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ABSTRACT 

It has been demonstrated in the literature that patches from natural images could be 

sparsely represented by using an over-complete dictionary of atoms. In fact sparse 

coding and dictionary learning (DL) have been shown to be very effective in image 

reconstruction. Some recent sparse coding methods with applications to super-

resolution include supervised dictionary learning (SDL), online dictionary learning 

(ODL) and coupled dictionary learning (CDL). CDL method assumes that the 

coefficients of the representation of the two spaces are equal. However this 

assumption is too strong to address the flexibility of image structures in different 

styles. In this thesis a semi-coupled dictionary learning (SCDL) method has been 

simulated for the task of single image super-resolution (SISR). SCDL method 

assumes that there exists a dictionary pair over which the representations of two 

styles have a stable mapping and makes use of a mapping function to couple the 

coefficients of the low resolution and high resolution data. While tackling the energy 

minimization problem, SCDL will divide the main function into 3 sub-problems, 

namely (i) sparse coding for training samples, (ii) dictionary updating and (iii) 

mapping updating.  Once a mapping function T and two dictionaries DH and DL are 

initialized, the sparse coefficients for the two sets of data can be obtained and 

afterwards the dictionary pairs can be updated. Finally, one can update the mapping 

function T through coding coefficients and dictionary. During the synthesis process, 

a patch based sparse recovery approach is used with selective sparse coding. Each 

patch at hand is first tested to belong to a certain cluster using the approximate scale 

invariance feature, then the dictionary pairs along with the mapping functions of that 

cluster are used for its reconstruction. First the low resolution patches of sparse 
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coefficients are calculated by the selected dictionary which has low resolution, then, 

the patches of high resolution is obtained by using the dictionary which has high 

resolution and sparse coefficients of low resolution.  

In this thesis, comparisons between the proposed and the CDL algorithms of Yang 

and Xu were carried out using two image sets, namely: Set-A and Set-B. Set A had 

14 test images and Set-B was composed of 10 test images, however in Set-B 8 of the 

test images were selected from text images which are in grayscale or in colour tone. 

Results obtained for Set-A show that based on mean PSNR values Yang’s method is 

the third best and Xu’s method is the second best. The sharpness measure based 

SCDL method was seen to be 0.03dB better than Xu’s method.  For set-B only the 

best performing two methods were compared and it was seen that the proposed 

method had 0.1664dB edge over Xu’s method.  The thesis also tried justifying the 

results, by looking at PSD of individual images and by calculating sharpness based 

scale invariance percentage for patches that classify under a number of clusters. It 

was noted that when most of the frequency components were around the low 

frequency region the proposed method would outperform Xu’s method in terms of 

PSNR.  

For images with a wide range of frequency components (spread PSD) when the 

number of HR patches in clusters C2 and/or C3 was low and their corresponding 

SM-invariance ratios were also low then the proposed method will not be as 

successful as Xu’s method. 

Keywords: sparse representations, super-resolution, semi-coupled dictionary 

learning, power spectral density, scale invariance. 
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ÖZ 

Literatürde gösterilmiştir ki doğal imgelerden alınan yamalar, boyutları 

resimdekinden daha büyük olan bir sözlükten alınacak öğeler ile seyrekçe 

betimlenebilmektedir.  Aslında, seyrek betimleme ve sözlük öğrenme (DL) teknikleri 

imge geri çatımı için oldukça başarılıdırlar. Son zamanlarda önerilen ve yüksek 

çözünürlük uygulamaları bulunan seyrek betimleme metodları arasında güdümlü 

sözlük öğrenme (SDL), çevrim içi sözlük öğrenme (ODL) ve bağlantılı sözlük 

öğrenme (CDL) bulunmaktadır. Bu bağlantılı sözlük öğrenme yöntemi her iki alanın 

betimleyici katsayılarının eşit olduğunu varsaymaktadır. Ancak, bu varsayım farklı 

biçimleri bulunan imge yapılarını esnek bir şekilde anlatmak için çok güçlüdür. Bu 

tezde, sözü geçen SCDL tekniği SISR için uyarlanmış ve benzetim sonuçlarını 

yorumlamıştır. SCDL yöntemi her iki alanı birbirine bağlayan bir sözlük çifti 

bulunduğunu varsayan ve seyrek betimlemelerin birbiri ile eşleştirilebileceğini 

düşünüp,  düşük ve yüksek çözünürlüklü verilerin katsayılarını birbirine eşleştirecek 

bir fonksiyon kullanan bir yöntemdir. Enerji enküçültme problemini çözmeye çalışan 

SCDL, problemi üç alt-probleme bölmektedir: (i) eğitim örnekleri ve seyrek 

betimleme, (ii) sözlük güncelleme ve (iii) eşleştirme fonksiyonu güncellemesi.  

Eşleştirme fonksiyonu W, DH ve DL sözlüklerinin ilklendirmesini mütakip her iki 

veri seti için seyrek betimleme katsayıları elde edilmekte ve daha sonra sözlük 

çiftleri güncellenmektedir. Son olarak da, elde edilen katsayılar ve sözlüklerin 

kullanımı ile eşleştirme fonksiyonu güncellenmektedir. Sentezleme esnasında  eldeki 

her yamanın hangi topağa ait olduğu belirlenmekte  ve daha sonra  eşleştirme 

fonksiyonu ve sözlükler kullanılarak yamanın geri çatımı gerçekleştirilmektedir.  
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Tezde, CDL tabanlı Yang ve Xu metodları ile önerilen yarı bağlantılı sözlük 

öğrenme yöntemi Set-A ve Set-B diye adlandırdığımız iki set imge kullanılarak 

kıyaslanmıştır. Set-A 14, Set-B ise 10 sınama imgesinden oluşmaktadır. Set-B deki 

imgelerden sekizi gri tonlu ve renkli yazı sınama imgeleri içermektedir.  

Set-A kullanıldığında elde edilen ortalama PSNR değerleri Yang metodunun en iyi 

üçüncü sonucu ve Xu metodunun da en iyi ikinci sonucu verdiği gözlemlenmiştir. 

Netlik ölçüsü tabanlı SCDL yönteminden elde edilen ortalama PSNR değeri Xu ya 

göre 0.03dB daha yukardadır.  Set-B kullanılırken sadece en iyi başarımı göstermiş 

iki yöntem kıyaslanmıştır. Ortalama PSNR değerleri önerilen yöntemin Xu ya göre 

0.166 dB daha iyi olduğunu göstermiştir.  Tezde ayrıca güç spektal yoğunluğuna ve  

farklı topaklar altında düşen yamalar için netlike-ölçüsü değerleri aralıklarına bağlı 

olarak hesaplanan bir ölçü bağimsiz yüzdelik hesabı kullanılarak elde edilen sonuçlar 

yorumlanmıştır. Görülmüştür ki çoğu frekans bileşenleri düşük frekanslı olduğu 

zaman önerilen yöntem ortalama PSNR baz alındığında Xu ve Yang’dan daha iyi 

sonuç sağlamaktadır.  

Çok farklı frekans bileşenleri olan imgelerde ise (yayılmış PSD), C2 ve C3 

topaklarına düşen HR  yamaları ve bunlara denk gelen SM-değişimsizlik oranları 

düşük olduğu zaman önerilen yöntem en yakın rakibi Xu dan biraz daha kötü 

başarım göstermektedir. 

Anahtar kelimeler: seyrek betimlemeler, yüksek çözünürlülük, yarı-bağlaşımlı 

sözlük öğrenme, güç spectrum yoğunluğu, scale invariance. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Super resolution (SR) has been one of the most active research topics in digital 

image processing and computer vision in the last decade. The aim of super 

resolution, as the name suggests, is to increase the resolution of a low resolution 

image. High resolution images are important for computer vision applications for 

attaining better performance in pattern recognition and analysis of images since they 

offer more detail about the source due to the higher resolution they have. 

Unfortunately, most of the times even though expensive camera system is available 

high resolution images are not possible due to the inherent limitations in the optics 

manufacturing technology. Also in most cameras, the resolution depends on the 

sensor density of a charge coupled device (CCD) which is not extremely high.  

These problems can be overcome through the use of super-resolution techniques 

which are based on the idea that a combination of low resolution (noisy plus blurred) 

sequence of images of a scene can be used to generate a high resolution image or an 

image sequence. Most of the time, it is assumed that the low resolution images have 

resulted from resampling of a high resolution image. Accuracy of imaging models is 

quite vital for super-resolution processing. Incorrect modelling of motion can 

actually further degrade the image. The images which are super resolved give more 

information or give more minutiae about the original image and also have high pixel 
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density. A high resolution (HR) image can also be recovered from a single image via 

the use of a technique known as “Super resolution from single image”. Many 

researchers worked on this topic and gain some good quantitative and qualitative 

results as summarized by [1]. 

The authors of [1] have introduced the concept of patch sharpness as a measure and 

have tried to super-resolve the image using a selective sparse representation over a 

pair of coupled dictionaries.  Sparsity has been used as regularize since the single-

image super resolution process maintains the ill-posed inverse problem inside.  The 

sparse representation is based on the assumption that a n-dimensional signal vector 

(      ) could be approximated as a linear combination of some selected atoms in a 

dictionary of k-atoms (        ).  Hence the approximation can be written as 

      where   denotes a sparse coding vector mainly composed of zeros. The 

problem of determining this representation is generally referred to as the sparse 

coding process.  

The single image super resolution algorithm is composed of two parts. The first part 

is the training stage where a set of dictionary pairs is learned and the second is the 

reconstruction stage in which the best dictionary pair is selected to sparsely 

reconstruct HR patches from the corresponding LR patches. Processing in the 

training stage would start by dividing each HR image into non-overlapping patches. 

Then these HR patches are reshaped and combined column-wise to form a HR 

training array.  Next, a set of LR images are obtained by down sampling and blurring 

each HR image in the HR Training image set. Afterwards each LR image would be 

up-sampled to form mid-resolution (MR) images.  Similar to the HR images the mid 

resolution images are divided into patches, vectorized and column-wise combined to 
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form a LR training array. Then for each patch in the LR training array the gradient 

profile magnitude operator is used to measure the sharpness of the corresponding 

patch in the MR image. Based on a set of selected sharpness measure (SM) intervals 

the patches would be classified into a number of clusters.  The algorithm would then 

add the MR and the HR patches to the corresponding LR training set of the related 

cluster or to the corresponding HR training set. Finally, the training data in each 

cluster is used to learn a pair of coupled dictionaries (LR and HR dictionaries).  

In the reconstruction stage from these learned dictionaries the SM value of each LR 

patch is used to identify which cluster it belongs to and the dictionary pair of the 

identified cluster is used for reconstructing the corresponding HR patch via the use of 

sparse coding coefficients. The high resolution patch is calculated by multiplying the 

high resolution clustered dictionary with the calculated coefficients.  

In the literature researches have used coupled dictionary, semi coupled dictionary, 

coupled K-SVD dictionary to super resolve an image [3] [4]. In [5],[6] and [7] 

authors have made proposals to improve upon the results of Yang’s approach. In this 

thesis we will super resolve the image with better semi-coupled dictionaries where 

the coupling improvement between LR and HR image coefficients are due to a new 

mapping function. The general approach is similar to what has been presented in 

[1][2][3][4],but the procedure is different and leads to improved results. 

1.2 Motivation  

As in [5], the objective of this thesis is to propose a new mapping function that 

would improve the coupling between the semi-coupled dictionaries in the single 

image super resolution technique and improve the peak-signal-to-noise ratio (PSNR) 



 

4 

 

values obtained for the super-resolved images. Clustering was used to regulate the 

intrinsic grouping of unlabelled data in a set. Since there is no absolute criteria for 

selecting the clusters the user can select his/her own criteria and carry out the 

simulations to see if the results would suit to their needs.  

Various researchers have worked on coupled dictionary learning for single image 

super-resolution, but here we are doing coupling as well as mapping between HR and 

LR patches. For assessing the quality of the reconstructed HR image as in [9] the 

peak signal-to-noise-ratio (PSNR) and structural similarity index (SSIM) were used 

and the test image and the reconstructed image were compared.  

1.3 Contributions  

In this thesis we used the MATLAB platform to simulate semi-coupled dictionary 

learning and applied it to the problem of single image super resolution. Our 

contributions are twofold: firstly we have obtained results for the specific sharpness 

measure based mapping function that relates the HR and LR data and have compared 

them against results obtained from other state-of-the-art methods. Secondly we have 

tried to analyse the results. To this end we have used PSD and SM-invariance values 

to explain the results.  

1.4 Thesis Outline 

The remainder of this thesis is organized as follows:  Chapter 2 provides a literature 

review on super-resolution techniques. This is followed in Chapter 3 by a detailed 

study of super resolution, single-image super resolution, coupled dictionary learning 

and K-SVD based DL methods. Chapter 4 gives details about our proposed SISR 

algorithm based on SCDL and its mapping function that relates two spaces to each 

other. Chapter 5 provides simulation results for the proposed method and compares 
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these results with those obtained from classical bi-cubic interpolator and two other 

state of the art methods. This chapter also tries to interpret the results. Finally, 

Chapter 6 provides conclusions and makes suggestions for future work. 
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Chapter 2 

2 LITERATURE REVIEW 

 2.1 Introduction                 

The aim of super resolution (SR) image reconstruction is to obtain a high resolution 

image from a set of images captured from the same scene or from a single image as 

stated in [28]. Techniques of SR can be classified into four main groups. The first 

group includes the frequency domain techniques such as [13, 14, 15], the second 

group includes the interpolation based approaches [16, 17], the third group is about 

regularization based approaches [19, 20], and the last group includes the learning 

based approaches [17, 18]. In the first three groups, a HR image is obtained from a 

set of LR images while the learning based approaches achieve the same objective by 

using the information delivered by an image database. 

2.2 Frequency Domain Based SR Image Reconstruction 

The first frequency-domain SR technique [13] was proposed by Huang and Tsai 

where they considered SR computation for noiseless LR images.  Their idea was to 

transform the data of the low resolution images into the Discrete Fourier Transform 

(DFT) domain and then combine the data based on the relationship between the 

aliased DFT coefficients of the observed LR images and the unknown HR image. 

The combined data would finally be transformed back to the spatial domain.  Even 

though frequency domain techniques have low computational complexity they are 

still insufficient for dealing with real-world applications. This is due to the fact that 

the frequency domain techniques require only a global displacement between 



 

7 

 

observed images and the linear blur function.  Two examples to frequency-domain 

techniques include usage of the discrete cosine transform (DCT) to perform fast 

image deconvolution for SR image computation (proposed by Rhee and Kang) and 

the iterative expectation maximization (EM) algorithm presented by Wood et al. [21, 

22]. The registration, blind deconvolution and interpolation operations are all 

simultaneously carried out in the EM algorithm. 

In the literature many researchers have investigated the usage of wavelet transforms 

for addressing the SR problem. They have been motivated to use wavelets since the 

wavelet transform would provide multi-scale and resourceful information for the 

reconstruction of previously lost high frequency information [14]. As depicted in Fig. 

2.1 wavelet transformation based techniques would treat the observed low-resolution 

images as the low-pass filtered sub-bands of the unknown wavelet-transformed high-

resolution image. The main goal is to evaluate the finer scale coefficients. This is 

then followed by an inverse wavelet transformation to obtain the HR image. The 

low-resolution images are viewed as the representation of wavelet coefficients after 

several levels of decomposition. The final step include the construction of the HR 

image after estimating the wavelet coefficient of the (N+1)
th

 scale and taking an 

inverse discrete transformation.  
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The interpolation based SR image method involves projecting the low resolution 

images onto a reference image, and then fusing together the information available in 

the individual images. The single image interpolation algorithm cannot handle the 

SR problem well, since it cannot produce the high-frequency components that were 

lost during the acquisition process [14]. As shown by Fig 2.2, the interpolation based 

SR techniques are generally composed of three stages. These stages include: 

i. registration stage for lining up the LR input images, 

ii. interpolation stage for generating a higher resolution image, and the 

iii. de-blurring stage for enhancing the HR image obtained in step (ii).  

Figure 2.1: Framework of Wavelet Based SR Image Reconstruction [28] 
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2.3 Regularization Based SR Image Reconstruction 

In the literature we can find numerous regularization based SR image reconstruction 

methods [24, 25]. These methods have all been motivated by the fact that the SR 

computation was an ill-posed inverse problem. The aim of these regularization based 

SR methods is to incorporate the prior knowledge of the unknown high-resolution 

image into the SR process. According to the Bayesian point of view, the information 

that can be extracted from the low-resolution images about the unknown signal (HR 

image) is contained in the probability distribution of the unknown. Therefore the HR 

image can be estimated via some statistics of a probability distribution of the 

unknown high-resolution image, which can be established by applying Bayesian 

inference to exploit the information provided by both the low-resolution images and 

the prior knowledge on the unknown high-resolution image. The most popular 

Bayesian-based SR approaches include the maximum likelihood (ML) estimation 

[20] and the maximum a posterior (MAP) estimation [24] approaches. 

Figure 2.2: The Interpolation Based SR Image Reconstruction [28] 
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2.4 Learning Based Super Resolution Techniques 

Similar to the regularization based SR approaches the learning based SR techniques 

also try solving the ill-posed SR problem [26, 27]. The aim of these learning based 

methods is to enhance the high frequency content of the single LR input image by 

extracting the most likely high-frequency information from the given training image 

samples considering the local features of the input low-resolution image. For this 

end, Hertzman [26] had proposed a method in which the desired high-frequency 

information is recovered from a database of LR images. As can be seen from Fig. 

2.3, Hertzman’s method is made up of 2- stages. An off-line training stage and the 

SR image reconstruction stage. In the first stage image patches are used as ground 

truth for the generating LR patches through an image acquisition model proposed in 

[28]. The method would first collect pairs of LR patches and their corresponding HR 

patches. Later in the reconstruction stage, patches extracted from the input low-

resolution images are compared with other patches stored in a database. Afterwards 

to get the HR image a similarity measurement criterion such as minimum distance is 

used to select the best matching patches.  

 

 

Figure 2.1: Learning based SR Image Framework 
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2.5 Single Image Super Resolution Technique 

As stated in [3], the single image super resolution (SISR) technique only makes use 

of a single LR observation to construct a HR image.  This method which had been 

proposed by Yang uses coupled dictionary training and involves patch wise sparse 

recovery. In Yang’s approach to SR image reconstruction, the learned coupled 

dictionaries are used to relate the LR and HR image patch-spaces via sparse 

representation. The learning process makes sure that the sparse representation of a 

low-resolution image patch in terms of the low-resolution dictionary can be used to 

reconstruct a HR image patch with the dictionary in the high-resolution image patch 

space. The SISR method proposed by Yang, is a bi-level optimization problem where 

an   -norm minimization is used among the constraints of the optimization.  

2.6 Dictionary Learning Under Sparse Model 

Dictionary learning for sparse representation is a very active research topic among 

researchers all around the world. As suggested in [3] by Yang et al., the main aim of 

sparse representation is to present the data in a meaningful way to capture the useful 

properties of signals with only a few coefficients that are nonzero (sparse). 

Dictionary learning using sparse representation had become a necessity due to the 

limited representation power of the orthogonal and bi-orthogonal DL methods. The 

sparse and redundant data modelling seeks the representation of signals as linear 

combinations of a small number of atoms from a pre-specific dictionary. Sparse 

coding is the name given to the method to discover such a good set of basis atoms. 

Given a training data        
  the problem of dictionary learning is solving an 

optimization problem by minimizing the energy function that combines squared 

reconstruction errors and the L1 sparsity penalties on the representations. Currently 

there is an abundance of DL methods and most of these methods use the L0 and L1 
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sparsity penalty measures. Some recent DL techniques include the method of optimal 

direction (MODs), the Recursive Least Squares Dictionary Learning (RLS-DLA) 

method, K-SVD dictionary learning and the online dictionary learning (ODL). MOD 

technique which was proposed by Engan et al. [30], employs the L0 sparsity measure 

and K-SVD uses the L1 penalty measure. These over-trained dictionaries have the 

advantage that they are adaptive to the signals of interest, which contributes to the 

state-of-the-art performance on signal recovery tasks such as in-painting [33] de-

noising [31] and super resolution [2],[9]. 

2.7 Single Image Super Resolution on Multiple Learned Dictionaries 

and Sharpness Measure 

A new technique has recently been proposed in [1] by Yeganli et.al. This new 

technique uses selective sparse representation over a set of coupled low and high 

resolution cluster dictionary pairs. Patch clustering and sparse model selection are 

based on a sharpness measure (SM) value obtained from the magnitude of the patch 

gradient operator. The patch sharpness measure used for HR and LR images is 

assumed to be independent to patch resolution. SM value intervals are used to cluster 

the LR input image patches. For each cluster, a pair of structured and compact LR 

and HR dictionaries is learned.  

In the reconstruction stage, each LR patch is classified into a certain cluster using the 

SM value in hand. Afterwards, the corresponding HR patch is reconstructed by 

multiplying the cluster’s HR dictionary with the sparse representation coefficients of 

the LR patch (as coded over the LR dictionary of the same cluster). Various 

numerical experiments using PSNR and SSIM have helped validate that the method 

of Faezeh is competitive with various state-of-the-art super-resolution algorithms. 



 

13 

 

2.8 Application of Sparse Representation Using Dictionary Learning 

2.8.1 Denoising  

In denoising of videos and images the sparse representation is also used [36]. In these 

problems the MAP approximation is expressed in which the priority of sparsity is on 

the base of given data. A solution is described for the MAP estimate where the sparse 

estimate in image block are overlapped and after that by taking average in every 

block the data is identified for denoising.  

Let suppose X is noisy image of size (R × d) in which the overlapped patches    are 

being extracted and after that reshaped the patches to make a vector. Use a K-SVD 

algorithm for over-complete dictionary D, now use OMP for all patches to be 

sparsely coded. The finest atom   is considered as important part    such that the 

noisy part   is rejected. 

        (2.1) 

At last reshaped all de-noise patches into 2-d patches. In overlapping patches take the 

average value pixel and obtained the de-noised image by merge them. 

2.8.2 In-painting 

In image processing the image in-painting application is very helpful now days. It is 

used for the filling of pixels in the image that are missed, in data transmission it is 

used to produce different channel codes and also it is useful for the removal of 

superposed text in manipulation or in road signs [34]. 

Now let suppose consider an image patch x =    
    

    that is made from the two sub-

vectors where the sub-vector    is known for feasible pixel and    have a missing 
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pixels in image in-painting so there is a method proposed for the estimation of the 

missing sub-vector   by Guleryuz [8] in which missing pixels occupy combination 

in orthonormal bases for compression. For the compressibility of x signal means 

there is a sparse vector α exists that gives D such as, x = Dα. now let suppose       

and   are the diagonal matrices with diaognalized value of 1/10 to describe the α 

non zero entries, so the     estimation for the x is given as; 

 ̂   (
  
 ̂ 
 )      ̂

            
   ̂    

(2.2) 

2.8.3 Image Compression  

For image compression the over-complete dictionaries are used for sparsely 

representing the input signal to get good compression. An example of such approach 

is the work which is introduced by Bryt and Elad based on the learned K-SVD 

dictionary [20]. In their approach, they use some pre-specified face templates. Face 

templates which are not overlapped with the others, are used in order to specify a 

class of the signals. And then they are represented employing the corresponding K-

SVD dictionary. 
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Chapter 3 

SUPER-RESOLUTION 

3.1 Introduction 

In this chapter an introduction to super-resolution techniques is presented.  Image 

super resolution (SR) techniques aim at estimating a high-resolution (HR) image 

from one or several low resolution (LR) observation images. SR carried out using 

computers mostly aim at compensating the resolution loss due to the limitations of 

imaging sensors. For example cell phone or surveillance cameras are the type of 

cameras with such limitations.  

Methods for SR can be broadly classified into two families: (i) The traditional multi-

image SR, and (ii) example based SR. Traditional SR techniques mainly need 

multiple LR inputs of the same scene with sub-pixel separations (due to motion). A 

serious problem with this inverse problem is that most of the time there are 

insufficient number of observations and the registration parameters are unknown. 

Hence, various regularization techniques have been developed to stabilize the 

inversion of this ill posed problem. If enough LR images are available (at subpixel 

shifts) then the set of equations will become determined and can be solved to recover 

the HR image. Experiments have showed that traditional methods for SR would lead 

to less than 2 percent increase in resolution [37]. 
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In example based SR, the relationship between low and high resolution image 

patches are learned from a database of low and high resolution image pairs and then 

applied to a new low-resolution image to recover its most likely high-resolution 

version. Higher SR factors have often been obtained by repeated applications of this 

process, however example based SR does not guarantee to provide the true 

(unknown) HR details. Although SR problem is ill-posed, making precise recovery 

impossible, the image patch sparse representation demonstrates both effectiveness 

and robustness in regularizing the inverse problem.   

Suppose we have a LR image Y that is obtained by down sampling and blurring a HR 

image X. Given an over-complete dictionary of K atoms (K > n), signal X    n
 can 

be represented as a sparse linear combination with respect to D. In other words, the 

signal X can be written as X = D αH, where αH    K
 is a vector with very few 

nonzero entries. In practice, one may have access to only a small set of the 

observations from X, say Y: 

          
(3.1) 

 Here L represents the combined effect of down sampling and blurring. L     
k×n

 

with k < n and is known as a projection matrix. 

Assuming that in the context of super-resolution x denotes a HR image patch, while y 

is its LR counterpart it is possible to sparsely represent the HR and LR patches using 

the over-complete dictionary DH and DL: 

x        ,        y         

By supposing that          , then 
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             (3.2) 

(3.2) describes the relationship between the sparse representation coefficient of LR 

and HR patches and says that they are approximately same, i.e.      . Therefore, 

given a LR patch y, one can reconstruct the corresponding HR patch as: 

 ̂      . (3.3) 

Vector selection for sparse representation of y can be formulated as: 

min 0                 , s.t.              < T (3.4) 

Where, T is a threshold which is used to control the sparseness. ‖ ‖  and ‖ ‖  

respectively represent the L2 and L0 norms.  

To represent a signal, a well-trained dictionary and a sparse linear combination of the 

dictionary atoms is required. First, the initial dictionary is used to sparsely represent 

the observation and afterwards the dictionary is updated using the sparse 

representation for the given data.  

3.2 Joint Sparse Coding 

Unlike the standard sparse coding, the joint sparse coding involves learning two 

dictionaries Dx and Dy for two coupled feature spaces,   and  . The two spaces are 

tied by a mapping function F. The sparse representation of xi     in terms of Dx 

should be the same as that of yi     in terms of Dy, where yi = F(xi).  Yang et al. [3] 

addressed this problem by generalizing the basic sparse 
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                        𝑟   𝑛     
               

               , ∀ =1, 2, ···,                 

                              𝑟    𝑛     
              

     ∀ =1, 2,···,   

(3.7) 

Here        
 .are the latent space samples,        

  are the samples from observation 

space and        
  denotes the sparse representations. We recall that yi =F(xi) where 

F( ) is the mapping function.  

Signal recovery from coupled spaces is similar to compressed sensing [32]. In 

compressed sensing there is a linear random projection function F. Dictionary    is 

chosen to be a mathematically defined basis and    is obtained directly from    

with the linear mapping. For more general scenarios where the mapping function F is 

unknown and may be non-linear the compressive sensing theory cannot be applied. 

For an input signal y, the recovery of its latent signal x consists of two consecutive 

steps: (i) find the sparse representation z of y in terms of     according to (3.7), and 

then estimate the latent signal, x = Dx z. 

To minimize the recovery error of x, we define the following loss term: 

                                                 , x, y) = 
 

 
                 

  (3.8) 

The optimal dictionary pair {D∗
x,D∗

y} can be obtained by minimizing (3.8) over the 

training signal pairs as: 

                                         
  𝑛
    

 

 
               
 
    

                   s.t      𝑟   𝑛               
               , ∀ .=.1, 2, ···,               

                                        ∀              

(3.9) 
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Objective function in (3.09) is nonlinear and highly nonconvex. To minimize it one 

must alternatively optimize over Dx and Dy while keeping the other fixed. When Dy is 

fixed, sparse representation zi can be determined for each yi with Dy, and the problem 

reduces to: 

  𝑛
  

 ∑  
 

 
                

 

 

   

 

                  s.t      𝑟   𝑛                 
              ,  ∀ .=.1, 2,···, N                   

                    ∀               

(3.10) 

This is a quadratically constrained quadratic programing problem that can be solved 

using conjugate gradient descent algorithm [35]. Minimizing the loss function of 

(3.10) over Dy is a highly nonconvex bi-level programming problem as stated in [37] 

and this problem can be solved through the use of the gradient descent algorithm 

[38]. 

3.4 K-SVD Based Dictionary Learning 

In vector quantization (VQ), a codebook C that includes K codewords is used to 

represent a wide family of signals          
  by a nearest neighbour assignment. 

The VQ problem can be mathematically described as: 

   
   

  ‖    ‖  
                    (3.11) 

The K-Means algorithm [38] is an iterative method, used for designing the optimal 

codebook for VQ. In each iteration of K-Means there are two steps. The first step is 

the sparse coding that essentially evaluates   by mapping each signal to its closest 

atom in C, and the second step is the updating of the codebook, changing 

sequentially each column ci in order to better represent the signals mapped to it. 
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Sparse representation problem can be viewed as a generalization of (3.11), in which 

we allow each input signal to be represented by a linear combination of codewords, 

which we now call dictionary elements or atoms. Hence, (3.11) can be re-written as: 

   
   

  ‖    ‖  
              ‖  ‖    (3.12) 

In K-SVD algorithm we solve (3.12) iteratively in two steps parallel to those in K-

Means. In the sparse coding step, we compute the coefficients matrix  , using any 

pursuit method, and allowing each coefficient vector to have no more than T non-

zero elements. In second step dictionary atoms are updated to better fit the input data. 

Unlike the K-Means generalizations that freeze   while determining a better D the 

K-SVD algorithm changes the columns of D sequentially and also allows changing 

the coefficients as well. Updating each dk has a straight forward solution, as it 

reduces to finding a rank-one approximation to the matrix of residuals; 

   ∑   
 

   

 

Where   denote the j-th row in the coefficient matrix  .  Ek can be restricted by 

choosing only the columns corresponding to those elements that initially used dk in 

their representation. This will give   
 . Once   

  is available SVD decomposition is 

applied as:  

  
       

Finally we will update    and   
   as: 

       ,       
              

While K-Means applies K mean calculations to evaluate the codebook, the K-SVD 

obtains the updated dictionary by K-SVD operations, each producing one column.  
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For coupled dictionary learning (3.12) will first be replaced by: 

                         
  𝑛

          
                 

  
                   

  

                              s.t                         
                

                                      

                                           .=.1, 2,…, N ,  r.=.1, 2,…, n 

(3.13) 

Where,   
  and   

   are the r-th atom of    and     respectively. 

Afterwards, the two step K-SVD will be implemented.  
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Chapter 4 

THE PROPOSED SUPER RESOLUTION METHOD 

4.1 Single Image Super Resolution  

This idea of Single Image Super Resolution (SIRS) by sparse representation rides on 

a very special property of sparse representation. According to model of the sparse 

land, a vector    can be denoted through a dictionary    and sparse representation 

vector   .  Let    be the high resolution image patch and    and    by the 

corresponding dictionary and sparse coefficient vector. In the same way let    be the 

low resolution image patch,    and    be the corresponding LR dictionary and 

sparse representations vector, then     and     can be represented as: 

                     (4.1) 

                (4.2) 

Here, the     patches are generated by applying down sampling and blurring on HR 

images and then extracting the LR patches from these images. Now consider the 

invariance property of this sparse representation due to the resolution blur. Given the 

trained LR and HR dictionaries one can estimate HR patches from LR patches using 

the HR dictionary and calculate the LR coefficients. 
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This is a very basic idea of a sophisticated SR process. In [2] [5], Yang has proposed 

a mechanism of coupled dictionary learning in which the authors learn the 

dictionaries in the coupled space instead of using a single dictionary for each space. 

Here, the HR and LR data are concatenated to form a joint dictionary learning 

problem. Further, for the sparse coding stage authors suggest a joint by alternate 

mechanism and use it for both dictionaries in the dictionary update stage. 

 In [1], Yeganli and Nazzal have proposed a sharpness based clustering mechanism 

to divide the joint feature space into different classes. The idea here is that the 

variability of signal over a particular class is less as compared to its variability in 

general. They designed pairs of clustered dictionaries using the coupled learning 

mechanism of Yang et.al. [2], and attained state of the art results. 

Motivated from [1], in this thesis a new method is proposed for semi-coupled 

dictionary learning through feature space learning. Moreover we introduce a different 

sharpness feature than the one introduced in [1] for classifying patches into different 

clusters.  

4.2.1 Proposed Dictionary Learning Approach 

Before discussing the details of the proposed dictionary learning approach, we 

provide here first the clustering criteria and data preparation for the semi-coupled 

dictionary learning. The sharpness criteria used for the classification of patches into 

different clusters was as follows: 

          (4.3) 

          (4.4) 
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S.(x , y) = || I (x , y) –    (x , y)||1 (4.5) 

Equation (4.5) says that the sharpness at any pixel location (x ,y) is equal to the L1 

distance between I(x,y) and the mean    (x,y) of its 8-adjacent neighbours. In this 

way we calculate a sharpness value for a particular patch. And assuming the 

invariance of this measure due to the resolution blur we consider only those patches 

which satisfy this invariance. Based on these criteria three clusters were created and 

three different class dependent HR and LR dictionaries are learned. We extract the 

patches from the same spatial locations for both HR and LR data. 

For the dictionary learning process we have used a subset of the training image data 

set provided by Kodak [7].  In our subset we use 69 training images randomly 

selected from the Kodak set. Figure 4.1 depicts some of the images that are in this 

subset.  
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4.2.2 Training of Semi Coupled Dictionary Learning  

Let us consider the HR training image set as X. We first down sample and blur the 

HR images by bi-cubic interpolation and generate the low resolution training image 

set as Y. Now we sample the patches after the LR and HR training set image from 

each image from same spatial locations. Regarding the clustering of data while 

sampling the patches from LR and HR training data we test the sharpness value of 

HR and LR and if this value is same we cluster them into the same cluster. Then HR 

and LR 2D patches were converted into column vector and stacked column wise into 

Figure 4.1. Training Images Data Set 
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a cluster matrix. One more thing to note here is that for the LR training patches, we 

first calculate the gradient features of the patches as done by most SR algorithms 

before concatenating them into cluster matrix. Let    be the high resolution HR 

patches matrix where y represent the cluster number. In the same way let    be the 

low resolution patches matrix. The joint coupled dictionary learning process can be 

expressed as; 

         
 

  ,  
 

, f(.) }‖     
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+   ‖   –      
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 +  ‖  
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s.t.  ‖  
 
  ‖  

         ‖  
 
  ‖  

      

(4.6) 

Here              are the regularization terms and    
 

 and    
 

 are the respective 

cluster dictionary. The problem posed in the above equation is solved in three ways, 

first it is solved for the sparse representation coefficients and keeping constant the 

dictionaries and mapping function. Then it is solved for the dictionaries while 

keeping the sparse representation and mapping functions constant. Finally it is solved 

for mapping function and keeping constant the sparse representation and dictionaries. 

First given the HR and LR cluster training data for each cluster we initialize a 

dictionary and mapping matrix. Given all these dictionaries to the sparse 

representation problem and can be formulated as. 

min {  
 
  ‖     

 
  
 
‖ 
   ‖  

 
     

 
‖ 
    ‖  

 
‖  (4.7) 

min {  
 
  ‖     

 
  
 
‖ 
   ‖       

 
‖ 
    ‖  

 
‖  (4.8) 

The problem posed above is a typical Lasso problem or one can say a vector 

selection problem. There are many algorithms in the literature that can solve this 
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problem such as LARS [11]. After finding the sparse coefficients of the HR and LR 

training data the dictionaries must be updated. This problem can be formulated as: 

Min {  
 
   

 
 ‖     

 
  
 
‖
 

 
 ‖     

 
  
 
‖
 

 
 

s.t.  ‖  
 
  ‖            ‖  

 
  ‖      

(4.9) 

The problem posed in (4.9) is a quadratically constrained program (QCQP) problem 

and can be solved as described in [3]. The third step in the dictionary learning 

process is the updating of the mapping matrix. This problem can be stated as: 

                              Min {    ‖  
 
     

 
‖ 
        ‖ 

 ‖ 
                            (4.10) 

(4.10) shows a ridge regression problem and has been analytically solved. The 

mapping function    would be equal to: 

      
 
  
  

(   
 
  
  

+ (       
-1                                       

 (4.11) 

where, I denotes the identity matrix. 

This proposed dictionary algorithm is summarized below. 

Algorithm 1 The Training Phase 

Input: HR Training Image Set.  

 Perform down-sampling and blurring on HR images to get the LR images. 

 Do bi-cubic interpolation on LR images to get the transformed MR images. 

 Extract patches from HR and MR images and classify them using the 

sharpness value into clusters to get the HR and LR training data matrices.  

 For each directional cluster having HR and LR training  data matrices X and 
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Y do: 

 Initialize dictionary pairs DH and DL for each cluster. 

 Initialize mapping functions TH and TL in every cluster. 

 Fix the further variables; update  H and  L through Eq (3.6). 

 Fix other variables; update DH and DL by Eq.(3.6)  . 

 Fix other variables; update TH and TL by Eq.(3.6)  . 

Output: DH , DL ,TH and TL for each cluster. 

 

Figure 4.2 shows sample atoms of the dictionaries learned for the three clusters.  On 

the left are the atoms that are not so sharp and on the right the ones that are sharpest. 

These are the atoms that will be used for the HR patch estimation during the 

reconstruction phase. 

4.2.3 Reconstruction of SR Image using Semi Coupled Dictionary 

Learning 

During the image reconstruction stage an LR image given we first convert 2D image 

into column matrix for HR image reconstruction. One thing to remember here is that 

we apply full overlap and each LR patch is first tested by its sharpness value to 

Figure 4.2: Atoms for Low Resolution Dictionaries 
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decide the dictionary pair for its reconstruction. In the patch wise sparse recovery 

process we first calculate the sharpness value of the LR patch at hand. From this 

sharpness value we find the cluster to which this patch belongs to. Given the cluster 

dictionaries and mapping matrix we calculate the sparse coefficient of this LR patch 

using the LR dictionaries and the mapping matrix by the same equation used during 

the training stage. Now after finding the sparse coefficients matrix we first multiply 

the sparse coefficients by the training matrix and then use the dictionary of HR along 

by multiplied sparse coefficients to estimate an HR patch. After estimating all HR 

patches. We go from the vector domain to the 2-D image space by using the merge 

method of Yang et al [2]. At the end we have our HR estimate image.  

Algorithm 2 The Reconstruction Phase 

Input: LR Test Image and Dictionary Pairs with Mapping 

Functions.  

 Up-convert the LR image by bi-cubic interpolation. 

 Extract patches from this transformed LR image using full 

overlap. 

 Use the mapping function and dictionary pair of each cluster 

to recover the HR patch. 

 For each LR patch test its sharpness value and decide the 

cluster it belongs to. 

 Use the selected cluster LR dictionary and mapping to get 

the sparse coefficients of LR patch. 

 Use the selected cluster HR dictionary and mapping to 

recover the HR patch using the sparse invariance property. 
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 Reshape and merge the recovered HR patches to get the 

approximate HR image. 

Output: A HR image estimate. 

 

Figure 4.3 depicts the atoms of the dictionaries for the reconstructed HR patches of 

the three clusters. 

 

 

 

 

 

 

 

 

                

 

Figure 4.3: Atoms for High Resolution Dictionaries 
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Chapter 5 

SIMULATION RESULTS 

5.1 Introduction 

In this chapter the performance of the proposed single image SR (SISR) algorithm 

based on semi-coupled dictionary learning (SCDL) and a sharpness measure (SM) 

has been evaluated and the results compared against the performance of the classic 

bi-cubic interpolation and two other state-of-the-art algorithms namely: techniques 

proposed by Yang [3] and Xu et.al.[4]. The dictionary of the proposed SISR 

algorithm was trained using 69 images from the Kodak image database [12], and a 

second benchmark data set [13]. After training the dictionary of the proposed SISR 

method, performance estimation of the reconstructed images were carried out using 

two sets of test images, namely: Set-A and Set-B. Metrics used in comparisons 

included the PSNR and SSIM. 

Peak signal-to-noise ratio (PSNR) represents the ratio between the maximum 

possible value (power) of signal and power of distorting noise that disturbs the 

quality of its representation.  Because various signals have very wide dynamic range 

PSNR is usually expressed in terms of the logarithmic decibel scale and is computed 

as follows:  
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    (    ̂ )           
   

       ̂ 
  (5.1) 

Where,   is the original high resolution (HR) image and  ̂ is the reconstructed 

image. Mean square error it’s the error between (     ̂)   which is defined as:    

                              (    ̂)   
 

  
        ̂  

 
   

 
                                               (5.2) 

The luminance surface of an object is being observed as the product of illumination 

and the reflectance, but the structures of the objects in the scene are independent of 

the illumination. Consequently, to explore the structural information in the 

reconstructed images, we used a second metric which known as Structural Similarity 

index (SSIM).  SSIM which compares local patterns of pixel intensities that have 

been normalized for luminance and contrast is defined as: 

SSIM(X, ̂) = 
      ̂             ̂      

   
    ̂

          
    ̂

      
 (5.3) 

In (5.3),       ̂ are the average of the original image   and noisy image  ̂ and   
  

   ̂
   

are noisy and original image variance where covariance for    ̂ is    ̂. This 

covariance is computed as:  

    ̂  
 

     
∑         ̂    ̂ 

 

   

 
(5.4) 

5.2 The Patch size and Number of Dictionary Atoms Effect on the 

Representation quality 

In sparse representation, the dictionary redundancy is an important term as stated in 

[3]. In patch-based sparse representation dictionary redundancy is loosely defined as 
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a ratio for the dictionary atoms to patch size. Larger patch sizes mean larger 

dictionary atoms and when larger patches are used this will help better represent the 

structure of the images. However, when patches of image are large the learning 

process needs significantly more training images and inherently leads to an increase 

in the computational complexity of the dictionary learning (DL) and sparse coding 

processes. To see the effect of patch sizes on representation quality we used patch 

sizes of                  , and     .  Firstly, we checked the four patch 

sizes with 256 dictionary atoms. 10,000 sample patches were extracted from a set of 

natural images. It was made sure that the test images were not from the training 

images set. To assess the effect of increased dictionary atoms on performance, we 

have also used the four patch sizes together with 600 dictionary atoms taking 40,000 

samples and 1200 dictionary atoms taking 40,000 samples. From the results obtained 

we noted that increasing the size of patch (hence the number of atoms) will lead to 

higher PSNR but the computations time will also increase. 

Table 5.1: Average PSNR and SSIM results for       patch size and different 

number of dictionary atoms and samples. 

 

    

 

Average PSNR 

 

SSIM 

Dictionary atoms: 256 

Samples: 1000 

 27.77348 dB 

 

0.853831 

 

Dictionary atoms: 600 

 Samples: 40,000 

27.84722 

 

0.862038 

 

Dictionary atoms: 1200 

 Samples: 40,000 

27.89209 

 

0.862745 
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Table 5.3: Average PSNR and SSIM results for       patch size and different 

number of dictionary atoms and samples. 

 

    

 

Average PSR 

 

SSIM 

Dictionary atoms: 256 

Samples: 10,000 

 

27.96074 

 

0.86324 

Dictionary atoms: 600 

Samples: 40,000 

 

28.04904 

 

0.864984 

Dictionary atoms: 1200 

Samples: 40,000 

 

28.09911 

 

0.865902 

 

 

Table 5.2: Average PSNR and SSIM results for        patch size and different 

number of dictionary atoms and samples. 

 

                 

 

 

Average PSNR 

 

SSIM 

Dictionary atoms: 256 

Samples: 10,000 

 27.92892 

 

0.862715 

 

Dictionary atoms: 600 

Samples: 40,000 

28.02727 

 

0.864475 

 

Dictionary atoms: 1200 

Samples: 40,000 

 

28.07202 

 

0.865774 
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Table 5.4: Average PSNR and SSIM results for       patch size and different 

number of dictionary atoms and samples. 

 

    

 

Average PSNR 

 

SSIM 

Dictionary atoms: 256 

Samples: 10,000 

 

27.93783 

 

0.862745 

Dictionary atoms: 600 

Samples: 40,000 

 

28.0251 

 

0.864353 

 

 

5.3. Evaluation and Comparison of Proposed Algorithm 

For evaluations, the proposed SISR algorithm is compared with two current leading 

super-resolution algorithms and the ever green bi-cubic interpolation technique. 

Throughout the simulations the same set of general simulation parameters were 

assumed for each algorithm and in addition for the bi-cubic technique we have used 

Matlab’s “imresize” function for upsampling. 

The comparisons are made with Yang et al. [3] which is considered as a baseline 

algorithm and with Xu et al. [4] which utilizes a similar kind of dictionary learning 

and super-resolution approach as in [3], but the dictionary update is done using the 

K-SVD technique. Comparisons were carried out using two image sets, namely: Set-

A and Set-B. Set A had 14 test images from the Kodak set [12] and Set-B was 

composed of 10 test images, six from the Flicker image set and 4 from internet 

sources. However in Set-B 8 of the test images were selected from text images.  

Individual and mean PSNR and SSIM values for test images in Set-A is depicted in 

Table 5.5. This is clear from table that for Set-A, the lowest mean PSNR 
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performance belongs to the classical bi-cubic interpolator. Yang’s method is the third 

best and Xu’s method is the second best which is 0.03dB behind the average PSNR 

value for the proposed method. After a careful look at the individual PSNR values 

we noticed that the proposed semi-coupled dictionary learning SISR method was not 

better than Xu’s method for all 14 images. For test images Barbara, Kodak-08, Nu-

Regions and Peppers Xu’s method would give better PSNR and for the remaining 10 

images the proposed method would give higher PSNR values. Curious about why 

this was so, we calculated the power spectral density for all images in Set-A which is 

as shown in figure 5.1. We note that for images that had most of its frequency 

content in and around the low frequency region the proposed method would give 

better results and for images whose frequency content is wide and spread then Xu’s 

method would perform better. 
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Table 5.5: Proposed SCDL SISR method versus classic bi-cubic interpolator, Yang’s 

algorithm and Xu’s algorithm. 

Images Bic. Yang Xu Proposed 

AnnieYukiTim 31.424 32.853 32.800 32.960 

0.906404 0.938103 0.9375 0.922934 

Barbara 25.346 25.773 25.866 25.821 

0.792961 0.832917 0.8340 0.834083 

Butterfly 27.456 30.387 30.047 30.638 

0.898450 0.948782 0.9447 0.938459 

Child 34.686 35.420 35.405 35.420 

0.841002 0.880024 0.8797 0.864272 

Flower 30.531 32.442 32.284 32.536 

0.896804 0.933642 0.9326 0.926663 

HowMany 27.984 29.219 29.182 29.258 

0.868694 0.91325 0.9125 0.88598 

Kodak-08 22.126 22.827 23.507 22.871 

0.699514 0.767805 0.7964 0.757098 

Lena 35.182 36.889 36.851 37.000 

0.921749 0.948912 0.949 0.936711 

MissionBay 26.679 28.012 27.929 28.115 

0.845938 0.890611 0.8883 0.880447 

NuRegions 19.818 21.383 22.074 21.673 

0.846978 0.906466 0.9178 0.91118 

Peppers 29.959 31.283 31.996 31.358 

0.904532 0.944194 0.9588 0.911413 

Rocio 36.633 39.217 39.075 39.285 

0.961259 0.978078 0.9775 0.970202 

Starfish 30.225 32.205 31.967 32.363 

0.892305 0.936731 0.9350 0.924364 

Yan 26.962 28.022 28.003 28.107 

0.827686 0.874876 0.8743 0.856287 

Average 28.929 30.424 30.499 30.529 

0.864591 0.906742 0.90986 0.894292 
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AnnieYukiTim.bmp Magnitude of FFT2 Phase of FFT2 

child.jpg Magnitude of FFT2 Phase of FFT2 

flower.jpg Magnitude of FFT2  Phase of FFT2 

HowMany.bmp Magnitude of FFT2 Phase of FFT2 

Barbara.png Magnitude of FFT2 Phase of FFT2 
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Kodak
0
8.bmp Magnitude of FFT2 Phase of FFT2 

MissionBay.bmp Magnitude of FFT2 Phase of FFT2 

lena.jpg Magnitude of FFT2  Phase of FFT2 

NuRegions.bmp Magnitude of FFT2 Phase of FFT2 

Peppers.bmp Magnitude of FFT2 Phase of FFT2 
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Figure 5.1:  The Power Spectral Density Plots of Different images in Set-A 

In the second set of simulations which used test images in Set-B, only the two best 

performing algorithms were compared. The results obtained are as depicted in Table  

 

Yan.bmp Magnitude of FFT2 Phase of FFT2 

Rocio.bmp Magnitude of FFT2 Phase of FFT2 

Starfish.png Magnitude of FFT2 Phase of FFT2 
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       Table 5.6: Xu versus Proposed Method on test images in Set-B 

Xu Proposed SCDL SISR method 

Images PSNR SSIM Images PSNR SSIM 
10.tif 

24.3158 0.9472 10.tif 24.5297 0.9561 

2.tif 
22.7973 0.8487 2.tif 23.0514 0.8503 

5.tif 
22.5205 0.907 5.tif 23.4412 0.9313 

6.tif 
25.5222 0.9478 6.tif 25.7378 0.9435 

b82 
27.3879 0.925 b82 27.4646 0.9202 

t1 
24.3933 0.8898 t1 22.2233 0.8345 

t2 
18.7391 0.7532 t2 16.3692 0.6655 

t3 
19.717 0.7741 t3 18.7558 0.7438 

t4 
21.22 0.6885 t4 19.2275 0.5746 

Yxfo16 
22.8599 0.8543 Yxfo16 23.0263 0.8482 

 

 

In testing Set-B, images 10.tif, 2.tif, 5.tif, 6.tif, t1.jpg, t2.jpg, t3.jpg and t4.jpg are 

text images either in gray tones or in colour.  Interestingly, for half of these text 

images the proposed algorithm will give higher PSNR values (marked in bold) and 

for the other half Xu’s method would. In the mean PSNR values the proposed 

method has 0.1664dB edge over Xu’s method. To see if our previous PSD based 

argument would hold for this set of images also, we again plotted the power spectral 

densities for test images in set-B which are as depicted in Table 5.6. To our surprise, 

even when the PSD contained many different high frequency components (spread 

psd plot) sometimes Xu and sometimes the proposed method would provide higher 

PSNR values.  For test images t1.jpg, t2.jpg, t3.jpg and t4.jpg the proposed algorithm 

would give higher PSNRs and for 2.tif, 5.tif, 6.tif and 10.tif Xu’s method would. 

Clearly a second factor must be tipping the balance to one or the other method. To 

better understand why this was so, we followed an idea on scale-invariance proposed 

in [1].  Three clusters are denoted by C1 through C3 corresponding to sharpness 
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measure (SM) intervals of [0, 5], [5, 10], [10, 20] were defined.  First, the sharpness 

measure values of all HR and LR patches of the image were calculated. Patches was 

then classified into the three clusters C1-C3 based on the calculated sharpness 

measure values and selected intervals. The number of total high-resolution patches 

divided into each interval was counted. Also, LR counterparts were appropriately 

classified into the same cluster were counted. Based on these counts, SM invariance 

was calculated as a ratio of LR patches correctly classified to the entire number of 

HR patches in a cluster. These SI-values are provided in Table 5.7.  

 

 

 

2.tif Magnitude of FFT2 Phase of FFT2 

10.tif Magnitude of FFT2 Phase of FFT2 
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5.tif Magnitude of FFT2 Phase of FFT2 

6.tif Magnitude of FFT2 Phase of FFT2 

b82.tif Magnitude of FFT2 Phase of FFT2 

t1.jpg Magnitude of FFT2 Phase of FFT2 
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t2.jpg Magnitude of FFT2 Phase of FFT2 

t3.jpg Magnitude of FFT2 Phase of FFT2 

t4.jpg Magnitude of FFT2 Phase of FFT2 

Yxf016.tif Magnitude of FFT2 Phase of FFT2 

Figure 5.2: Power Spectral Density Plots of images in Set-B 
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It was noted that for images with many frequency components (spread PSD) when 

the number of HR patches in C2 and/or C3 was low and their corresponding SM-

invariance ratios were also low then the proposed method will not be as successful as 

Xu’s method. For images that’s PSD has frequency components mostly at low 

frequencies the proposed method would always perform better than Xu’s method.  

To further test this idea we selected 8 more images from the Kodak set that had wide 

PSDs and also calculated their corresponding SM-invariance values which are given 

in Table 5.8.  For all cases the results were as expected, whenever for C2 and/or C3. 

Table 5.7 Scale Invariance of Regular Texture Images and Text images entire 

numbers of HR patches categorized in each interval (top.)  SM invariance  (bottom) 

Image C1 C2 C3 

10 31,864 936 11,570 

  94.15328 38.3547 97.74417 

2 3,173 898 2,529 

  98.6133 50.33408 51.16647 

5 10,502 672 7,426 

  94.79147 75.44643 94.68085 

6 26484 983 11,509 

  91.69687 26.14446 99.18325 

b82 463 700 1,438 

  90.49676 77 57.30181 

t1 960 71 949 

  98.85417 64.78873 55.00527 

t2 607 16 1,402 

  99.17628 75 64.47932 

t3 406 328 1,255 

  92.11823 40.54878 75.21912 

t4 36 118 1,871 

  52.77778 61.86441 9.353287 

yxf016 1,173 274 1,154 

  97.78346 52.91971 53.37955 
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The number of HR patches classified in that interval plus the corresponding SM-

invariance values were low, then as expected Xu’s algorithm will outperform the 

proposed method.    

Table 5.8: Scale Invariance of Regular Texture Images and Text images entire   

numbers of HR patches categorized in each interval (top.) SM invariance  (bottom) 
 

Image C1 C2 C3 

AnnieYukiTim 4985 1092 859 

  99.29789 44.87179 47.6135 

Barbara 5414 2012 2978 

  99.64906 41.6501 19.37542 

BooksCIMAT 1115 865 934 

  98.74439 60.34682 53.31906 

Fence 1068 598 935 

  99.1573 27.59197 37.75401 

ForbiddenCity 710 580 1624 

  98.87324 48.7931 4.248768 

Michoacan 676 372 1494 

  37.57396 36.29032 30.25435 

NuRegions 46 112 2384 

  4.347826 29.46429 97.86074 

Peppers 1481 371 357 

  98.64956 63.8814 48.7395 

5.3 Quality of Super-Resolved Images 

In figures 5.3-5.7 we have provided the SR images produced by the competing 

methods for visual comparison. Images are zoomed to clarify the reconstruction 

quality. In line with the PSNR values, the bi-cubic images show a significant amount 

of blur however the other images show comparatively less blur. Looking at the 

zoomed images it can be clearly observed that’s proposed method is on par with the 

state of the art algorithms and is able to recover the sharp patches effectively. 
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Figure 5.3: SR images for test image AnnieYukiTim from Set-A. 

 

 

Figure 5.4: SR images for test image Flower from Set-A 
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Figure 5.5: SR images for test image Butterfly from Set-A. 

 

 

                  Figure 5.6: SR images for test image Rocio from Set-A. 
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Figure 5.7: SR images for test image Starfish from Set-A 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion  

In our work we proposed a semi-coupled dictionary learning strategy for single 

image super-resolution. An approximate scale invariant feature due to resolution blur 

is proposed. The proposed feature is used for classifying the image patches into 

different clusters. It is further suggested that the use of semi-coupled dictionary 

learning, with mapping function that can recover the representation quality. The 

proposed strategy for SISR contains on two phases, the first phase is about the 

training and the other one is the reconstruction phase. In the training phase a set of 

HR images are taken as input, and these HR images are blurred down-sampled for 

the purpose to get Low resolution images. Bi-cubic interpolation is done on these LR 

images to get MR images, and from these MR and HR images the patches are 

extracted and put in their respective cluster on its sharpness measure values to get 

HR and LR data training matrices. After this we initialize the dictionaries      and  

   and also initialize the mapping functions    and    and in last updating stage 

applied on all these dictionaries and get the updated dictionaries. In reconstruction 

phase an LR test image with pair of dictionary with mapping function are taken and 

with the help of this the patches are recovered from each cluster and find the 

sharpness value for each LR patch  and putted in their expected clusters. From LR 

dictionary we find the LR patches and from HR dictionary find the HR patches using 

sparse invariance property. In last we reshape and merge the HR patches to recover 
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the approximate high-resolution image. The comparison of proposed method is made 

with bi-cubic, Yang and Xu, and for this purpose two sets of images namely Set-A 

and Set-B were used in which it showed that which algorithm gives high PSNR 

values. In Set-A 14 images were used in which the proposed method gives better 

PSNR values from bi-cubic and also from the method of Yang and Xu. In Set-A 

images the conflict come between the proposed and Xu methods, and it was observed 

from the results of some images. In which the results of Xu is better for some images 

and for some the proposed method performs better, to clarify this doubt a PSD term 

is used in which it shows that for those images in which the frequency contents at the 

low frequency region and PSD plot is not spread in this case the proposed algorithm 

will perform better. In the images in which the frequency contents spread out, the 

performance of Xu will be better. In Set-B the images are text images and its gives 

some surprising results, in which for half images the Xu method perform better and 

for other half the proposed methods perform better. To solve this problem that why 

the images behaviour are like this, for this purpose scale invariance technique is used 

which gives an evident about this problem. 

 In the proposed algorithm a patch size of      with 600 dictionary atoms is used 

and comparison is made with the ever green Bi-cubic, Yang and Xu. The 

performance of the proposed algorithm illustrate 1.6 dB improvement and SSIM  

0.02 over bi-cubic interpolation while also ahead from Yang and Xu in term of 

PSNR 0.10 dB and 0.03 dB and inferior in SSIM results 0.012 and 0.012  

respectively.  
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6.2 Future Work 

In this thesis we proposed a semi-coupled dictionary learning algorithm for single 

image super-resolution, which contain number of dictionaries with a mapping 

function and number of clusters to obtain a high resolution image. This work can be 

extended to increase the number of dictionaries as well as the number of clusters and 

it would be interesting to optimize the SM intervals in a more systematic manner. For 

example bounds of intervals perhaps can be selected to optimize the performance of 

the proposed algorithm. 
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