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ABSTRACT

The solution of systems of algebraic equations arising from the 5-point discretization
of Poisson’s equation on a rectangle with Dirichlet boundary conditions is analyzed
by direct solution methods. Special emphasis is given for block direct methods, such
as block elimination, block decomposition and block cyclic reduction methods. For
this purpose block elimination algorithms, orthogonal block decomposition
algorithms, cyclic odd even reduction method, (CORF) algorithm and Buneman

version of the CORF algorithm is also studied. A test problem is constructed for the

Laplace equation and solved by these block methods for the mesh size h:%'

Comparisons are given based on the computational complexity of the methods.

Keywords: Block elimination methods, block cyclic reduction method, block
decomposition methods, Thomas algorithm, discrete Poisson’s equation, 5-point

scheme.



Oz

Poisson denkleminin dikdortgen tizerindeki Dirichlet sinir deger probleminin 5-nokta
coziimlemesi ile elde edilen cebirsel denklem takimlarmin ¢6ziimii dogrudan
yontemler ile incelendi. Blok yoketme yontemleri, blok ayristirma yontemleri, ve blok
dongusel indirgeme yontemleri gibi blok dogrudan yontemlere 6zel 6nem verildi. Bu
amac dogrultusunda blok yoketme algorithmalari, dik blok ayristirma algorithmalari,

tek cift dongusel indirgeme metodu, (CORF) algorithmasi ve Buneman versiyonu

caligildi. Laplace denklemi icin bir test proplemi olusturuldu ve adim biiytikligi h = %

icin verilen yontemler ile ¢ozlldi. Karsilastirmalar yontemlerin hesaplama

karmasasina gore verildi.

Anahtar kelimeler: Blok yoketme yontemi, blok dongiisel indirgeme yontemi, blok

ayrigtirma yontemi, Thomas algorithmasi, Poisson denklemi, 5-nokta semasi.
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Chapter 1

INTRODUCTION

Many problems in Science and Engineering need the solution of the Poisson’s

equation,

Au=1yinR,

u = w on 0R, (1.1)
where R is a rectangle, dR is the boundary of R, Au = ‘;2712‘ + 22712‘ , and y, w are known
functions.

Finite differences with 5-point, 9-point or 7-point schemes may be used for
approximating the partial differential equation to find the numerical solution of (1.1).
These schemes for (1.1) results in algebraic linear systems of equations which are
usually in large dimensions and are sparse systems. Classical direct methods such as
Gaussian elimination, LU decomposition methods are inefficient both in storage and
computational complexity. Therefore, iterative methods such as point successive over
relaxation (SOR) and Peaceman-Rachford alternating direction implicit iteration
(ADI) method were used for the solution of such discrete problems. In general,
iterative methods have some pitfalls which includes;

1. Initial guess to generate successive approximations to a solution,

2. Total computational complexity increases as iteration number increases,

3. Convergence rate, which sometimes depends on the spectral properties of the

coefficient matrix,



4. In general, accuracy which is usually determined by the convergence test is inferior
to the accuracy of the direct method and is limited as the exact solution of the equation

cannot be obtained in finite number of steps.

However, in the second half of the 20" century, direct methods which utilize the
special block structure of these linear system of equations have been proposed [1].
Some of these methods are; block elimination methods, block decomposition methods,

cyclic reduction methods, tensor product methods and the Fourier series methods.

In this thesis, we consider systems of algebraic simultaneous equations arising from
the 5-point discretization of Poisson’s equation on a rectangle with Dirichlet boundary
conditions, which results to symmetric block tridiagonal matrices. Block direct
methods such as block elimination methods, block decomposition methods, and cyclic
reduction methods will be analyzed and a comparative study will be provided based

on their computational complexity.

In Chapter 2, the 5-point finite difference analogue of the Poisson’s equation on a
rectangle with Dirichlet boundary conditions is reviewed and remarked that the
resulting system of equations possess block tridiagonal coefficient matrix. A test
problem is considered and a system of equations is obtained when the mesh size h is

h=1/4.

In Chapter 3, block elimination methods are analyzed for the solution to the non-
singular block tridiagonal systems and particularly for the solution of the obtained

block tridiagonal system from the 5-point difference analogue of the Poisson’s



equation. The test problem is solved by block Gaussian elimination method, block

polynomial form, Schechter form and the simplified Schechter form algorithm.

In Chapter 4, the matrix decomposition methods are analyzed for the solution of the
general block tridiagonal systems. Orthogonal block decomposition algorithm is
studied, which requires the eigenvalues and eigenvectors of the blocks in the main
block diagonal for the obtained block tridiagonal matrices. Therefore, we also

reviewed the power method for finding eigenvalues and eigenvectors.

In Chapter 5, we considered the cyclic odd-even reduction and factorization (CORF)
algorithm to solve the systems. Due to the difficulties encountered in using the CORF

algorithm, the Buneman version of CORF algorithm is also studied.

In Chapter 6, comparisons are given according to the computational complexity.



Chapter 2

DISCRETE POISSON’S EQUATION ON A
RECTANGLE

2.1 Introduction
One of the forms in which a second order partial differential equation in two variables
can be classified is the elliptic form. In general, it is of the form;

Auy, + 2Buy,, + Cuy,y, + Du, + Eu, + F =0, (2.1)
which satisfies the condition B> — AC < 0, for u,, = u,,. Its basic example is the

Laplace Equation;
(2.2)

But if the equation is non-homogeneous, then it is called Poisson’s Equation. The
Poisson’s Equation, named after a French mathematician, physicist and geometer
Simeon Denis Poisson, is required to solve many physical problems, e.g. the steady-
state temperature distribution on a heated plate. It is usually written in the form:

0°u  d%u
4T 2.3
0x?2 + dy? f&y), (23)

where u is some scalar potential which is to be determined and f(x,y) is a known

function.



2.2 Finite Difference Analogue of the Poisson’s Equation

A finite difference analogue of the Poisson’s equation is the Discrete Poisson’s
equation. For computational purposes, finite difference analogue based on treating the

plate as a grid of discrete points are substituted for the partial derivatives in (2.3). Let’s

consider a rectangle R = (0, a) X (0, b) and define mesh spacing Ax = ﬁ and Ay =

ﬁ (M and N are integers). The mesh points x; = iAx and y; = jAy are used to

define the discrete interior R;, and discrete boundary dR;, such that
Rp={(x,y)|l<i<N1<j<M)

OR, = RN {(x;,y))|0<i<N+1,0<;<M+1} @4

With the notation U;; = U(x;,y;), we define the usual 5-point approximation and
obtain the discrete operator A, and A, U;; as:

1
ApU;j = W(Ui—l,j —2U;; + Uiyr)f)
(2.5)

1
52 (Ui = 2U3j + Uy jsn).
If Ax = Ay = h, then we have
Uiy + Uimrj + Up jp1Uuy joq — 4U; j = R2f; ).
(2.6)
This is also known as the five-point difference formula. For Laplace’s equation, the
right hand side is zero, i.e.

Uiv1j + Ui1j + Ui jpa + Uy joq —4U; j = 0. 2.7)
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Figure 1. A rectangular grid used for finite difference equation.
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Figure 2. A 5-point Stencil.

2.3 The Dirichlet Boundary Condition

A Dirichlet Boundary Condition is a continuous function given on the boundary dR of

the domain that the solution satisfies. Consider the boundary value problem (1.1);

LetR ={(x,y):0<x<a0<y<b}



0%u N 0%u F(uy) on R
—+—=f(x,y) onR,
axz T 9y2 (2.8)

u(x;y) = (p] on V]; ] = 11213141
where R is a rectangle, ¢; are known boundary conditions on the boundaries y;,

counted in anticlockwise direction, where y; is the boundary on the side x = 0.

A
y
b Pq 0N Yy
M+1
@1 0nY; P30nYys
2 >
0 N+1 X

P2 0nYy2
Figure 3. A rectangular grid indicating its boundary conditions.

Using the 5-point difference analogue of the Poison’s equation given in Section 2.2

and employing the boundary conditions, we get the discrete Poisson’s problem

AhU = hZfU on th

U= ¢@jony;. (2.9)

For the approximate solution at the interior grids, we need to solve the algebraic system

of equations,



AU =7, (2.10)

obtained from (2.9) which can be written in block tridiagonal matrices form as:

D; C; O 0 1 %1 1 [ Y1 1
Az Dz CZ O 0 u'Z yz
0 A3 Dy G 0 [[us | | Vs (2.11)
O ..- ..- . n'. . : ) .
0 Dy-1 Cn-1||uUn-1 |3’N—1|
| O 0 AN DN JL uN i l YN J
D1 Cl 0 0 ul [ yl —l
AZ DZ CZ C'O O u2 | yZ |
u
where A = % f43 .D3 N O U = :3 and Y =| y3 I
0 Dy—y Cn-1 Un-1 l}’N—1J
| 0 0 AN DN i | uN i yN

In this case, A; and C; are identity matrices and D; = D for j = 1,2, ..., N, so we have
A=[I D I]yxn,
I'=10 1 0]pxm

D=[2-201+24) Auxm
2
1= (g) .

When Ax = Ay, A=1and D =[1 —4 1]yxu- We define u; as the vector with

components comprising of the ith vertical line of the array U,

Uiy
Uiz
Uis
Uis I’

M

2.3.1 Test Problem

LetR = {(x,y):0 < x < 1,0 < y < 1}, considering a case of (2.8) for f(x,y) = 0,

i.e.



62u+62u_0 r
x2 = 9y? on

with boundary conditions:
¢1(y) =siny ony,,
@2(x) = 0ony,,
@3(y) = e'siny on V3,
@,(x) = e*sinl ony,,

where the exact solution is u(x,y) = e* siny.

@4 = e*sinl

@
Usq Us; Uss Q3 = el siny
@, =siny 4
Uz1 Uzz Uzs
L 4 @ x
U1 Uiz Uiz
p2=0

Figure 4. A square grid for the case where N = M = 3,and h = 1/4.

Taking h = 1/4, a balance node for U;; according to (2.7) is —4U;; + Uy, + Uy =
—@,(h) — @,(h). For Uy,, the equation is U;; — 4U;, + Uy3+U,, = —@,(2h). The
balance nodes for other interior points can be generated accordingly and (2.7) results

to the matrix equation below:

D I 0][W V1
I D 1]||Uz|=1])2],
0 [ Dllus Y3




—@(h) — @,(h)

—p1(2h) —@1(3h) — @4(h)
where y; = —¢2(2h) Y2 = 0 ],ys = —4(2h) :
—@2(3h) — @3(h) —3(2h) —@3(3h) — 9,(3h)

Let V be the trace of the exact solution u on the grid,

Vi(h,h) = e"sinh = ¢%?5sin 0.25 = 0.317673

V,(2h,h) = e?"sinh = €% sin 0.25 = 0.407900

V3(3h,h) = e3"sinh = e%75sin 0.25 = 0.523754

V,(h,2h) = e" sin2h = €%?5sin 0.5 = 0.615595

Vs(2h,2h) = e?"sin 2h = %% sin 0.5 = 0.790439
Vs(3h,2h) = e3"sin2h = %75 sin 0.5 = 1.014944

V,(h,3h) = e"sin3h = ¢%2°5in 0.75 = 0.875241

Vg(2h,3h) = e?!sin3h = e%>sin0.75 = 1.123832

Vo(3h,3h) = e3"sin3h = e%7>sin 0.75 = 1.4430209.

Representing the solution in block form:

0.317673 0.615595 0.875241
v; =(0.407900(,v, = (0.790439|,v3 = [1.123832],
0.523754 1.014944 1.443029
the right-hand side results to:

Y, = —@,(h) — p,(h) = —sin0.25 — 0 = —0.247404
Y, = —,(2h) =0

Y; = —,(3h) — p3(h) = 0 — elsin0.25 = —0.672514
Y, = —¢9,(2h) = —sin 0.5 = —0.479426

YS =0
Yy = —@3(2h) = —elsin 0.5 = —1.303214

Y, = —,(3h) — @,(h) = —sin0.75 — e®2?>sin1 = —1.762109

10



Ys = —@,(2h) = —e®%sin1 = —1.387351

Yo = —3(3h) — ¢,(3h) = —e'sin0.75 — e%75sin 1 = —3.634280.

The right-hand side in block form is:

—0.247404 —0.479426 —1.762109
V1= 0 Y2 = 0 ,¥3 = |—1.387351].
—0.672514 —1.303214 —3.634280

11



Chapter 3

BLOCK- ELIMINATION METHODS

3.1 Introduction

The difference analogue of the Poisson’s equation produces a set of algebraic
equations (2.10). In this Chapter, the block-Gaussian elimination, the block-
polynomial form and the Schechter form will be reviewed to find solution to the system
(2.10).

3.2 Block-Gaussian Elimination Method

Considering the block tridiagonal matrix equation in its general form, where 4; and C;
may not be identity matrix,

AU=[4; D; GlU =Y, (3.1)

where A is a block matrix with dimension N and 4;, D; and C; are M x M matrices.
This method depends upon the calculation of matrix inverse, which is also stored as it
is used recursively. The procedure for block-Gaussian elimination for the solution of

(2.10) can be written in the form [2], [1]:

Algorithm: Block Gaussian Elimination [1]

fl = Dl_lJ’l:
R, = -D;'Cy,
-1 . 3.2
fi = (ARi-1 + D) (v = Aifj-1). 2<j<n, G2
-1 i
Ri = —(4AjRi-1 + D) "G 2<j<N-1,

12



uy = fn,

Uj:f}'+Rju]'+1, 1S]SN—1

This procedure is stable and will produce an exact solution of the equation (relative to
the increase of round off error) provided the matrices

AjRi_1 + D; (1<j<N,Ry=0)

are non-singular (i.e. they have determinant to be non-zero). But for large values of M
and N, this procedures may not be too satisfactory in terms of time execution and
memory requirements for the storage.

3.2.1 Solution of the Test Problem by Block Gaussian Elimination Method

For the test problem given in Section 2.3.1, M =N =3 and A, = A3 = [543,

-4 1 0
CI=CZ=I3X3l D]=D= 1 —4 1 ,j=1,2,3
0 1 -4
fi =Dilyy,
—0.267857 —0.071429 —0.017857
D;' =(-0.071429 —0.285714 —0.071429
—0.017857 —0.071429 —0.267857
—0.247404
V1= 0
—0.672514
0.078278
fi =10.065709
0.184555

R1 = —D1_1C1 = _D1_1

0.267857 0.071429 0.017857
Ry =-D;'=10.071429 0.285714 0.071429
0.017857 0.071429 0.267857

fi=(Ri-1+ ;)" (% = fi-1). j=23

fo=Roc1 + D)7 2 = fom1) = Ry + D)7 (y2 — f1)

13



0
—1.303214

—0.479426
V2 =

0.211795

0.212438
fz =
0.460455

-1 i
Ri=—(Ri-1+D;) j=2,3

0.294824 0.093168 0.028157

R, = —(Ry +D;)7" = [0.093168 0.322981 0.093168

0.028157 0.093168 0.294824

f3 = Ra_1 +D3) (3 = f3-1) = Ry + D) (¥ — f2)

—1.762109
ys = |-1.387351
—3.634280
0.875621
f3 =11.124380
1.443528
uy = fn,
0.875621
uz = f3 = (1.124380
1.443528
U, = fo + Ryus
0.615994
Uu, =10.791018
1.015453
u1 == fl + R1u2
0.317911
u; = 10.408246] .
0.524053

The solution obtained from the block-Gaussian elimination procedures are compared

with the exact solution in Table 1:

14



Table 1. Results of the test problem by Block Gaussian Elimination Method

Unknowns Exact solution Block-Gaussian Absolute error
Form
Uyq 0.317673 0.317911 0.000238
Uy, 0.407900 0.408246 0.000346
Uss 0.523754 0.524053 0.000299
U,y 0.615595 0.615994 0.000399
Us,, 0.790439 0.791018 0.000579
U, 1.014944 1.015453 0.000509
Usq 0.875241 0.875621 0.000380
Us, 1.123832 1.124380 0.000548
Uss 1.443029 1.443528 0.000499

3.3 Block Polynomial Form

The block polynomial form is a simplification of the block-Gaussian elimination
method in the case of Poisson’s equation, with Dirichlet boundary conditions. Here we
have A; = C; = Iyxy and D; = D.

Algorithm: Block Polynomial [1]

j
f;= BN D) ) (~DTIP_,(D)y,,  1SjSN
q=1

(3.3)
R; = —P '(D)P_1(D), 1<j<N
where P;(D) is the polynomial in D of degree j, given by:
Py(D) =1
(3.4)

j
P;(D) =1_[[D—xq(j)1], j=1
q=1

3 = 2c0s 9%
where x,(j) = 2cos et

All of the matrices [D — x,(j)!] are diagonally dominant, which makes them non
singular because the solution of x,(j) will remain between -2 and 2, i.e. x,(j) €

(—2,2). Therefore, there exist Pj‘l(D) with the algorithm written in the form:

15



N
wy = Py (D) ) (=P, (D),
q=1

J
wy = P70 | ) (~DTIP (D) — Broa (D | (35)
q=1

1<j<N-1

Since calculating matrix inverse is not preferable, (3.5) can be rewritten as:

Pu(DYuy = ) (=P, (D)y,,
q=1

]
PDYy = | ) (~D)TPy(D)yg = By (DI |, (36)
q=1
1<j<N-1.

Each of the polynomials P;(D),(1 < j < N) is expressed by solving a diagonally
dominant tridiagonal matrix equation, therefore, cyclic reduction methods can be used.
For the application, we employed Thomas algorithm to find the solution of the
tridiagonal systems of size M x M each.

3.3.1 The Thomas Algorithm

The Thomas algorithm, also known as tridiagonal matrix algorithm, is an effective
way of finding the solution of tridiagonal matrix system. It depends on LU
decomposition in which a matrix system Gz = w is rewritten as LUz = w, where G is
decomposed by LU, L is the lower triangular matrix and U is the upper triangular
matrix. Therefore, all the advantages of LU decomposition can be achieved if the
algorithm is applied properly. The solution of this system Gz = w is obtained by

putting LB = w for the solution of 8 and Uz = p for the solution of z. The algorithm

16



consists of three steps which are: decomposition, forward substitution and backward
substitution.
Thomas Algorithm [3]:
Given G = [a, dg ¢q], G = LU
L=[e, 1 0landU =[0f,¢cq],1<q<M.
Tosolve z, L =wand Uz = f8
Bg=wqg—e€gBq-1,1<q<M.
where B; = wy, 3, is solved by forward substitution.
zq = f77 Y (Bg — ¢qZq41), 1<qg<M-1.
Zy = fa'Bu, 24 is solved by backward substitution.
3.3.2 Solution of the Test Problem by Block Polynomial Form
Given that Po(D) = I and P;(D) = [T)_,[D — x,()1], j=>1
P;(D) = [D — x;(DI],
P,(D) = [D — x,(2)I][D — x,(2)1],
P3(D) = [D — x:(3)I[D = x,(AI][D — x3(3)1].

i " = 2c0s I
Since xq(]) = 2c0s et

x(1)=0
x(2)=1
x(2) = -1

x;(3) = 1.414214
x,(3) =0

x3(3) = —1.414214
For N = 3,

P;(D)us = 3:1(_1)q+3pq—1(D))’q

17



P;(D)us = Py(D)y, — P1(D)y2 + P2(D)ys

Let Po(D)y, — P1(D)y; + P,(D)ys; = wy
P;(D)uz = wy

P;(D) = [D — 1.4142141][D][D + 1.4142141]
[D — 1.4142141][D][D + 1.4142141 us = w;
Let [D + 1.414214]u; = M,

[D — 1.4142141][D]M; = w,

Let [D]M, = M,

[D — 1.41421411M, = w;.

[D — 1.4142141] results into a tridiagonal block matrix which can be solved by

Thomas algorithm to find the solution of vector matrix M,. M, is substituted to find

M;and Mis substituted to find us, all solved using the Thomas algorithm. The result
0.875621]

of the block vector u; = [1.124380
1.443528

P(DYy; = [h_, (=17 Py (D)yg — Proy (D),

Py(D)u, = [X5-1(=1)%*?Py_1(D)yq — P,—1(D)uz41] = —Po(D)y; + P1(D)y, —
Py (D)us,

Let —Py(D)y, + Py(D)y, — Py(D)u; = wy,

P,(D)u, = wy,

P,(D) =[D —I][D + 1],

[D—1I][D +1]u, = w,.
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Let My =[D +I]u,, [D—1]M; = w,. Here also, [D —I] is a tridiagonal block

matrix, M5 is solved for and substituted to find the solution of wu, by Thomas

algorithm.
0.615994

u, =10.791018|.
1.015453

Pi(D)uy = [E4=1 (=17 Py_1(D)yg — Pr-1(D)tty41] = Po(D)yy — Po(Duy,
Let Po(D)y, — Po(D)uy = ws, 50 Py (D) uy; = ws
Since P;(D) = D, Du; = wy and D is a tridiagonal matrix, this system is solved by
Thomas algorithm to find the solution of wu;.
0.317911
U, = [0.408246].
0.524053

We get exactly the same table as in Table 1 which represents the block Gaussian

elimination method.

Table 2. Results of the test problem by Block Polynomial Method

Unknowns Exact solution Block-Polynomial Absolute error
Form
Uyq 0.317673 0.317911 0.000238
Uy, 0.407900 0.408246 0.000346
Uiz 0.523754 0.524053 0.000299
U,y 0.615595 0.615994 0.000399
Us,, 0.790439 0.791018 0.000579
U,z 1.014944 1.015453 0.000509
Usq 0.875241 0.875621 0.000380
Us, 1.123832 1.124380 0.000548
Uss 1.443029 1.443528 0.000499

3.4 Block Schechter Form

From the block polynomial form, we have that y = Pj_l(D)x exists. So Schechter [4]

used an alternative method to solve this equation, proposing the algorithm;
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Algorithm: Block Schechter Form [4]
D = BSB,

§=10 4 0]uxm

jm
. = —_— —_— 3.7
& 2[(COSM+1 1) 1] (57)
2 iy

since B? = I, we have
P;1(D)x =B [0 ! ol B
X = —_— X
* P (4)

J
4y = PA(D) |Py_y(D) ) (—=DTP,_,(D)y,
=1

N
FBLD) Y (DR 4Dy, 1<j<N.
q=j+1

But this procedure is not as efficient as the recursion method (3.5), (3.6) defined in the
block polynomial form due to its computational complexity which involves a larger
operation count, therefore, Schechter proposed a more simplified procedure for these
problem:
Algorithm: Simplified Block Schechter Form [4]
fi =y
fi =P-iD)y; — fi-1, 2<j <N,

uy = Py (D) fn, (3.8)
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This procedure, derived by modifying the block Gaussian elimination formulas has a
lower operation count when compared to the block polynomial form (3.5), (3.6) and
the initial Schechter form (3.7).

3.4.1 Solution of the Test Problem by the Schechter’s Algorithm

We use the algorithm (3.7).

Taking ; = 2|(cos 2=~ 1) = 1|, j = 1,23and M = 3
[ T

2y =2|(cosT—1) - 1| = —2.585786,

1 =2[(cosZ-1)-1] = -4,

3 =2|(cosZ— 1) - 1] = —5.414214,

_ 2 .y, .
(B)l-j = |agsing 5 b= 1,2,3

M+1 M

B 11 — ESIHE=0.5,
4 4
2 . 2T

(B)12 = \Esm: = 0.707107 ,
2 . 3m

(B)13 = \/;smr =0.5
2 . 2m

(B)y1 = \/;SIHT = 0.707107,
2 . 4m

(B)2z = \/;smT =0,

(B)ys3 = \Esin%ﬂ = —0.707107,
2 . 3m

(B);1 = \/;SIHT = 0.5,

(B)s, = \Esin%ﬂ = —0.707107,

2 . 9m _
(B)33 = \/;smT = 0.5.
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0.5 0.707107 0.5
B =10.707107 0 —0.707107| = BT,
0.5 —0.707107 0.5
1 _ [ 1
Py'(D)=B|0 == 0|B,
1
/o) © o
=8l 0 Ypa, B
1
0 O psan)]
—0.031250 —-0.026786 —0.013393
P3_1(D) =1-0.026786 —0.044643 —0.026786],
—0.013393 —-0.026786 —0.031250

u; = Py (D) [P,(D)Py(D)y, + Po(D)(—P1(D)y; + Po(D)y3)],

0.317912
0.408250],
0.524053

U, =

uz = P31 (D)[PL(D)(=Py(D)y1 + P1(D)yz) + P1(D)(—Po(D)y3)],

0.615995
0.7910321,
1.015451

Uy =

uz = P31 (D)[Py(D)(Py(D)y1—P1(D)y, + P(D)y3)],

0.875622
1.124399].
1.443525

Uz =

Table 3. Results of the test problem by Block Schechter Form

Unknowns Exact solution Block-Schechter Absolute error
Form
Uyq 0.317673 0.317912 0.000239
Usp 0.407900 0.408250 0.000350
Uy 0.523754 0.524053 0.000299
U,y 0.615595 0.615995 0.000400
Us,, 0.790439 0.791032 0.000593
Uys 1.014944 1.015451 0.000507
Usq 0.875241 0.875622 0.000381
Us, 1.123832 1.124399 0.000567
Uss 1.443029 1.443525 0.000496
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3.4.2 Solution of the Test Problem by the Simplified Block Schechter Form

We use the algorithm (3.8)

0
—0.672514

fi=y1 =

—0.247404]

fo = Pi(D)y, — f; = |—1.782640

[ 2.165108 ]
[ 5.885370

fs =P,(D)y; — f, = | 21.368785
| —54.697151

'—22.894324]

0.875621
uz = P;1(D)f; = [1.124381
1.443529

0.615994
1.015456

0.317908]

U, =ysz — DuZ — Uz = [0408258
0.524057

Table 4. Results of the test problem by Simplified Block-Schechter Form

Unknowns Exact solution Simplified Block- Absolute error
Schechter Form
Uiy 0.317673 0.317908 0.000235
Uiy 0.407900 0.408258 0.000358
Uiz 0.523754 0.524057 0.000303
U,y 0.615595 0.615994 0.000399
U,, 0.790439 0.791022 0.000583
Uss 1.014944 1.015456 0.000512
Usq 0.875241 0.875621 0.000380
Us, 1.123832 1.124381 0.000549
Usq 1.443029 1.443529 0.000500
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Chapter 4

MATRIX DECOMPOSITION METHODS

4.1 Introduction
The solution of general block tridiagonal systems (2.10) arising from a finite difference
equation can be given by matrix decomposition method. The block triangular
decomposition of A can be expressed as:

A=LU, (4.1)
where L is the lower triangular matrix and U is the upper triangular matrix which is
expressed respectively as

L=[Ly I 0], U=[0 Uy Cyl

The recurrence for L; and U; , i = 2,3, ..., N is given in [5]
Ul = Dll
Ll = Al'Ui__ll, (4l2)
UL' = Di - LiCi—l'

In this Chapter, we will consider majorly the orthogonal block decomposition method,
given in [6].

4.2 Orthogonal Block Decomposition Method

This method involves finding the eigenvalues and eigenvectors of the matrices D and
T, which is used to find the orthogonal matrix @ required for the solution of the
tridiagonal systems. From the system A of block dimension N,

24



A=I[T D TI. (4.3

4.2.1 Case when D commutes with T
In this case, the matrix D commutes with matrix T, i.e. DT =TD and D and T are
M x M symmetric matrices. Since these matrices are symmetric and they commute,
then there exist an orthogonal matrix Q such that,

Q'DQ = A, QTTQ = Q, (4.4)
where @ is the matrix containing the set of eigenvectors of D and T, A is a real diagonal
matrix of eigenvalues of D and Q is also a real diagonal matrix of eigenvalues of T.

Similar to the matrix A4, we have the vectors U and Y, written as:

Uq Y1
U= uz vy = yz
Uy YN

We will represent the entries of the block u; and y; as

ulj yl]
Uy i V2j
u,-=l 52]" yf:l 52]" j=123,...N. (4.5)

From the system (4.3), we have
Duy +Tu, =y,
Tuj_qy +Duj +Tujp, =y;, j=23,..,N—1, (4.6)
Tuy_1 + Duy = yy.
Using (4.4), (4.6) becomes
Auy + Qup = i,
Oy + AU + Qg =y, j=23,..,N—1, (4.7)
Qiy_q + Aty = Yy,
where i; = Q"w;and y; = Q"y;, j = 1,2,3,...,N.
The components of %; and y; are labeled as:
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(4.7) can be written forp = 1,2, ..., M as
Aplipy + Wpllyy = Ypq,
Wpllyj_q + Aplyj + wpllpjsr = Ypjy j=2,3,., N—1, (4.8)
Wpllpn-1 + Aplpy = Yy

From this, we have the system

Lty = Jp) (4.9)
1] [Vp1]

where T, = [w, 4, @plysn, Up = llu?le’ Y =|l pZJl
aPN _pN

From finding i,, which can be computed by Thomas algorithm, it is then possible to
solve for u; = Q1i;.

Therefore, we have the algorithm as [6] [7]:

1. Find the eigenvalues and eigenvectors of D and T

2. Compute y; = Q"y; ,j=12,..,N

3. Solvelf,=9,,p=12.,M

4. Compute w; = Qu; , j=1,2,..N

4.2.2 Case when D and T do not commute

D and T may not need to commute. If we assume that T is symmetric and positive
definite, then there exist a matrix P, such that [8]

T = PPT, D = PAPT, (4.10)
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where A is the diagonal matrix of eigenvalues T ~1D and the matrix of the eigenvectors
of T71D is P~T. Using (4.10), we have the following algorithm [5]:

1. Find the eigenvalues and eigenvectors of T~1D

2. Compute y; = P~1y;

3. Solve I, = §,, where I, = [1 &, 1]

4. Compute u; = P~

4.2.3 The Power method

The power method is an iterative method for approximating eigenvalues and
eigenvectors. Normally, the power method only determines the largest eigenvalue, also
known as the dominant eigenvalue. But with slight modification, it can be used to
determine the non-dominant eigenvalues, that is the intermediate and the smallest

eigenvalues.

Definition 1 [9]: If A, is an eigenvalue of A that is larger in absolute value than any
other eigenvalue, it is called the dominant eigenvalue. An eigenvector V;

corresponding to A, is called a dominant eigenvector.

The power method can be used when the eigenvalues of an n X n matrix A is ordered
in magnitude as

1211 > 122] 2 | 23] = [A4] = - 2 [4n].

It is also used when A, ., has n linearly independent eigenvectors. To apply this
method, the analyzed matrix system should be in the form:

Ax = Ax.

27



A non-zero vector x, is chosen as an initial approximation and the sequence is given
by
x; = Axy,
x, = Ax; = A(Axy) = A%x,,

x3 = sz = A(Azxo) == A3x0,

X = AXpp_q = A(A™ 1x,) = A™x,,.

If the sequence is correctly scaled, a good approximation of the dominant eigenvector
of A is obtained and the Rayleigh quotient is used to determine the corresponding

eigenvalue.

Theorem 1 [10]: If x is an eigenvector of a matrix A4, then its corresponding eigenvalue

is given by:

This quotient is called the Rayleigh quotient.

We observe that this method produces approximate eigenvectors with large
components, therefore each approximation can be scaled down and the scaled vector
is used in the next iteration. The advantage of this method is that the eigenvalue is
obtained alongside the eigenvector.

4.2.4 Solution of the Test Problem by Orthogonal Block Decomposition Method

-4 1 0 1 0 O
1 —4 1landT=I=|0 1 0

0 1 -4 0 0 1

The matrix D =
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-1 1 1

0 \/E _'\/ia
1 1 1

We calculate the matrix V =

vectors of D.

Normalizing V, we have

[ /\/_] [ 1/2 | [ 1/2
ol V. = ﬁ/z V= ‘ﬁ/z

l /vz ] Y, Y,

The orthogonal Matrix Q is

v, =

I[ 1/\/_ 1/2 1/2 ]l
| o V7, |
11/\/_ 1/, 1, J
—4 0 0
QTAQ=|0 +2-4 0 =A
0 0 —2 -4

=Q"y, j=12.3

[—0.300598]
Y1 =—0.459959
[—0.459959]

[—0.582506]
Y2 =1-0.891320
[—0.891320

[—1.323825]
y3 =|-3.679200
—1.7171891

To solve I,4i, = 9, p = 1,2,3

-4 1 0 711 —0.300598
1 —4 1 ||uz|=]-0.582506

0 1 —41lugs —1.323825

L, =y, =

Using the Thomas algorithm to solve this system, #; results to

Uy 0.145765
i, = |U2] =10.282461
Uz 0.401571
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V2 -4
1
0

1
V2 -4
1

L, =y, =

-
o |

Solving ti,, using the Thomas algorithm results to

Uyq 0.709656

i, = [ﬁzz = [1.375059]

Uyz 1.954631
—2 -4 1 —0.459959
Gl =95 = 1 —2 - [u32 —0.891320
0 1 _\/— 4| Ltss —1.717189

Solving i, using the Thomas algorithm results to

0.459959
0.891320
3.679200

RiH

u 0.132309
fiy = |Usz| = [0.256389]
u 0.364518
To compute u; = Qu; , j =1,2,...N,
[~ 1/\/5 lr o]
| |70.145765
w =Qu=| o \/7/2 \/—/ 110.709656
0.132309
1 1 1
l Iz T2 /2 J
0.317911
Uy = [0.408246]
0.524054
~Y 5 2
| V2 [10.282461
u, = Qi =| 0 \/_/ \/_/ I[1 375059]
0.256389
1 1
l [z /2 e J
0.615994
U, = [0.791019]
1.015454
— 1/ 1/ 1/
2 2
V2 0.401571
uz =Quz=| 0 ‘/7/2 ‘/_/2 [1 954631]
y y y 0.364518
V2 2 2
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0.875621
uz = 11.124380

1.443528

Table 5. Results of the test problem by Orthogonal Block Decomposition Form

Unknowns Notations| Exact Orthogonal Absolute
solution block error
decomposition
form
Uig Uqq 0.317673 0.317911 0.000238
Ui, Uyy 0.407900 0.408246 0.000346
Uiz Usq 0.523754 0.524054 0.000300
Uyq Uy, 0.615595 0.615994 0.000399
Uy, Uy, 0.790439 0.791019 0.000580
Uys Us, 1.014944 1.015454 0.000510
Usq Uq3 0.875241 0.875621 0.000380
Us, Usys 1.123832 1.124380 0.000548
Uss Usg 1.443029 1.443528 0.000499
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Chapter 5

BLOCK CYCLIC REDUCTION METHOD

5.1 Introduction

Consider the matrix equation

w=[l 2= 1 6

The solution to (5.1) can be written in the form

u; = (I = DC)Y *(y1 — Dyy),
(5.2)
U, =y, — Cys.

Thus, we reduce the problem to solving for u; only. Assuming I,D,C are square
matrices, this reduces the number of unknown by half. A similar method to this is the
cyclic odd-even reduction. We give here, the presentation due to Buzbee, Golub and
Nielson [6].

5.2 Cyclic Reduction Methods

From the matrix system (4.3), where [T D T] is of block dimension N, we assume
still that D and T are symmetric and they commute. We assume also that N = S — 1,
where S = 2k*1 and k is some positive integer. We rewrite the second equation in
(4.6) as follows:
Tuj_; + Duj_4 + Tu; = yj_y,
Tuj_1 + Duj + Tujy, =y,

Tuj + Duj+1 + Tu]'+2 = yj+1'
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The first and third equations are multiplied by T and the second equation is multiplied
by - D. Adding them all, the result is the equation:
T?uj_p + (2T% = D*)uj + T?*Ujpp = Tyj_1 — Dyj + Tyjyq.
If j is even, the new system of matrix equation involves w;’s that have even indices,
[T? (2T* - D?) TZ][uzj] = [TYZj—1 —Dy,j + T)’Zj+1]: (5.3)
and the eliminated equation will be written as the system:
[0 D 0] [u2j+1] = [_TYZj + Vo1 — T}’2j+z]- (5.4)

The block dimension of (5.3) is now 2% — 1 while that of (5.4) is 2%, [1].

The matrix decomposition method can be used to solve (5.4), or the reduction
technique is applied repeatedly to the system until we have one block. However, we
can stop the process at any step and use the method in section 4 to solve the resulting

matrix, as this will reduce its subjection to round-off errors [7].

Applying the same technique to reduce (5.3), we define the sequence:
pO=p, TO=7, yV=y, uP=u, j=12..N
Fori=0,12, ..k
T+ — (T(i))z

pl+D) — Z(Ta))z _ (Da))z

(5.5)
(i+1) ®
uj = uzj,
A+1) _ @) (L, @ @), D
Yj =T" (yj_zi + yj+2i) DY Yj

At each stage, we observe that we have a new system of equations to solve, in the form

MDOzO = F® (5.6)
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— (l) —
) Yoi
0] o
, . , . . | Ugi+t , y2i+1
where MO = [T® p® TO] 70 = | : | FO =172
Ui .
j2 0
l E J yjzi
and the eliminated equation written in the form
pOW® = GO 5.7)
I[uu?i_zl—l '|
i+1 -1
where PO =0 DUV o], w®=| o "
{ ujzi_zl—l Jl

i—1 i—1
Vai_ptea = Tty

(i-1) _ (i-1) (i-1)
GO — Yit1_yi-1 T(:u2i+1 Tu,

-1 (-1
y-(zli_z)i—l - T(uj;i +u

j U-1

i—1
(@ )Zi)

To solve (5.6), we can use the methods reviewed in previous sections, or we continue
to compute M@+ and eliminate half of its unknowns. This matrix is of block
dimension 2¥*1=t — 1, [1]. After k steps, the matrices reduce to one block with

dimension M,

D@1y =y, (5.8)
This algorithm is known as cyclic reduction method [6]. Next, we consider the
factorization of D®. From (5.3)-(5.5), we observe that D® is a polynomial of degrees

2t in D and T, such that [6]

2i—1

p® = Z cID¥T? =% = P,u(D,T).
=0

To find the linear factors of P,:(D, T), let
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pyi(d,0) = 330 cDa2ie? 2, (D=1
For t # 0, we use the substitution

d

—=—2cosb. (5.9)

Note that from (5.5),

i 2
pyin(d, t) = 262" — (pzi(d, t)) . (5.10)
Then, using (5.9) and (5.10), we have that
p,i(d,t) = —2t2' cos 26,
and consequently,
p.i(d,£) = 0,when £ = — cos((L2) 7t for j = 1,2,3, ..., 2!
2 ) ) 2t 2l+1 P ad et BRARS | .
Therefore, we can write
2i
2j —1
pzi(d, t) = - 1_[ [d + 2t cos (W) 77.'].
j=1
Hence,
) _ @
DW= — H(D + 2 cos 6; T),
j=1
where 9].(") = 2211—:11
Denote
DY =D +2cos0T, (5.11)
50, to solve DMy, = yz(,'?, we set Z; = —yz(ﬁ) and solve
DMz =2, forj=12,..,2"
(5.12)

Z2k+1 = Uyk.

To solve (5.7), a similar algorithm can be used with
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2L
DO = — HD.“).
i1 g (5.13)

This algorithm above is called the cyclic odd-even reduction factorization (CORF)
algorithm. The numerical calculation of y}‘ in (5.5) depends on the rounding errors in
many applications. Buneman algorithm [11] stabilize the cyclic odd-even reduction
factorization.

5.2.1 Solution of the Test Problem by Cyclic Reduction Method

From the test problem in section (2.3.1), we obtained the matrix equation

D I 0][W V1
I D 1]||Uz2l=1])2
0 [ DIillus Y3
-4 1 01 1 0 O —0.247404
WhereD =1 -4 1|,I=|0 1 0|, y;= 0 )
0 1 -4 0 0 1 —0.672514
[—0.479426 —1.762109
Y2 = 0 ,y¥3 =[—1.387351
| —1.303214 —3.634280

The first and third equation is multiplied by I and the second equation is multiplied by
- D. This results to
Duy +u, = yy,
—Du; — D?*u, — Duz = —Dy,,
U, + Duz = ys.

Adding the three equations together, we have

1.0 0 -4 1 0\
(21 =D*u, =y, =Dy, +ys=( 2|0 1 0|—-({|1 -4 1 U =Y1—

0 0 1 0 1 -4
-4 1 0
1 —4 1 V2 +y3
0 1 -4
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8 -—-16 8

[—15 8

-1 8

To solve the eliminated equations,

-1 —3.927217
u, = | 0.395289

—15

s

—9.519650

0.791018

0.615994]
1.015453

Duy =y, —uy,

-4 1 0 [0.615994
1 -4 1 |u =y;—/0.791018
0 1 -4 1.015453

0.3179117
U = [0.408246 ,
0.524053]

Dus = y; —uy,

-4 1 0 [0.615994
1 —4 1 |u3=1y3—1]0.791018
0 1 -4 1.015453

0.875621]
Uz =

1.124379
1.4435281

Table 6. Results of the Test problem by Block Cyclic Reduction Method

Unknowns Exact solution |Block cyclic reduction|  Absolute error
method
Uip 0.317673 0.317911 0.000238
Uy, 0.407900 0.408246 0.000346
Uiz 0.523754 0.524053 0.000299
Uyq 0.615595 0.615994 0.000399
Us, 0.790439 0.791018 0.000579
Uss 1.014944 1.015453 0.000509
Usq 0.875241 0.875621 0.000380
Us, 1.123832 1.124379 0.000547
Usg 1.443029 1.443528 0.000499
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5.3 The Buneman Algorithm

The Buneman algorithm is a more stable algorithm compared to CORF algorithm. It
is possible to use this algorithm to solve (2.10) arising from a 5 point difference
approximation of Poisson’s equation on a rectangular region using Dirichlet boundary
condition [6]. The Buneman algorithm has a distinct approach in the calculation of the
right hand side of the system at each phase of the reduction process, which
differentiates it from the CORF algorithm. In the case of Buneman algorithm, we
assume that in the system (4.6), the matrix T is an identity matrix of order g, i.e.
T =1,
Let us consider the system (4.6) with dimension N = 2k*1 — 1, one stage of cyclic
reduction process results to
Uiy + (21; — D?)w; + U4y = Yj—1 — DY; + Vi1, (5.14)

forj =2,4,...,N — 1, where uy = uy,; = 68, anull vector. The right hand side of

(5.9) can be written as follows

V-1 = Dyj + Yjs1 = DPD Yy +y; =207y + yiy =y, (5.15)

where D@ = (21, — D?). Let PV = D71y;, QY =y, + 141 — 2P, s0 that

yj(l) — D(I)F}.(l) + Q](_l)_ (5.16)

After i reductions, by (5.5), we have
(i+1) _ @ _ . D @
Y =Y D™y + Yot (5.17)

Similar to (5.16), we write

yj(i) _ p® 5(1’) + Q}(}')_ (5.18)
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From (5.5), we can say that (D(i))2 = 21, — DD, Making use of this identity and

substituting (5.18) into (5.17), we have

(i+1) _ p@ _ (p@OY I (p® _ A® )
P =50 - (00) " (P -0 + 5L

(5.19)

(+1) _ A _ 5pG+D) )
Q] - Qj_zi 2}3 + Qj+2i'

To compute (D(i))_1 (Pj(i)zi - Q](.i) + Pj(i)zi) in (5.19) above, we have that

@ _ pli+)) _ (nOY Y (p® _ A® ) : ; ;
PY —P = (DW) (Pj_zi Q;"” + Pj+2i). Multiply both sides of the equation
i i @ i+ _ (p® @ @ ;
by (D®), we get (D(‘))(F;.l - B )— (Pjizi—le +ijr2i). We solve this

system of equation, where (D(”) is calculated by factorization in (5.13), that is

PO — _ H(D +2cos 6" 1),

j=1

; 2ji—1
9}_(1) =J—T[.

i+l
After k reductions, we have D™y, = D(")PZ(,’? + Qéﬁ), therefore,
Uy = P3O + (D®) 1YY,
Again, we factorize D, using it to compute (D(""))‘lQ;ﬁ). To do back substitution,
we use the relationship
u_pi+ DO + 1y o = DOPD + QY.
Forj =r2Lr=12,.., 21" — 1 with uy = uk+1 = 6(null vector).
pO(u; = BP) = QP — (w_yi +uj, ). (5.20)
Letu; — 13-(0 =v, DOy = Q](-i) — (wj_pt + uj,50),
to solve for w;, first solve for v using the factorization of D® in (5.13), then

u =PV +v. (5.21)
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Chapter 6

COMPARISON

In the second half of the 20" century, direct methods which utilizes the special block
structure of the algebraic linear systems were developed. In this thesis, we analysed
block elimination methods, block decomposition methods and block cyclic reduction
methods. We present operation counts for some of these methods with M = N. Terms
of lower order in N will not be included, therefore, the operation count is only valid

for large N.

The operation counts given by Dorr [1] indicates that the methods which have been
discussed in this thesis offer economic significance over the older techniques. Table 7

presents the operational counts of some methods discussed as given in [1].

Table 7. Operation counts for some methods discussed

Method Order of Operations
Block Polynomial Form 6N3
Block Schechter Form 12N3
Simplified Block Schechter Form ;N3
Odd-Even Reduction 9
=NZ%log, N
(CORF) 2

40



We note that the orthogonal matrix decomposition method discussed in Section 4 is
carefully analyzed by Hockney [7] for solving Poisson’s equation on a rectangle. In
this case, Q is known. He took advantage of this and the fact that fast Fourier transform
[12] can be used to solve steps (ii) and (iv), taking into account also that fast Fourier
transform requires 2N log, N operations [12]. Therefore, Orthogonal matrix

decomposition method is a valuable method. Comparing block elimination methods,
simplified block Schechter form requires less operation count which is§N3, than block

polynomial form and block Schechter form.

CORF algorithm when used as studied in section (5.2) and given in [6] for the
numerical calculation of (5.5) represents some degree of instability. This also occurs
when the method presented in this way is applied to solve the algebraic systems of
equations arising from 5-point discretization of the Laplacian equation on a rectangle
as stated in Section 10 of [6]. On the other hand, Hockney noted that there could be a
better advantage to applying just the cyclic reduction method until the size of the
matrix is reduced such that other methods which are more stable and direct can be

applied to solve the already reduced matrix [1].

Therefore, Buneman algorithm, Hockney algorithm (when used carefully) and
orthogonal matrix decomposition methods are powerful direct methods for solving

discrete Poisson’s equation on a rectangle with Dirichlet boundary conditions.
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