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ABSTRACT 

The solution of systems of algebraic equations arising from the 5-point  discretization 

of Poisson’s  equation on a rectangle with Dirichlet boundary conditions is analyzed 

by direct solution methods. Special emphasis is given for block direct methods, such 

as block elimination, block decomposition and block cyclic reduction methods.  For 

this purpose block elimination algorithms, orthogonal block decomposition 

algorithms, cyclic odd even reduction method, (CORF) algorithm and Buneman 

version of the CORF algorithm is also studied. A test problem is constructed for the 

Laplace equation and solved by these block methods for the mesh size 
1

4
h  . 

Comparisons are given based on the computational complexity of the methods. 

Keywords: Block elimination methods, block cyclic reduction method, block 

decomposition methods, Thomas algorithm, discrete Poisson’s equation, 5-point 

scheme. 
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ÖZ 

Poisson denkleminin dikdörtgen üzerindeki Dirichlet sınır değer probleminin 5-nokta 

çözümlemesi ile elde edilen cebirsel denklem takımlarının çözümü doğrudan 

yöntemler ile incelendi. Blok yoketme yöntemleri, blok ayrıştırma yöntemleri, ve blok 

döngüsel indirgeme yöntemleri gibi blok doğrudan yöntemlere özel önem verildi. Bu 

amaç doğrultusunda blok yoketme algorithmaları, dik blok ayrıştırma algorithmaları, 

tek çift döngüsel indirgeme metodu, (CORF) algorithması ve Buneman versiyonu 

çalışıldı. Laplace denklemi için bir test proplemi oluşturuldu ve adım büyüklüğü 
1

4
h   

için verilen yöntemler ile çözüldü. Karşılaştırmalar yöntemlerin hesaplama 

karmaşasına göre verildi. 

Anahtar kelimeler: Blok yoketme yöntemi, blok döngüsel indirgeme yöntemi, blok 

ayrıştırma yöntemi, Thomas algorıthması, Poisson denklemi, 5-nokta şeması. 
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Chapter 1 

1 INTRODUCTION 

Many problems in Science and Engineering need the solution of the Poisson’s 

equation, 

 ∆𝑢 = 𝑦 𝑖𝑛 𝑅, 

𝑢 = 𝑤 𝑜𝑛 𝜕𝑅, 
(1.1) 

where 𝑅 is a rectangle, 𝜕𝑅 is the boundary of 𝑅, ∆𝑢 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 , and 𝑦, 𝑤 are known 

functions. 

Finite differences with 5-point, 9-point or 7-point schemes may be used for 

approximating the partial differential equation to find the numerical solution of (1.1). 

These schemes for (1.1) results in algebraic linear systems of equations which are 

usually in large dimensions and are sparse systems. Classical direct methods such as 

Gaussian elimination, LU decomposition methods are inefficient both in storage and 

computational complexity. Therefore, iterative methods such as point successive over 

relaxation (SOR) and Peaceman-Rachford alternating direction implicit iteration 

(ADI) method were used for the solution of such discrete problems. In general, 

iterative methods have some pitfalls which includes; 

1. Initial guess to generate successive approximations to a solution, 

2. Total computational complexity increases as iteration number increases, 

3. Convergence rate, which sometimes depends on the spectral properties of the 

coefficient matrix, 
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4. In general, accuracy which is usually determined by the convergence test is inferior 

to the accuracy of the direct method and is limited as the exact solution of the equation 

cannot be obtained in finite number of steps.  

However, in the second half of the 20th century, direct methods which utilize the 

special block structure of these linear system of equations have been proposed [1]. 

Some of these methods are; block elimination methods, block decomposition methods, 

cyclic reduction methods, tensor product methods and the Fourier series methods. 

In this thesis, we consider systems of algebraic simultaneous equations arising from 

the 5-point discretization of Poisson’s equation on a rectangle with Dirichlet boundary 

conditions, which results to symmetric block tridiagonal matrices. Block direct 

methods such as block elimination methods, block decomposition methods, and cyclic 

reduction methods will be analyzed and a comparative study will be provided based 

on their computational complexity. 

In Chapter 2, the 5-point finite difference analogue of the Poisson’s equation on a 

rectangle with Dirichlet boundary conditions is reviewed and remarked that the 

resulting system of equations possess block tridiagonal coefficient matrix. A test 

problem is considered and a system of equations is obtained when the mesh size ℎ is 

ℎ = 1/4. 

In Chapter 3, block elimination methods are analyzed for the solution to the non-

singular block tridiagonal systems and particularly for the solution of the obtained 

block tridiagonal system from the 5-point difference analogue of the Poisson’s 
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equation. The test problem is solved by block Gaussian elimination method, block 

polynomial form, Schechter form and the simplified Schechter form algorithm. 

In Chapter 4, the matrix decomposition methods are analyzed for the solution of the 

general block tridiagonal systems. Orthogonal block decomposition algorithm is 

studied, which requires the eigenvalues and eigenvectors of the blocks in the main 

block diagonal for the obtained block tridiagonal matrices. Therefore, we also 

reviewed the power method for finding eigenvalues and eigenvectors. 

In Chapter 5, we considered the cyclic odd-even reduction and factorization (CORF) 

algorithm to solve the systems. Due to the difficulties encountered in using the CORF 

algorithm, the Buneman version of CORF algorithm is also studied. 

In Chapter 6, comparisons are given according to the computational complexity. 
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Chapter 2 

2 DISCRETE POISSON’S EQUATION ON A 

RECTANGLE 
 

2.1 Introduction 

One of the forms in which a second order partial differential equation in two variables 

can be classified is the elliptic form. In general, it is of the form; 

 𝐴𝑢𝑥𝑥 + 2𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹 = 0, (2.1) 

which satisfies the condition 𝐵2 − 𝐴𝐶 < 0, for 𝑢𝑥𝑦 = 𝑢𝑦𝑥. Its basic example is the 

Laplace Equation; 

 ∇2𝑢 = 0. 
(2.2) 

But if the equation is non-homogeneous, then it is called Poisson’s Equation. The 

Poisson’s Equation, named after a French mathematician, physicist and geometer 

Simeon Denis Poisson, is required to solve many physical problems, e.g. the steady-

state temperature distribution on a heated plate. It is usually written in the form: 

 𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦), (2.3) 

where 𝑢 is some scalar potential which is to be determined and 𝑓(𝑥, 𝑦) is a known 

function. 
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2.2 Finite Difference Analogue of the Poisson’s Equation 

A finite difference analogue of the Poisson’s equation is the Discrete Poisson’s 

equation. For computational purposes, finite difference analogue based on treating the 

plate as a grid of discrete points are substituted for the partial derivatives in (2.3). Let’s 

consider a rectangle 𝑅 = (0, 𝑎) × (0, 𝑏) and define mesh spacing ∆𝑥 =
𝑎

𝑁+1
 and ∆𝑦 =

𝑏

𝑀+1
 (M and N are integers). The mesh points 𝑥𝑖 = 𝑖∆𝑥 𝑎𝑛𝑑 𝑦𝑗 = 𝑗∆𝑦 are used to 

define the discrete interior 𝑅ℎ and discrete boundary 𝜕𝑅ℎ such that 

 𝑅ℎ = {(𝑥𝑖, 𝑦𝑗)|1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀}, 

𝜕𝑅ℎ = 𝜕𝑅 ∩ {(𝑥𝑖 , 𝑦𝑗)|0 ≤ 𝑖 ≤ 𝑁 + 1, 0 ≤ 𝑗 ≤ 𝑀 + 1}. 
(2.4) 

With the notation 𝑈𝑖𝑗 = 𝑈(𝑥𝑖 , 𝑦𝑗), we define the usual 5-point approximation and 

obtain the discrete operator ∆ℎ and ∆ℎ𝑈𝑖𝑗 as: 

 
∆ℎ𝑈𝑖𝑗 =

1

(∆𝑥)2
(𝑈𝑖−1,𝑗 − 2𝑈𝑖𝑗 + 𝑈𝑖+1,𝑗)

+
1

(∆𝑦)2
(𝑈𝑖,𝑗−𝑖 − 2𝑈𝑖𝑗 + 𝑈𝑖,𝑗+1). 

(2.5) 

If ∆𝑥 = ∆𝑦 = ℎ, then we have 

 𝑈𝑖+1,𝑗 + 𝑈𝑖−1,𝑗 + 𝑈𝑖.𝑗+1𝑈𝑢𝑖,𝑗−1 − 4𝑈𝑖,𝑗 = ℎ2𝑓𝑖,𝑗 . 
(2.6) 

This is also known as the five-point difference formula. For Laplace’s equation, the 

right hand side is zero, i.e. 

 𝑈𝑖+1,𝑗 + 𝑈𝑖−1,𝑗 + 𝑈𝑖.𝑗+1 + 𝑈𝑖,𝑗−1 − 4𝑈𝑖,𝑗 = 0. 
(2.7) 

 

 



6 

 

 
Figure 1. A rectangular grid used for finite difference equation. 

 

 

2.3 The Dirichlet Boundary Condition 

A Dirichlet Boundary Condition is a continuous function given on the boundary 𝜕𝑅 of 

the domain that the solution satisfies. Consider the boundary value problem (1.1); 

Let 𝑅 = {(𝑥, 𝑦): 0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏}, 

𝑈𝑖,𝑗 𝑈𝑖+1,𝑗 𝑈𝑖−1,𝑗 

𝑈𝑖,𝑗−1 

𝑈𝑖,𝑗+1 

     Figure 2. A 5-point Stencil. 
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 𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦) 𝑜𝑛 𝑅, 

𝑢(𝑥, 𝑦) = 𝜑𝑗 𝑜𝑛 𝛾𝑗 , 𝑗 = 1,2,3,4 , 

(2.8) 

where 𝑅 is a rectangle, 𝜑𝑗 are known boundary conditions on the boundaries 𝛾𝑗, 

counted in anticlockwise direction, where 𝛾1 is the boundary on the side 𝑥 = 0.  

 
Figure 3. A rectangular grid indicating its boundary conditions. 

Using the 5-point difference analogue of the Poison’s equation given in Section 2.2 

and employing the boundary conditions, we get the discrete Poisson’s problem 

 ∆ℎ𝑈 = ℎ2𝑓𝑖𝑗  𝑜𝑛 𝑅ℎ, 

𝑈 = 𝜑𝑗  𝑜𝑛 𝛾𝑗 . (2.9) 

For the approximate solution at the interior grids, we need to solve the algebraic system 

of equations, 
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 𝐴𝑈 = 𝑌, (2.10) 

obtained from (2.9) which can be written in block tridiagonal matrices form as: 

 

[
 
 
 
 
 
𝐷1 𝐶1 0
𝐴2 𝐷2 𝐶2

0 𝐴3 𝐷3

0 ⋱ ⋱
⋮
0

0
⋯ 0

    

⋯
0
𝐶3

⋱
𝐷𝑁−1

𝐴𝑁

    

0
0
0
⋱

𝐶𝑁−1

𝐷𝑁 ]
 
 
 
 
 

[
 
 
 
 
 

𝑢1

𝑢2
𝑢3

⋮
𝑢𝑁−1

𝑢𝑁 ]
 
 
 
 
 

=

[
 
 
 
 
 

𝑦1

𝑦2
𝑦3

⋮
𝑦𝑁−1

𝑦𝑁 ]
 
 
 
 
 

, (2.11) 

where 𝐴 =

[
 
 
 
 
 
𝐷1 𝐶1 0
𝐴2 𝐷2 𝐶2

0 𝐴3 𝐷3

0 ⋱ ⋱
⋮
0

0
⋯ 0

    

⋯
0
𝐶3

⋱
𝐷𝑁−1

𝐴𝑁

    

0
0
0
⋱

𝐶𝑁−1

𝐷𝑁 ]
 
 
 
 
 

, 𝑈 =

[
 
 
 
 
 

𝑢1

𝑢2
𝑢3

⋮
𝑢𝑁−1

𝑢𝑁 ]
 
 
 
 
 

 𝑎𝑛𝑑 𝑌 =

[
 
 
 
 
 

𝑦1

𝑦2
𝑦3

⋮
𝑦𝑁−1

𝑦𝑁 ]
 
 
 
 
 

. 

In this case, 𝐴𝑗 and 𝐶𝑗 are identity matrices and 𝐷𝑗 = 𝐷 for 𝑗 = 1,2, … ,𝑁, so we have 

 𝐴 = [𝐼  𝐷  𝐼]𝑁×𝑁 , 

𝐼 = [0  1  0]𝑀×𝑀, 

𝐷 = [𝜆 − 2(1 + 𝜆)  𝜆]𝑀×𝑀, 

𝜆 = (
Δ𝑥

Δ𝑦
)
2

. 

 

When Δ𝑥 =  Δ𝑦, 𝜆 = 1 and 𝐷 = [1 − 4   1]𝑀×𝑀. We define 𝑢𝑖 as the vector with 

components comprising of the 𝑖th vertical line of the array 𝑈, 

𝑢𝑖 =

[
 
 
 
 
 
𝑈𝑖1

𝑈𝑖2

𝑈𝑖3

𝑈𝑖4

⋮
𝑈𝑖𝑀]

 
 
 
 
 

,    1 ≤ 𝑖 ≤ 𝑁. 

2.3.1 Test Problem 

Let 𝑅 = {(𝑥, 𝑦): 0 < 𝑥 < 1, 0 < 𝑦 < 1}, considering a case of (2.8) for 𝑓(𝑥, 𝑦) =  0, 

i.e. 
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𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 𝑜𝑛 𝑅, 

with boundary conditions:  

 𝜑1(𝑦) = sin 𝑦  𝑜𝑛 𝛾1, 

𝜑2(𝑥) = 0 𝑜𝑛 𝛾2,  

𝜑3(𝑦) = 𝑒1 sin 𝑦  𝑜𝑛 𝛾3, 

𝜑4(𝑥) = 𝑒𝑥sin 1  𝑜𝑛 𝛾4, 

 

where the exact solution is 𝑢(𝑥, 𝑦) = 𝑒𝑥 sin 𝑦. 

 
Figure 4. A square grid for the case where 𝑁 = 𝑀 = 3, and ℎ = 1/4. 

Taking ℎ = 1/4, a balance node for 𝑈11 according to (2.7) is −4𝑈11 + 𝑈12 + 𝑈21 =

−𝜑2(ℎ) − 𝜑1(ℎ). For 𝑈12, the equation is 𝑈11 − 4𝑈12 + 𝑈13+𝑈22 = −𝜑2(2ℎ). The 

balance nodes for other interior points can be generated accordingly and (2.7) results 

to the matrix equation below: 

[
𝐷 𝐼 0
𝐼 𝐷 𝐼
0 𝐼 𝐷

] [

𝑢1

𝑢2

𝑢3

] = [

𝑦1

𝑦2

𝑦3

], 

𝑈31 𝑈32 𝑈33 

𝑈23 𝑈22 𝑈21 

𝑈11 𝑈12 𝑈13 
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where 𝑦1 = [

−𝜑2(ℎ) − 𝜑1(ℎ)

−𝜑2(2ℎ)

−𝜑2(3ℎ) − 𝜑3(ℎ)

] , 𝑦2 = [
−𝜑1(2ℎ)

0
−𝜑3(2ℎ)

] , 𝑦3 = [

−𝜑1(3ℎ) − 𝜑4(ℎ)

−𝜑4(2ℎ)

−𝜑3(3ℎ) − 𝜑4(3ℎ)

]. 

Let 𝑉 be the trace of the exact solution 𝑢 on the grid, 

𝑉1(ℎ, ℎ) = 𝑒ℎ sin ℎ = 𝑒0.25 sin 0.25 = 0.317673 

𝑉2(2ℎ, ℎ) = 𝑒2ℎ sin ℎ = 𝑒0.5 sin 0.25 = 0.407900 

𝑉3(3ℎ, ℎ) = 𝑒3ℎ sin ℎ = 𝑒0.75 sin 0.25 = 0.523754 

𝑉4(ℎ, 2ℎ) = 𝑒ℎ sin 2ℎ = 𝑒0.25 sin 0.5 = 0.615595 

𝑉5(2ℎ, 2ℎ) = 𝑒2ℎ sin 2ℎ = 𝑒0.5 sin 0.5 = 0.790439 

𝑉6(3ℎ, 2ℎ) = 𝑒3ℎ sin 2ℎ = 𝑒0.75 sin 0.5 = 1.014944 

𝑉7(ℎ, 3ℎ) = 𝑒ℎ sin 3ℎ = 𝑒0.25 sin 0.75 = 0.875241 

𝑉8(2ℎ, 3ℎ) = 𝑒2ℎ sin 3ℎ = 𝑒0.5 sin 0.75 = 1.123832 

𝑉9(3ℎ, 3ℎ) = 𝑒3ℎ sin 3ℎ = 𝑒0.75 sin 0.75 = 1.443029. 

Representing the solution in block form: 

𝑣1 = [
0.317673
0.407900
0.523754

] , 𝑣2 = [
0.615595
0.790439
1.014944

] , 𝑣3 = [
0.875241
1.123832
1.443029

], 

the right-hand side results to: 

𝑌1 = −𝜑1(ℎ) − 𝜑2(ℎ) = −sin 0.25 − 0 = −0.247404  

  𝑌2 = −𝜑2(2ℎ) = 0  

   𝑌3 = −𝜑2(3ℎ) − 𝜑3(ℎ) = 0 − 𝑒1 sin 0.25 = −0.672514 

      𝑌4 = −𝜑1(2ℎ) = − sin 0.5 = −0.479426                                

     𝑌5 = 0                                                                                                

              𝑌6 = −𝜑3(2ℎ) = −𝑒1 sin 0.5 = −1.303214                                    

                 𝑌7 = −𝜑1(3ℎ) − 𝜑4(ℎ) = −sin 0.75 −𝑒𝑜.25sin 1 = −1.762109 
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𝑌8 = −𝜑4(2ℎ) = −𝑒0.5sin 1 = −1.387351                       

                        𝑌9 = −𝜑3(3ℎ) − 𝜑4(3ℎ) = −𝑒1 sin 0.75 − 𝑒0.75sin 1 = −3.634280. 

The right-hand side in block form is: 

𝑦1 = [
−0.247404

0
−0.672514

] , 𝑦2 = [
−0.479426

0
−1.303214

] , 𝑦3 = [
−1.762109
−1.387351
−3.634280

]. 
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Chapter 3 

 3 BLOCK- ELIMINATION METHODS 

3.1 Introduction 

The difference analogue of the Poisson’s equation produces a set of algebraic 

equations (2.10). In this Chapter, the block-Gaussian elimination, the block-

polynomial form and the Schechter form will be reviewed to find solution to the system 

(2.10). 

3.2 Block-Gaussian Elimination Method 

Considering the block tridiagonal matrix equation in its general form, where 𝐴𝑗 and 𝐶𝑗 

may not be identity matrix, 

 𝐴𝑈 ≡ [𝐴𝑗   𝐷𝑗   𝐶𝑗]𝑈 = 𝑌, 
(3.1) 

where 𝐴 is a block matrix with dimension 𝑁 and 𝐴𝑗 , 𝐷𝑗  𝑎𝑛𝑑 𝐶𝑗 are 𝑀 × 𝑀 matrices. 

This method depends upon the calculation of matrix inverse, which is also stored as it 

is used recursively. The procedure for block-Gaussian elimination for the solution of 

(2.10) can be written in the form [2], [1]: 

Algorithm: Block Gaussian Elimination [1] 

 𝑓1 = 𝐷1
−1𝑦1,                                                                    

𝑅1 = −𝐷1
−1C1,                                                                                       

𝑓𝑗 = (𝐴𝑗𝑅𝑗−1 + 𝐷𝑗)
−1

(𝑦𝑗 − 𝐴𝑗𝑓𝑗−1) ,                             2 ≤ 𝑗 ≤ 𝑁, 

𝑅𝑗 = −(𝐴𝑗𝑅𝑗−1 + 𝐷𝑗)
−1

𝐶𝑗,                                               2 ≤ 𝑗 ≤ 𝑁 − 1, 

(3.2) 
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𝑢𝑁 = 𝑓𝑁 ,                                                                                   

       𝑢𝑗 = 𝑓𝑗 + 𝑅𝑗𝑢𝑗+1 ,                                                          1 ≤ 𝑗 ≤ 𝑁 − 1. 

This procedure is stable and will produce an exact solution of the equation (relative to 

the increase of round off error) provided the matrices 

 𝐴𝑗𝑅𝑗−1 + 𝐷𝑗                         (1 ≤ 𝑗 ≤ 𝑁, 𝑅0 = 0) 

are non-singular (i.e. they have determinant to be non-zero). But for large values of 𝑀 

and 𝑁, this procedures may not be too satisfactory in terms of time execution and 

memory requirements for the storage. 

3.2.1 Solution of the Test Problem by Block Gaussian Elimination Method 

For the test problem given in Section 2.3.1, 𝑀 = 𝑁 = 3 and 𝐴2 = 𝐴3 = 𝐼3×3,                  

𝐶1 = 𝐶2 = 𝐼3×3, 𝐷𝑗 = 𝐷 = [
−4 1 0
1 −4 1
0 1 −4

] , 𝑗 = 1, 2, 3 

𝑓1 = 𝐷1
−1𝑦1,                                                                        

 𝐷1
−1 = [

−0.267857 −0.071429 −0.017857
−0.071429 −0.285714 −0.071429
−0.017857 −0.071429 −0.267857

]  

𝑦1 = [
−0.247404

0
−0.672514

]  

𝑓1 = [
0.078278
0.065709
0.184555

]  

𝑅1 = −𝐷1
−1𝐶1 = −𝐷1

−1  

𝑅1 = −𝐷1
−1 = [

0.267857 0.071429 0.017857
0.071429 0.285714 0.071429
0.017857 0.071429 0.267857

]               

𝑓𝑗 = (𝑅𝑗−1 + 𝐷𝑗)
−1

(𝑦𝑗 − 𝑓𝑗−1) ,                           𝑗 = 2, 3  

𝑓2 = (𝑅2−1 + 𝐷2)
−1(𝑦2 − 𝑓2−1) = (𝑅1 + 𝐷2)

−1(𝑦2 − 𝑓1)  
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𝑦2 = [
−0.479426

0
−1.303214

]  

𝑓2 = [
0.212438
0.211795
0.460455

]  

𝑅𝑗 = −(𝑅𝑗−1 + 𝐷𝑗)
−1

,                                             𝑗 = 2, 3  

𝑅2 = −(𝑅1 + 𝐷2)
−1 = [

0.294824 0.093168 0.028157
0.093168 0.322981 0.093168
0.028157 0.093168 0.294824

]  

𝑓3 = (𝑅3−1 + 𝐷3)
−1(𝑦3 − 𝑓3−1) = (𝑅2 + 𝐷3)

−1(𝑦3 − 𝑓2)  

𝑦3 = [
−1.762109
−1.387351
−3.634280

]  

𝑓3 = [
0.875621
1.124380
1.443528

]  

𝑢𝑁 = 𝑓𝑁 ,                 

𝑢3 = 𝑓3 = [
0.875621
1.124380
1.443528

]                                                                       

 𝑢𝑗 = 𝑓𝑗 + 𝑅𝑗𝑢𝑗+1                                                             𝑗 = 1, 2       

𝑢2 = 𝑓2 + 𝑅2𝑢3  

 𝑢2 = [
0.615994
0.791018
1.015453

]  

𝑢1 = 𝑓1 + 𝑅1𝑢2   

𝑢1 = [
0.317911
0.408246
0.524053

] . 

The solution obtained from the block-Gaussian elimination procedures are compared 

with the exact solution in Table 1: 
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Table 1. Results of the test problem by Block Gaussian Elimination Method 

Unknowns Exact solution Block-Gaussian 

Form 

Absolute error 

𝑈11 0.317673 0.317911 0.000238 

𝑈12 0.407900 0.408246 0.000346 

𝑈13 0.523754 0.524053 0.000299 

𝑈21 0.615595 0.615994 0.000399 

𝑈22 0.790439 0.791018 0.000579 

𝑈23 1.014944 1.015453 0.000509 

𝑈31 0.875241 0.875621 0.000380 

𝑈32 1.123832 1.124380 0.000548 

𝑈33 1.443029 1.443528 0.000499 

 

3.3 Block Polynomial Form 

The block polynomial form is a simplification of the block-Gaussian elimination 

method in the case of Poisson’s equation, with Dirichlet boundary conditions. Here we 

have 𝐴𝑗 = 𝐶𝑗 = 𝐼𝑀×𝑀 and 𝐷𝑗 = 𝐷. 

Algorithm: Block Polynomial [1] 

 

𝑓𝑗 = 𝑃𝑗
−1(𝐷)∑(−1)𝑞+𝑗𝑃𝑞−1(𝐷)𝑦𝑞

𝑗

𝑞=1

, 1 ≤ 𝑗 ≤ 𝑁 

𝑅𝑗 = −𝑃𝑗
−1(𝐷)𝑃𝑗−1(𝐷),   1 ≤ 𝑗 ≤ 𝑁 

(3.3) 

where 𝑃𝑗(𝐷) is the polynomial in 𝐷 of degree 𝑗, given by: 

  𝑃0(𝐷) = 𝐼 

𝑃𝑗(𝐷) = ∏[𝐷 − 𝑥𝑞(𝑗)𝐼]

𝑗

𝑞=1

,            𝑗 ≥ 1 

(3.4) 

 

where 𝑥𝑞(𝑗) = 2cos
𝑞𝜋

𝑗+1
. 

All of the matrices [𝐷 − 𝑥𝑞(𝑗)𝐼] are diagonally dominant, which makes them non 

singular because the solution of 𝑥𝑞(𝑗) will remain between -2 and 2, i.e. 𝑥𝑞(𝑗) ∈

(−2,2). Therefore, there exist 𝑃𝑗
−1(𝐷) with the algorithm written in the form: 
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𝑢𝑁 = 𝑃𝑁
−1(𝐷)∑(−1)𝑞+𝑁𝑃𝑞−1(𝐷)𝑦𝑞

𝑁

𝑞=1

, 

𝑢𝑗 = 𝑃𝑗
−1(𝐷) [∑(−1)𝑞+𝑗𝑃𝑞−1(𝐷)𝑦𝑞

𝑗

𝑞=1

− 𝑃𝑗−1(𝐷)𝑢𝑗+1],         

1 ≤ 𝑗 ≤ 𝑁 − 1. 

(3.5) 

Since calculating matrix inverse is not preferable, (3.5) can be rewritten as: 

 

𝑃𝑁(𝐷)𝑢𝑁 = ∑(−1)𝑞+𝑁𝑃𝑞−1(𝐷)𝑦𝑞

𝑁

𝑞=1

, 

𝑃𝑗(𝐷)𝑢𝑗 = [∑(−1)𝑞+𝑗𝑃𝑞−1(𝐷)𝑦𝑞

𝑗

𝑞=1

− 𝑃𝑗−1(𝐷)𝑢𝑗+1] ,

1 ≤ 𝑗 ≤ 𝑁 − 1. 

(3.6) 

Each of the polynomials 𝑃𝑗(𝐷), (1 ≤ 𝑗 ≤ 𝑁) is expressed by solving a diagonally 

dominant tridiagonal matrix equation, therefore, cyclic reduction methods can be used. 

For the application, we employed Thomas algorithm to find the solution of the 

tridiagonal systems of size 𝑀 × 𝑀 each. 

3.3.1 The Thomas Algorithm 

The Thomas algorithm, also known as tridiagonal matrix algorithm, is an effective 

way of finding the solution of tridiagonal matrix system. It depends on LU 

decomposition in which a matrix system 𝐺𝑧 = 𝑤 is rewritten as 𝐿𝑈𝑧 = 𝑤, where 𝐺 is 

decomposed by 𝐿𝑈, 𝐿 is the lower triangular matrix and 𝑈 is the upper triangular 

matrix. Therefore, all the advantages of LU decomposition can be achieved if the 

algorithm is applied properly. The solution of this system 𝐺𝑧 = 𝑤 is obtained by 

putting 𝐿𝛽 = 𝑤 for the solution of 𝛽 and 𝑈𝑧 = 𝛽 for the solution of 𝑧. The algorithm 



17 

 

consists of three steps which are: decomposition, forward substitution and backward 

substitution.  

Thomas Algorithm [3]: 

Given 𝐺 = [𝑎𝑞 𝑑𝑞 𝑐𝑞], 𝐺 = 𝐿𝑈 

𝐿 = [𝑒𝑞  1   0] and 𝑈 = [0 𝑓𝑞 𝑐𝑞], 1 ≤ 𝑞 ≤ 𝑀. 

To solve 𝑧, 𝐿𝛽 = 𝑤 and 𝑈𝑧 = 𝛽 

𝛽𝑞 = 𝑤𝑞 − 𝑒𝑞𝛽𝑞−1, 1 < 𝑞 ≤ 𝑀. 

where 𝛽1 = 𝑤1, 𝛽𝑞 is solved by forward substitution. 

𝑧𝑞 = 𝑓𝑞
−1(𝛽𝑞 − 𝑐𝑞𝑧𝑞+1),                  1 ≤ 𝑞 ≤ 𝑀 − 1. 

𝑧𝑀 = 𝑓𝑀
−1𝛽𝑀, 𝑧𝑞 is solved by backward substitution. 

3.3.2 Solution of the Test Problem by Block Polynomial Form 

Given that 𝑃0(𝐷) = 𝐼 and 𝑃𝑗(𝐷) = ∏ [𝐷 − 𝑥𝑞(𝑗)𝐼]
𝑗
𝑞=1 ,            𝑗 ≥ 1 

𝑃1(𝐷) = [𝐷 − 𝑥1(1)𝐼], 

𝑃2(𝐷) = [𝐷 − 𝑥1(2)𝐼][𝐷 − 𝑥2(2)𝐼], 

𝑃3(𝐷) = [𝐷 − 𝑥1(3)𝐼][𝐷 − 𝑥2(3)𝐼][𝐷 − 𝑥3(3)𝐼]. 

Since 𝑥𝑞(𝑗) = 2cos
𝑞𝜋

𝑗+1
, 

𝑥1(1) = 0  

𝑥1(2) = 1  

𝑥2(2) = −1  

𝑥1(3) = 1.414214  

𝑥2(3) = 0  

𝑥3(3) = −1.414214  

For 𝑁 = 3, 

𝑃3(𝐷)𝑢3 = ∑ (−1)𝑞+3𝑃𝑞−1(𝐷)𝑦𝑞
3
𝑞=1   
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𝑃3(𝐷)𝑢3 = 𝑃0(𝐷)𝑦1 − 𝑃1(𝐷)𝑦2 + 𝑃2(𝐷)𝑦3  

Let 𝑃0(𝐷)𝑦1 − 𝑃1(𝐷)𝑦2 + 𝑃2(𝐷)𝑦3 = 𝑤1 

𝑃3(𝐷)𝑢3 = 𝑤1  

𝑃3(𝐷) = [𝐷 − 1.414214𝐼][𝐷][𝐷 + 1.414214𝐼]  

[𝐷 − 1.414214𝐼][𝐷][𝐷 + 1.414214𝐼]𝑢3 = 𝑤1  

Let [𝐷 + 1.414214]𝑢3 = 𝑀1 

[𝐷 − 1.414214𝐼][𝐷]𝑀1 = 𝑤1  

Let [𝐷]𝑀1 = 𝑀2 

[𝐷 − 1.414214𝐼]𝑀2 = 𝑤1.  

[𝐷 − 1.414214𝐼] results into a tridiagonal block matrix which can be solved by 

Thomas algorithm to find the solution of vector matrix 𝑀2. 𝑀2 is substituted to find 

𝑀1and 𝑀1is substituted to find 𝑢3, all solved using the Thomas algorithm. The result 

of the block vector 𝑢3 = [
0.875621
1.124380
1.443528

]. 

𝑃𝑗(𝐷)𝑢𝑗 = [∑ (−1)𝑞+𝑗𝑃𝑞−1(𝐷)𝑦𝑞
𝑗
𝑞=1 − 𝑃𝑗−1(𝐷)𝑢𝑗+1], 

𝑃2(𝐷)𝑢2 = [∑ (−1)𝑞+2𝑃𝑞−1(𝐷)𝑦𝑞
2
𝑞=1 − 𝑃2−1(𝐷)𝑢2+1] = −𝑃0(𝐷)𝑦1 + 𝑃1(𝐷)𝑦2 −

𝑃1(𝐷)𝑢3, 

Let −𝑃0(𝐷)𝑦1 + 𝑃1(𝐷)𝑦2 − 𝑃1(𝐷)𝑢3 = 𝑤2,  

𝑃2(𝐷)𝑢2 = 𝑤2, 

𝑃2(𝐷) = [𝐷 − 𝐼][𝐷 + 𝐼], 

[𝐷 − 𝐼][𝐷 + 𝐼] 𝑢2 =  𝑤2. 
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Let 𝑀3 = [𝐷 + 𝐼] 𝑢2, [𝐷 − 𝐼]𝑀3 =  𝑤2. Here also, [𝐷 − 𝐼] is a tridiagonal block 

matrix, 𝑀3 is solved for and substituted to find the solution of  𝑢2 by Thomas 

algorithm. 

𝑢2 = [
0.615994
0.791018
1.015453

]. 

𝑃1(𝐷)𝑢1 = [∑ (−1)𝑞+1𝑃𝑞−1(𝐷)𝑦𝑞
1
𝑞=1 − 𝑃1−1(𝐷)𝑢1+1] = 𝑃0(𝐷)𝑦1 − 𝑃0(𝐷)𝑢2, 

Let 𝑃0(𝐷)𝑦1 − 𝑃0(𝐷)𝑢2 = 𝑤3, so 𝑃1(𝐷) 𝑢1 = 𝑤3 

Since 𝑃1(𝐷) = 𝐷, 𝐷𝑢1 = 𝑤3 and 𝐷 is a tridiagonal matrix, this system is solved by 

Thomas algorithm to find the solution of  𝑢1. 

𝑢1 = [
0.317911
0.408246
0.524053

]. 

We get exactly the same table as in Table 1 which represents the block Gaussian 

elimination method. 

Table 2. Results of the test problem by Block Polynomial Method 

Unknowns Exact solution Block-Polynomial 

Form 

Absolute error 

𝑈11 0.317673 0.317911 0.000238 

𝑈12 0.407900 0.408246 0.000346 

𝑈13 0.523754 0.524053 0.000299 

𝑈21 0.615595 0.615994 0.000399 

𝑈22 0.790439 0.791018 0.000579 

𝑈23 1.014944 1.015453 0.000509 

𝑈31 0.875241 0.875621 0.000380 

𝑈32 1.123832 1.124380 0.000548 

𝑈33 1.443029 1.443528 0.000499 

 

 

3.4 Block Schechter Form 

From the block polynomial form, we have that 𝑦 = 𝑃𝑗
−1(𝐷)𝑥 exists. So Schechter [4] 

used an alternative method to solve this equation, proposing the algorithm; 
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Algorithm: Block Schechter Form [4] 

 𝐷 = 𝐵𝑆𝐵, 

𝑆 = [0  𝜆𝑗   0]𝑀×𝑀 

𝜆𝑗 = 2 [(cos
𝑗𝜋

𝑀 + 1
− 1) − 1] 

(𝐵)𝑖𝑗 = √
2

𝑀 + 1
sin

𝑖𝑗𝜋

𝑀 + 1
 ,      1 ≤ 𝑖, 𝑗 ≤ 𝑀 

(3.7) 

since 𝐵2 = 𝐼, we have 

𝑃𝑘
−1(𝐷)𝑥 = 𝐵 [0  

1

𝑃𝑘(𝜆𝑗)
  0] 𝐵𝑥 

 

𝑢𝑗 = 𝑃𝑁
−1(𝐷) [𝑃𝑁−𝑗(𝐷) ∑(−1)𝑞+𝑗𝑃𝑞−1(𝐷)𝑦𝑞

𝑗

𝑞=1

+ 𝑃𝑗−1(𝐷) ∑ (−1

𝑁

𝑞=𝑗+1

)𝑞+𝑗𝑃𝑁−𝑞(𝐷)𝑦𝑞] ,        1 ≤ 𝑗 ≤ 𝑁. 

But this procedure is not as efficient as the recursion method (3.5), (3.6) defined in the 

block polynomial form due to its computational complexity which involves a larger 

operation count, therefore, Schechter proposed a more simplified procedure for these 

problem: 

Algorithm: Simplified Block Schechter Form [4] 

 𝑓1 = 𝑦1, 

𝑓𝑗 = 𝑃𝑗−𝑖(𝐷)𝑦𝑗 − 𝑓𝑗−1,    2 ≤ 𝑗 ≤ 𝑁, 

𝑢𝑁 = 𝑃𝑁
−1(𝐷)𝑓𝑁, 

𝑢𝑁−1 = 𝑦𝑁 − 𝐷𝑢𝑁 , 

𝑢𝑗 = 𝑦𝑗+1 − 𝐷𝑢𝑗+1 − 𝑢𝑗+2,       1 ≤ 𝑗 ≤ 𝑁 − 2. 

(3.8) 
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This procedure, derived by modifying the block Gaussian elimination formulas has a 

lower operation count when compared to the block polynomial form (3.5), (3.6) and 

the initial Schechter form (3.7). 

3.4.1 Solution of the Test Problem by the Schechter’s Algorithm 

We use the algorithm (3.7). 

Taking 𝜆𝑗 = 2 [(cos
𝑗𝜋

𝑀+1
− 1) − 1], 𝑗 = 1,2,3 and 𝑀 = 3 

𝜆1 = 2 [(cos
𝜋

4
− 1) − 1] = −2.585786, 

𝜆2 = 2 [(cos
2𝜋

4
− 1) − 1] = −4, 

𝜆3 = 2 [(cos
3𝜋

4
− 1) − 1] = −5.414214, 

(𝐵)𝑖𝑗 = √
2

𝑀+1
sin

𝑖𝑗𝜋

𝑀+1
 , 𝑖, 𝑗 = 1,2,3 

(𝐵)11 = √
2

4
sin

𝜋

4
= 0.5 , 

(𝐵)12 = √
2

4
sin

2𝜋

4
= 0.707107 , 

 (𝐵)13 = √
2

4
sin

3𝜋

4
= 0.5 

(𝐵)21 = √
2

4
sin

2𝜋

4
= 0.707107, 

(𝐵)22 = √
2

4
sin

4𝜋

4
= 0, 

(𝐵)23 = √
2

4
sin

6𝜋

4
= −0.707107, 

(𝐵)31 = √
2

4
sin

3𝜋

4
= 0.5, 

(𝐵)32 = √
2

4
sin

6𝜋

4
= −0.707107, 

(𝐵)33 = √
2

4
sin

9𝜋

4
= 0.5. 
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𝐵 = [
0.5 0.707107 0.5

0.707107 0 −0.707107
0.5 −0.707107 0.5

] = 𝐵𝑇, 

𝑃3
−1(𝐷) = 𝐵 [0  

1

𝑃3(𝜆𝑗)
  0] 𝐵, 

𝑃3
−1(𝐷) = 𝐵

[
 
 
 
 
1

𝑝3(𝜆1)
⁄ 0 0

0 1
𝑝3(𝜆2)

⁄ 0

0 0 1
𝑝3(𝜆3)

⁄ ]
 
 
 
 

𝐵, 

𝑃3
−1(𝐷) = [

−0.031250 −0.026786 −0.013393
−0.026786 −0.044643 −0.026786
−0.013393 −0.026786 −0.031250

], 

𝑢1 = 𝑃3
−1(𝐷)[𝑃2(𝐷)𝑃0(𝐷)𝑦1 + 𝑃0(𝐷)(−𝑃1(𝐷)𝑦2 + 𝑃0(𝐷)𝑦3)], 

𝑢1 = [
0.317912
0.408250
0.524053

], 

𝑢2 = 𝑃3
−1(𝐷)[𝑃1(𝐷)(−𝑃0(𝐷)𝑦1 + 𝑃1(𝐷)𝑦2) + 𝑃1(𝐷)(−𝑃0(𝐷)𝑦3)], 

𝑢𝟐 = [
0.615995
0.791032
1.015451

], 

𝑢3 = 𝑃3
−1(𝐷)[𝑃0(𝐷)(𝑃0(𝐷)𝑦1−𝑃1(𝐷)𝑦2 + 𝑃2(𝐷)𝑦3)], 

𝑢𝟑 = [
0.875622
1.124399
1.443525

]. 

Table 3. Results of the test problem by Block Schechter Form 

Unknowns Exact solution Block-Schechter 

Form 

Absolute error 

𝑈11 0.317673 0.317912 0.000239 

𝑈12 0.407900 0.408250 0.000350 

𝑈13 0.523754 0.524053 0.000299 

𝑈21 0.615595 0.615995 0.000400 

𝑈22 0.790439 0.791032 0.000593 

𝑈23 1.014944 1.015451 0.000507 

𝑈31 0.875241 0.875622 0.000381 

𝑈32 1.123832 1.124399 0.000567 

𝑈33 1.443029 1.443525 0.000496 
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3.4.2 Solution of the Test Problem by the Simplified Block Schechter Form 

We use the algorithm (3.8) 

𝑓1 = 𝑦1 = [
−0.247404

0
−0.672514

]  

𝑓2 = 𝑃1(𝐷)𝑦2 − 𝑓1 = [
2.165108

−1.782640
5.885370

]  

𝑓3 = 𝑃2(𝐷)𝑦3 − 𝑓2 = [
−22.894324
21.368785

−54.697151
]  

𝑢3 = 𝑃3
−1(𝐷)𝑓3 = [

0.875621
1.124381
1.443529

]  

𝑢2 = 𝑦3 − 𝐷𝑢3 = [
0.615994
0.791022
1.015456

]  

𝑢1 = 𝑦3 − 𝐷𝑢2 − 𝑢3 = [
0.317908
0.408258
0.524057

]  

Table 4. Results of the test problem by Simplified Block-Schechter Form 

Unknowns Exact solution Simplified Block-

Schechter Form 

Absolute error 

𝑈11 0.317673 0.317908 0.000235 

𝑈12 0.407900 0.408258 0.000358 

𝑈13 0.523754 0.524057 0.000303 

𝑈21 0.615595 0.615994 0.000399 

𝑈22 0.790439 0.791022 0.000583 

𝑈23 1.014944 1.015456 0.000512 

𝑈31 0.875241 0.875621 0.000380 

𝑈32 1.123832 1.124381 0.000549 

𝑈33 1.443029 1.443529 0.000500 
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Chapter 4 

4 MATRIX DECOMPOSITION METHODS 

4.1 Introduction 

The solution of general block tridiagonal systems (2.10) arising from a finite difference 

equation can be given by matrix decomposition method. The block triangular 

decomposition of 𝐴 can be expressed as: 

 𝐴 = 𝐿𝑈, (4.1) 

where 𝐿 is the lower triangular matrix and 𝑈 is the upper triangular matrix which is 

expressed respectively as 

𝐿 = [𝐿𝑁     𝐼     0],                    𝑈 = [0     𝑈𝑁     𝐶𝑁]. 

The recurrence for 𝐿𝑖 and 𝑈𝑖 , 𝑖 = 2,3, … , 𝑁 is given in [5] 

 𝑈1 = 𝐷1, 

𝐿𝑖 = 𝐴𝑖𝑈𝑖−1
−1 , 

𝑈𝑖 = 𝐷𝑖 − 𝐿𝑖𝐶𝑖−1. 

(4.2) 

In this Chapter, we will consider majorly the orthogonal block decomposition method, 

given in [6]. 

4.2 Orthogonal Block Decomposition Method 

This method involves finding the eigenvalues and eigenvectors of the matrices 𝐷 and 

𝑇, which is used to find the orthogonal matrix 𝑄 required for the solution of the 

tridiagonal systems. From the system 𝐴 of block dimension 𝑁, 
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 𝐴 = [𝑇   𝐷   𝑇]. (4.3) 

4.2.1 Case when 𝑫 commutes with 𝑻 

In this case, the matrix 𝐷 commutes with matrix 𝑇, i.e. 𝐷𝑇 = 𝑇𝐷 and 𝐷 and 𝑇 are   

𝑀 × 𝑀 symmetric matrices. Since these matrices are symmetric and they commute, 

then there exist an orthogonal matrix 𝑄 such that, 

 𝑄𝑇𝐷𝑄 = Λ ,                      𝑄𝑇𝑇𝑄 = Ω,  (4.4) 

where 𝑄 is the matrix containing the set of eigenvectors of 𝐷 and 𝑇, Λ is a real diagonal 

matrix of eigenvalues of 𝐷 and Ω is also a real diagonal matrix of eigenvalues of 𝑇. 

Similar to the matrix 𝐴, we have the vectors 𝑈 and 𝑌, written as: 

𝑈 = [

𝑢1

𝑢2

⋮
𝑢𝑁

] ,   𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑁

] 

We will represent the entries of the block 𝑢𝑗  and 𝑦𝑗 as 

 

𝑢𝑗 = [

𝑢1𝑗

𝑢2𝑗

⋮
𝑢𝑀𝑗

],   𝑦𝑗 = [

𝑦1𝑗

𝑦2𝑗

⋮
𝑦𝑀𝑗

] ,     𝑗 = 1,2,3, … ,𝑁. (4.5) 

From the system (4.3), we have 

 𝐷𝑢1 + 𝑇𝑢2 = 𝑦1, 

𝑇𝑢𝑗−1 + 𝐷𝑢𝑗 + 𝑇𝑢𝑗+1 = 𝑦𝑗 ,      𝑗 = 2,3, … , 𝑁 − 1, 

𝑇𝑢𝑁−1 + 𝐷𝑢𝑁 = 𝑦𝑁 . 

(4.6) 

Using (4.4), (4.6) becomes 

 Λ𝑢̅1 + Ω𝑢̅2 = 𝑦̅1, 

Ω𝑢̅𝑗−1 + Λ𝑢̅𝑗 + Ω𝑢̅𝑗+1 = 𝑦̅𝑗 ,    𝑗 = 2,3, … ,𝑁 − 1, 

Ω𝑢̅𝑁−1 + Λ𝑢̅𝑁 = 𝑦̅𝑁, 

(4.7) 

where 𝑢̅𝑗 = 𝑄𝑇𝑢𝑗 and 𝑦̅𝑗 = 𝑄𝑇𝑦𝑗, 𝑗 = 1,2,3, … ,𝑁. 

The components of 𝑢̅𝑗  and 𝑦̅𝑗 are labeled as: 
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𝑢̅𝑗 =

[
 
 
 
𝑢̅1𝑗

𝑢̅2𝑗

⋮
𝑢̅𝑀𝑗]

 
 
 
,    𝑦̅𝑗 =

[
 
 
 
𝑦̅1𝑗

𝑦̅2𝑗

⋮
𝑦̅𝑀𝑗]

 
 
 
 

(4.7) can be written for 𝑝 = 1,2, … ,𝑀 as 

 𝜆𝑝𝑢̅𝑝1 + 𝜔𝑝𝑢̅𝑝2 = 𝑦̅𝑝1, 

𝜔𝑝𝑢̅𝑝𝑗−1 + 𝜆𝑝𝑢̅𝑝𝑗 + 𝜔𝑝𝑢̅𝑝𝑗+1 = 𝑦̅𝑝𝑗 ,     𝑗 = 2,3, … ,𝑁 − 1, 

𝜔𝑝𝑢̅𝑝𝑁−1 + 𝜆𝑝𝑢̅𝑝𝑁 = 𝑦̅𝑝𝑁 . 

(4.8) 

From this, we have the system  

 Γ𝑝𝑢̂𝑝 = 𝑦̂𝑝, (4.9) 

where Γ𝑝 = [𝜔𝑝  𝜆𝑝  𝜔𝑝]𝑁×𝑁, 𝑢̂𝑝 =

[
 
 
 
𝑢̅𝑝1

𝑢̅𝑝2

⋮
𝑢̅𝑝𝑁]

 
 
 
,    𝑦̂𝑝 =

[
 
 
 
𝑦̅𝑝1

𝑦̅𝑝2

⋮
𝑦̅𝑝𝑁]

 
 
 
. 

From finding 𝑢̂𝑝 which can be computed by Thomas algorithm, it is then possible to 

solve for 𝑢𝑗 = 𝑄𝑢̂𝑗 . 

Therefore, we have the algorithm as [6] [7]: 

1. Find the eigenvalues and eigenvectors of 𝐷 and 𝑇 

2. Compute 𝑦̅𝑗 = 𝑄𝑇𝑦𝑗   , 𝑗 = 1,2, … ,𝑁 

3. Solve Γ𝑝𝑢̂𝑝 = 𝑦̂𝑝  , 𝑝 = 1, 2, … , 𝑀 

4. Compute 𝑢𝑗 = 𝑄𝑢̅𝑗   , 𝑗 = 1, 2, …𝑁 

4.2.2 Case when 𝑫 and 𝑻 do not commute 

𝐷 and 𝑇 may not need to commute. If we assume that 𝑇 is symmetric and positive 

definite, then there exist a matrix 𝑃, such that [8] 

 𝑇 = 𝑃𝑃𝑇,              𝐷 = 𝑃Δ𝑃𝑇 , (4.10) 



27 

 

where Δ is the diagonal matrix of eigenvalues 𝑇−1𝐷 and the matrix of the eigenvectors 

of 𝑇−1𝐷 is 𝑃−𝑇. Using (4.10), we have the following algorithm [5]: 

1. Find the eigenvalues and eigenvectors of 𝑇−1𝐷 

2. Compute 𝑦̂𝑗 = 𝑃−1𝑦𝑗 

3. Solve Γ𝑝𝑢̂𝑝 = 𝑦̂𝑝, where 𝛤𝑝 = [1 𝛿𝑝 1] 

4. Compute 𝑢𝑗 = 𝑃−𝑇𝑢̅𝑗 

4.2.3 The Power method 

The power method is an iterative method for approximating eigenvalues and 

eigenvectors. Normally, the power method only determines the largest eigenvalue, also 

known as the dominant eigenvalue. But with slight modification, it can be used to 

determine the non-dominant eigenvalues, that is the intermediate and the smallest 

eigenvalues. 

Definition 1 [9]: If 𝜆1 is an eigenvalue of 𝐴 that is larger in absolute value than any 

other eigenvalue, it is called the dominant eigenvalue. An eigenvector 𝑉1 

corresponding to 𝜆1 is called a dominant eigenvector. 

The power method can be used when the eigenvalues of an 𝑛 × 𝑛 matrix 𝐴 is ordered 

in magnitude as  

|𝜆1| > |𝜆2| ≥ |𝜆3| ≥ |𝜆4| ≥ ⋯ ≥ |𝜆𝑛|. 

It is also used when 𝐴𝑛×𝑛 has 𝑛 linearly independent eigenvectors. To apply this 

method, the analyzed matrix system should be in the form: 

𝐴𝑥 = 𝜆𝑥. 
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A non-zero vector 𝑥0 is chosen as an initial approximation and the sequence is given 

by 

𝑥1 = 𝐴𝑥0, 

𝑥2 = 𝐴𝑥1 = 𝐴(𝐴𝑥0) = 𝐴2𝑥0, 

𝑥3 = 𝐴𝑥2 = 𝐴(𝐴2𝑥0) = 𝐴3𝑥0, 

⋮ 

𝑥𝑚 = 𝐴𝑥𝑚−1 = 𝐴(𝐴𝑚−1𝑥0) = 𝐴𝑚𝑥0. 

If the sequence is correctly scaled, a good approximation of the dominant eigenvector 

of 𝐴 is obtained and the Rayleigh quotient is used to determine the corresponding 

eigenvalue.  

Theorem 1 [10]: If 𝑥 is an eigenvector of a matrix 𝐴, then its corresponding eigenvalue 

is given by: 

𝜆 =
𝐴𝑥 ⋅ 𝑥

𝑥 ⋅ 𝑥
. 

This quotient is called the Rayleigh quotient. 

We observe that this method produces approximate eigenvectors with large 

components, therefore each approximation can be scaled down and the scaled vector 

is used in the next iteration. The advantage of this method is that the eigenvalue is 

obtained alongside the eigenvector. 

4.2.4 Solution of the Test Problem by Orthogonal Block Decomposition Method 

The matrix 𝐷 = [
−4 1 0
1 −4 1
0 1 −4

] and 𝑇 = 𝐼 = [
1 0 0
0 1 0
0 0 1

] 
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We calculate the matrix 𝑉 = [
−1 1 1

0 √2 −√2
1 1 1

], which the columns are the eigen 

vectors of 𝐷. 

Normalizing 𝑉, we have  

𝑉̂1 =

[
 
 
 −

1
√2

⁄

0
1

√2
⁄ ]

 
 
 

,    𝑉̂2 =

[
 
 
 
 
1

2⁄

√2
2

⁄

1
2⁄ ]

 
 
 
 

, 𝑉̂3 =

[
 
 
 
 

1
2⁄

−√2
2

⁄

1
2⁄ ]

 
 
 
 

 

The orthogonal Matrix 𝑄 is  

[
 
 
 
 −

1
√2

⁄ 1
2⁄

1
2⁄

0 √2
2

⁄ −√2
2

⁄

1
√2

⁄ 1
2⁄

1
2⁄ ]

 
 
 
 

 

𝑄𝑇𝐴𝑄 = [

−4 0 0

0 √2 − 4 0

0 0 −√2 − 4

] = Λ  

𝑦̅𝑗 = 𝑄𝑇𝑦𝑗 ,    𝑗 = 1, 2, 3   

𝑦̅1 = [
−0.300598
−0.459959
−0.459959

] 

𝑦̅2 = [
−0.582506
−0.891320
−0.891320

] 

𝑦̅3 = [
−1.323825
−3.679200
−1.717189

]  

To solve 𝛤𝑝𝑢̂𝑝 = 𝑦̂𝑝, 𝑝 = 1,2,3 

𝛤1𝑢̂1 = 𝑦̂1 = [
−4 1 0
1 −4 1
0 1 −4

] [
𝑢̅11

𝑢̅12

𝑢̅13

] = [
−0.300598
−0.582506
−1.323825

] 

Using the Thomas algorithm to solve this system, 𝑢̂1 results to 

𝑢̂1 = [
𝑢̅11

𝑢̅12

𝑢̅13

] = [
0.145765
0.282461
0.401571

] 
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𝛤2𝑢̂2 = 𝑦̂2 = [
√2 − 4 1 0

1 √2 − 4 1

0 1 √2 − 4

] [
𝑢̅21

𝑢̅22

𝑢̅23

] = [
−0.459959
−0.891320
−3.679200

] 

Solving 𝑢̂2, using the Thomas algorithm results to 

𝑢̂2 = [
𝑢̅21

𝑢̅22

𝑢̅23

] = [
0.709656
1.375059
1.954631

] 

𝛤3𝑢̂3 = 𝑦̂3 = [
−√2 − 4 1 0

1 −√2 − 4 1

0 1 −√2 − 4

] [
𝑢̅31

𝑢̅32

𝑢̅33

] = [
−0.459959
−0.891320
−1.717189

] 

Solving 𝑢̂3, using the Thomas algorithm results to 

𝑢̂3 = [
𝑢̅31

𝑢̅32

𝑢̅33

] = [
0.132309
0.256389
0.364518

] 

To compute 𝑢𝑗 = 𝑄𝑢̅𝑗   , 𝑗 = 1, 2, …𝑁, 

𝑢1 = 𝑄𝑢̅1 =

[
 
 
 
 −

1
√2

⁄ 1
2⁄

1
2⁄

0 √2
2

⁄ −√2
2

⁄

1
√2

⁄ 1
2⁄

1
2⁄ ]

 
 
 
 

[
0.145765
0.709656
0.132309

] 

𝑢1 = [
0.317911
0.408246
0.524054

] 

𝑢2 = 𝑄𝑢̅2 =

[
 
 
 
 −

1
√2

⁄ 1
2⁄

1
2⁄

0 √2
2

⁄ −√2
2

⁄

1
√2

⁄ 1
2⁄

1
2⁄ ]

 
 
 
 

[
0.282461
1.375059
0.256389

] 

𝑢2 = [
0.615994
0.791019
1.015454

] 

𝑢3 = 𝑄𝑢̅3 =

[
 
 
 
 −

1
√2

⁄ 1
2⁄

1
2⁄

0 √2
2

⁄ −√2
2

⁄

1
√2

⁄ 1
2⁄

1
2⁄ ]

 
 
 
 

[
0.401571
1.954631
0.364518

] 
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𝑢3 = [
0.875621
1.124380
1.443528

] 

 

Table 5. Results of the test problem by Orthogonal Block Decomposition Form 

Unknowns Notations Exact 

solution 

Orthogonal            

block 

decomposition 

form 

Absolute                   

error 

𝑈11 𝑢11 0.317673 0.317911 0.000238 

𝑈12 𝑢21 0.407900 0.408246 0.000346 

𝑈13 𝑢31 0.523754 0.524054 0.000300 

𝑈21 𝑢12 0.615595 0.615994 0.000399 

𝑈22 𝑢22 0.790439 0.791019 0.000580 

𝑈23 𝑢32 1.014944 1.015454 0.000510 

𝑈31 𝑢13 0.875241 0.875621 0.000380 

𝑈32 𝑢23 1.123832 1.124380 0.000548 

𝑈33 𝑢33 1.443029 1.443528 0.000499 
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Chapter 5 

5 BLOCK CYCLIC REDUCTION METHOD 

5.1 Introduction 

Consider the matrix equation 

 𝐴𝑈 ≡ [
𝐼 𝐷
𝐶 𝐼

] [
𝑢1

𝑢2
] = [

𝑦1

𝑦2
], (5.1) 

The solution to (5.1) can be written in the form 

 𝑢1 = (𝐼 − 𝐷𝐶)−1(𝑦1 − 𝐷𝑦2), 

𝑢2 = 𝑦2 − 𝐶𝑦1. 
(5.2) 

Thus, we reduce the problem to solving for 𝑢1 only. Assuming 𝐼, 𝐷, 𝐶 are square 

matrices, this reduces the number of unknown by half. A similar method to this is the 

cyclic odd-even reduction. We give here, the presentation due to Buzbee, Golub and 

Nielson [6]. 

5.2 Cyclic Reduction Methods 

From the matrix system (4.3), where [𝑇   𝐷   𝑇] is of block dimension 𝑁, we assume 

still that 𝐷 and 𝑇 are symmetric and they commute. We assume also that 𝑁 = 𝑆 − 1, 

where 𝑆 = 2𝑘+1 𝑎𝑛𝑑 𝑘 is some positive integer. We rewrite the second equation in 

(4.6) as follows: 

𝑇𝑢𝑗−2 + 𝐷𝑢𝑗−1 + 𝑇𝑢𝑗 = 𝑦𝑗−1, 

𝑇𝑢𝑗−1 + 𝐷𝑢𝑗 + 𝑇𝑢𝑗+1 = 𝑦𝑗 , 

𝑇𝑢𝑗 + 𝐷𝑢𝑗+1 + 𝑇𝑢𝑗+2 = 𝑦𝑗+1. 
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The first and third equations are multiplied by 𝑇 and the second equation is multiplied 

by –𝐷. Adding them all, the result is the equation: 

𝑇2𝑢𝑗−2 + (2𝑇2 − 𝐷2)𝑢𝑗 + 𝑇2𝑢𝑗+2 = 𝑇𝑦𝑗−1 − 𝐷𝑦𝑗 + 𝑇𝑦𝑗+1. 

If 𝑗 is even, the new system of matrix equation involves 𝑢𝑗’s that have even indices, 

 [𝑇2     (2𝑇2 − 𝐷2)     𝑇2][𝑢2𝑗] = [𝑇𝑦2𝑗−1 − 𝐷𝑦2𝑗 + 𝑇𝑦2𝑗+1], (5.3) 

and the eliminated equation will be written as the system: 

 [0     𝐷     0][𝑢2𝑗+1] = [−𝑇𝑦2𝑗 + 𝑦2𝑗+1 − 𝑇𝑦2𝑗+2]. (5.4) 

The block dimension of (5.3) is now 2𝑘 − 1 while that of (5.4) is 2𝑘, [1]. 

The matrix decomposition method can be used to solve (5.4), or the reduction 

technique is applied repeatedly to the system until we have one block. However, we 

can stop the process at any step and use the method in section 4 to solve the resulting 

matrix, as this will reduce its subjection to round-off errors [7]. 

Applying the same technique to reduce (5.3), we define the sequence: 

𝐷(0) = 𝐷, 𝑇(0) = 𝑇, 𝑦𝑗
(0)

= 𝑦𝑗 , 𝑢𝑗
(0)

= 𝑢𝑗 , 𝑗 = 1,2, … , 𝑁 

For 𝑖 = 0,1,2, … 𝑘 

 𝑇(𝑖+1) = (𝑇(𝑖))
2
 

𝐷(𝑖+1) = 2(𝑇(𝑖))
2
− (𝐷(𝑖))

2
 

𝑢𝑗
(𝑖+1)

= 𝑢2𝑗
(𝑖)

,   

𝑦𝑗
(𝑖+1)

= 𝑇(𝑖) (𝑦
𝑗−2𝑖

(𝑖)
+ 𝑦

𝑗+2𝑖

(𝑖)
) − 𝐷(𝑖)𝑦𝑗

(𝑖)
 

(5.5) 

At each stage, we observe that we have a new system of equations to solve, in the form 

 𝑀(𝑖)𝑍(𝑖) = 𝐹(𝑖) (5.6) 
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where 𝑀(𝑖) = [𝑇(𝑖)     𝐷(𝑖)      𝑇(𝑖)],           𝑍(𝑖) =

[
 
 
 
 

𝑢2𝑖

𝑢2𝑖+1

⋮
𝑢𝑗2𝑖

⋮ ]
 
 
 
 

,          𝐹(𝑖) =

[
 
 
 
 
 𝑦

2𝑖

(𝑖)

𝑦
2𝑖+1

(𝑖)

⋮

𝑦
𝑗2𝑖

(𝑖)

⋮ ]
 
 
 
 
 

 

and the eliminated equation written in the form 

 𝑃(𝑖)𝑊(𝑖) = 𝐺(𝑖), (5.7) 

where 𝑃(𝑖) = [0       𝐷(𝑖−1)     0],          𝑊(𝑖) =

[
 
 
 
 

𝑢2𝑖−2𝑖−1

𝑢2𝑖+1−2𝑖−1

⋮
𝑢𝑗2𝑖−2𝑖−1

⋮ ]
 
 
 
 

,       

𝐺(𝑖) =

[
 
 
 
 
 𝑦

2𝑖−2𝑖−1

(𝑖−1)
− 𝑇𝑢

2𝑖

(𝑖−1)

𝑦
2𝑖+1−2𝑖−1

(𝑖−1)
− 𝑇(𝑢

2𝑖+1

(𝑖−1)
+ 𝑢

2𝑖

(𝑖−1)
)

⋮

𝑦
𝑗2𝑖−2𝑖−1

(𝑖−1)
− 𝑇(𝑢

𝑗2𝑖

(𝑖−1)
+ 𝑢

(𝑗−1)2𝑖

(𝑖−1)
)

⋮ ]
 
 
 
 
 

.  

To solve (5.6), we can use the methods reviewed in previous sections, or we continue 

to compute 𝑀(𝑖+1) and eliminate half of its unknowns. This matrix is of block 

dimension 2𝑘+1−𝑖 − 1, [1]. After 𝑘 steps, the matrices reduce to one block with 

dimension 𝑀, 

 𝐷(𝑘)𝑢2𝑘 = 𝑦
2𝑘

(𝑘)
. (5.8) 

This algorithm is known as cyclic reduction method [6]. Next, we consider the 

factorization of 𝐷(𝑖). From (5.3)-(5.5), we observe that 𝐷(𝑖) is a polynomial of degrees 

2𝑖 in 𝐷 and 𝑇, such that [6] 

𝐷(𝑖) = ∑ 𝑐2𝑗
(𝑖)

𝐷2𝑗𝑇2𝑖−2𝑗

2𝑖−1

𝑗=0

≡ 𝑃2𝑖(𝐷, 𝑇). 

To find the linear factors of 𝑃2𝑖(𝐷, 𝑇), let 
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𝑝2𝑖(𝑑, 𝑡) = ∑ 𝑐2𝑗
(𝑖)

𝑑2𝑗𝑡2𝑖−2𝑗2𝑖−1

𝑗=0 ,       𝑐
2𝑖

(𝑖)
= −1 

For 𝑡 ≠ 0, we use the substitution 

 𝑑

𝑡
= −2 cos 𝜃. (5.9) 

Note that from (5.5), 

 
𝑝2𝑖+1(𝑑, 𝑡) = 2𝑡2𝑖+1

− (𝑝2𝑖(𝑑, 𝑡))
2

. (5.10) 

Then, using (5.9) and (5.10), we have that 

𝑝2𝑖(𝑑, 𝑡) = −2𝑡2𝑖
cos 2𝑖𝜃, 

and consequently, 

𝑝2𝑖(𝑑, 𝑡) = 0, when 
𝑑

2𝑡
= −cos(

2𝑗−1

2𝑖+1 ) 𝜋 for 𝑗 = 1,2,3, … , 2𝑖. 

Therefore, we can write 

𝑝2𝑖(𝑑, 𝑡) = −∏[𝑑 + 2𝑡 cos (
2𝑗 − 1

2𝑖+1
) 𝜋]

2𝑖

𝑗=1

. 

Hence, 

𝐷(𝑖) = −∏(𝐷 + 2 cos 𝜃𝑗
(𝑖) 𝑇)

2𝑖

𝑗=1

, 

where 𝜃𝑗
(𝑖)

=
2𝑗−1

2𝑖+1
𝜋. 

Denote 

 𝐷𝑗
(𝑘)

= 𝐷 + 2 cos 𝜃𝑗
(𝑘)

𝑇, (5.11) 

so, to solve 𝐷(𝑘)𝑢2𝑘 = 𝑦
2𝑘

(𝑘)
, we set 𝑍1 = −𝑦

2𝑘

(𝑘)
 and solve 

 𝐷𝑗
(𝑘)

𝑍𝑗+1 = 𝑍𝑗 ,     for 𝑗 = 1,2, … , 2𝑘, 

𝑍2𝑘+1 = 𝑢2𝑘 . 

(5.12) 

To solve (5.7), a similar algorithm can be used with 
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𝐷(𝑖) = −∏𝐷𝑗
(𝑖)

2𝑖

𝑗=1

. 
(5.13) 

This algorithm above is called the cyclic odd-even reduction factorization (CORF) 

algorithm. The numerical calculation of 𝑦𝑗
𝑘 in (5.5) depends on the rounding errors in 

many applications. Buneman algorithm [11] stabilize the cyclic odd-even reduction 

factorization. 

5.2.1 Solution of the Test Problem by Cyclic Reduction Method 

From the test problem in section (2.3.1), we obtained the matrix equation 

[
𝐷 𝐼 0
𝐼 𝐷 𝐼
0 𝐼 𝐷

] [

𝑢1

𝑢2

𝑢3

] = [

𝑦1

𝑦2

𝑦3

] 

Where 𝐷 = [
−4 1 0
1 −4 1
0 1 −4

] , 𝐼 = [
1 0 0
0 1 0
0 0 1

] , 𝑦1 = [
−0.247404

0
−0.672514

],  

 𝑦2 = [
−0.479426

0
−1.303214

] , 𝑦3 = [
−1.762109
−1.387351
−3.634280

] 

The first and third equation is multiplied by 𝐼 and the second equation is multiplied by 

–𝐷. This results to 

𝐷𝑢1 + 𝑢2 = 𝑦1, 

−𝐷𝑢1 − 𝐷2𝑢2 − 𝐷𝑢3 = −𝐷𝑦2, 

𝑢2 + 𝐷𝑢3 = 𝑦3. 

Adding the three equations together, we have 

(2𝐼 − 𝐷2)𝑢2 = 𝑦1 − 𝐷𝑦2 + 𝑦3= (2 [
1 0 0
0 1 0
0 0 1

] − ([
−4 1 0
1 −4 1
0 1 −4

])

2

)𝑢2 = 𝑦1 −

[
−4 1 0
1 −4 1
0 1 −4

] 𝑦2 + 𝑦3 
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[
−15 8 −1
8 −16 8

−1 8 −15
] 𝑢2 = [

−3.927217
0.395289

−9.519650
] 

𝑢2 = [
0.615994
0.791018
1.015453

]. 

To solve the eliminated equations, 

𝐷𝑢1 = 𝑦1 − 𝑢2, 

[
−4 1 0
1 −4 1
0 1 −4

]𝑢1 = 𝑦1 − [
0.615994
0.791018
1.015453

] 

𝑢1 = [
0.317911
0.408246
0.524053

], 

𝐷𝑢3 = 𝑦3 − 𝑢2, 

[
−4 1 0
1 −4 1
0 1 −4

]𝑢3 = 𝑦3 − [
0.615994
0.791018
1.015453

] 

𝑢3 = [
0.875621
1.124379
1.443528

] 

Table 6. Results of the Test problem by Block Cyclic Reduction Method 

Unknowns Exact solution Block cyclic reduction 

method 

Absolute error 

𝑈11 0.317673 0.317911 0.000238 

𝑈12 0.407900 0.408246 0.000346 

𝑈13 0.523754 0.524053 0.000299 

𝑈21 0.615595 0.615994 0.000399 

𝑈22 0.790439 0.791018 0.000579 

𝑈23 1.014944 1.015453 0.000509 

𝑈31 0.875241 0.875621 0.000380 

𝑈32 1.123832 1.124379 0.000547 

𝑈33 1.443029 1.443528 0.000499 
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5.3 The Buneman Algorithm 

The Buneman algorithm is a more stable algorithm compared to CORF algorithm. It 

is possible to use this algorithm to solve (2.10) arising from a 5 point difference 

approximation of Poisson’s equation on a rectangular region using Dirichlet boundary 

condition [6]. The Buneman algorithm has a distinct approach in the calculation of the 

right hand side of the system at each phase of the reduction process, which 

differentiates it from the CORF algorithm. In the case of Buneman algorithm, we 

assume that in the system (4.6), the matrix 𝑇 is an identity matrix of order 𝑔, i.e.        

𝑇 = 𝐼𝑔. 

Let us consider the system (4.6) with dimension 𝑁 = 2𝑘+1 − 1, one stage of cyclic 

reduction process results to 

 𝑢𝑗−2 + (2𝐼𝑔 − 𝐷2)𝑢𝑗 + 𝑢𝑗+2 = 𝑦𝑗−1 − 𝐷𝑦𝑗 + 𝑦𝑗+1, (5.14) 

for 𝑗 = 2,4, … ,𝑁 − 1, where 𝑢0 = 𝑢𝑁+1 = 𝜃, a null vector. The right hand side of 

(5.9) can be written as follows 

 𝑦𝑗−1 − 𝐷𝑦𝑗 + 𝑦𝑗+1 = 𝐷(1)𝐷−1𝑦𝑗 + 𝑦𝑗−1 − 2𝐷−1𝑦𝑗 + 𝑦𝑗+1 = 𝑦𝑗
(1)

, (5.15) 

where 𝐷(1) = (2𝐼𝑔 − 𝐷2). Let 𝑃𝑗
(1)

= 𝐷−1𝑦𝑗, 𝑄𝑗
(1)

= 𝑦𝑗−1 + 𝑦𝑗+1 − 2𝑃𝑗
(1)

, so that 

𝑦𝑗
(1)

= 𝐷(1)𝑃𝑗
(1)

+ 𝑄𝑗
(1)

. (5.16) 

  

After 𝑖 reductions, by (5.5), we have 

 𝑦𝑗
(𝑖+1)

= 𝑦
𝑗−2𝑖

(𝑖)
− 𝐷(𝑖)𝑦𝑗

(𝑖) + 𝑦
𝑗+2𝑖

(𝑖)
.  (5.17) 

 

Similar to (5.16), we write 

 𝑦𝑗
(𝑖)

= 𝐷(𝑖)𝑃𝑗
(𝑖)

+ 𝑄𝑗
(𝑖)

. (5.18) 
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From (5.5), we can say that (𝐷(𝑖))
2

= 2𝐼𝑔 − 𝐷(𝑖+1). Making use of this identity and 

substituting (5.18) into (5.17), we have 

 𝑃𝑗
(𝑖+1)

= 𝑃𝑗
(𝑖) − (𝐷(𝑖))

−1
(𝑃

𝑗−2𝑖

(𝑖)
− 𝑄𝑗

(𝑖) + 𝑃
𝑗+2𝑖

(𝑖)
), 

𝑄𝑗
(𝑖+1)

= 𝑄
𝑗−2𝑖

(𝑖)
− 2𝑃𝑗

(𝑖+1)
+ 𝑄

𝑗+2𝑖

(𝑖)
. 

(5.19) 

To compute (𝐷(𝑖))
−1

(𝑃
𝑗−2𝑖

(𝑖)
− 𝑄𝑗

(𝑖) + 𝑃
𝑗+2𝑖

(𝑖)
) in (5.19) above, we have that 

𝑃𝑗
(𝑖) − 𝑃𝑗

(𝑖+1)
= (𝐷(𝑖))

−1
(𝑃

𝑗−2𝑖

(𝑖)
− 𝑄𝑗

(𝑖) + 𝑃
𝑗+2𝑖

(𝑖)
). Multiply both sides of the equation 

by (𝐷(𝑖)), we get (𝐷(𝑖))(𝑃𝑗
(𝑖) − 𝑃𝑗

(𝑖+1)
) = (𝑃

𝑗−2𝑖

(𝑖)
− 𝑄𝑗

(𝑖) + 𝑃
𝑗+2𝑖

(𝑖)
). We solve this 

system of equation, where (𝐷(𝑖)) is calculated by factorization in (5.13), that is 

𝐷(𝑖) = −∏(𝐷 + 2 cos 𝜃𝑗
(𝑖) 𝐼𝑔)

2𝑖

𝑗=1

, 

𝜃𝑗
(𝑖)

=
2𝑗 − 1

2𝑖+1
𝜋. 

After 𝑘 reductions, we have 𝐷(𝑘)𝑢2𝑘 = 𝐷(𝑘)𝑃
2𝑘

(𝑘)
+ 𝑄

2𝑘

(𝑘)
, therefore,  

𝑢2𝑘 = 𝑃
2𝑘

(𝑘)
+ (𝐷(𝑘))−1𝑄

2𝑘

(𝑘)
. 

Again, we factorize 𝐷(𝑘), using it to compute (𝐷(𝑘))−1𝑄
2𝑘

(𝑘)
.  To do back substitution, 

we use the relationship 

𝑢𝑗−2𝑖 + 𝐷(𝑖)𝑢𝑗 + 𝑢𝑗+2𝑖 = 𝐷(𝑖)𝑃𝑗
(𝑖)

+ 𝑄𝑗
(𝑖)

. 

For 𝑗 = 𝑟2𝑖, 𝑟 = 1,2, … , 2𝑘+1−𝑖 − 1, with 𝑢0 = 𝑢2𝑘+1 = 𝜃(null vector). 

 𝐷(𝑖)(𝑢𝑗 − 𝑃𝑗
(𝑖)) = 𝑄𝑗

(𝑖)
− (𝑢𝑗−2𝑖 + 𝑢𝑗+2𝑖). (5.20) 

Let 𝑢𝑗 − 𝑃𝑗
(𝑖) = 𝑣,  𝐷(𝑖)𝑣 = 𝑄𝑗

(𝑖)
− (𝑢𝑗−2𝑖 + 𝑢𝑗+2𝑖), 

to solve for 𝑢𝑗 , first solve for 𝑣 using the factorization of 𝐷(𝑖) in (5.13), then 

 𝑢𝑗 = 𝑃𝑗
(𝑖) + 𝑣. (5.21) 
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Chapter 6 

6 COMPARISON 

In the second half of the 20th century, direct methods which utilizes the special block 

structure of the algebraic linear systems were developed. In this thesis, we analysed 

block elimination methods, block decomposition methods and block cyclic reduction 

methods. We present operation counts for some of these methods with 𝑀 = 𝑁. Terms 

of lower order in 𝑁 will not be included, therefore, the operation count is only valid 

for large 𝑁. 

The operation counts given by Dorr [1] indicates that the methods which have been 

discussed in this thesis offer economic significance over the older techniques. Table 7 

presents the operational counts of some methods discussed as given in [1]. 

Table 7. Operation counts for some methods discussed 

Method Order of Operations 

Block Polynomial Form 6𝑁3 

Block Schechter Form 12𝑁3 

Simplified Block Schechter Form 
3

2
𝑁3 

Odd-Even Reduction 

(CORF) 

9

2
𝑁2 log2 𝑁 
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We note that the orthogonal matrix decomposition method discussed in Section 4 is 

carefully analyzed by Hockney [7] for solving Poisson’s equation on a rectangle. In 

this case, 𝑄 is known. He took advantage of this and the fact that fast Fourier transform 

[12] can be used to solve steps (ii) and (iv), taking into account also that fast Fourier 

transform requires 2𝑁 log2 𝑁 operations [12]. Therefore, Orthogonal matrix 

decomposition method is a valuable method. Comparing block elimination methods, 

simplified block Schechter form requires less operation count which is 
3

2
𝑁3, than block 

polynomial form and block Schechter form. 

CORF algorithm when used as studied in section (5.2) and given in [6] for the 

numerical calculation of (5.5) represents some degree of instability. This also occurs 

when the method presented in this way is applied to solve the algebraic systems of 

equations arising from 5-point discretization of the Laplacian equation on a rectangle 

as stated in Section 10 of [6]. On the other hand, Hockney noted that there could be a 

better advantage to applying just the cyclic reduction method until the size of the 

matrix is reduced such that other methods which are more stable and direct can be 

applied to solve the already reduced matrix [1]. 

Therefore, Buneman algorithm, Hockney algorithm (when used carefully) and 

orthogonal matrix decomposition methods are powerful direct methods for solving 

discrete Poisson’s equation on a rectangle with Dirichlet boundary conditions. 
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