-CWT. 

These two sets of filters are designed so the overall transform is roughly analytic. 

Besides, these filters have to meet the PR conditions. In Figure 2.2 the DT-CWT 

with two sets of filters is illustrated. 
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Figure 2.2: Analysis Filter Bank for the DT-CWT [3]. 

In the upper FB (Tree a), 0 ( )ng  is considered as low-pass filter and 1( )ng  is 

regarded as high-pass filter. Identically, 0 ( )h n  and 1( )h n  are considered for the lower 

FB (Tree b). Both of these trees are real wavelets and denoted by ( )t g  and ( )h t

for tree a and b respectively. These filters are designed to satisfy PR condition such 

that the complex wavelet (i.e. ( ) ( ) ( )c ht t j t   g ) is approximately analytic. For 
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this purpose the filters design such that ( )h t  is approximately the Hilbert transform 

of ( )t g as it is denoted by: 

 ( ) { ( )}h t t  g   (2.14) 

According to (2.2) and (2.3) and depending on definition of DT-CWT, it is required 

to design two low pass filters which are able to satisfy the property in (2.14). For this 

purpose, one of them must be nearly a half-sample shift of the other so the 

magnitude and phase functions in frequency domain are expressed as: 

 0 0( ) ( )j jG e H e    (2.15) 

 0 0( ) ( ) 0.5j jG e H e       (2.16) 

Because of some reasons [3], (2.15) and (2.16) are approximate for short filters. 

Thus, several methods have been proposed for filter design for DT-CWT which 

satisfies some desire property such as: approximately half-sample delay property, PR 

condition, finite support with FIR filters, vanishing moment and linear phase (for 

only complex filters). Furthermore, in [13] it was proved that the key to acquiring 

shift-invariance from the dual-tree structure depends on designing the filter delays at 

each stage. The Q-shift method [10], which is one of proposed methods for filter 

design for DT-CWT that we used for analyzing shift-variance will be explain in next 

section. 

2.3.1 The Q-shift filters 

It is obvious that we require a group delay for satisfying PR conditions and 

smoothness feature. Indeed, the Q-shit filters [10] provide a group delay which can 

be used in wavelet filters in order to generate a combination of properties. For 

example, the properties such as approximate shift-invariance, good directional 

selectivity, linear phase, good frequency domain selectivity and so on can be 
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satisfied by the Q-shift filters. Furthermore, the Q-shift filters minimize the energy of 

the frequency domain in order to effectively improve the shift-invariance property 

for DT-CWT. For this purpose, it is crucial that wavelet filters are designed with a 

group delay of a quarter of sample period. 

According to the concept of DT-CWT there exist 2 set of wavelet filters with group 

delay for 2-band FB (one for tree a and one for tree b). Therefore, one of these group 

delay filters is 1 4 of the sample period and another is  3 4  of the sample period. 

The latter is the time reverse of the former. In this case, a delay of 1 2  is produced 

between tree a and tree b. In [3], the relation between tree a and tree b is stated by: 

 0 0( ) ( 1 ) : 0 1h n N n n N     g   (2.17) 

where N (even) is the length of 0 ( )ng . It must be noticed that the magnitude part of 

the half-sample delay condition is explicitly satisfied owing to the time-reverse 

relation between the filters, while the phase part is not precise, (referred to (2.15) and 

(2.16)). 

Accordingly, in order to satisfy the phase condition, we have to design the filters 

with approximately linear-phase property. Hence, we consider 0 ( )ng as an 

approximate linear-phase filter which is expressed as follows [3]: 

 0( ) 0.5( 1) 0.25jG e N         (2.18) 

That is, it can be said that 0 ( )ng  almost keeps its symmetry property about the 

0.5( 1) 0.25n N    [3]. In other words, there is 1 4  distance away between this 

point and the natural one. 
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Therefore, the Q-shift method generates complex wavelets bases in which the 

imaginary part (from tree b) is the time reverse of the real part (from tree a). 

 ( ) ( 1 )h t N t   g   (2.19) 

Consequently, (2.19) proves that the two significant conditions i.e. PR and linear-

phase are completely satisfied by the Q-shift filters at the same time. 

We can obtain the filter 0 ( )G z (length (2 )N ) with one quarter delay by considering 

the filter 2 ( )LG z (length (4 )N ) which is defined in half delay and half of the 

admissible bandwidth. Then we alternatively select the coefficients of 2 ( )LG z in 

order to acquire 0 ( )G z . If 

 2 1 2

2 0 0( ) ( ) ( )LG z G z z G z     (2.20) 

where the coefficients of 0 ( )G z  are defined from 1Nz   to Nz  and 2 ( )LG z is linear 

phase with half sample delay then 0 ( )G z has one quarter sample delay. Then, we 

have to specify 0 ( )G z so that the squared gain of 2 ( )LG z  is minimized thus 0 ( )G z

satisfy PR conditions as follows [10]: 

 1 1

0 0 0 0( ) ( ) ( ) ( ) 2G z G z G z G z       (2.21) 

 1

0 0( ) ( )G z G z   (2.22) 

 Now we can obtain 0 ( )G z  from a poly-phase matrix [20] that express as follows: 

 
0

1 11 1 1

0

( ) 1
( ) ( ) ... ( )

( )
N N

G z

z G z z
    

   
      

Z Z   (2.23) 

where  
1

cos sin 0
( ) is orthonormal rotation and is delay

sin cos 0

i i

i

i i

z

z

 


  

   
       

Z . 
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According to [18] 0 ( )G z  should have at least one zero at 1z   (vanishing moment) 

thus the angle i  in N rotations have to sum to 4k  . This allows us to optimize 

1N   angle to obtain 0 ( )G z .To satisfy PR conditions, [20] found the optimal i   to 

minimize the total energy of the frequency response 2 ( )LG z  over the range

3    . Furthermore, the filter 0 ( )G z is achieved in terms of  2 ( )LG z  which 

provide some properties such as no aliasing, PR conditions, linear phase and good 

smoothness. 

The coefficients of the Q-shift filter 0 ( )ng  for lengths 8, 12, 18, and 22 are obtained 

by running the MATLAB codes [21]. And they are shown in Table 2.1. It can be 

observed that the coefficients of 0 ( )h n is easily obtained by flipping the 0 ( )ng . In 

order to satisfy 1 4 and 3 4  sample period group delays, 1( )ng and 1( )h n are obtained 

as well. Finally, according to (2.12), (2.13) and by considering above filters, the 

complex wavelets and scaling functions can be obtained. In chapter 4 the frequency 

response of complex wavelet and complex scaling function by using the Q-shift 

filters of length 8, 12, 18 and 22 are shown in Figures 4.1 and 4.2 respectively. 

2.3.2 Dual-Tree Complex Wavelet Transform in Fourier Domain 

According to Section 2.2 the Fourier transforms of the wavelets and scaling 

functions in Tree a and Tree b are given respectively as follows: 

 0

1

1
( ) (2 ) (0)

2

k

g g

k

G 






 
   

 
   (2.24) 

 1 0

2

1
( ) ( ) (2 ) (0)

2 2

k

g g

k

G G


 






 
   

 
   (2.25) 

 0

1

1
( ) (2 ) (0)

2

k

h h

k

H 






 
   

 
   (2.26) 
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 1 0

2

1
( ) ( ) (2 ) (0)

2 2

k

h h

k

H H


 






 
   

 
   (2.27) 

Then the Fourier transforms of the complex wavelet and scaling function can be 

obtained accordingly. See (2.12) and (2.13). 

Table 2.1: Coefficients of the Q-shift filter 0 ( )ng for length 8, 12, 18 and 22 

8-tap 0G  12-tap 0G  18-tap 0G  22-tap 0G  

0.05190908 -0.01522967 0.00142280 -0.00019897 

-0.06008402 0.01815856 0.00074129 -0.00013542 

-0.05104918 0.02060577 -0.00175206 0.00074080 

0.40994913 -0.07884050 -0.00435486 0.00169627 

0.53497354 0.00900506 0.02091066 -0.00455923 

0.19895626 0.39546502 0.01274698 -0.00798286 

-0.03583345 0.54431565 -0.08318752 0.02671233 

-0.04882136 0.18423786 0.01584833 0.01008280 

 -0.07074785 0.39994096 -0.08866926 

 -0.02912820 0.53366076 0.02100178 

 0.01205103 0.19704131 0.39978504 

 0.01010725 -0.07991466 0.53020029 

  -0.03586321 0.20127489 

  0.03002088 -0.07917418 

  0.00082567 -0.04222550 

  -0.00747924 0.03396799 

  0.00066137 0.00623307 

  -0.00126947 -0.01016548 

   0.00024101 

   0.00071247 

   0.00066580 

   -0.00020366 
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Chapter 3 

SHIFT-VARIANCE ANALYSIS 

3.1 Introduction 

The idea of shift-variance analysis tells if there is a shift in input signal, how the 

output will treat in terms of this shift. In other words, this kind of analysis measures 

the difference between the reaction of the system to any shift in input and shifted 

version of the output. As we know, one of the weaknesses of DWT is shift-variant 

although this idea is not generally satisfied i.e. in some very special cases; the DWT 

is characterized as approximate shift-invariance. Accordingly, seeking DWT with 

good shift-invariance is significant in applications of signal processing e.g. pattern 

recognition. As a result, numerous researches have been done for this purpose. For 

better perceiving the meaning of approximate shift-invariance for DWT, we need to 

understand the idea of  -shift-invariance which is proposed in [22]. Indeed,  -

shift-invariance defines what it means for some systems (e.g. sampling process) to be 

shift-invariant. 

3.2 The Sampling Process 

3.2.1 The Mathematical Description 

We consider two complex signals ,x   in continuous-time domain. Then, the inner 

product of them in a Hilbert space 2L  is defined as follows: 

 
2, ( ) ( ) , ,x t x t dt x L         (3.1) 
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Suppose a scalar 0T  , a sequence of signal   is defined as: 

 ( ) ( ),n nT n       (3.2) 

A linear system , which could characterize a generalized uniform sampling process 

[8] where   and T state the kernel and period of sampling respectively, can be 

defined via the inner product as follows: 

2 2 ˆ ˆ( ) : and in Fourier domain :L x y x y   (3.3) 

Regarding to (3.1) and (3.2) inner product of x  and the sequence of signal   

defines the discrete-time of output in the Hilbert space 2 : 

 { } with ,n n n ny y y x       (3.4) 

It must be noticed that the input and output of are continuous-time and discrete-

time respectively. System  can be described as in Figure 3.1 where the ( )h t  is the 

filter and also the input-output relation of  is described in the time-domain and 

Fourier domain respectively as follows: 

 : ( ) ( )ny h nT t x t dt    (3.5) 

 
1

: ( ) ( 2 ) ( 2 )jT

K

Y e H k T X k T
T

    


     (3.6) 

(3.6) can be considered as sampling process and simplified as: 

 
1

: ( ) ( ) ( )jTY e T X T
T

   H   (3.7) 

where the sampling vector of H is defined by: 

 ( ) { ( 2 )}KH k T    H   (3.8) 
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h(t)
x y

T
 

Figure 3.1: The generalized sampling process ( ( ) ( ))S h t t   . 

3.2.2 System-Norm 

In (3.3), we defined a linear system , now we can express the system norm for this 

system by: 

 
2

2

sup{ : 0}l

L

x
x

x
    (3.9) 

where sup indicates the supremum. Note that, we can characterize the least upper 

bound by using the induced-norm in which the system can magnify the input signal 

x. It is assumed that   . 

According to Figure 3.1 and the general definition of sampling process  [8], (3.10) 

defines the induced-norm of the system as: 

 
1

T


 H   (3.10) 

where the  -norm 


H  is defined by sup{ ( ) : [0,2 )}T  H  with 

 
2 1 2( ) ( ( 2 ) )

K

H k T  


 H   (3.11) 

3.3 The - Shift-Invariance System 

We can consider any system as shift-invariant if a shift occurs in input, then a shift 

also happens in output.  Absolutely, this system is exactly shift-invariant when the 

shift’s amount of output is identical to that of the input. For the aim of sampling 

processing (Section 3.2), because the input and output are defined as continuous-

time and discrete-time domains respectively, it is intensively required to clarify the 
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meaning of shift-invariance. Considering the sampling process  in Section 3.2, 

when the input is shifted by  , it is expected that the T shift must happen in 

output. 

The discrete-time system is called a discrete-time shift operator in  [8] if: 

 : ( ) ( ), , ,j j jY e e Y e          (3.12) 

where   and  are called the amount of the shift and the admissible band 

respectively. Furthermore,  is the set of all admissible bands and   is the 

discrete-time shift operator that is linear and shift-invariant. Therefore, the discrete-

time shift operator becomes fractional and it depends on the choice of  [22] if  is 

not an integer. 

A system is called to be  -Shift-invariance with factor   (i.e. it is unique for  -

shift-invariance 0 ) and in  if for any input x  the react to ( )x   is determined 

by [8]: 

 i.e. ( ) ,, ,j jx e Y e          (3.13) 

where 1 T  is defined for the sampling process. In addition to the definition of 

discrete-time shift operator which was stated in (3.12), continuous-time shift 

operator is denoted by: 

 
2 2( ) : ( ) ( )L L x x      (3.14) 

Then, the error system is expressed as follow: 

 ,   

   (3.15) 

where 
,  is the error system. This error is also referred to the commutator. Note 

that, when , 0 , the system  is  -shift-invariant. 
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3.4 Shift-Variance Analysis 

3.4.1 Shift-Variance Level and Shift-Variance Measure 

Shift-variance can be characterized by presenting: a) the Shift-Variance Level (SVL) 

and b) the Shift-Variance Measure (SVM) that these two quantities always exist and 

are unique. In fact, The SVL describes the amount of distance between the system 

and the set of systems which are so called  -shift-invariant. Also, the SVM is equal 

to the SVL divided by two times of the system norm. 

According to (3.15), the generalized commutator of linear system specifies amount 

of the SVL and SVM. Let 2 2: L l  in terms of shift τ and in band , the SVL is 

defined by [8]: 

 ,( ) inf{sup }
 

   (3.16) 

Then, SVL is defined by: 

 
( )

( ) 0
2

  
1
  (3.17) 

In [8], it was proved that: 

 0 ( ) 1     (3.18) 

According to above equation, we can say that when ( ) 1  , system is completely 

shift-variant and also when ( ) 0  , system is -shift-invariant. 

3.4.2 Analytical Formula for SVL and SVM 

By considering the sampling vector in (3.8) which is described in Section 3.2.1 and 

for the sampling process in Figure 3.1, the formulas for analysis the SVL and SVM 

can be obtained. 

                                                           
1
 In the case of 0 , since ( ) 0  , we  define ( ) 0   
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The continuous-time shift operator and the discrete-time shift operator are defined 

respectively by: 

21
: ( ) ( ) ( ), diag[ ]j T T j k T

kX e T X T e
T

  

   

H W W   (3.19) 

 
1

: ( ) ( ) ( ),T j T TX e T X T
T

     H   (3.20) 

By applying (3.16) and (3.17) and considering the continuous-time shift operator and 

the discrete-time shift operator which were defined in (3.19) and (3.20), the SVL of 

sampling process  with respect to   and in  is expressed as follows: 

,
(0, 2]

2 2
( ) inf{ sup { } :

T T T
  


  

 Σ H Σ H   (3.21) 

And therefore we can express the SVM as: 

 
(0, 2]

2
inf{ sup { }

( )
T T

S
 



 

Σ H

H




  (3.22) 

Particularly, for better perceiving the equation in (3.21), we can express it precisely 

as follows [8]: 

  
0

0 0

1 2
2 2

(0, 2] [ , 2 )

2 (sin )| ( 2 ) |( ) inf sup sup
kT

k H k
   

  
     

 
      

       

 (3.23) 

where the filter H (in the Fourier domain) is computed in defining band. It must be 

noticed that just 
0  has effect on parameterizing this band and also we may acquire 

the optimal value across the subset of defining band: 

00 0{[ , 2 )}      (3.24) 

In particular, for either
0  , two successive one-dimensional optimizations are 

employed to find the two nested suprema. Then, the determination is finalized by 
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searching for
0 . All above mentioned issues will be applied for analyzing the shift-

variance of real DWT in the next section. 

3.5 Shift-Variance Analysis of Wavelet transform 

Generally, we can say that DWT cannot satisfy the shift-invariant property [2] 

although some DWTs are approximately shift-invariant [3]. In this section, by 

applying what was mentioned in the preceding chapter, the analysis of shift-variance 

properties will be done [8]. 

Consider ( )t  as an admissible wavelet function in 2L in (2.1), according to 

definition of the DWT for each j  a sampling process is defined as: 

  ,: ( ) ( ), ( )j j k
k

x t x t ψ t


  (3.25) 

Then by regarding to linear system in Figure 3.1, the filter ( )h t  is stated by: 

 ,0( ) ( )jh t ψ t    (3.26) 

And in the Fourier transform is expressed as follows: 

 * 2 *( ) ( ) 2 (2 )j j

jH        (3.27) 

Consequently, the norm and the SVL of sampling process 
j
 in DWT are obtained 

respectively by: 

 2

[0,2 )

sup 2 j

j j j
T


 

  Ψ Ψ Ψ   (3.28) 

 2

(0, 2]

( ) inf{ sup {2 [2 ]}j

j
T

 

 Σ Ψ


  (3.29) 

In the above equations, it can be observed that there is a relation between two values 

of the SVL at scale j and scale 0j   as: 

 2

0( ) 2 ( )j

j    (3.30) 
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So, according to (3.28) and (3.30) the SVM in DWT is equal for all scale j  i.e. 

0( ) ( )j   . Accordingly, the SVL and SVM can be computed in the zeroth scale 

(i.e., the SVL and SVM of 
0
). 

 

 

 

 

 

 

 

 

 

 



 
 

24 
 

Chapter 4 

ANALYSIS RESULTS 

4.1 Introduction 

For better understanding those were mentioned in previous chapters, the analysis of 

shift-variance on the DT-CWT and the scaling function will be done in this chapter. 

In fact, the SVL and SVM of the DT-CWT and the scaling function will be 

examined each with the Q-shift filters of length 8, 12, 18, and 22. 

4.2 Analysis Results 

In order to analyze shift-variance, we plot the magnitude spectra of the dual-tree 

complex wavelets Ψ ( )c   in Figure 4.1; the magnitudes of the modulated vector 

( )c Ψ  are also given in Figure 4.1. The magnitude spectra of the complex scaling 

function Φ ( )c  , and the magnitude of modulated vector ( )c Φ  is illustrated in 

Figure 4.2. These illustrations for both DT-CWT and the scaling function are 

performed for each the Q-shift filter of length 8, 12, 18, and 22 respectively. 

It is important to mention that we can approximate both the modulated vectors 

( )c Ψ and ( )c Φ  if we take eleven sampling (i.e. 5 5k    ). Thus, we can 

obtain the norm 


 for DT-CWT and the scaling function by regarding to the 

maximum value of the magnitude spectra of modulated vector ( )c Ψ  and ( )c Φ  

respectively. 
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Moreover, some indication related to defining band  is provided in Figure 4.1 and 

4.2 where depict the DT-CWT’s magnitude spectra specifically 0 0( , )     

with 0 0.5  and the scaling function’s magnitude spectra with 0 1.5   . In general, 

it would be very challenging to theoretically obtain the optimality of defining band. 

However, the optimal defining band can be acquired by regarding the level set. This 

issue is completely discussed in more detail in [8]. In Table 4.1 and Table 4.2, the 

system norm and the defining band of each length of the Q-shift filters are tabulated 

for DT-CWT and for the scaling function respectively.  

 

 

 

 

        

(a)                                                                    (b) 

 

 

 

 

    (c)                                                                      (d) 

 

 

Figure 4.1: Magnitude spectra  (solid line) and   (dashed line) of the 

complex wavelets using Q-shift filters: (a) length 8, (b) length 12, (c) length 18, and 

(d) length 22.
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It can be observed that the stop-band attenuation is improved when the length of Q-

shift filters increases. This improvement is explicitly illustrated in Figure 4.1 for DT-

CWT and Figure 4.2 for the scaling function. In other words, the stop-band is 

attenuated in the Q-shift filter of length 8 less than in the Q-shift filter of length 22. 

If the length increases, the stop-band will be attenuated more and more. Furthermore, 

by increasing the length of the Q-shift filters, smoothness and shift-invariant 

properties are improved more and more for the DT-CWT and the scaling function in 

defining band. This improvement in smoothness and shift-invariance, which are very 

important properties in DT-CWT, can be detected in Figure 4.1 for the complex 

wavelets and in Figure 4.2 for the complex scaling function as well. 

 

 

 

 

 

                                 (a)                                                                   (b) 

 

 

 

                                (c)                                                                     (d)    

Figure 4.2: Magnitude spectra  (solid line) and   (dashed line) of the 

complex scaling functions using Q-shift filters: (a) length 8, (b) length 12, (c) length 

18, and (d) length 22. 
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As it was explained, the SVL ,  is a function of two variables: the amount of 

shift   and the starting frequency 0  in the admissible band. Hence, the changes in 

the value of the SVL is affected by two variables   and 0 . The SVL is graphically 

depicted in Figure 4.3 and 4.4 for the dual-tree complex wavelets and the complex 

scaling function using the Q-shift filters of length 8, 12, 18, and 22 respectively. The 

effect of two variables 0 and  on the SVL can be perceived in the figures. Note 

that these figures are shown in band [-2π, 3π] for better visualizing the distinction of 

the admissible band. 

                                                        

 

                                                                       

            

 

                            0 
                                                                0   

                              (a)                                                                    (b) 

                                                      

                                                                       

            

 

                           0 
                                                                0   

                              (c)                                                                   (d) 

 

Figure 4.3: The shift-variance level of the Dual-tree complex wavelets using Q-shift 

filters: (a) length 8, (b) length 12, (c) length 18, and (d) length 22. 
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                           0 
                                                               0   

                              (a)                                                                 (b) 

  

                                                   

                                                                       

            

 

                            0 
                                                              0   

                              (c)                                                                  (d) 

 

By considering all of graphical figures (DT-CWT and the scaling function), it can be 

seen that when   is less than 0.05, the values of SVL are very small. This is always 

true irrespective of the starting frequency 0  and the defining band. For fixed , by 

increasing  , the SVL is also increased although it must be noticed that this is not 

always the case. Therefore, the values of the SVL stabilize small for any value of 

shift  if the defining band is properly specified. In addition, complex DWTs satisfy 

the property of near shift-invariance. As we know, the DT-CWT and the scaling 

function are also considered as the complex DWT thus near shift-invariance property 

Figure 4.4: The shift-variance level of the complex scaling functions using Q-shift 

filters: (a) length 8, (b) length 12, (c) length 18, and (d) length 22. 
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can be also explained in them. In addition, Table 4.1 and Table 4.2 are used for 

tabulating the numerical results of the shift-variance analysis for both DT-CWT and 

the scaling function, and defining bands are also presented in these tables 

respectively. 

By considering Table 4.1, we see that the DT-CWT with the Q-shift filters has good 

shift-invariance measure, i.e. 0 ( ) 0.5v   . Indeed, the SVM is reduced by 

increasing the length of the filters. For example, the Q-shift filter of length 8 is less 

shift-invariance than the Q-shift filter of length 22. 

Table 4.1: shift-variance analysis of DT-CWT using the Q-shift filters of different 

lengths 

DT-CWT 
Norm 

 

Band 

  

Shift-variance 

level 

( )   

Shift-variance 

measure 

( )v  (%) 

Q-shift 8 1.9196 [0.6904π, 2.6904π) 1.1731 30.56 

Q-shift 12 1.9407 [0.6653π, 2.6653π) 0.6784 17.47 

Q-shift 18 1.9702 [0.6685π, 2.6685π) 0.4905 12.45 

Q-shift 22 1.9854 [0.6676π, 2.6676π) 0.3436 8.65 
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Table 4.2: shift-variance analysis of the scaling function using the Q-shift filters of 

different lengths 

Scaling 

function 

Norm 

 

Band 

 

Shift-variance 

level 

( )  

Shift-variance 

measure 

( )v (%) 

Q-shift 8 1.9200 [-1.3768π, 0.6232π) 0.8933 23.26 

Q-shift 12 1.9088 [-1.3034π, 0.6966π) 0.8363 21.90 

Q-shift 18 1.8758 [-1.2562π, 0.7438π) 0.8932 23.81 

Q-shift 22 1.8897 [-1.2466π, 0.7534π) 0.7958 21.06 

 

According to Figure 3.1, we consider DT-CWT and the scaling function as two 

systems in order to illustrate shift-invariance property in both of them. For this 

purpose we compare the outputs of an input signal ( )x t  and its shifted version. This 

input signal is a simple pulse signal in continuous-time and we shift it by ten units in 

time (Figure 4.5). We can obtain the outputs by considering equation (3.5) (i.e. ( )x t

is an input as well as the DT-CWT and the scaling function are sampling kernels). 

The input signal and the outputs corresponding on the DT-CWT and the scaling 

function for the Q-shift filters of lengths 8 and 22 are shown in Figures 4.6-4.9 

respectively. These figures illustrate that the shift-invariance property is mostly 

improved for Q-shift filter of length 22. 
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      (a) 

 

 

 

                                                                   (b) 

 

 

 

 

    (a) 

 

 

 

    (b) 

 

 

 

Figure 4.5: (a) The input signal  and (b) the shifted version of input signal  

 

Figure 4.6: The real part of the output of DT-CWT using Q-shift of length 8 in terms 

of the input (a) and the shifted version of input (b). 
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         (a) 

 

 

 

                                                                          (b) 

 

 

 

 

           (a) 

 

 

 

               (b) 

 

 

Figure 4.7: The real part of the output of the complex scaling function using Q-shift 

of length 8 in terms of the input (a) and the shifted version of input (b). 

 

Figure 4.8: Real part of the output of DT-CWT using Q-shift of length 22 in terms of 

the input (a) and the shifted version of input (b). 
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             (a) 

 

 

 

             (b) 

 

In Figure 4.10 and 4.11, the results of the SVM of the DT-CWT and the complex 

scaling function are compared with the results of the SVM of the single-tree complex 

wavelet and real scaling function with the Q-shift filters of length 8, 12, 18, and 22. 

In Figure 4.10, the SVM of DT-CWT and the single-tree wavelet for Q-shift filters 

of length 8, 12, 18, and 22 are provided with each other for better comparison. 

Generally speaking, the SVM of the DT-CWT is fallen gradually by increasing 

filter’s length. In the other words, the Q-shift filters of long length tend to have less 

SVM, and the SVM reaches the lowest point in the 22-length Q-shift filters, i.e., it 

has the best shift-invariance measure in this case (among all the Q-shift filter 

considered). We check the lengths of Q-shift for more tap (e.g. 24 and 26); and not 

much improvement is observed.  In addition the SVM of the single-tree wavelet are 

nearly steady in the Q-shift filters of different lengths. 

Figure 4.9: The output of the complex scaling function using Q-shift of length 22 in 

terms of the input (a) and the shifted version of input (b). (real (blue), imaginary 

(black)) 
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In Figure 4.11, the SVM of the complex scaling function is compared with ones of 

real scaling function. Generally speaking the SVM of both are nearly steady in Q-

shift filter of different lengths but the values of SVM of complex scaling function is 

very smaller than the values of SVM of real scaling function with same length of Q-

shift filter. 

 

 

 

 

 

 

 

Figure 4.10: The shift-variance measure of the dual-tree complex wavelets and the 

single-tree wavelet in Q-shift filters of length 8, 12, 18 and 22. 
 

Figure 4.11: The shift-variance measure of the complex scaling function and real 

scaling function in Q-shift filters of length 8, 12, 18 and 22. 
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Chapter 5 

CONCLUSION 

5.1 Conclusion 

In this thesis, the shift-variance analysis was applied to dual-tree complex wavelet 

transforms (DT-CWT) and the scaling functions. In particular, we studied the DT-

CWT and the scaling function with Q-shift filter implementation. 

We used Kingsbury’s approach to obtain the coefficients of Q-shift filters. These 

coefficients were designed in order to provide approximately shift-invariance DT-

CWT with a quarter sample period group delay. 

To study shift-variance in DT-CWT and the scaling function analytically, we 

considered a linear system with continuous-time and discrete-time in input and 

output respectively. For this aim, the sampling process in frequency domain was 

adopted, and we obtained the output as an inner product between input and the 

sampling kernel. Then, the system norm can be computed for both the DT-CWT and 

the scaling function. 

Furthermore, we analyzed shift-variance for the DT-CWT and the scaling function as 

systems, which are not  -shift-invariance, by obtaining the quantitative measures: 

the shift-variance level (SVL) and the shift-variance measure (SVM). The results in 

this thesis show the shift-variance analysis of DT-CWT and the scaling function with 
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Q-shift filters of length 8, 12, 18, and 22. We obtained the values of system norm, 

SVL and SVM in admissible band for DT-CWT and the scaling function with Q-

shift filters of different lengths. 

 We observed that when the length of Q-shift filters increases the value of the SVM 

of the DT-CWT decreases. This means that the shift-invariance property of DT-

CWT was improved by increasing the length of Q-shift filters. Moreover, the shift-

invariance property of the scaling function was nearly steady in the Q-shift filters of 

different lengths. 

5.2 Future work 

Based on the shift-variance analysis in DT-CWT and the scaling function, we can 

improve the shift-invariance property of them by designing new filters. In addition it 

may be possible to analyze shift-variance of other transforms and to compare them.     
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